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Abstract 
The concept of a11ymptotic smooth transformation was introduced 

by J. Hale [5] and it is a very important property for a transformation 
between complete metric spaces to have a global attractor. This prop­
erty has also consequences on asymptotic stability of attractors. In our 
work we study the conditions under which the Zadeh's extension of a 
continuous map/ : Rn-+ Rn is asymptotic smooth in the complete 
metric space .r(Rn) of normal fuzzy sets with the induced Hausdorff 
metric d00 (see Kloeden and Diamond [4] ). 

1 Introduction 

The question of determine whether a discrete dynamical system has a com­
pact attractor when the system evolves on a infinite dimensional vector space 
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has been studied very intensively in the last ten years. Some new concepts 
that were irrelevant for the finite dimensional cases shows up to be of deci­
sive importance in infinite dimensional cases. Among these concepts we will 
center our attention to the asymptotic smoothness of a function. 

The concept of asymptotic smoothness was introduced by Jack Hale in [5]. 
Every continuous transformation between finite dimensional vector spaces 
are asymptotic smooth, this is not the case for infinite dimensional Banach 
spaces or metric spaces .. In particular, for such transformation every compact 
set which attracts locally points, also attracts locally compact sets. In his 
book Hale also gives some examples of asymptotic smooth transformations 
in infinite dimensional spaces. Our objective in this paper is to provide 
another class of such functions using the Zadeh's extensions of continuous 
transformation in R". We think that these results will be also important to 
analyze the interaction of dynamical properties between a transformation in 
R" and its Zadeh's Extension. 

In the next section we give the main definitions and results in the litera­
ture. We include a. smwl section discussing some properties of the compact 

sets in .r(R."). In the last section we present the results we have up to now 
that are positive steps in the direction of the main conjecture: the Zadeh's 
extension of a continuous transformation is asymptotically smooth. 

2 Preliminaries . 

If X is a metric space and T : X ➔ X is a continuous transformation then we 
have a discrete dynamical system. For basic notation on dynamical systems 
we recommend [5]. We say that Tis asymptotically smooth (see [5]) if, for 
each nonempty bounded and closed set BC X for which T(B) C B, there 
is a compact set J C B such that J attracts B. We recall that J attracts 
B if for each neighborhood of J there is a positive no such that T"(B) is 
contained in that neighborhood for all n ~ n0 (see Hale [5) page 9). If T is 
asymptotically smooth then a set attracts locally points if and only if attracts 
locally compact sets. Cooperman [3] and Brumley [2] have given examples 
where this is not true for general transformations on infinite dimensional 
Banach Spaces. 

The concepts of limit sets of a dynamical systems are classical. Here we 
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will need the following: the w-limit of a. subset B of X is given by: 

w(B) = n cl( LJ Tk(B)) 
n>O k~n 

If B is such that T( B) c B then 

w(B) = n cl(Tn(B)) 
n>O 

The next Lemma can be found in Ha.le [5] (pa.ge 11, Cor. 2.2.4) 

Lemma 1. If Tis asymptotically smooth and B is a nonempty bounded set 
such that its positive orbit is bounded, then w(B) is nonempty, compact, and 
invariant and w( B) attracts B. 

The problem we addressed here is: are the Zadeh's extensions of contin­
uous transformations on !Rn asymptotically smooth? We recall some defini­
tions on fuzzy metric spaces. 

The family of all compact nonempty subsets of Rn will be denoted as 
Q(Rn). We also set F(R") for the family of fuzzy sets u : Rn 4 [O, 1) whose 
a-level: 

[u]0 = {x E Rn: u(x) ~ a} 0 <a~ 1 and [u]0 = cl{x E R": u(x) > O} 

are in Q(!Rn). 
It is known that the metric 

where his the Hausdorff metric in Q(!Rn), ma.kes the spaces (.r(R.n), d00 ) into 
complete metric spaces [6]. 

