





has been studied very intensively in the last ten years. Some new concepts
that were irrelevant for the finite dimensional cases shows up to be of deci-
sive importance in infinite dimensional cases. Among these concepts we will
center our attention to the asymptotic smoothness of a function.

The concept of asymptotic smoothness was introduced by Jack Hale in [5}.
Every continuous transformation between finite dimensional vector spaces
are asymptotic smooth, this is not the case for infinite dimensional Banach
spaces or metric spaces.. In particular, for such transformation every compact
set which attracts locally points, also attracts locally compact sets. In his
book Hale also gives some examples of asymptotic smooth transformations
in infinite dimensional spaces. Our objective in this paper is to provide
another class of such functions using the Zadeh’s extensions of continuous
transformation in R™. We think that these results will be also important to
analyze the interaction of dynamical properties between a transformation in
R" and its Zadeh’s Extension.

In the next section we give the main definitions and results in the litera-
ture. We include a small section discussing some properties of the compact
sets in F(R"). In the last section we present the results we have up to now
that are positive steps in the direction of the main conjecture: the Zadeh’s
extension of a continuous transformation is asymptotically smooth.

2 Preliminaries.

If X is a metric space and T : X — X is a continuous transformation then we
have a discrete dynamical system. For basic notation on dynamical systems
we recommend [5]. We say that T is asymptotically smooth (see [5]) if, for
each nonempty bounded and closed set B C X for which T'(B) C B, there
is a compact set J C B such that J attracts B. We recall that J attracts
B if for each neighborhood of J there is a positive ng such that 7"(B) is
contained in that neighborhood for all n > no (see Hale [5] page 9). If T is
asymptotically smooth then a set attracts locally points if and only if attracts
locally compact sets. Cooperman (3] and Brumley (2] have given examples
where this is not true for general transformations on infinite dimensional
Banach Spaces.

The concepts of limit sets of a dynamical systems are classical. Here we



will need the following: the w-limit of a subset B of X is given by:

w(B) = () (| T*B))

n>0  k2n

If B is such that T(B) C B then

w(B) = [ l(T™(B))

n>0
The next Lemma can be found in Hale [5] (page 11, Cor. 2.2.4)

Lemma 1. If T is asymptotically smooth and B is a nonempty bounded set
such that its positive orbit is bounded, then w(B) is nonempty, compact, and
invariant end w(B) attracts B.

The problem we addressed here is: are the Zadeh’s extensions of contin-
uous transformations on R™ asymptotically smooth? We recall some defini-
tions on fuzzy metric spaces.

The family of all compact nonempty subsets of R® will be denoted as
Q(R™). We also set F(R™) for the family of fuzzy sets u : R® — [0, 1] whose
a-level:

[wr={zeR":u(z) > a} 0<a<landul’=cl{zeR":u(z)>0}

are in Q(R").
It is known that the metric

doo(u,v) = sup h([u]*, [v]%)
0<a<l
where A is the Hausdorff metric in Q(R"), makes the spaces (F(R"), deo) into

complete metric spaces [6).
Let f: R™ — R™ be a mapping then we define the Zadeh’s extension as:

fute) = { gt O

for all fuzzy set u.
The proof of the following results can be found in [1].



Theorem 1. If f : R = R™ is continuous then f : F(R") — F(R") is well
defined and for all o € [0,1] we have

[F@))* = f([u]).
We will need also a recent result of Roman-Flores et al. [7]

Theorem 2. If f : R® —+ R* is continuous then f : F(R") — F(R") is
continuous.

3 Some facts on compact sets on F(R")

Our strategy is to prove the conjecture using the definition. Then we should
be able to determine when a subset of F(R") is compact or not. In the book
of Kloeden and Diamond [4] one find the characterization of compact sets
in the space of fuzzy sets with convex levels which does not fits our purpose
since our levels are only compact sets in R™. The better approach we have

found in the literature is the article of Rojas et al. [8]. In that paper it is
shown how difficult is to find a compact set in F(R™). A result that is of
great importance here is the following: If K is a compact set in R" then
Jx = {u € F(R") : [u]° C K} is compact if and only if K has diameter zero!
Our candidate to be an attractor will be of this type but we have also good
properties for this candidate.

