Journal of Physics A: Mathematical and Theoretical

TOPICAL REVIEW You may also like
. . . - Wilson loops in 3-dimensional =
Roadmap on Wilson loops in 3d Chern-Simons- Supasminice het-Smors o aod
. their string theory duals
matter th eo nes $gﬁ§; Drukker, Jan Plefka and Donovan

- Exact results for Wilson loops in orbifold
ABJM theory
Hao Ouyang, , Jun-Bao Wu et al.

To cite this article: Nadav Drukker et al 2020 J. Phys. A: Math. Theor. 53 173001

- Wilson loops and integrability
Hagen Munkler

View the article online for updates and enhancements.

Recent citations

- Open fishchain in N = 4 Supersymmetric
Yang-Mills Theory
Nikolay Gromov et al

- Crossing symmetry, transcendentality and
the Reage behaviour of 1d CFTs
Pietro Ferrero et al

- Loop operators in three-dimensional $$
\mathcal{N = 2 fishnet theories
Jun-bao Wu et al

This content was downloaded from IP address 143.107.128.45 on 23/12/2021 at 23:33


https://doi.org/10.1088/1751-8121/ab5d50
/article/10.1088/1126-6708/2008/11/019
/article/10.1088/1126-6708/2008/11/019
/article/10.1088/1126-6708/2008/11/019
/article/10.1088/1674-1137/40/8/083101
/article/10.1088/1674-1137/40/8/083101
/article/10.1088/1751-8121/ab2477
https://doi.org/10.1007/JHEP07(2021)127
https://doi.org/10.1007/JHEP07(2021)127
https://doi.org/10.1007/JHEP07(2020)170
https://doi.org/10.1007/JHEP07(2020)170
https://doi.org/10.1007/JHEP07(2020)215
https://doi.org/10.1007/JHEP07(2020)215
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstqeOUKFE07RtBiPGUDFwrvdzma5ddoPc__E18UogiYgPdDKOwZ-UFsQNjjJ0SWtFd0AGvvXGPa5CjSKaac0dt2N5TuglbMMUrebuVV5sS0mrTvYqh5t2HzZYN-pSrPUdFvEKfXGi1MePU-LXILUBRIQzUVA8K1suyJFaiXMNG3xPIwkponmpzxizvX4V272kYnjdNrUnwmsoZBuC3-HBkqmUF74YQj_RaKw--kcZ00mo0bw3wC-Wj57ZKZh4dJIo7192TGqam8ap9uZJrojLXi9Dcg-JvugJk&sig=Cg0ArKJSzFS3HxH-19VY&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

10P Publishing Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 53 (2020) 173001 (50pp) https://doi.org/10.1088/1751-8121/ab5d50

Topical Review

Roadmap on Wilson loops
in 3d Chern-Simons-matter theories

Nadav Drukker '©, Diego Trancanelli’, Lorenzo Bianchi’,
Marco S Bianchi“, Diego H Correa’, Valentina Forini®’,

Luca Griguolo®, Matias Leoni’, Fedor Levkovich-Maslyuk!°®,
Gabriel Nagaoka'!, Silvia Penati'?, Michelangelo Preti'3®,
Malte Probst!, Pavel Putrov!4, Domenico Seminaral>,
Guillermo A Silva’®, Marcia Tenser'!, Maxime Trépanier'®,
Edoardo Vescovi'S, Itamar Yaakov® and Jiaju Zhang'’

! Department of Mathematics, King’s College London, The Strand, London WC2R
2LS, United Kingdom

2 Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universita di
Modena e Reggio Emilia, via Campi 213/A, 41125 Modena & INFN Sezione di
Bologna, via Irnerio 46, 40126 Bologna, Italy

3 Center for Research in String Theory, School of Physics and Astronomy, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom

4 Instituto de Ciencias Fisicas y Matematicas, Universidad Austral de Chile, Valdivia,
Chile

> Instituto de Fisica de La Plata (IFLP)—CONICET & Departamento de Fisica,
Facultad de Ciencias Exactas, Universidad Nacional de La Plata C.C. 67, 1900 La
Plata, Argentina

6 Department of Mathematics, City, University of London, Northampton Square,
EC1V OHB London, United Kingdom

7 Institut fiir Physik, Humboldt-Universitét zu Berlin, Zum Grofen Windkanal 6,
12489 Berlin, Germany

8 Dipartimento di Scienze Matematiche Fisiche e Informatiche, Universita di Parma &
INFN Gruppo Collegato di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
® Departamento de Fisica, Universidad de Buenos Aires & IFIBA—CONICET
Ciudad Universitaria, pabellén 1 (1428) Buenos Aires, Argentina

10 Departement de Physique, Ecole Normale Supérieure/PSL Research University,
CNRS, 24 rue Lhomond, 75005 Paris, France & Institute for Information
Transmission Problems, Moscow 127994, Russia

" Instituto de Fisica, Universidade de Sdo Paulo, 05314-970 Sio Paulo, Brazil

12 Universita degli Studi di Milano-Bicocca & INFN Sezione di Milano-Bicocca,
Piazza della Scienza 3, 20161 Milano, Italy

13 Nordita, KTH Royal Institute of Technology & Stockholm University,
Roslagstullsbacken 23, SE-10691 Stockholm, Sweden

14 ICTP, Strada Costiera 11, 34151 Trieste, Italy

15 Dipartimento di Fisica e Astronomia, Universita di Firenze & INFN Sezione di
Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy

16 The Blackett Laboratory, Imperial College London, London SW7 2AZ,

United Kingdom

17 SISSA & INFN Sezione di Trieste, Via Bonomea 265, 34136 Trieste, Italy

1751-8121/20/173001+50$33.00 © 2020 IOP Publishing Ltd  Printed in the UK 1


https://orcid.org/0000-0003-4984-5736
https://orcid.org/0000-0003-4159-9358
https://orcid.org/0000-0001-6510-321X
https://orcid.org/0000-0003-3099-9145
https://orcid.org/0000-0003-3117-5703
https://orcid.org/0000-0002-7957-3156
publisher-id
doi
https://doi.org/10.1088/1751-8121/ab5d50

J. Phys. A: Math. Theor. 53 (2020) 173001 Topical Review

E-mail: nadav.drukker @ gmail.com, dtrancan @ gmail.com,

lorenzo.bianchi.ph @ gmail.com, marcowhites84 @ gmail.com,

diegocorrea@ gmail.com, valentina.forini @city.ac.uk, griguolo1965 @ gmail.com,
leoni @df.uba.ar, fedor.levkovich@gmail.com, g.n.nagaoka@gmail.com,

silvia.penati @mib.infn.it, michelangelo.preti @ gmail.com, mltprbst@ gmail.com,
putrov @ictp.it, domesemi @gmail.com, guilleasilva@ gmail.com,

marciatenser @ gmail.com, trepanier.maxime @ gmail.com, e.vescovi@imperial.ac.uk,
itamar.yaakov @ gmail.com and jzhang @sissa.it

Received 1 October 2019, revised 25 November 2019
Accepted for publication 29 November 2019
Published 6 April 2020
CrossMark
Abstract

This is a compact review of recent results on supersymmetric Wilson loops in
ABIJ(M) and related theories. It aims to be a quick introduction to the state of
the art in the field and a discussion of open problems. It is divided into short
chapters devoted to different questions and techniques. Some new results,
perspectives and speculations are also presented. We hope this might serve as
a baseline for further studies of this topic.
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1. Overview

Nadav Drukker' and Diego Trancanelli*

1 Department of Mathematics, King’s College London, The Strand, WC2R 2LS London,
United Kingdom

2 Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universita di Modena e
Reggio Emilia, via Campi 213/A, 41125 Modena & INFN Sezione di Bologna, via Irnerio 46,
40126 Bologna, Italy

1.1. Genesis

This roadmap article grew out of a fortunate confluence. Recently, one of us organized a
workshop at the University of Modena and Reggio Emilia'®, which was attended by many
researchers who have worked on Wilson loops in three-dimensional supersymmetric Chern—
Simons-matter theories. The number of participants and the talks they presented were a
powerful illustration of the breadth of work on this topic. Moreover, in the run-up to the con-
ference, together with the authors of section 2 we realized, as part of ongoing research, that
there is a simpler formulation of the 1/2 BPS Wilson loop [1] of ABJ(M) theory [2, 3], which
is at the source of much of the research presented in the workshop. We thought that this new
formulation could prompt a refreshed look at this research area, encouraging novel attempts
to address the many questions which are still left unanswered or only partially understood.

We have therefore decided to put the status of this research area on paper. We suggested
to the workshop participants (and several others who could not attend) to contribute to this
roadmap and each volunteered a topic that they wanted to cover. They were instructed to fol-
low the new formulation in presenting the salient results, and also focus on the open questions.
We hope that this review and this new approach will be beneficial both to the people already
working on this area, by nudging them a bit from the comfort of their preferred way of think-
ing, and to people from the outside who would like to know the state of the art and possibly
contribute to it.

In the rest of this introduction we discuss overall themes and questions that permeate
throughout the chapters of this review.

1.2. State of the art

Wilson loops in supersymmetric gauge theories are particularly interesting observables to
study, both because of the possibility of computing them exactly in some cases and because
of their relevance in the AdS/CFT correspondence, where they give rise to a rich dictionary
between gauge theory and string theory quantities. While supersymmetric Wilson loops in
four-dimensional N = 4 super Yang-Mills (SYM) theory have been studied extensively and
are well understood for two decades now, their three-dimensional counterparts have a shorter,
but arguably more interesting, life.

After the original formulation of the ABJM theory in 2008, the so-called bosonic Wilson
loop was readily constructed [4—7]. This operator only couples to the gauge field and the
scalar fields of the theory and turns out to preserve 1/6 of the supersymmetries of the theory.

18 The Mini-workshop on supersymmetric Wilson loops and related topics took place on May 15/16, 2019. For
details see https://agenda.infn.it/event/19090/
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It took some time to construct a more supersymmetric operator, preserving half of the super-
symmetries [1]. Its formulation mixes the two gauge groups and includes coupling to the
fermionic fields as well. Moreover, the supersymmetry variation of this loop does not vanish
locally, but it is rather a total derivative along the loop.