Let f: IR" ➔ Rn be a mapping then we define the Zadeh's extension as: 

j(u)(x) = { ~UP,-eJ-'(z) u(r) 

for all fuzzy set u. 

if 1-1(x) -j. 0 
if 1-1(x) = 0 

The proof of the following results can be found in [I]. 
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Theorem 1. If f: R" ➔ IR." is continuous then j: F(IR.") ➔ F(R") is well 

defined and for all a E [O, 1] we have 

[j(u)]a = f([uJa). 

We will need also a. recent result of Roman-Flores et al. [7) 

Theorem 2. If f : R" ➔ R" is continuous then J : .r(R") ➔ .r(IR.") is 

continuous. 

3 Some facts on compact sets on .r(lRn) 

Our strategy is to prove the conjecture using the definition. Then we should 
be able to determine when a subset of .r(R") is compact or not. In the book 
of Kloeden a.nd Diamond [4J one find the characterization of compact sets 
in the space of fuzzy sets with convex levels which does not fits our purpose 
eince our levels are only compact sets in Rn. The better approach we have 

found in the literature is the article of Rojas et al. [8] . In that paper it is 
sp.own how difficult is to find a compact set in .r(R"). A result that is of 
great importance here is the following: ff K is a. compact set in R" then 
JK = { u E .r(R") : [u]° C K} is compact if and only if K has diameter zero! 
Our candidate to be a.n attractor will be of this type but we have also good 
properties for this candidate. 

Lemma 2. Let KC R" be a compact set and A= {u E .r(R"): [u]° CK}. 
Then A is a bounded closed set of the metric space (.r(R") , d00 ) 

Proof: To see that A is bounded note that the distance of A to a. point 0 
(the characteristic function at 0) is finite. Indeed, denoting H the Hausdorff 
metric between compact sets 

d00(0,A) = inf d00(0,u) = inf sup H({O},(u)0
) $ supd(0,x) 

uEA uEA crE[0,1] :;EK 

this last number is a number M < oo because K is a. compact set in R". 
Now A is closed. In fact, consider a convergent sequence Un in A with 

limit u, the convergence being in the metric d00 then we have in particular 
that H([un)0

, [u]0
) ➔ 0 and since [un]° C K then (uJ° C K proving that A 

contains all its cluster points and then is closed. QED 
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4 The asymptotic smoothness problem 

The main results will follow from a sequence of lemmas. Let f: R.n -t R.n be 
a continuous transformation and j : F(R.n) -t F(R.n) its Zadeh's extension 
which is continuous according Theorem 2. To prove that j is asymptotically 
smooth we have to prove that for each closed bounded set BC .r(R.n) such 
that }(B) C B there is a compact set J C B that attracts B. We take a 
closed bounded nonempty B. Note that for each u E }(B) and v E B such 
that }(v) = u we have by definition [u]" = [}(v)]" = f([v]"). 

Lemma 3. Define B 0 = cl(U,.eB[u]") C Rn. There exists a compact set 
K C !Rn such that [u]° C K for all u E B. Hence B0 is bounded for each 
a E [O, 1] 

Proof: Take a point x in R. n and denote as x its characteristic function. 
Since B is bounded there exists a r > 0 such that the ball with center in 
i: and radius r contains the entire set B. In other words, for all u E B 
d00 (x, u) Sr. According to a result that can be found in [1] this metric can 
be written as 

d00 (i:,u) = sup inf{a: [u]" C B0 (x) and x E B0 ([u]")} 
O!,o::,1 

where B0 (x) denote the Euclidean ball centered in x. Then it follows imme­
diately that [ul° C Br(x) what proves the lemma. QED 

Lemma 4. Consider B 0 as in Lemma 9. Then Ba are closed bounded and 
satisfies f(B0 ) C B 0 • Therefore there is a compact set J0 C B0 that attracts 
Ba. 

Proof: In fact the only assertion that has to be proved is that J(Ba) C 
Ba, The rest follows immediately from definitions and the fact that every 
continuous transformation in R.n is asymptotically smooth. 