Lemma 2. Let K C R" be a compact set and A = {u € F(R") : [u]° Cc K}.
Then A is a bounded closed set of the metric space (F(R™),d)

Proof: To see that A is bounded note that the distance of A to a point 0
(the characteristic function at 0) is finite. Indeed, denoting H the Hausdorff
metric between compact sets

doo(0, A) = inf doo(0,u) = inf sup H({0},[u]*) < sup d(0,z)
u€A u€A 4¢f0,1] zeK

this last number is a number M < oo because K is a compact set in R".
Now A is closed. In fact, consider a convergent sequence u, in A with
limit u, the convergence being in the metric d, then we have in particular
that H([un]® [u]°) — 0 and since [u,]° C K then [u]® C K proving that A
contains all its cluster points and then is closed. QED



4 The asymptotic smoothness problem

The main results will follow from a sequence of lemmas. Let f : R — R™ be
a continuous transformation and f : F(R") — F(R") its Zadeh’s extension
which is continuous according Theorem 2. To prove that f is asymptotically
smooth we have to prove that for each closed bounded set B C F(R") such
that f(B) C B there is a compact set J C B that attracts B. We take a
closed bounded nonempty B. Note that for each u € f(B) and v € B such
that f(v) = u we have by definition [u]* = [f(v)]* = f([v]*).

Lemma 3. Define B, = cl{{J,¢plu]*) C R™ There ezists a compact set
K C R™ such that [u]° C K for all u € B. Hence B, is bounded for each
a €[0,1]

Proof: Take a point z in R® and denote as & its characteristic function.
Since B is bounded there exists a r > 0 such that the ball with center in
Z and radius r contains the entire set B. In other words, for all u € B
doo(&,u) < 7. According to a result that can be found in [1] this metric can
be written as

deo(E,u) = Jup inf{a: [u]* C B,(z) and z € B,([u]*)}

where B,(z) denote the Euclidean ball centered in z. Then it follows imme-
diately that {u]® C B,(z) what proves the lemma. QED

Lemma 4. Consider B, as in Lemma 8. Then B, are closed bounded and
satisfies f(By) C Ba. Therefore there is a compact set J, C B, that atiracts
B,.

Proof: In fact the only assertion that has to be proved is that f(B,) C
B,. The rest follows immediately from definitions and the fact that every
continuous transformation in R" is asymptotically smooth.

Take a r in B,. By definition z is the limit of a sequence z, with z, €
[un]* and u,, € B. Therefore we have

f(zn) € f([ua)®) = [f(un)]® C Ba

Since f is continuous f(z,) converges to f(z) € B, and this completes this

proof. QED
Using the Lemma 1 we can define the special compact invariant sets

Jo = w(B,). These are the attractors we will consider. Now we can prove
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Lemma 5. For0 < a; < a; <1 we have Jo, C Ja,

Proof: We have that B,, C B,,. Observing that in this case the omega
limits can be written as:

Jo, = w(Baz) T n f"(Baz) « n f"(Bal) =Ja,

n>0 n0

and then follows the result.
We define J = {u € B : [u]° C Jo}.

Proposition 1. If f : F(R") —+ F(R") is asymptotically smooth then J is
nonempty for all nonempty closed bounded B with f (B) C B.

Proof: We take a closed bounded B with f(B) C B. Since we are
assuming that f is asymptotic smooth, we can use Lemma 1 to construct the
attractor K = w(B) which is also nonempty, compact and invariant. Again
take Ko = cllJ,cx[u]®. With respect to Ko we can assert

a) Kp is a compact set contained in Bp. And this is clear.

b) Kp is an invariant set for f (i.e. f(Ko) = Ko). In fact, if z € Ko then
we know that z is a limit of a sequence z, such that z, € [u,]° and u, € K
then follows: f(z) = limp~eo f(zn). Now

f(2a) € F([ua]®) = [f(ua))° € Ko

this shows that f(Ko) C Ko.