To preserve half of the supersymmetries, the loop has to be a straight line or a circle,
although one can generalize the construction such that loops with more general shapes still
preserve global supersymmetry [8], as explained in section 7. Rather awkward features of
these original constructions were the explicit dependence of the fermionic coupling on the
contour parametrization, as well as the need of introducing a global twist matrix to enforce
the correct periodicity conditions. The new formulation presented in section 2 remedies these
shortcomings in a rather elegant way.

The evaluation of the circular Wilson loops can quite easily be represented by a matrix
model, after using localization techniques and a cohomological equivalence argument, as
reviewed in section 3. The solution of this matrix model is sketched in section 4. After ardu-
ous work to develop perturbative methods in ABJM theory, the subject of section 5, the
matrix model solution was matched to the perturbative calculation. The issue of framing of
the loops turned out to be more subtle than in pure topological Chern—Simons, as explained
in section 6. A proposal for a matrix model for the latitude Wilson loop of section 7 is
reviewed in section 8.

The perturbative tools allowed also to calculate cusped Wilson loops and a variety of
Bremsstrahlung functions (see sections 10 and 11). In section 14, a conjecture for the exact
form of the function A(\) is motivated from relating it to the matrix model for the 1/6 BPS
Wilson loop. This function enters all integrability results, such as the giant magnon dispersion
relation discussed in section 15.

A (perhaps unnecessarily) long time has passed until these constructions were general-
ized to theories with non-maximal supersymmetry. A surprising feature is the large parameter
space of circular BPS Wilson loops with fermionic couplings, including previously (and for
the most part also subsequently) ignored 1/6 BPS Wilson loops in the ABJM theory itself.
These exist for theories with A" > 2, but to keep the discussion relatively brief and concrete,
we focus on the generalization to theories with N =4, as reviewed in section 9.

A topic that has seen very small progress since the first days of this topic is the holo-
graphic duals of these Wilson loops. Clearly the 1/2 BPS loop is dual to a fundamental
string in AdSy x CP?, or an M2-brane in AdS, x S7/Zy. A full understanding of the less
supersymmetric loops as well as the analogs of ‘giant Wilson loops’ as the D3-branes and
D5-branes in AdSs x S°, or ‘bubbling geometries’, are thus far lacking. Still some nice
work on the cases that are understood has been achieved, and it is presented in sections 12
and 13.

Another topic that one would hope could tie in to this discussion, but was never elucidated,
is how to implement integrability for cusped Wilson loops in ABJM theory. The example of
N = 4 super Yang-Mills (SYM) suggests an open version of the integrable models describ-
ing the spectral problem in ABJM. This requires finding the appropriate boundary conditions
(or boundary reflection matrices) for this problem. Though this has been studied by several
groups, these works were never completed and nothing has ever been published on these
attempts. Section 15 is the first such attempt to present this question in print and we hope that
it will lead to progress.
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1.3. Future directions
Each of the chapters presents some open problems, let us only highlight three here.

e There is an abundance of different operators sharing the same symmetries. An important
open question is to understand their moduli space, whether it is lifted or modified at the
quantum level and what are the holographic duals of these operators.

e The new formulation of the fermionic Wilson loops introduced in this roadmap raises
several questions and possibilities. Is there an interpretation of the constant pieces in the
connection in (2.8) as a background field? Is there a simpler way to implement localiza-
tion for these loops without using their cohomological equivalence to the 1/6 BPS bosonic
loop?

o It would be interesting to extend the analyses of Bremsstrahlung functions to other opera-
tors, including the fermionic 1/6 loops and loops in N/ = 4 theories.
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2. 1/2 BPS and 1/6 BPS circular Wilson loops

Gabriel Nagaokal, Marcia Tenser', Malte Probsi* and Maxime Trépanier2
! Institute of Physics, University of Sdo Paulo, Sdo Paulo, 05314-970, Brazil
2 Department of Mathematics, King’s College London, London, WC2R 2LS, United Kingdom

2.1. Background

Circular Wilson loops in ABJ(M) generally fall in two categories: the bosonic loops coupling
to vector and scalar fields [5—7], and the fermionic loops which also couple to fermions and
notably include a family of 1/6 BPS loops [9] and the 1/2 BPS loop [1]. While the discovery
of these operators opens many directions of research, key aspects of their construction remain
riddled with intricacies. In particular, these loops have hitherto not been written in a mani-
festly gauge and reparametrisation invariant way.

In this chapter we clarify some of these issues by giving a gauge equivalent formulation of
the same operators. We find that, in this new language, the generic 1/6 BPS fermionic operator
can be written naturally as a deformation of a bosonic loop, shedding new light on how these
loops preserve supersymmetry and their moduli space.

2.2. Bosonic loops

The simplest 1/6 BPS loops of ABJ(M) are bosonic. These can be understood as the 1/2 BPS
loops of A/ = 2 theories, which were found in [10] and take the form'

WE = TrgP exp (i % Abosdr) , Apos = A i — io|il, (2.1

where the loop is taken over a circle and o is the auxiliary field in the N = 2 vector mul-
tiplet. In the ' = 6 theory they can be defined independently for both gauge groups U(N;)
and U(N,) [5-7], for which the auxiliary fields are fixed to o) = 27k~'MLC;C’ with
M = diag(—1,—1,41,+1) up to equivalent choices, with Cj, C’ bifundamental scalars, and
similarly for ¢®). As is evident from the structure of M, the loop has residual SU(2) x SU(2)
R-symmetry. These Wilson loops preserve four supercharges parametrised by anticommuting
95 and 912, accompanied by the special supersymmetries fixed to?’
12 _ -3 g2,

. 73 .
€1 = —ibha—, €7 =—1— 73 = diag(1, —1). .
] ] 22)

2.3. Fermionic loops

A wider class of 1/6 BPS operators preserving the same supercharges can be constructed from
the two bosonic loops by allowing for nonzero coupling to the bifundamental fermions. These
fermionic loops take the form

wier — (=) RlsTrr P exp (i%ﬁ(x“,i{“)dT) , (2.3)

where R indicates a representation of U(N;|N,) whose Young diagram has weight |R|, the

superconnection L is given by a deformation of the composite bosonic connection,

19Tn accordance with [1] we take the path ordering to be left-to-right, so that the covariant derivative is 9, +1i[A,,, .
20 These conditions can equivalently be stated in terms of 834 = —0'2, see the end of this chapter.

6



J. Phys. A: Math. Theor. 53 (2020) 173001 Topical Review

Ao E
L = Lios + AL, Lros = | 7P + Lo, 2.4
b b < 0 At(,f,z A 3 (2.4)

and AL may be block off-diagonal. For AL = 0, the constant term o3 = diag(+1y,, —Ly,)
can be exponentiated and we recover the sum of the usual trace of bosonic connections.

In order for (2.3) to preserve supersymmetry, we require the superconnection to transform
under the preserved supercharges as 6L = ©,G = 9,;G +i[L,G] for some G [1, 11]. This
relaxed notion of supersymmetry ensures that the variation takes the form of a supergauge
transformation, under which the loop (2.3) is invariant. Consider then a deformation

AL =ilx|os (046G +iG?), (2.5)

where 6 is parametrised by 91+2, éf (and efrz, Ef are given by (2.2)). The variation of AL with
respect to 64 assembles into a total derivative as required if
. - 1
631G = —i03 (0-G + [Lpos, G)) , 05017 = T (2.6)
which is satisfied for G comprised of C;, C! C,, C?, breaking one SU(2) of the residual
R-symmetry (here, o, & € C? are taken to be Grassmann odd and i, j=12)

LS 0 alC;
G = % —q,C 0 . 2.7

Using (2.6) one can show easily that 64 £ = ©,§. Invariance under J_ (parametrised by the
remaining parameters ¢, §12) is ensured because §_G is related to 6+ G by a gauge transfor-
mation, so that §_ L also takes the form of a total derivative.

The resulting family of 1/6 BPS loops is then parametrised by «, & and can be written
explicitly as

1 Aol Ti | L o
P e % K AV = Ay = EHAMCE + 4.
“EeT AR AQ) = AP — 2 AMICIC; —
. . . - | v
m=22V2a000 T =2V, AMj=2de;  TL= (1 N x|7‘; > _
. X
2.9)

We note that (2.8) is related to the operators of [1, 9] by a gauge transformation para-
metrised by A = (7 — 2¢))/8 - 03, where 0 < ¢ < 2 is the polar angle and 7 /8 accounts for
different conventions for 7, ;. The fields transform as
AW 5 AW 4||i‘ A?) 5 A 4 4|i| = V=i, )= Vie'? 2y,

X X
| (2.10)
where the right-hand side reproduces the original formulation. The discontinuity of A at 27
yields a delta function term which can be integrated to exchange the supertrace for a trace.

We stress that in contrast to previous formulations, (2.3) is manifestly reparametrisa-
tion invariant. It is also gauge invariant without the need for an additional twist matrix (see
for instance [8]), since the couplings 7,77 and M + AM are periodic by construction. This
comes, of course, at the expense of introducing a constant piece in the connection Ly,s, whose
physical interpretation remains unclear.
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We obtain the moduli space of 1/6 BPS deformations (2.5) by noting that any rescaling o
and & such that their product AM is unmodified can be absorbed by a gauge transformation.
The resulting manifold is the space of singular complex matrices, which is the conifold. This
construction matches Class I of [9], while Class II is obtained by breaking the other SU(2), i.e.
coupling to C3, C?, C; and C* in G. These two branches intersect at the origin singularity Lps.

Atparticular points where AM has eigenvalues 2 and 0, the full matrix M + AM has enhanced
SU(3) symmetry. It is easy to see that commuting the 4 preserved supercharges with this SU(3)
symmetry gives rise to 12 supercharges, so these operators are 1/2 BPS, and we recover the loops
of [1], as may be checked explicitly by performing the gauge transformation used above.

It would be interesting to check whether (2.5) covers the full moduli space of 1/6 BPS
loops and to further investigate the geometry of these moduli. In particular, it would be inter-
esting to study deformations around a generic point of the moduli space and to understand the
constant diagonal term in Lyes as a geometric feature of that space.