Take a x in B0 • By definition x is the limit of a sequence Xn with Xn E 
[un]" and Un EB. Therefore we have 

Since f is continuous f(xn) converges to J(x) E Ba and this completes this 
proof. QED 

Using the Lemma 1 we can define the special compact invariant sets 
Ja = w(Ba)- These are the attractors we will consider. Now we can prove 
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Lemma 5. For O $ a 1 $ a:i $ 1 we have la., C la. 1 

Proof: We have that B02 C B01 • Observing that in this case the omega 

limits can be written as: 

and then follows the result. 
We define J = {u EB: [u]° C Jo}. 

Proposition 1. If j : .r(Rn) ---+ .r(Rn) is asymptotically smooth then J is 

nonempty for all nonempty closed bounded B with f(B) CB. 

Proof: We take a closed bounded B with f(B) C B. Since we are 

assuming that j is asymptotic smooth, we can use Lemma 1 to construct the 
attractor K = w(B) which is also nonempty, compact and invariant. Again 
take Ko = cl U .. eK[uJ0. With respect to Ko we can assert 

a) Ko is a compact set contained in B0 • And this is clear. 
b) Ko is an invariant set for f (Le. f(Ko) = Ko). In fact, if z E Ko then 

we know that xis a limit of a sequence x., such that x., E [un}0 and Un EK 
then follows: /(x) = liIDn➔oo /(zn)- Now 

f(x,.) E /((un]0
) = {](un)]0 E Ko 

this shows that /(Ko) C Ko. 
To prove that Ko C /(Ko), we repeat the process taking z E Ko and Zn 

as above. Now since K is invariant for j we have that Un = f ( vn) where 

v,. E K. Then for each n ~ 0 we have Zn = f(y,.) where Yn E (v,.]° C K0 • 

Choosing a subsequence if necessary we take y = lim,,➔00 Yn· By continuity 
of/ follows that x = f(y). Hence Ko is an invariant set off. 

Now Jo attracts Bo and also Ko. This means that for each f ~ 0 there is 
an no such that for n ~ no, r(Ko) c N(Jo, t:) or Ko C N(Jo, t:) using the 
invariance. Here N(Jo, t:) stands for an £-neighborhood of J0 • This proves 
that in fact Ko C Jo because f is arbitrary and then J 1= 0. QED. 

In particular if J = 0 then J isn't asymptotically smooth. 

Proposition 2. Suppose that J: .r(R") ➔ .r(Rn) is asymptotically smooth, 

B a nonempty, bounded, closed subset of .r(Rn)such that i(B) C B, K = 
w(B) and J0 = w(B0 ). Then Ka. = J0 • 

6 



Proof: The proof that K 0 C 10 follows as in the above Proposition 
changing the index O by o. It remains to prove that J0 C K0 • We know 
tpat K attracts B, therefore given t: > 0 there exists n0 such that for n ~ n0 , 

f"(B) C N(K, t:) this implies that for each a E [O, 1], f"(B0 ) c N*(K0 , t:). 
Where 

It follows from the definition of 10 that 

la C n /"(Bo) C N*(Ka, t:). 
n~no 

This is true for every t: > 0 then follows the result. QED. 
As a conclusion let us say that we are at this stage: To prove that some 

subset 1 as above is empty ensure that j isn't asymptotically smooth. If 
all J are nonempty, it would be a candidate for an attractor even not being 
compact in most cases, but our guess is: if 1 is not empty, there is a compact 
set K containing 1 that attracts B. 

5 Examples 

We present two examples. 
Let f : R." ➔ R" be a continuous transformation, such that {O} is the 

unique global attractor of f. Then J : .r(R.") ➔ .r(IR") is asymptotically 
smooth. 