To prove that Ko C f(Kp), we repeat the process taking z € Ko and z,
as above. Now since K is invariant for f we have that u, = f(v,) where
va € K. Then for each n > 0 we have z, = f(y.) where y. € [v,]° C Ko.
Choosing a subsequence if necessary we take y = lim,,o Yn- By continuity
of f follows that z = f(y). Hence Kj is an invariant set of f.

Now Jp attracts By and also Kp. This means that for each € > 0 there is
an ng such that for n > ng, f*(Ko) C N(Jo,¢€) or Ko C N{Jo,¢€) using the
invariance. Here N(Jp,¢) stands for an e-neighborhood of J;. This proves
that in fact Kp C Jo because ¢ is arbitrary and then J # 0. QED.

In particular if J = @ then f isn’t asymptotica.lly smooth.

Proposition 2. Suppose that f : F(R") = F(R") is asymptotically smooth,
B a nonempty, bounded, closed subset of F(R")such that f(B)C B, K =
w(B) and Jy = w(B,). Then Ky = J,.
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Proof: The proof that K, C J, follows as in the above Proposition
changing the index 0 by a. It remains to prove that J, C K,. We know
tAha.t K attracts B, therefore given ¢ > 0 there exists ng such that for n > n,
f*(B) C N(K,¢) this implies that for each & € [0,1], f*(Ba) C N*(K,,¢).
Where

N*(Kay€) = {z € R": d(z, Ka) < €}
1t follows from the definition of J, that

Jo €[] £1(Bs) C N*(Kase).

n2ng

This is true for every € > 0 then follows the result. QED.

As a conclusion let us say that we are at this stage: To prove that some
subset J as above is empty ensure that f isn’t asymptotically smooth. If
all J are nonempty, it would be a candidate for an attractor even not being
compact in most cases, but our guess is: if J is not empty, there is a compact
set K containing J that attracts B.

5 Examples

We present two examples.

Let f : R® — R” be a continuous transformation, such that {0} is the
unique global attractor of f. Then f: F(R") = F(R") is asymptotically
smooth.

It is clear that f : F(R") — F(R") is continuous. We take a bounded
closed set B € F(R") such that f(B) ¢ B. Now we shall prove that:

(A) x{o} attracts B, and

(B) x{0) C B.

Since the set {x{0}} is compact in F(R") it follows our result.

To prove (A) note that for each & € [0, 1] the set By = cl(U,¢plul*) CR"
is compact, and then {0} attracts B,. This means that for each ¢ > 0
there is an no € N such that f*(B.) C N({0},¢) for all n > n,. Here
N({0},€) denote the e-neighborhood of {0}. But since B, C Bo we have
f*(Ba) C N({0},¢) for all n > no.

For each u € B, it follows that f*([u]*) C N({0},¢) and since f is
continuous [f*(x)]* C N({0},¢). From this it follows the assertion (A).



For the item (B) we take ng such that doo( f"(B),x{o}) < ¢ for n > ny.
This implies that x{o) is in a e-neighborhood of f*(B) and then in a &
neighborhood of B, because f*(B) C B. As this last assertion is true for
any € > 0 we must have x(o) € B. The proof of the result is complete.

As a particular case, we can take f(z) = Az where A is a linear operator.
We can restrict the analysis to the eigenspace associated to the eigenvalues
whose absolute values are less than one, and the above result applies.

This next example shows that it is not always true that the Zadeh’s
extension is asymptotic smooth.

If f: R - R” have a compact set K with infinite points as attractor,
then one can easily see that the set

B={ueFR":[u’C K}

is a bounded closed set for which f (B) = B. Since B is not compact accord-
ing to Rojas et al. [8], then f is not asymptotically smooth. The meaning of
this last example is that if f have a global attractor it will be hard to detect
it since we can not use the theory for asymptotic smooth transformation.
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DISSIPATIVENESS OF FUZZY DYNAMICAL SYSTEMS
LAECIO C. BARROS, SUZANA A. 0. SOUZA, PEDRO A. TONELLI

ABSTRACT. We study the preservation of dissipativeness of a fuzzi-
fied dynamical system. We show that Zadeh’s extensions of contin-
uous discrete dynamical systems are not always asymptotic smooth
in the fuzzy space. We give some examples and prove some results
related to asymptotic smoothness.