2.4. Conventions and notations

We mostly adopt the conventions of [8] and denote the gauge group of ABJ(M) theory as
U(N;) x U(N,). In addition to the gauge fields AV’ and A® transforming in the adjoint of
their respective gauge group, the theory contains scalars C; and C’ and fermions 1 and 1/,
in the bifundamental, such that CC and 1) (CC and 1)) transform in the adjoint of U(N;)
(U(Ny)), with the R-symmetry index [ transforming in the fundamental of SU(4). These fields
assemble in a single supermultiplet satisfying

4ri ~ 47i —
OAL = == Crff (1)a” O + == O3 ()0 05 C.
47i ~ 4ri -
OAR = U Co(p)a” O — O (e CY,
_ _ 1671 - _
5l = 2i(v")5° YD, C) + —km ol c,cey - 2iddc,
_ 167 _ _ _
o) = —2i05(1)a" D, €7 — =6],C € — 2iej,C,
5C[ = 29}}17/_%(,
§C' = —2y0e’, 2.11)

for a (Euclidean) superconformal transformation parametrised by O = 0y + €;(x - ) and
© =0V — (x-~)e". The parameters are related by 67 = 7%75””0,%55& (likewise &), but
unlike in Minkowski space there is no reality condition (i.e. @ # 61). Omitted spinor indices
«a = = follow the NW-SE summation convention. A review of the theory in these conventions

along with an action can be found in [12].
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3. Localization of BPS Wilson loops and cohomological equivalence

Itamar Yaakov
Dipartimento SMFI, Universita di Parma and INFN Gruppo Collegato di Parma. Parco Area
delle Scienze, 7/A, 43124 Parma PR, Italy

3.1. Background

It is possible to evaluate the expectation value of the BPS Wilson loop W5 (2.1) of section 2
exactly, even at strong coupling. We begin by making a Weyl transformation to an S° of radius
r. It is straightforward to formulate a theory on curved space while preserving supersymmetry
provided the space admits parallel (Killing) spinors, i.e. spinors satisfying Ve = 0. While
these do not exist on $°, conformal Killing spinors satisfying the equation V€ = v, exist,
and can be used to generate the full osp (A]4) superconformal algebra by embedding e, 7,
in tensors like ©Y. This algebra includes diffeomorphisms by Killing, and conformal Killing,
vectors as well as Weyl and R-symmetry transformations. In a more general setup, one may
generate a supersymmetry using generalized Killing spinors whose equations involve back-
ground fields other than the spin connection and vielbein. Such spinors are solutions to the
equations imposed by the vanishing of the variation of all fermions in a background super-
gravity multiplet [13].

A standard argument shows that an Euclidean path integral with a fermionic symmetry
transformation Q, is invariant under Q-exact deformations of the action, as long as these are
also Q-closed and do not affect the convergence properties. Convergence requires, in par-
ticular, that O be the generator of a compact bosonic symmetry, which in turn requires N > 2
when working on §°. If such deformation invariance can be used to scale the coupling con-
stants, the calculation of the integral can be reduced to a calculation in a free theory—a pro-
cess known as localization [14, 15]. The result of a localization calculation is a sum or integral
over an often finite dimensional moduli space of (classical) supersymmetric vacua, with an
effective action which is given exactly by a one loop calculation.

Supersymmetric actions on S° can be derived by coupling to supergravity, or by a trial and
error process of adding terms of order 1/r and 1/#2. For a superconformal theory, one only
needs to add the standard conformal mass term for dynamical scalars. Wilson loops which
do not contain fermions can be mapped directly, since neither the operator nor the variation
of the fields appearing in it contain derivatives. Supersymmetric contours for such loops are
often integral contours of a spinor bi-linear vector field such as éy*¢. This is the case for Wy,
We now review the evaluation of the exact expectation value of this loop in the N = 2 for-
mulation of the ABJ(M) model [16].

3.2. Localization of N = 2 gauge theories on the three sphere

In any N = 2 supersymmetric gauge theory on szl, deformation invariance can be used to
freely change the value of the Yang—Mills coupling [17]. The result is localization onto the
moduli space of vector multiplet fields, i.e. the space of solutions to the equations for the van-
ishing of the variation of a gaugino

1
oA = (ZVWF#,, +iv"Dyo — D> €+ on. (3.1)
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Up to gauge transformations, this moduli space can be parameterized by an arbitrary space-
time independent profile for the vector multiplet adjoint valued scalar o. The result is therefore
a matrix model. No additional moduli arise from chiral multiplets of canonical dimension, due
to the conformal mass term. The original action, and any operator insertions, should be evalu-
ated strictly on this moduli space.

The one-loop effective action can be derived by expanding all fields to quadratic order
around the moduli space in appropriate spherical harmonics—eigenfunctions of the vari-
ous fluctuation operators Dg,,—and computing the resulting functional determinant.
Alternatively, one may use the index theorem for transversely elliptic operators [18], which
has the advantage of making some cancellations manifest. In either approach, the result is an
infinite product which must be carefully regularized. We can think of ¢ as defining a Cartan
subalgebra of the gauge Lie algebra. We denote by «(o) the eigenvalue for the action of o
on a field proportional to a root ¢, and by p(c) for one proportional to a weight p. The fields
comprising a vector multiplet, and proportional to a root pair o, —cv, including the ghosts yield
an effective action

det D?, det DY, ad
C_SC“CC“VC(”) gauginos ghosts = OZ(U)Z H (n2 + 05(0')2) = 4Sinh2 ﬂa(U). (32)
\/dCt Dvector det Dgcalar n=1

Similarly, the weight p fields in a massive hypermultiplet yield (2 cosh 7 (p(c) + m)) ~

3.3. Localization in Chern—Simons-matter theories with extended supersymmetry

The ABJ(M) model is based on the product gauge group U (N;), x U (N,)_, with hypermul-
tiplets in the (0, 0) @ (O, O) representation [2, 3]. Denoting by y; /2, v;/27 the eigenvalues
for the respective o(1?) matrices, we have the following integral for the expectation value of a
1/6 BPS Wilson loop in ABJ(M)

0S d[,t, dV 2V
o g [ figemms o

classical CS action PER
normahzanon —’_/ —
moduli space integral 1/6 BPS Wilson loop
N N> Ni,N> —1
asinh® & (i — ) TT 4sinh? = (14 4cosh? 1 ; (3.3
sinh” > (i — 1) sinh” > (i — ) cos ( — ) . 3)
i<j i<j i
vector multiplets hypermultiplets

Above, the contour for W5 is a great circle on S°. Note that ¢(1'?) are auxiliary fields in
ABI(M), with e.g. (1) equal on-shell to %M’ 7CC’, which become dynamical in the process
of localization.

Localization requires off-shell closure of the supercharge. An observable in a model with
a larger on-shell realized supersymmetry algebra, such as ABJ(M), may be annihilated by
supercharges which cannot be rotated into an N = 2 subalgebra. Localization of such an
operator requires closing a single supercharge off-shell, possibly in a non-Poincaré-invariant
way, by adding appropriate auxiliary fields (see e.g. [19]). This approach is currently being
used in order to derive the conjectured matrix model, discussed in section 8, for the latitude
Wilson loop discussed in section 7.

10
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Expectation values of operators within the same cohomology class coincide, regardless of
off-shell closure. The 1/2 and 1/6 BPS fermionic Wilson loops of section 2 can be shown to
be cohomologically equivalent to the bosonic 1/6 BPS Wilson loop within the ABJ(M) model
[1], i.e. there exists a well defined operator V, a supercharge Q, and a map R — R such that

Wi — wpes + V. (3.4)
A similar statement holds for the versions of the latitude loop reviewed in section 7.
Acknowledgements
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4. Solution of the ABJM matrix model

Pavel Putrov
ICTP, Strada Costiera 11, Trieste 34151, Italy

4.1. Background

In this chapter we take a close look at the matrix model that arises from localization of the
ABJM theory with possible 1/6 or 1/2 BPS Wilson loop insertion, as reviewed in section 3.
There are two natural limits when the matrix model can be analyzed

e the ’t Hooft limit Ny, N; — oo, and k — oo while the "t Hooft parameters \; = N;/k are
kept fixed. This limit is natural for comparison with the holographic dual type IIA string
theory on AdS, x CP*. The string coupling constant is related to the level as g, = 2i /k.

e the ‘M-theory limit” N, N, — oo while the level & is kept fixed. This limit is natural for
comparison with the holographic dual M-theory on AdS, x S, where the radius of the
circle fiber of the Hopf fibration 87 — CP* is 1/k.

4.2. 't Hooft limit solution

In the ’t Hooft limit the matrix model can be analyzed by the rather standard and general
technique of spectral curve and topological recursion [20, 21]. The same matrix model, up
to an analytic continuation in ranks N;, was previously considered in the context of bosonic
Chern—Simons on a Lens space and topological strings on local P! x P' [22-24]. The main
idea is that in the ’t Hooft limit the leading (also known as planar) contribution is given by
the configurations where eigenvalues e/ and e” in the matrix integral are distributed along
two intervals in the complex planes. These intervals can be found by solving the equations of
motion for an eigenvalue in the background of all the other eigenvalues and can be interpreted
as cuts of a Riemann surface spread over the complex plane. The Riemann surface is described
by an algebraic equation

Y+ Xy ' - B(X*4+ikX — 1) =0, X,Y € C*, 4.1)

and is referred to as a spectral curve. The density of the eigenvalues along the cuts is given by
the jumps of a meromorphic 1-form across the cut. Namely, if one defines the resolvent 1-form
as the following expectation value in the matrix model

2

X et — e dx
wi=g <Z ra— _ZX+C”'>MM X “2)

i=1

it admits a genus expansion of the following form

dx
2
w= nggwg, wy = long. 4.3)
820
The complex parameters 3 and & of the curve are fixed by the two equations \; = | 4, W05
where the contours 4; encircle the cuts (see figure 1). Any one-point correlation function
in the matrix model can be expressed via the resolvent. For example, the expectation value

of 1/6 BPS Wilson loop in the fundamental representation of U(N)) is given by (see (2.1)
and (3.3))

12
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Figure 1. The distribution of the eigenvalues in the ABJM matrix model and the
contours in the X-plane.