It is clear that j : .r(R") ➔ .r(R") is continuous. We ta.ke a bounded 
closed set BE .r(R") such that f (B) C B. Now we shall prove that: 

(A) X{o} attracts B, and 
(B) X{o} C B. 
Since the set {X{o}} is compact in .r(R") it follows our result. 
To prove (A) note that for each a E [O, l] the set Ba = cl(LJ~eB[uJ 0

) CR" 
is compact, and then {O} attracts Ba, This means that for each £ > 0 
there is an n 0 E N such that f"(B0 ) C N({O},c) for all n > n0 • Here 
N( {O},c) denote the £-neighborhood of {O}. But since B0 C Bo we have 
f"(B0 ) C N({O},c) for all n > no, 

For each u E B, it follows that f"([u) 0
) C N( {O}, c) and since J is 

continuous [/"(u)]° C N({O},c). From this it follows the assertion (A). 
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For the item (B) we take n0 such that doo(f"(B),X{o}) :5 e for n > no, 

This implies that X{o} is in a. £-neighborhood of }"(B) and then in a. £­

neighborhood of B, because }"(B) C B. As this last assertion is true for 
any e > 0 we must have X{o} E B. The proof of the result is complete. 

As a particular case, we can take f(x) = Ax where A is a linear operator. 
We can restrict the analysis to the eigenspace associated to the eigenvalues 
whose absolute values are less than one, and the above result applies. 

This next example shows that it is not always true that the Zadeh's 
extension is asymptotic smooth. 

If f : R" ➔ R" have a compact set K with infinite points as attractor, 
then one can easily see that the set 

B = {u E .r(R"): [u]° CK} 

is a bounded closed set for which i(B) = B. Since Bis not compact accord­
ing to Rojas et al. [8), then j is not asymptotically smooth. The meaning of 
this last example is that if f have a global attractor it will be hard to detect 
it since we can not use the theory for asymptotic smooth transformation. 
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DISSIPATIVENESS OF FUZZY DYNAMICAL SYSTEMS 

LAECIO C. BARROS, SUZANA A. O. SOUZA, PEDRO A. TONELLI 

ABSTRACT. We study the preservation of dissipativeness of a fuzzi­
fied dynamical system. We show that Zadeh's extensions of contin­
uous discrete dynamical systems are not always asymptotic smooth 
in the fuzzy space. We give some examples and prove some results 
related to asymptotic smoothness. 

1. INTRODUCTION 

A way to define dissipativeness of a dynamical system is to look for 
global attractors. These are compact invariant sets that attracts the 
system in some specific way. To define these " attraction" we take a 
class 1) of subsets of the state space, and check if for each element of 1) 
the orbit approaches the attractor. (We will give the precise definitions 
in the next section). 

It is well known that for finite dimensional state space all the con­
cepts of attraction does not depend on 1) and one could simply work 
with the concept of point attractor. For infinite dimensional spaces 
this is not true. The concept connected to the equivalence between 
attraction of points and attraction of compact sets is the asymptotic 
smoothness of the dynamical systems. In fact, one can prove that if 
a system is asymptotic smooth then both concepts of attraction are 
the same. In this paper we will study this equivalence for the Zadeh's 
extension of a continuous map Jin Rn 

2. PRELIMINARIES 

The common definitions and examples from the theory of dynamical 
systems can be found in the book of Jack Hale [6). Here we will recall 
some known results and definitions for fix the notations. 

Let (X, d) a metric space and T: X ➔ X a continuous map. We refer 
just as the dynamical system generated by T the discrete dynamical 
system S: N x X ➔ X given by S(n,x) = T"(x). We assume at this 
point familiarity with the first chapter of (6]; in particular the concepts 
of positive and negative orbits, invariant sets and limit sets. 
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2 BARROS, SOUZA, TONELLI 

The distance between two subsets of X is defined as 

dist(A,B) =supinfd(a,b) 
aEA bEB 

This, sometimes, is called the semi distance of Hausdorff. The Haus­

dorff distance between these sets is 

h(A, B) = max{dist(A, B) , dist(B, A) }. 

To define the concept of attraction it is convenient to consider a class 
V of subsets of X such that if D E V then T(D) E V. We will say 
that such a class is invariant for T. Recall that a set A attracts a set 
B if 

lim dist(Tn(B), A) = 0. 
n➔oo 

Then a compact invariant set A attracts V if it attracts each element 

D of that class. Then a compact invariant set A will be called a. 'JJ­
attractor if it attracts V. A is maximal with these properties. 