1. INTRODUCTION

A way to define dissipativeness of a dynamical system is to look for
global attractors. These are compact invariant sets that attracts the
system in some specific way. To define these “ attraction” we take a
class D of subsets of the state space, and check if for each element of D
- the orbit approaches the attractor. (We will give the precise definitions
in the next section).

It is well known that for finite dimensional state space all the con-
cepts of attraction does not depend on D and one could simply work
with the concept of point attractor. For infinite dimensional spaces
this is not true. The concept connected to the equivalence between
attraction of points and attraction of compact sets is the asymptotic
smoothness of the dynamical systems. In fact, one can prove that if
a system is asymptotic smooth then both concepts of attraction are
the same. In this paper we will study this equivalence for the Zadeh’s
extension of a continuous map f in R™

2. PRELIMINARIES

The common definitions and examples from the theory of dynamical
systems can be found in the book of Jack Hale [6]. Here we will recall
some known results and definitions for fix the notations.

Let (X, d) a metricspaceand T : X — X a continuous map. We refer
just as the dynamical system generated by T' the discrete dynamical
system S : N x X — X given by S(n,z) = T"(z). We assume at this
point familiarity with the first chapter of [6); in particular the concepts

of positive and negative orbits, invariant sets and limit sets.
1



2 BARROS, SOUZA, TONELLI

The distance between two subsets of X is defined as

dist(A, B) = sup inf d
ist(A, B) sup Inf (a,d)

This, sometimes, is called the semi distance of Hausdorff. The Haus-
dorfl distance between these sets is

h(A, B) = max{dist(4, B) , dist(B, 4) }.

To define the concept of attraction it is convenient to consider a class
D of subsets of X such that if D € D then T(D) € D. We will say
that such a class is invariant for T. Recall that a set A attracts a set
Bif

ILm dist(T™(B),A) =0.

Then a compact invariant set A attracts D if it attracts each element
D of that class. Then a compact invariant set A will be called a D-
attractor if it attracts D. A is maximal with these properties.

We observe that if a D-attractor exists then it is unique, but it is
not necessary that A belongs to D.

The map T is asymptotically smooth if, for every nonempty bounded
set B C X, such that T(B) C B, there is a compact set J C B which

" attracts B.

Let V € X be an open set. Denote by Dp(V) the class of subsets
consisting of exactly one point in V. If J is a compact invariant set
for which there exists a neighborhood J C V such that J is the D,(V)-
attractor, we say that J attracts points locally.

Let W C X be a bounded set. Denote by D (W) the class of compact
sets contained in W. A compact invariant set J C W attracts compact
sets in W if it attracts D(W). The following Theorem is from Hale 6,

p-12]

Theorem 1. If T is asymptotically smooth and J is a compact invari-
ant set that attracts point locally, then the statements are equivalent:
(i) There is a bounded neighborhood W such that J attracts D(W).
(i) J is stable.
(iii) J is uniformly asymptotically stable.

We will also need the following concepts on fuzzy spaces.

The family of all compact nonempty subsets of R™ will be denoted as
Q(R™). We also set F(R™) for the family of fuzzy sets u : R* — [0,1]
whose a-level:

[u*={zeR":u(x) 2 e} 0<a<1and [u’=cl{zeR":u(z)>0}

are in Q(R").
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It is known that the metric

doo (u, v) = TN h([u]®, [v]*)

where h is the Hausdorff metricin Q(R"™), makes the spaces (F(R"),dw)
into complete metric spaces [7].
Let f : R® =& R"™ be a mapping then we define the Zadeh’s extension

as:

oo ) & L1928

for all fuzzy set u.
The proof of the following results can be found in [1].

Theorem 2. If f : R® — R" is continuous then f : F(R") - F(R")
is well defined and for all o € [0,1] we have

[f)]* = F([u]?)-
We will need also a recent result of Roman-Flores et al. [8]
Theorem 3. If f : R® — R™ is continuous then f : F(R") = F(R")

- is continuous.