(W0) = (2 = 5 [, o= 2 (M), s

l

where the last equality is its genus expansion. From now on, for the technical simplicity of
the formulas let us assume that Ny = N, = N so that there is a single 't Hooft parameter
A1 = X = . For more general expressions we refer to the papers cited. It follows that 5 = 1
in the spectral curve equation (4.1). The relation between the 't Hooft parameter and the
parameter & of the elliptic curve then explicitly reads

K 111 3 &
A= g 3F <2’2’2’1’2’_16> . 4.5)

The planar limit of the expectation value of the 1/6 BPS Wilson loop can be determined by
the following equation

IWisn)o i
oK B _W\/(E(l + ab) (K G) = (et D)) o

where K (s) and II(n|s) are complete elliptic integrals of the first and third kind respectively,
and a, b, s and n are the related to the curve parameter ~ as follows

=2 (2tint VAl R). b= (2-int VR R).

4.7)

2 2
2 a+b ba —1
=1- = - . 4.8
g (1+ab> ’ "Talvab 48

The free energy F = log Z also admits the genus expansion F =3 ¢ °F 2 () with the
planar limit determined by another period of the resolvent

OFo(\ 472 33 16
o ):/wo:27r210g/i+i24F3 (1 L, 32,2, 2'—2>, 4.9)
B K v

oA 2’2

where the contour B is shown in figure 1. The strong coupling limits of the planar contrib-
utions to the free energy and the Wilson loop take the following form

4773 \/E )\3 /2
3 9

which is in perfect agreement with AdS4/CFTj; correspondence. The strong coupling limit can

be also obtained directly by the methods of [25] or [26]. The higher genus corrections can be

0 <WFES,1>>O ~e™A Fy(A) ~ A = oo, (4.10)

13
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produced order-by-order via topological recursion procedure of [27] or by solving holomor-
phic anomaly equations [21, 28].

4.3. M-theory solution via Fermi gas representation

In [29] a different approach to solving the ABJM matrix model was developed. It is well suited
to study the partition function and the Wilson loop directly in the ‘M-theory limit’. The main
idea is presentation of the matrix model as a partition function of a free Fermi gas with a cer-
tain 1-particle Hamiltonian. In particular this leads to direct derivation of the exact perturba-
tive (w.r.t. 1/N) contribution to the partition function

Z(N) = ' Ai[c1/? (N—B)} (1 +0(e*cﬁ)), @.11)
where Ai is the Airy function of the first kind, C = 2/ w2k, B = k/24 + 1/3k, and A is a certain

special function of k. The same result was first obtained by resummation of the genus expan-
sion in the ’t Hooft limit in [30].
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5. Perturbative methods for the 1/2 BPS Wilson loop

Marco S Bianchi
Instituto de Ciencias Fisicas y Matemadticas, Universidad Austral de Chile, Valdivia, Chile

5.1. State of the art

Two loops is the state of the art for the perturbative determination of the 1/2 BPS Wilson loop
expectation value. The relevant one- and two-loop diagrams, based on the definition of the
operator of [1], evaluate [5-7, 12, 31, 32]

72 N1+ N» 2 2
1 Ny + N

Solid, dashed and wavy lines stand for fermions, scalars and gluons, respectively and blobs
represent one-loop self-energy corrections. The final two-loop result for the expectation value
reads

OJ\[\D

(Wi2) = (N1 + M) {1 (N} +N; — 4NN, — 1) + O (kY| (5.2

6k2
It coincides with the prediction from localization, after removing a framing phase '™ (V1 —N2)/k
from the latter (see section 6 on this issue). This agreement provides a successful test of local-
ization in ABJM.

The computation outlined above can be extended to include multiple windings [33] and,
equivalently, different gauge group representations. Its backbone can be utilized for evaluat-
ing the two-loop expectation value of similar fermionic operators, existing in quiver Chern—
Simons-matter theories with lower supersymmetry of section 9. Moreover, the same diagrams
appear, albeit with some deformations, when determining the expectation value of latitude
Wilson loops in ABJM, discussed in sections 7 and 8.

5.2. New versus old formulation

The reformulation of the 1/2 BPS operator presented in section 2 differs from [1] in two
aspects: additional +|x|/4|x| terms in the diagonal entries of the superconnection (2.8) and
different fermionic couplings 7, 77. On the maximal circle C : {0,cos 7,sin7}, 0 < 7 < 2,
the former evaluate to 4-1/4 and the spinors read

a 1 s —iT = 1 1
Ny = \ﬁ (1 —ie )(511, e \ﬁ <ie”> st (5.3)

These modifications produce a different perturbative expansion, which eventually re-sums
into that of the old formulation. To see this explicitly, let us consider the fermion exchange
diagram at one-loop. The following shorthand notation is used x; = x(7;), x; = x; — x; and
n; = n(;). Expanding the exponential of (2.3) to second order gives the fermion contractions

15
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r™ [ ar [ (nitoms = ) = 2 T ) e

’ ’ = (5.4)
where dimensional regularization (d = 3 — 2¢) is used in the fermion propagator and an
ubiquitous factor is defined K = 2,(234721/;)61\' 1% An integral of trigonometric functions is

obtained, that can be performed turning them into infinite sums, according to the method
described in [12]

2 3/2
1 —cos(m — 1) 47/2T ()
dry / dm, = . 55
/ Sln2 T — 7'2)3/2 € F(1/2+6) ( )

This result exhibits a 1/e pole and differs from the analogous evaluation in the original papers,
using the old formulation. The discrepancy lies in the fact that, at fixed 1/k order, infinite
additional contributions arise expanding the exponential (2.3) in the new definition. They
come from insertions of the constant terms +1/4 in the diagonal entries of the superconnec-
tion. They do not depend on the coupling, hence any number of them contributes to the same
perturbative order. The perturbative series is thus re-organized in terms of a new expansion in
the number of +1/4 insertions. For the fermion exchange diagram it reads explicitly

oo
A
>4

1=0

_Arn i+l i (7i)l <("7J’)1(U"7)> te
N NlNQ/ dry-- / dne2 Z( v’ STr( ’ it ()i (mp); >> .

7>
(5.6)
Then, (5.5) is the zeroth order in this alternative expansion, Ay. Let us separate terms from

the upper-left and lower-right blocks, before taking the supertrace, A; = Al(+) — Al(f). A gen-
eral expression for Al(+) =

G(x) =22k +x)7°

A = K(—i)'r" [ TBED 4 27 log2 + i(m(m + 2i)] — 4(1+ 1)(1 + log2)) I even
2771 | 222y o i (72 — 4(1 + log 2)) + m(2log2 — 2 — i) — HUENG 64

—(A,(_))* can be derived in terms of generalized zeta functions

S DT (20Goan(3) £ Qi+ D) = WGt (3) =i+ Dioania(3)
-k 2-1=2(2m)!

+ O(e).
m=0

5.7
To retrieve the complete result, such contributions can be re-summed efficiently at the level of
the integrand. Performing combinatorics and contour integral manipulations, the +1/4 expan-
sion is cast into the form

K [?r T (i) =T+ !
<I>zldﬂﬁ&ﬁ§z!( )

Summing over / reproduces the factor appearing in the fermion exchange diagram in the old
formulation [12]

27 T1
— 2[(/ dﬁ/ dTQ;H _ _21+2e7r2+eM sec(me) — 0(e). 5.9)
0 0 (sin2 “2;”) k L'(e)

16

1 — e~ ilm—m)

(sinQ 1 57’2 ) 3/2—€

+c.c.. (5.8)
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The sign swaps across the upper-left and lower-right blocks ultimately reconstruct the twist
matrix of [1].

In conclusion, the perturbative expansion of fermionic graphs in the old and new for-
mulations differ substantially, but they prove to be equivalent. This should be the case, being
they related by a gauge transformation. The new definition appears more natural and elegant
in some respects, spelled out in section 2. However its perturbative expansion entails re-sum-
mations as in (5.8), which in the original definition of [1] are already built-in. The latter is thus
more compact and better suited for the purpose of a perturbative evaluation.

5.8. Future directions

The two-loop computation of fermionic diagrams has only been performed at trivial framing.
Conversely, the cohomological equivalence described in section 3 imposes constraints on the
expectation values at framing one. These imply that fermionic diagrams must possess non-
trivial framing contributions, however a direct computation thereof is lacking. It would be
interesting to improve the efficiency of the perturbative expansion by adopting a superspace
description, which has not been developed thus far. Finally, a more direct test of localization
would entail directly considering the theory on a curved background, but perturbation theory
in this setting seems challenging with current technology.
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6. Framing in Chern—-Simons-matter theories

Matias Leoni
Departamento de Fisica, Universidad de Buenos Aires & IFIBA—CONICET. Ciudad
Universitaria, pabellon 1 (1428) Buenos Aires, Argentina

6.1. Pure Chern—-Simons

In its simplest formulation, pure Chern—Simons theory can be written down without refer-
ence to any metric of the manifold where it is formulated. One could naively think that this
would mean that any gauge invariant observable defined for this theory should depend only
on topological properties of the manifold, the gauge group, the Chern—Simons level and the
observable in question. This expectation turns out to be too optimistic: it is a well-known fact
[34-36] that when a regularization of the theory is introduced, some extra data is needed. In
particular, for ordinary Wilson loops defined in pure Chern—Simons theory this extra informa-
tion is the framing of the paths in the loop.

Consider the basic Wilson loop in pure Chern—Simons theory defined on a closed path I" in
the fundamental representation of U(N): (Wr) = (TrPexp (i §. Andx*) ). The only Feynman
diagram at leading order in perturbation theory is a simple contractible gauge propagator
(A, (x1)A, (x2)) joining two points of the curve with both points integrated over the curve. To
avoid divergences when both points collide we choose to deform the path of the second gauge
field (which we call I'y) in the following way

(1) = yH(7) = H(7) + o nk(7), (6.1)

with n#(7) a unit vector and ¢ a parameter which we may eventually take to be arbitrarily
small. In a sense we can think that instead of a curve travelled by both transported fields, we
are defining a two-dimensional object, a ribbon. When removing the regularization by taking
0 — 0, we are left with an ambiguity. The straightforward computation leads to the following
integral

llnk F Ff %dx“\fi; dy G;ujp ‘ y?3 :f (62)
I

This is the very well-known Gauss linking integral topological invariant. This means that even
if we took the limit of & — 0 when both curves coincide, the twisting of one curve over the
other survives the limit and the ambiguity is just the number of times (f) one of the curves
winds over the other. This is the extra piece of information one has to add to the definition of
the Wilson loop (see [37] for a thorough review).