We observe that if a V-attractor exists then it is unique, but it is 
not necessary that A belongs to 'D. 

The map T is asymptotically smooth if, for every nonempty bounded 
set BC X, such that T(B) CB, there is a compact set JC B which 
attracts B. 

Let V C X be an open set. Denote by 'Vp(V) the class of subsets 

consisting of exactly one point in V. If J is a compact invariant set 
for which there exists a neighborhood JC V such that J is the Vp(V)­
attractor, we say that J attracts points locally. 

Let W C X be a bounded set. Denote by 'Dc(W) the class of compact 
sets contained in W. A compact invariant set J C W attracts compact 
sets in W if it attracts 'Dc(W). The following Theorem is from Hale [6, 
p.12] 

Theorem 1. IJT is asymptotically smooth and J is a compact invari­
ant set that attracts point locally, then the statements are equivalent: 

(i} There is a bounded neighborhood W such that J attracts Vc(W). 
(ii} J is stable. 
(iii} J is uniformly asymptotically stable. 

We will also need the following concepts on fuzzy spaces. 
The family of all compact nonempty subsets of Rn will be denoted as 

Q(Rn). We also set .r(Rn) for the family of fuzzy sets u ; R" -+ [O, l] 
whose a-level: 

[ut = {x E R": u(x) 2:: a} 0 <a~ 1 and fu]0 = cl{x ER": u{x) > O} 

are in Q(Rn). 
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It is known that the metric 

d00 (u, v) = sup h([u]°, [v]") 
O~crSl 

where his the Hausdorff metric in Q(Rn), makes the spaces (.r(IR.n), d00 ) 

into complete metric spaces [7]. 
Let f: Rn ➔ Rn be a mapping then we define the Zadeh's extension 

as: 

for all fuzzy set u. 

if J-1(x) 'F 0 
if J-1(x) = 0 

The proof of the following results can be found in [1]. 

Theorem 2. If f: Rn ➔ Rn is continuous then j : .r(Rn) ➔ .r(Rn) 
is well defined and for all o: E [O, 1] we have 

[j(uW = f([u]cr). 

We will need also a recent result of Roman-Flores et al. {8) 

Theorem 3. If f: Rn ➔ Rn is continuous then j: .r(R.n) ➔ .r(Rn) 
is continuous. 

Two others spaces of fuzzy sets are also found in the literature and 
they will of interest here, because they are invariant sets in .r(Rn). 
We denote by F"(Rn)the subset of .r(Rn)consisting of the elements u 
which don't have proper maximal local points (see [10] for a reference). 
And let .rc(Rn)to be the set of u E .1'(Rn) such that the mapping 
o t-t (u)" is continuous. 

3. ASYMPTOTIC SMOOTHNESS OF EXTENSIONS 

First of all we are led to ask whether the Zadeh's extension of con­
tinuous map f: Rn ➔ Rn are asymptotically smooth. We know that 
every continuous map in Rn are asymptotically smooth. But the space 
.r(Rn)has an important defect in this case: there are closed bounded 
sets in .r(Rn)which are not compact. The following class of sets is a 
fundamental example in this case. Take K a compact set in R" and 
consider JK = {u E .1'(Rn): [u)° C K}. This set is closed and bounded 
but it is compact if and only if K has diameter zero. In view of this fact, 
one has that the identity map in .1'(R") isn't asymptotically smooth. 
We will consider more examples in the next section. 

In a previous work (2) we have studied which are the consequences 
of asymptotic smoothness of the Zadeh's extension, in particular we've 
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obtained a procedure to construct the attractors when they exist. We'll 
give the main results of that work. 