Two others spaces of fuzzy sets are also found in the literature and
they will of interest here, because they are invariant sets in F(R™).
We denote by F*(R")the subset of F(R")consisting of the elements u
which don’t have proper maximal local points (see [10] for a reference).
And let Fo(R")to be the set of u € F(R") such that the mapping

a — [u]* is continuous.

3. ASYMPTOTIC SMOOTHNESS OF EXTENSIONS

First of all we are led to ask whether the Zadeh’s extension of con-
tinuous map f : R® — R" are asymptotically smooth. We know that
every continuous map in R™ are asymptotically smooth. But the space
F(R")has an important defect in this case: there are closed bounded
sets in F(R™)which are not compact. The following class of sets is a
fundamental example in this case. Take K a compact set in R™ and
consider Jx = {u € F(R") : [u]® C K}. This set is closed and bounded
but it is compact if and only if K has diameter zero. In view of this fact,
one has that the identity map in F(R") isn’t asymptotically smooth.
We will consider more examples in the next section.

In a previous work [2] we have studied which are the consequences
of asymptotic smoothness of the Zadeh’s extension, in particular we've
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obtained a procedure to construct the attractors when they exist. We'll
give the main results of that work.

Suppose that B C F(R") such that f(B) C B. Put B, = cl({,¢plul*) C
R" and J, = w(Ba) C B,, now define J = {u € B : [u]° C Jo}. We

have

Proposition 1. If f : F(R™) = F(R") is asymptotically smooth then
J is nonempty for all nonempty closed bounded B with f(B) C B.

and

Proposition 2. Suppose that f:F (R") = F(R") is asymplotically
smooth, B a nonempty, bounded, closed subset of F(R™)such that f(B) C
B, K = w(B) and J, =w(B,). Then K, = J,.

The details and proofs are in {2].

4. EXAMPLES

First we'll prove that if f has one global asymptotically stable fixed
point, then we have a global attractor in F(R™).

Let f : R® - R" be a continuous transformation, such that {0}
is the unique global attractor of f. Then f: FR™ - FR" is
" asymptotically smooth.

It is clear that f : F(R™) — F(R") is continuous. We take a bounded
closed set B € F(R™) such that f(B) C B. Now we shall prove that:

(A) x{o} attracts B, and

(B) x40y C B. }

Since the set {x{0)} is compact in F(R") it follows our result.

To prove (A) note that for each a € [0, 1] the set Ba = cl{{J,¢5[u]*) C
R" is compact, and then {0} attracts B,. This means that for each
€ > 0 there is an n, € N such that f*(B,) C N({0},¢) for all n > n,.
Here N({0},¢) denote the e-neighborhood of {0}. But since B, C Bo
we have f*(B,) C N({0},¢) for all n > no.

For each u € B, it follows that f*([u]*) C N({0},¢) and since f
is continuous [f*(u)]* C N({0},€). From this it follows the assertion
(A).

For the item (B) we take ng such that doo (F*(B), x{0y) < € for n >
no. This implies that x (o} is in a e-neighborhood of f™(B) and then in
a e-neighborhood of B, because fA(B) € B. As this last assertion is
true for any ¢ > 0 we must have xo} € B. The proof of the result is
complete.

As a particular case of the above example we can take a linear map
f(z) = Az where all eigenvalues have absolute value less than one. It



DISSIPATIVENESS OF FUZZY DYNAMICAL SYSTEMS 5

is clear that in this case f has a point as attractor. If, however, one of
eigenvalues has module 1, the extension isn’t asymptotically smooth; in
particular the identity isn’t asymptotically smooth. In fact, we take K
as the compact unitary disk contained in the general eigenspace E(X)
where |A| > 1. Clear that f(K) = K and f(Jx) = Jk, but Jx isn’t
compact.

Another example to consider is when the f : R" — R" is a continuous
map with the extensionf restricted to the F*(R") space. We'll show
that in this case, 7*(R") is asymptotically smooth, if all the sets B C
F(R") nonempty, bounded and closed have their w — limits nonempty.
First of all, we need the following result , which prove is in [1].

Proposition 3. If f : R" — R™ is a continuous map, then:
(i) f(F*(R") C F*(R");
(#) f(F*(R™)) is continuous in the do, metric.