While we just explained the leading appearance of framing, it was shown in [36] that
framing-dependent parts of the Wilson loop computation exponentiate in a controlled way in
pure Chern—Simons theory

(Wr)y = e T Ik () ey, (6.3)

6.2. Enter matter

While the framing subtlety is clearly important to understand to which degree pure Chern—
Simons theory is a topological theory, when matter is coupled to it and the theory becomes
an ordinary non-topological theory as ABJ(M), one could in principle choose to put framing
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to zero. The main reason why framing is still relevant in Chern—Simons-matter theories is
because the localization technique for finding exact results of Wilson loops returns results
with non-vanishing framing. Specifically, the result from localization, as presented in sec-
tions 3 and 4 is necessarily at framing 1 for both 1/2 BPS [1] and 1/6 BPS [5-7] Wilson loops.
This is because the regularization compatible with supersymmetry, when one localizes the
function integral on S°, has the path and its frame wrapping different Hopf fibers [17].

The authors of [1] showed that the 1/2 BPS Wilson loops and a combinations of the bosonic
1/6 BPS pairs are in the same cohomology class under the localizing supercharge. In [12, 31]
evidence was given that this cohomological equivalence is realized at the quantum level spe-
cifically at framing 1, once again emphasizing the importance of framing for non-topological
realizations of Chern—Simons theories. The two-loop results of [12, 31] also show that at least
to that perturbative order, the relation between framing 1 and framing O quantities is a simple
phase necessary for consistency with the cohomological equivalence.

The authors of [38] went further and made a combined analytical/numerical analysis of
the 1/6 BPS Wilson loop (2.1) up to third order in perturbation theory. The result for arbitrary
framing f is consistent with the expansion

(W)

. 2y 42 5 2
= enr()\l—fr A3 /240 (X ))f (1 _ % (/\% _ 6)\1>\2) + O(X‘)) , (6.4)

where A\; = Ny /k, Ay = N, /k are the "t Hooft couplings of ABJ theory. This result deserves
some comments: firstly, while the framing-dependent contributions seem to exponentiate as
in (6.3), the exponent becomes a non trivial function of the coupling, as opposed to the simple
linear exponent of pure Chern—Simons theory; secondly, the analysis of [38] shows that while
up to two-loops all the framing contributions came from purely gauge contractible propaga-
tors, at three-loops vertex-like diagrams with matter also contribute to the framing anomaly.
An interesting consequence of the non-triviality of the exponent of (6.4) has to do with the
fact [39—42] that the Bremsstrahlung function (sections 10 and 11) associated to 1/2 BPS
Wilson loops in ABJM theory (N; = N,) can be written as By, = (87) ! tan ®p where p
is the complex phase of the 1/6 BPS Wilson loop at framing 1: this implies a curious and very
intimate connection between framing and the Bremsstrahlung physics of the theory which
deserves further study.

Finally, framing also plays an important, albeit odd role in the DGRT-like construction
[8] of Wilson loops in ABJ(M) theory (see section 7). The latitude deformations of both the
1/2 BPS and bosonic 1/6 BPS Wilson loops belong to the same cohomology class [39]. More
specifically, it was shown in [39] from a perturbative computation that in order to realize
the cohomological equivalence at the quantum level, the analysis has to be done at arbitrary
framing f and then a formal identification of the integer f with the effective latitude parameter
g = sin 2« cos 6y has to be performed (here « and 6y are angles that characterize the geometry
of the latitude Wilson loops). This is an awkward choice since fis an integer number whereas
q is a real one. This is however supported by the matrix model construction of [41], where a
single g parameter is needed in the matrix integral and operator definitions in order to match
the known perturbative results with f = g (see section 8).
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7. BPS Wilson loops with more general contours

Luca Griguolo
Department of Mathematics, Physics and Computer Sciences, University of Parma and INFN
Gruppo Collegato di Parma, Parco Area delle Scienze 7/A (Campus), 43124 Parma, Italy

71 Background

Four-dimensional N' =4 SYM theory admits a variety of different BPS Wilson loops, that
generalize non-trivially the original straight line and circular ones [43, 44]. A complete clas-
sification of admissible contours with the appropriate scalar couplings has been performed in
[45], exploiting the properties of the relevant Killing spinors. Two important classes of loops
have been widely studied and used to derive interesting results: the so-called Zarembo loops
[46] and the DGRT loops [47]. A subset of DGRT operators, preserving 1/8 of the original
supersymmetry, are contained in an S? and their quantum behavior is governed by perturbative
2d Yang—Mills theory [47—49].

In this chapter two families of BPS fermionic Wilson loops in ABJM theory are described:
they can be considered the analogs of the Zarembo and DGRT loops in three dimensions,
their bosonic and fermionic couplings depending non-trivially on their path [8]. The key idea,
already exploited to construct 1/6 BPS fermionic circles in section 2, is to embed the natural
U(Ny1) x U(N,) gauge connection present in ABJM theory into a superconnection parameter-
ized by the path-dependent functions M%, n%* and 7, (see (2.8)). The strategy is to derive first a
general set of algebraic and differential conditions for them that guarantee the local preserva-
tion of a fraction of supersymmetry, up to total derivative terms along the contour. Then one
imposes that solutions of these constraints can be combined into a conformal Killing spinor
O = 0" — (x-~)é”, where 0” and € are constant. Finally the total derivative terms, organ-
izing into a supergauge transformation, should become irrelevant by taking the super-trace of
the Wilson loop operator. This last step requires in general to improve the bosonic part of the
connection with a background term, as done in section 2 (see (2.8)), curing the non-periodicity
of the couplings and avoiding the presence of the twist-matrix originally introduced in [8].

72. Zarembo-like Wilson loops

This is a family of Wilson loops of arbitrary shape, which preserve at least one supercharge
of Poincaré type, i.e. a supercharge with €/ = 0. These operators can be viewed as the three-
dimensional companion of the loops discussed in [46] and a generalization of the BPS straight-
line constructed in [1], which is the simplest example enjoying this property. In this case, the
differential condition is solved trivially and the problem is completely fixed by choosing four
constant spinors s/, with completeness relation E’lea = 53. Defining II; as in (2.9), the gen-
eral form of the couplings is obtained [8]

nr = S1H+, 771 = H+§I, M{ = 5} — S]EJ — %S{’Y#E‘I. (7.1)
The loops are generically 1/12 BPS and the finite supergauge transformations generated by
the relevant supersymmetry transformations are well-defined on any closed contour in R3.
Taking the super-trace (see (2.3)) a SUSY-invariant operator is obtained without introducing
background terms. The explicit form of the superconnection is
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(AT R a0 = e e, (1.2)
-l A® A — AR~ .

73. DGRT-like Wilson loops

A second family of Wilson loops, defined for an arbitrary curve on the unit sphere
§? c R? (x*x, = 1), can be easily obtained from the previous one. The central idea is
to introduce a matrix U constructed with the coordinates x*(7) of the circuit, namely
U = cosa +i(x*,) sin o, with « a free constant angular parameter. Defining an auxiliary
constant supercharge A¥ = OV U and introducing a background term in the bosonic part of
the connection as in section 2

AW = A — 21 vl ey €7 4

) _ . q = sin 2aq, 73
A ZAEE)X“—%|X|M}CJC,—%"|, (7.3)

the problem becomes formally equivalent to the Zarembo-like one [8]. The solution for the
couplings, preserving the superconformal charge ©¥, is obtained by rotating the spinors s/,
appearing in the Zarembo-like solution

U
x 1

iy WX, . _
cos2a + x Y eupsina | 5.

[ 4]

nr = Ul ' =1.5U,  M,=6—s (1 +

(7.4)
A particularly interesting example of DGRT-like Wilson loops is the fermionic latitude, which
can be found from (7.4) by taking the curve to be a latitude on the S. Since a latitude is con-

formal to any other circle, the real feature of this loop are the scalar and fermionic couplings
(with g as in (7.3))

—q e "\/1—¢q2 0 0 V1i+yg
J eiT\/l_qz q 00 @ 1 _Vl_qeiT s —iT\a
M; = > = (1, —ie™)%,
0 0 1 0 V2 0
0 0 0 1 0 /
(7.5)

with 7 € [0,2m).
At the classical level, the fermionic latitude Wilson loop is cohomologically equivalent
[41] to a linear combination of bosonic latitudes®!

W (g) = 7™ Woo) (g) — €2 Wigl(q) + Q(g)V. (7.6)

where Wé(l);z) (q) are bosonic latitude Wilson loops with scalar coupling governed by a matrix
Mj that coincides with (7.5) changing the last diagonal entry from 1 to —1. In the above form-
ula Q(gq) is a linear combination of supercharges preserved by both bosonic and fermionic
latitudes, while V is a functional of the scalar fields and of the superconnection. Fermionic
latitudes preserve 1/6 of the original supersymmetries and it is always possible to find two
supercharges that do not depend on the parameters of the loops. The bosonic latitudes are

instead 1/12 BPS and do not admit common preserved supercharges.

21 Loops in the fundamental representation for U(N;|N,), U(N;) and U(N>), respectively, are considered here.
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74. Future directions

A natural question that remains to be answered is of course if any DGRT-like Wilson loop pre-
sented here is cohomologically equivalent to a bosonic Wilson loop, generalizing the bosonic
circle constructed in (2.1). It would be also important to clarify the origin of the background
term in the superconnection (7.3), a fact that seems a generic feature of fermionic loops, as
already pointed out in sections 1 and 2.
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8. The matrix model proposal for the latitude
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Among the family of Wilson operators on S? introduced in section 7, the latitudes are the
simplest deformations of the circle. One may therefore hope that they are captured by a matrix
model, as it occurs in D = 4. The fermionic latitude (7.5) is 1/6 BPS and preserves osp(2|2),
while the bosonic one (see section 7) is 1/12 BPS and only preserves u(1|1). These two opera-
tors are cohomologically equivalent (7.6) as in the case of the two circle operators presented
in section 2. Below we discuss a proposal for a matrix model evaluating both these latitudes.