Suppose that B C .r(R.") such that }(B) C B. Put B,, = cl(UueB[u]a) C 

R" and Ja = w(Ba) C Ba, now define J = {u E B: fuj° C J0}. We 
have 

Proposition 1. If j: F(R") ➔ F(IR") is asymptotically smooth then 

J is nonempty for al/ nonempty closed bounded B with }(B) C B. 

and 

Proposition 2. Suppose that j : F(R") ➔ F(IR") is asymptotically 

smooth, Ba nonempty, bounded, closed subset of F(R.")such that }(B) C 

B, K = w(B) and Ja = w(Ba), Then Ka= Ja. 

The details and proofs are in [2]. 

4. EXAMPLES 

First we'll prove that if J has one global asymptotically stable fixed 
point, then we have a global attractor in F(IR"). 

Let f : IR" ➔ IR" be a continuous transformation, such that {O} 

is the unique global attractor of f. Then j : .r(lR") ➔ F(IR.") is 
asymptotically smooth. 

It is clear that j : .r(Rn) ➔ F(IR.") is continuous. We take a bounded 

closed set BE F(lR") such that }(B) CB. Now we shall prove that: 
(A) X{o} attracts B, and 
(B) X{o} CB. 
Since the set {X{o}} is compact in F(R") it follows our result. 
To prove (A) note that for each a E {O, 1] the set Ba = cl(UueBfu]0

) C 
IR" is compact, and then {O} attracts Ba. This means that for each 
c > 0 there is an n., E N such that /"(Ba) C N( {O}, c) for all n > na. 
Here N({O},c) denote the c-neighborhood of {O}. But since Ba C Bo 
we have f"(Ba) C N({O},c) for all n > no. 

For each u E B, it follows that f"([u]a) C N( {O},c) and since f 
is continuous [j"(u)]a C N({O},c). From this it follows the assertion 
(A). 

For the item (B) we take n0 such that d00 (I"(B), X{o}) $ c for n > 
n0 • This implies that X{o} is in a c-neighborhood of }"(B) and then in 

a c-neighborhood of B, because }"(B) C B. As this last assertion is 

true for any c > 0 we must have X{o} E B. The proof of the result is 
complete. 

As a particular case of the above example we can talce a linear map 

J(x) = Ax where all eigenvalues have absolute value less than one. It 
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is clear that in this case J has a point as attractor. If, however, one of 
eigenvalues has module 1, the extension isn't asymptotically smooth; in 
particular the identity isn't asymptotically smooth. In fact, we ta.ke K 
as the compact unitary disk contained in the general eigenspace E().) 
where 1).1 > 1. Clear that f(K) = Kand i(Jx) = Jx, but Jx isn't 
compact. 

Another example to consider is when the f: Rn ➔ R" is a continuous 
map with the extensionj restricted to the ?(Rn) space. We'll show 
that in this case, F"(Rn) is asymptotically smooth, if all the sets BC 
.1"(Rn) nonempty, bounded and closed have their w - limits nonempty. 
First of all, we need the following result , which prove is in [l]. 

Proposition 3. If f : Rn ➔ Rn is a continuous map, then: 
(i) i(P(R")) C F"(Rn); 
{ii} i(F"(Rn)) is continuous in the d00 metric. 

In this case, we prove the result using the below proposition due to 
Roman-Rojas of equivalence of convergences: 

Theorem 4. Let u, up E .r(R"). If u doesn't have proper maxim local 
points, then are equivalents: 

{1} u ----+ Up in d00 metric; 
{f} u----+ Up in h metric and [u]1 = liminfp➔oo[up] 1 ; 

00 

{9} u ----+ u11 in L and LJ is bounded and limsupp➔00 [up]0 E (u]0
, 

p=l 
where L metric is the metric in each level. 

Still a result about sequences is necessary: 

Proposition 4. Let {A..} e {Bn} two sequences of compact sets. Let 
. A,. C Bn for all n E N, B,. ---t B and An, ----+ A in Hausdorff metric. 
Then AC B. 