In this case, we prove the result using the below proposition due to
Réman-Rojas of equivalence of convergences:

Theorem 4. Let u, u, € F(R"). If u doesn’t have proper mazim local
points, then are equivalents:

(1) u — up in dy metric;

(2) u — u, in h metric and [u]! = liminf, o [u,)*;

(3) u — u, in L and U is bounded and limsup,., . [u,]° € [u]’,
=1

where L metric is the metric in each level.
Still a result about sequences is necessary:

Proposition 4. Let {A,} e {Bn} two sequences of compact sets. Let
An C B, foralln € N, B, — B and A,; — A in Hausdorff metric.
Then AC B.

We know that lim,.,o h(Ap, A) = 0, if and only if A, converges to

A in a Kuratowski sense, where limsup,_,, 4, = (o2, (U2, A;). And

then, A = N0 Uk 5n Ak 20d B = (V50U Br - Let z € 4, so
z € (\y;5n By, for all n > 0, concluding that z € B.

Theorem 5. Let f : R® — R* a continuous map and f the Zadeh ez-
. tension restricted to the F*(R") space. If for all B C F*(R™) nonempty,
bounded and closed, such that f(B) C B we have J # 0, so that

J =w(B) , then f is asymptotically smooth.

Is enough to show that J is compact.
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As F*(R™) is a metric space, we'll prove that is sequentially compact.

Let (u;) be a sequence in J. For all a € (0,1}, [u;]* C Jy is a
sequence of nonempty compact sets of R™. Looking p(J,) C K™ with
the Hausdorff metric we have p(J,) is a compact subset of a complete
metric space. So, for all a € [0,1], there is at least one accumulation
point A, C J, such that exists a subsequence of [u;]* — A, in
Hausdorf metric, ie, h([u;, |*, Aa) — 0 when jy, — co.

Let’s choose A; = {zo}, where zo is an accumulation point of {u]!
. Let [u,,)' — {zo} be a sequence that converges to {zo} and for
a < 1, let the set be A,={B C R" compact; B is an accumulation
point of [u,,]* and {xo} C B}. By the previous proposition, Aq # 0.
For each @ < 1, let’s define Ay = (\gea, B

1. {zo} C Aq, for all & € [0,1];

2. A, is compact for all a € [0,1];

3. For all 8 < a, A, C Ap, by the previous proposition.

Let be v such that [v]* = A, for all @ € [0,1].

So: v € *(R") .

In fact, as we’ve seen,

L = {:co} is compact ;

2. [v]! = v; is nonempty and only has one element;

3. Let be a sequence a; /' @, a > 0. Then A, =[] Aq,. In fact,
oAy, C N As: As o < o, for all k > 0, so Ay C Ag,, for all & 2> 0,ie,
A. CNAa,-
oA, D) As,: Observe that:

L. Nisoltn]™ = [un]®, for a fixed n ;

2. [u.]** — B € A,,

Then, ) 4a, = ko ﬂ.«a,, Nizo Uisjlun]™
Cc ﬂm n;>o UI)J [“m]

= n,')o MNiso >3 [, )"

npo Ul>; ﬂ»o[um]
npo UI>_1 [“nJ C Ao

On the other hand,
NAar = Mizo N, Uszo Nipjlun]™
C nk>o Uipo Nz (tn]*

§>0 ﬂ» I1>5 ["n:]

= U,>o nz>1 ﬂm[un.]
=Uj»o nI>J [un,)* C Aq

Then A, = [) Aa,.
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Observe that | J,2;[u,]° C Jo, hence is bounded. Applying the pre-

vious theorem u, — 4 in d, metric, hence J is compact.
Concluding that f is asymptotically smooth.

5. CONCLUSIONS

We couldn’t determine whether an extension in F*(R") is asymp-
totically smooth or not, but 7*(R™) is an invariant subset of F(R")
and, under some conditions, we can classify a class of extensions as
asymptotically smooth. If we could prove that all the w — limits are
nonempty in this subspace, then all closed, bounded sets would be a
compact set. We also have the subspace Fg(R") D F*(R"). Our point
is: Could we classify the extensions in this subspace? Is that true that
all bounded and closed sets in this space is a compact set?
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