8.1. An educated guess for the matrix model

The pattern of preserved supercharges and the analogies with the circle suggest that the expec-
tation value of the bosonic latitude can also be computed in closed form using localization
techniques. However the localization procedure has to yield a matrix model, which is a signifi-
cant deformation of the one obtained in section 3 and solved in section 4. In fact, an explicit
three-loop computation of this observable in the fundamental representation (with ¢ defined
in (7.3)) at framing f in ABJM (N; = N, = N) gives [41]
o infN |

(W @)y =1+ ==+ o5 [N (3@ — 1) +2) +1]

- imN

6k3

V(P +f(1=30) + (¢ —1)a) 4 —a(@ — 1]+ O (k).

(8.1)
Analyzing this expression, we immediately realize that the ¢g-dependence cannot be reab-
sorbed by a simple redefinition of the coupling constant at variance with the four-dimensional
case. Therefore we expect that the deformation might affect both the measure of the matrix
model and the observable that we average to evaluate the Wilson loop. However, when we
replace the observable with the identity the remaining matrix integral over the deformed mea-
sure must still give the partition function of ABJ(M) on S°, namely the dependence of the par-
tition function on ¢ must become trivial. We can perform an educated guess on the structure
of this modification if we recall that the original matrix model can be also viewed as a sort of
supermatrix version of the partition function of Chern—Simons with gauge group U(N; + N;)
on $*/7Z,, where we have selected the vacuum that breaks the symmetry to U(N;) x U(N,)
(see section 4).

A simple deformation enjoying this property is obtained by replacing S° with the squashed
sphere §3 7 Because of the topological nature of Chern—Simons, the partition function is
unaffected by the squashing, up to framing anomalies. For ABJM this anomaly cancels, and
we have the same partition function, while for ABJ they differ by a phase which is a poly-
nomial in (N; — N,) and cancels when we compute the average of the Wilson loop. The
modification amounts to replacing the original gauge contribution in the measure (3.2) with

H?i/Asinhz (n SE )y H?i/Asinh G Lt 1) ginh (& 2"\_/5’) and similarly for the hypermulti-

plets. Namely we propose the following deformation [41] of the circle matrix model (3.3)
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Ny N -1
d,ul 2 dV/ o ik} < \f(ﬂt — V) (i ))
Yi 4 cosh cosh
N1 'Nz /H H ll_[ljl_ll 2\/>
X H4smh — ) sin 'uj) H4smh —4) sinh (V;_ VJ)
i<j i<j \/q

(8.2)
This is the simplest non-trivial deformation of (3.3) that lands back on the usual expression
at ¢ = 1, and whose measure is symmetric under ¢ <> 1/¢. This symmetry is instrumental
in recovering the correct conjectured 1/6 BPS 6-Bremsstrahlung introduced in [50] (see sec-
tions 10 and 11). The expectation value of the bosonic Wilson latitude, for instance with a
connection in the first gauge group, corresponds to the insertion in the matrix model of the
quantity SN evan,

8.2. Comparison with the perturbative results

We can check the proposal (8.2) up to three loops against the perturbative result (8.1) and
similar results for ABJ presented in [41]. We find perfect agreement if we assume that our field
theory perturbative computation is performed at framing g. That the agreement manifests for
this specific value of the framing is highly suggestive, since this is the precise value at which
the conjectured cohomological equivalence with the fermionic Wilson loop is supposed to
hold (7.6) and thus it allows us to use the matrix model results to reconstruct the expectation
value of the fermionic latitude as well.

8.3. Comparison with the string results

The matrix model (8.2) can be reformulated in terms of a Fermi gas. This representation
provides a powerful tool for systematically expanding the partition function and Wilson loop
observables in powers of 1/N at strong coupling. For simplicity we restrict the analysis to the
ABIJM slice, Ny = N, = N. The final result can be expressed in terms of Airy functions and
for the fermionic latitude takes a particular simple and elegant form

W)y, = — 4 (=%) Ai(C'* (N =B —2q/k))
" 2eyar (354) sin (2ng/K) A (CV2 (N - B)) (83)

where C and B have been defined right after (4.11). From this we can extract the leading
contribution at large N

q

<err(q)>q|g:0 — r (_5)3_ eﬂ'q\/m'
ravar ()

Classical string configurations that are dual to the fermionic latitude operators have been

(8.4)

discussed in [50] and their leading exponential behavior scales according to exp (wq@)
(see (12.6) below), which remarkably agrees with the expansion of the matrix model at strong
coupling. Recently the one-loop string correction to the classical configuration were also
computed in [51, 52] and again perfect agreement with the matrix model was found (see sec-
tions 12 and 13).
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8.4. Future directions

Despite the strong tests passed by the matrix model (8.2), it would be nice and instructive to
have a complete derivation of it using localization. This might also help to understand if the
other DGRT-like Wilson loops, which anyway share two supersymmetries with the fermionic
latitude, can be evaluated in terms of a similar matrix model. In case of a positive answer, one
might wonder whether an effective lower-dimensional theory describes this family of loops as
it occurs in four dimensions.
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9. Wilson loops in A = 4 supersymmetric Chern-Simons-matter theories
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9.1. General classification

BPS Wilson loops in N = 4 supersymmetric Chern—Simons-matter (SCSM) theories were
first studied in [53, 54]. More general operators and an exhaustive classification for A > 2
SCSM quiver theories were successively given in [9, 55-57]. Generalizing the operator of
ABIM theory (2.1), a bosonic BPS operator which includes bi-linear couplings to scalars
can be constructed for all theories with 2 < A < 6 supersymmetry. This is unique, up to
R-symmetry rotations, and always preserves four real supercharges. More general classes
of BPS operators with different amount of supersymmetry are obtained by introducing also
couplings to fermions, in the spirit of [1].

In this chapter we review the general classification of BPS Wilson loops in N =4
necklace quiver SCSM theories with gauge group and levels ;;é [U(Ny) -k X U(Nopp1)]
[58, 59]. These theories are all conformal and can be obtained by a quotient of the
U(N)p x UM)_x ABJ theory where we decompose N = N;+ N3+ ..+ Ny and
M = Ny + N, + ... + Na,_>. They have a string dual description in terms of M-theory on the
orbifold background AdSy x S7/(Z, ® Z,)/Zy. When Ny = ... = Np,_; they reduce to the
Z,-orbifold of ABJM [16] which is dual to M-theory on AdS; x S’ [ (Zy ® Ly).

A large class of fermionic BPS Wilson loops in N' =4 SCSM theories can be obtained
by the orbifold decomposition of fermionic 1/6 BPS and 1/2 BPS operators of the ABJM or
ABJ theories [56]. For circular contours this leads in general to 1/4 BPS fermionic operators
corresponding to superconnections of the form (for r > 3)

1 1
W40 O 40
L= hgl) 2(2) A®) f1(3) ~ ©.1)
0 A

Here the diagonal blocks A® contain the usual gauge and scalar field couplings, the next-to-

diagonal blocks fl(!lz) are linear in fermions, mimicking the entries of (2.8) for ABJM operators,
whereas the next-to-next-to-diagonal blocks hgl)z are quadratic expressions in the scalars. For
the case of orbifold ABJM theory their explicit expressions can be found in [56], as func-
tions of several complex parameters. Up to R-symmetry rotations, the corresponding Wilson
loops have been classified into two independent classes, where each class is parametrized by
three complex moduli [56]%%. Wilson loops belonging to different classes differ primarily by
the chirality of the fermionic couplings. The classification of the corresponding preserved

22 The other two classes found in [9, 55, 56] are equivalent to the bosonic Wilson loop. We thank Drukker for point-
ing it out.
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supercharges reveals a high degree of degeneracy: the operators of the two classes share the
same set of supersymmetries. More general 1/4 BPS Wilson loops can be constructed, which
are not obtained by orbifold decompositions of ABJM operators. These operators fall outside
the aforementioned classes, but are block-diagonalizable to them.

For special choices of the parameters the superconnection in (9.1) becomes block-diagonal
and the corresponding Wilson loop reduces to a sum W =3",_, W, where the ‘double-
node’ W is the holonomy of a U(N,_;|N;) superconnection of the type (2.8), which includes
(Ni—1, N;) gauge fields and matter coupled to them. In each of the two classes, for a particular
set of parameters the preserved supersymmetry gets enhanced and we obtain fermionic 1/2
BPS Wilson loops [53, 54, 56]. In the notation of [54] we refer to the corresponding double-
node operators as ;-loop and ,-loop, respectively.

All fermionic 1/4 and 1/2 BPS operators are in the same Q-cohomological class of the
bosonic 1/4 BPS Wilson loop, where Q is a conserved supercharge shared by all the opera-
tors. Therefore, they are in principle amenable of exact evaluation via the matrix model that
computes the bosonic operator [17, 60].

9.2. Degenerate Wilson loops

As already mentioned, fermionic 1/4 BPS Wilson loops belonging to different classes pre-
serve the same set of supercharges. In particular, this occurs for the two kinds of 1/2 BPS
Wilson loops, 1)1-loop and 1),-loop. In the orbifold ABJM case these two operators come from
quotienting two 1/2 BPS Wilson loops of the ABJM theory that share eight real supercharges.
Therefore, the total degeneracy appearing in the N = 4 theory can be understood as the leg-
acy of the partial overlapping of conserved supercharges already present in the parent ABJM
theory. In a Higgsing construction, ;- and 1;-loops correspond to exciting non-relativistic
infinitively massive particles or antiparticles, respectively [61].

The degeneracy of 1/2 BPS Wilson loops opens important questions. Which are their grav-
ity duals? Do we expect degeneracy also in the corresponding M2-brane solutions or is the
actual BPS Wilson loop that survives at strong coupling a linear combination of operators,
as first suggested in [54]7 Second, which is the fate of this degeneracy at quantum level? Do
degenerate operators share the same expectation value and how does this expectation value
match the matrix model prediction?

For the orbifold ABJM theory, the first question was answered in [61] by identifying the
degeneracy of ;- and ,-loops with the degeneracy of a pair of M2 and anti-M2-branes
localised at different positions in the compact space, and preserving the same set of super-
charges. The second question has been addressed in [62, 63] for theories with groups of une-
qual ranks. Assuming that the classical cohomological equivalence is compatible with the
localization procedure, the matrix model predicts (Wy,) = (Wy,) and its exact expression
expanded at weak coupling and at framing zero exhibits vanishing contributions at odd orders.
However, in [63] it was shown that at three loops, at least in the three-node color sector,
(W) s = —(Wy,)|as # 0. This implies that in theories with unequal group ranks only the
linear combination (Wy, + Wy,) can match the matrix model prediction, pointing towards a
non-trivial uplifting of the classical degeneracy.