We know that lim,,-+oo h(Ap, A) = 0, if and only if Ap converges to 

A in a Kuratowski sense, where lim SUPp➔oo Ap = n:1 (U~, A;). And 

then, A = n .. 2:0 Uk,2:n A,., and B = n .. 2:0 uk2:n B,. , Let X E A, so 
x E nk;2:n B,.,, for all n 2:: 0, concluding that x EB. 

Theorem 5. Let f: Rn----+ R" a continuous map and j the Zadeh ex­
. tension restricted to the F"(Rn) space. If for all B C F"(Rn) nonempty, 

bounded and closed, such that /(B) C B we have J f: 0, so that 
J = w( B) , then j is asymptotically smooth. 

Is enough to show that J is compact. 
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As P(Rn) is a metric space, we'll prove that is sequentially compact. 
Let (u;) be a sequence in J. For all a E (0, l], (u;]° C J01 is a 

sequence of nonempty compact sets of !Rn. Looking p(J0 ) C Kn with 
the Hausdorff metric we have p(J0 ) is a compact subset of a complete 
metric space. So, for all a E [O, l], there is at least one accumulation 
point A01 C J01 such that exists a subsequence of [u;] 0 --+ Aa in 
Hausdorff metric, ie, h([u;,.,J0

, A0 ) -t O when j1<0 --+ oo. 
Let's choose A1 = {x0}, where Xo is an accumulation point of [u] 1 

. Let [un,.]1 --+ {x0} be a sequence that converges to {x0 } and for 
a < 1, let the set be A0 ={B C R.n compact; B is an accumulation 
point of [u11,.]"' and {x0} C B}. By the previous proposition, Aa 'f 0. 
For each a< 1, let's define Aa = nBE.Ac, B . 

1. {xo} C A0 , for all a E [O, 1}; 
2. Aa is compact for all a E [O, l]; 
3. For all /3 < a, A0 C Aµ, by the previous proposition. 

Let be v such that [v]0 = A0 for all a E [O, 1]. 
So: v E ~•(Rn) . 
In fact, as we've seen, 

1. [v]0 = {x0 } is compact ; 
2. (v]1 = v1 is nonempty and only has one element; 
3. Let be a sequence Ok /' a, a > 0. Then Aa = n Aar,• In fact, 

•Acr C n A0 "': As ak $ a, for all k 2:'.: 0, so A 01 C A0 1r, for all k 2:'.: O,ie, 

Aa C nAa,.• 
•Aa ::> n Aa1r: Observe that: 

1. nk>o[un]"'lr = [un] 0
' for a fixed n ; 

2. [u,.f or, ~ B E Aa,. 
Then, n Aa,. = nk~O n.... ... n;~o U,~;[un,] 0

• 

C nk~O n;~o U,~;[un,] 0
• 

= n;>o nk>O U1>;[un,] 0
• 

= n.;o u,;. nk;o[un,] 0
,. ,_ _, T 

= n;~o U1~;[un, a C Aa 

On the other hand, 

n A0 • = nk~O n.A ... U;~o n1~;[u,.,] 0
• 

C nk~O U;~o n~;[un,] 0
,. 

= U;>o nk>O n1>;[unJ 0
• 

= U;;o n;; n.1e;o[un,l"'• 
= U;;o n;;[un,T° C Aa 

Then A0 = n Aa,.. 
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Observe that LJ;,,1 [u,i]O c J0 , hence is bounded. Applying the pre­
vious theorem Up ---+ u in d00 metric, hence J is compact. 

Concluding that j is asymptotically smooth. 

5. CONCLUSIONS 

We couldn't determine whether an extension in .P'(Rn) is asymp­
totically smooth or not, but .P'(lR") is an invariant subset of .1"(Rn) 
and, under some conditions, we can classify a class of extensions as 
asymptotically smooth. If we could prove that all the w - limits are 
nonempty in this subspace, then all closed, bounded sets would be a 
compact set. We also have the subspace Fc(Rn) :) .P'(Rn). Our point 
is: Could we classify the extensions in this subspace? Is that true that 
all bounded and closed sets in this space is a compact set? 
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