9.83. Future directions

At the moment there are no exhaustive answers to the previous questions. In the orbifold
ABJM theory the degeneracy is not broken at strong coupling, in line with the matrix model
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prediction, but a confirmation from a genuine perturbative calculation is still lacking. In the
more general case of theories with unequal ranks, the matching with the matrix model implies
an uplifting of degeneracy, but it would be important to find the dual M2-brane configurations
to have confirmation at strong coupling. Moreover, a similar analysis should be extended to
degenerate fermionic 1/4 BPS Wilson loops for which the dual configurations are not known.
In particular, for generic parametric dependent operators in the two classes, a perturbative
calculation would provide parametric dependent expectation values [57], but there is no corre-
spondingly free parameter in the matrix model prediction. Moreover, if the gravity duals of all
of these degenerate operators exist as different brane configurations, it would be interesting to
understand how to flow in the moduli space from one brane configuration to another. This is
another problem that deserves further investigation.

Finally, similar configurations of degenerate Wilson loops occur also in N' < 4 SCSM
theories, where the problem of identifying the corresponding gravity duals and matching the
matrix model predictions with their expectation values [57] is still to be fully addressed.
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10. Bremsstrahlung functions I: definition and perturbative results
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10.1. The generalized cusp and the Bremsstrahlung functions in ABJ(M)

The bosonic and fermionic Wilson operators (2.1) and (2.3) can be also supported along infi-
nite lines. In this case, the constant piece || /4|x| introduced in the fermionic superconnection
(2.3) disappears, while the couplings to the matter become constant.

When a cusp with angle ¢ is introduced into the 1/2 and 1/6 BPS lines, as in figure 2, super-
symmetry is completely broken and the expectation value of the Wilson operator develops a
divergence. The coefficient of the divergence can be analysed in very general terms [64] and
is called cusp anomalous dimension. Moreover, one can introduce a second deformation by an
internal angle 6 affecting the scalar and fermionic couplings (the latter are fully fixed by the
scalar ones as in (2.9)) such that

4cos? ¢ a#b,

. ol (10.1)

Tr[(M, + AM,) (M) + AM,)] = {

where the indices a,b = 1,2 represent the two sides of the cusp contour (see figure 2) and
AM vanishes in the bosonic case. Then the expectation value of the Wilson operators can be
written as

log<W3‘l’ssp> ~ =TIy /6(k, N\, Ny, 0,0) log L/ e log(Wclu/S%) ~ =T p(k,N,p,0)logL/e, (10.2)

where L and € are the IR and UV regulators, respectively. Since the cusp anomalous dimen-
sion for the cusp with 1/2 BPS rays is only known for equal ranks of the gauge group, we set
Ny = N, = N for this quantity. The coefficients I'; s and I'; ;, of the logarithm depend on
both angles and are called generalized cusp anomalous dimensions [50, 65]. Wclu/s% preserves
two supercharges when gpz = 62, while Wclu/s?, is only BPS for ¢ = 6 = 0. As a consequence,

for small angles the cusp anomalous dimensions take the form

Lij6 ~ 0B] 5(k, Ni.N2) — @B o (K, NiuN2),  Tija ~ (6% = 0%)Byja (k. N). (10.3)

The B’s are known as the Bremsstrahlung functions. In a conformal field theory, these func-
tions also govern the energy radiated by an accelerating massive probe [66], hence the name.

10.2. Renormalization and perturbation theory

Following [64], the cusp anomalous dimension is extracted from <Wcusp>. First one subtracts
the IR gauge-dependent divergences by introducing a multiplicative renormalization Zgpep,
which is equivalent to the subtraction of the straight line. For (WE&%) this term vanishes, so
the renormalized Wilson loops are

<W3L?ssp>ren = Z;/16<W(]:Jl(1)ssp> and <Wclu/s%)>l'en = ZDIZZ(;)éH<WC11]/S%>. (10.4)

T" arises from the renormalization group equations for the anomalous dimensions of the non-
local operators
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Figure 2. The planar Euclidean cusp with angular opening ™ — ¢ between the Wilson
lines parametrized by x* = {7cos¢/2,|7|sinp/2,0} with —co <7 < co. The
operators lying on it possess also a discontinuity in the R-symmetry space represented
by the different orientations of the matter couplings M, + AM,, witha = 1,2.

dlogZ; s dlogZ; ),
= d Typ=——"-, 10.
1/6 dlog an 1/2 dlog 1 (10.5)
where the derivative is taken with respect to the renormalization scale p.
Given I, it is possible to compute the Bremsstrahlung functions using (10.3)
160°T ) 10°T ) o 10°T 6 10°T 6

= =—— , = - and BY, =—- .
T2 ey 2 0 ey VT2 007 |, V6T T2 00 | gy
(10.6)

The Z’s can be evaluated in perturbation theory in dimensional regularization d = 3 — 2¢
as in section 5. The Feynman diagrams providing an expansion in the coupling 1/k and the
relevant integrals can be performed directly in x-space, solving first the internal integrations
and then the ones on the Wilson line contour. A more efficient strategy at higher loops is to
Fourier transform the integrals to momentum space and perform the contour integration first.
Using this procedure, the integrals resemble those of non-relativistic Feynman integrals aris-
ing in the heavy quarks effective theory (HQET) [67, 68]. Finally, using (10.5), it is possible
to extract the anomalous dimensions from the residues of the simple poles in € of Zs and Z; ;.

In the following we summarize the main perturbative results at weak-coupling for these
functions. The strong coupling expansions are presented in section 13.

10.3. Weak coupling expansion of the Bremsstrahlung function for the fermionic cusp

The cusp anomaly I'y s, (k, N, ¢, 6) was computed at two-loops via perturbation theory in [65].
In the limit in which only ladder diagrams contribute, it is known exactly by resumming the
perturbative series with the Bethe-Salpeter method [69]. The case ¢ = 0 was explored at
three-loops using the HQET formalism in [40, 70]. Using (10.6) one obtains

N  7N(N?-3) 5
B p(k,N) = — — —————— 4+ O(k). 10.7
The computation suggests that By, has an expansion in odd powers of the coupling. This fact is
confirmed by the exact computation in terms of multiple-wound Wilson circles (see section 11).

10.4. Weak coupling expansion of the Bremsstrahlung functions for the bosonic cusp

The function Bf/s associated to the small angle limit of the geometric bosonic cusp anomaly
was computed using (10.6) in [39, 65] and it is given by
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NNy _
Bljo(k, N1, N2) = = 5= + o). (10.8)
This result at equal gauge group ranks coincides with the proposed exact formula in [71].
The function B? /6 corresponding to a cusp in R-symmetry space along a 1/6 BPS straight

line (¢ = 0) is computed at two-loop in [39] and at higher order in [72, 73], leading to

N1N2 _ 7T2N2(5N12N2 +N1N22 - 3N] — 5N2)

BY =
etk N1 N2) = o 24icH

+ O, (10.9)

for generic ranks of the gauge groups. This result is compatible with the exact computation via
defect theory (see section 11) and the bosonic latitude matrix model proposal (see section 8).

As expected, both (10.8) and (10.9) have an expansion in even power of the coupling.
Indeed, ABJ(M) Wilson loops with planar contours computed at framing zero (see section 6)
automatically have vanishing expectation values at odd loops [7].

10.5. Future directions

In analogy with the four-dimensional case [74, 75], it could be interesting to extend the defini-
tions of the Bremsstrahlung functions by adding L units of R-charge. This could make them
accessible from both integrability and localization techniques. Another possible future direc-
tion is the evaluation of the cusp anomalous dimension and its small angle limit for the cusp
with 1/2 BPS rays in the case of generic ranks. This study could shed some light on the expo-
nentiation property of the fermionic Wilson loops in ABJ. It would be interesting to extend the
analyses of Bremsstrahlung functions to the operator with fermionic 1/6 BPS rays.
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11. Bremsstrahlung functions II: nonperturbative methods
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11.1. Wilson lines as superconformal defects

Since the cusped Wilson line does not preserve any supersymmetry, one may expect this
would kill any hope of using supersymmetric localization. Nevertheless, for small angles one
can relate the cusp anomalous dimension to conformal defect correlation functions [66], lead-
ing to exact results. A supersymmetric Wilson line breaks translational as well as R-symmetry
leading to the associated Ward identities

0, TH* = §%(x . )D* (1), Ot = 6*(x1)0* (1), (111

where the delta function localizes the r.h.s. on the defect profile (a straight line along the
direction 1 in this case), i = 2,3 label orthogonal directions and the index Z spans
the subset of R-symmetry generators that are broken by the defect. The defect excita-
tion D is usually called displacement operator. The bosonic Wilson line (2.1) preserves
su(l, 1]1) @ su(2) @ su(2) C osp(6[4), thus breaking 8 of the 15 SU(4)g generators. We label
the associated defect operators as Q“* and 0%, with a and & fundamental indices for the pre-
served R-symmetry SU(2) x SU(2) x U(1) [76]. The fermionic Wilson line (2.3), instead,
preserves su(l,1]3) @ u(1) C osp(6]4), breaking only 6 generators. The associated defect
operators are organised in fundamental @, and antifundamental N representations of the
preserved SU(3). It is worth stressing that equations (11.1) are written in a loose notation and
must be interpreted as a Ward identity when both sides are inserted inside a correlation func-
tion with other operators. In particular, for the fermionic case, the natural object to be inserted
on the Wilson line is a U(N|N) supermatrix and both the displacement and the R-symmetry
operators admit an explicit realization in terms of supermatrices [42].
Considering a generalized cusp deformation one finds [42, 50]

_ _ pv X . ab ab
Bosonic (D (r)D”(0)bos = 123;”/6"577, (@ ()0 (0))pos = —43?/6%, (11.2)
. . o e _ 54
Fermionic (D" (7)D"(0)))erm = 12B1/2|T—4, (0 (1)05(0)) ferm = —431/2W- (11.3)

The smaller amount of preserved supersymmetry naively prevents one from relating B“f/6 and
B‘l9 /6 using defect supersymmetric Ward identities (in this case D and O do not belong to the

same supermultiplet as it happens for the 1/2 BPS case). Nevertheless, it was shown in [76]
that a class of vanishing three-point functions allows to write Ward identities with broken
supercharges giving a formal derivation of the relation

BY)s = 2B} 6. (11.4)

11.2. Relation to circular Wilson loops

Using the fact that defect two-point functions are the same for the straight line and the circu-
lar case, one can relate the Bremsstrahlung functions to specific deformations of the circular
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Wilson loop. Specifically, for the latitude bosonic and fermionic Wilson loops (see section 7)
one can prove [42, 50]

1 1
B?/G — 477728‘7 log |<Wb°S(q)>| , B = Raq log<err(q)> . (11.5)

For the fermionic case, this relation was previously conjectured in [39]. The problem with
these relations for ABJM theory is that no first-principle localization calculation exists for the
latitude Wilson loops (see, however, section 8 of this review for a proposal in this direction
[41]). Furthermore, to extend the localization results to the fermionic case one has to rely on
the cohomological equivalence (see section 3), which involves subtleties associated with non-
integer framing (see section 6) [38, 39]. Despite these difficulties one can still achieve exact
expressions for the Bremsstrahlung functions as we discuss in the following.

11.3. Exact Bremsstrahlung for the bosonic Wilson loop

An exact expression for Bf/s appeared already in [71], based on the conjectured relation with
the stress tensor one-point function

ar

Bf/é = 2ar, <T11(xL)>bos = w’ (11.6)

which was later shown, in a slightly different context, to be a consequence of supersymmetric
Ward identities [77]. The convenient feature of equation (11.6) is that the stress tensor one-
point function can be computed by supersymmetric localization. In particular, exploiting the
definition of the supersymmetric Rényi entropy of [78], the authors of [71] showed that ar can
be computed by

1
= ——0nlog(Wy , 11.7
ar 87T2 Og< > =1 ( )
where W, is a circular Wilson loop winding m times [20, 79]. Despite no closed form expres-
sion is available for the r.h.s. of (11.7), it is not too hard to expand it at weak and strong cou-
pling, or evaluate it numerically at finite coupling (see figure 3 (left) for a plot and [71] for
further details).

11.4. Exact Bremsstrahlung for the fermionic Wilson loop

The first proposal for the fermionic Bremsstrahlung function appeared in [39], based on sev-
eral assumptions related to the cohomological equivalence and the dependence on the framing,
which were then clarified in various papers [38, 39, 41, 42, 76]. The upshot is that, combin-
ing the relations (11.5), (11.6) and (11.7) it is possible to establish a connection between the
matrix model for the winding Wilson loop and the matrix model for the geometric defor-
mation v. This leads to interesting relations between bosonic and fermionic Bremsstrahlung
functions as well as, notably, to a closed form expression for By, which was derived in [76]
and we present here in a new and simpler form for the large N case

B_/sFll_z_fiz )\_IiFlll.,j.liz
1/2_6471'21 2727 il 16 k] _87'['32 292929 ,2, 16 bl

(11.8)

33



J. Phys. A: Math. Theor. 53 (2020) 173001 Topical Review
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Figure 3. Left: the Bremsstrahlung function for the bosonic Wilson loop at large N
computed using (11.7). It interpolates nicely between the weak coupling (blue, dotted)
and strong coupling (red, dashed) expansions. Right: the Bremsstrahlung function for
the fermionic Wilson loop at large N, given by (11.8). It interpolates nicely between the
weak coupling (blue, dotted) and strong coupling (red, dashed) expansions.

where the effective coupling £ was already defined in (4.5). In figure 3 (right) we plot this
function together with the weak and strong coupling expansions.

11.5. Future directions

A natural future direction would be to obtain an expression of the ABJM Bremsstrahlung
function using integrability, along the lines of the N =4 SYM result [80, 81]. This would
lead to an honest derivation of the interpolating function () (see section 14). Another inter-
esting avenue to explore is the study of higher points correlation functions of defect operators.
The defect theory provides a tractable example of 1d CFT with an interesting AdS, dual [82].
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12.1. Holographic duals of ABJM theory

ABJM theory is dual to M-theory on AdSy x S7/Z;. In the large k limit, the theory reduces
to type IIA string theory on AdS, x CP°. Sticking to the string picture, the IIA background
comprises

r? 3 k
ds* = L*(dsags, + 4dszps), € = 45 F® = EkL2 vol(AdS,;),  F® = 294,

(12.1)
with A = cos ady + 2 cos? 5 cosOidepy + 2 sin? 5 cos 6hdy, and the CP? metric written as
1
dsé]lj,3 =1 [da2 + cos® % (d912 + sin? Qldcp%) + sin? % (d@% + sin’ 92d<p%)
(12.2)

+ sin? % cos? % (dx + cos 01dyy — cos szwz)z} .

The relation between IIA string theory and ABJM parameters in the 't Hooft limit is:

L?/a’ =\ /2(A — 5;) and g2 = 7(2X)3/2 /N2

ABJM Wilson loops in the fundamental representation map to ITA open strings partition
functions. The leading order contribution at strong coupling arises from minimal surfaces. We
expect the specific boundary conditions for the string worldsheet to be dictated by the Wilson
loop data C, M and 7.

12.2. The known

We start by noting that minimal surfaces dual to Wilson loops in R? inside R* of 4d SYM
(with fixed position in the internal space) are straightforwardly embedded inside AdSs and
hence are also solutions for the 10d sigma model dual to ABJM theory. However, the dif-
ference between $° and CP? implies that non-trivial profiles in internal space become more
subtle. We discuss two examples, see figure 4.

Generalized cusp: after conformally mapping R? to §? x R, the piecewise linear Wilson
line with a cusp shown in figure 2 is mapped to a pair of anti-parallel lines separated by an
angle ™ — ¢ along a great circle on the S°. The (non-susy) string dual to the static configura-
tion on S x R for arbitrary values of ¢, 6 coincides with the solution found in [83] for 4d
SYM. The embedding, in global AdS (z, p, ¥, 1), takes the form [47, 84-86]

t=1, p=plo), 9=" Y(o) =0, 6 =0i(0), a=¢ =0,

o

(12.3)
with p, 6 expressible analytically in terms of Jacobi elliptic functions. The AdS coordinate
1 varies between [p/2, ™ — /2] and the CP* coordinate 6; in [—6/2, 6/2]. The leading order
expression for I'y s, in (10.2) at strong coupling is obtained from the string on-shell action

stripping away the temporal extension. Expanding around the straight line configuration
0 = ¢ = 0 one finds [83]
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Figure 4. Left: the generalized cusp’s dual worldsheet sits on the geometrical cusp ¢
at z =0 and spans a great arc of amplitude 6 in CP*. Right: string dual (12.5) to the
latitude Wilson loop (7.5) with g = cos 6. Pictures by E. Vescovi.

1
Tijp = V2| = (07 =) + O0((6.9)") |, (12.4)
which vanishes for the BPS configurations § = 4 and perfectly matches (10.6) using (12.7).

Fermionic Latitude: this is an adaptation to ABJM of a solution found in [87] for 4d SYM,
with non trivial profile in internal space. The string solution spans a disc at fixed time in global
AdS and a cap bound by an §' ¢ CP?

1
=0, sinhp(o) = ——. 0:%, W(r) =7, sinb(o)=

1

— =7 a=0.
cosh(og + o) pir) =7 a

(12.5)

As we approach the AdS boundary o — 0 the worldsheet describes a circle in internal space,
sin# (o) — sinfy = 1/cosh og. As o — oo the worldsheet closes up, 0;(c) — 0, resulting
in a disk topology. A supersymmetry analysis shows that 4 out of the 24 supercharges are
preserved, hence, the solution is 1/6 BPS for generic values of 6. For oy — oo the worldsheet
is fixed in internal space, (12.5) reduces to the AdS, C AdSs geometry originally found in
[85, 88] and supersymmetry enhances to 1/2 BPS.

The identification of the dual Wilson loops was elucidated in [50]. The worldsheet (12.5)
describes the 1/6 BPS fermionic loop presented in sections 7 and 8. Indeed, the M? matrix is
reconstructed from the string endpoints in CP* ¢ C* in terms of four complex coordinates z'.
Exploiting the ansatz M} = §% — 27,7! /|z|* proposed in [7] one obtains (7.5) with g = cos 6.
The leading contribution to the fermionic latitude in the fundamental representation at strong
coupling arises from the on-shell worldsheet action, which after appropriate regularization
gives

<err(q)> ~eT 2)\cost90. (126)

This result coincides exactly with the expansion of (8.4) at strong coupling. Moreover, it also
provides a non-trivial check of the strong coupling expansion of the Bremsstrahlung function
(11.5)

V2

Bipy == +0(1). (12.7)

12.3. The unknown: symmetry is not enough

The above examples are the only Wilson loops for which the dual worldsheets is identified. All
other classical string solutions are expected to be dual to Wilson loops with some M/ and 7,
couplings preserving locally U(1) x SU(3), but the exact form has never been worked out. So
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we really have a full holographic dictionary for Wilson loops that are globally BPS or break
SUSY at points (cusps).

Even less is know for the 1/6 BPS Wilson loops. Based on the SU(2) x SU(2) R-symmetry
of the bosonic loops, it was suggested in [5, 7], that they should be dual to the 1/2 BPS world-
sheet ‘smeared’ over CP' € CP’. This statement has not been precisely defined and in fact
smearing only over one CP' breaks the Z, symmetry between the two SU (2) factors. It is even
less clear how to represent all the 1/6 BPS fermionic Wilson loop interpolating between the
bosonic and the 1/2 BPS loops found in [55]. Could they be realized in terms of mixed bound-
ary conditions as in [89]7

Further questions arise for Wilson loops in high dimension representation, where in the
context of A' =4 SYM in 4d the holographic duals are D3-branes, D5-branes, or ultimately
‘bubbling geometries’ [90-93]. The analog of this in 3d has also not been resolved.

A D6 brane solution which is 1/6 BPS was found in [5], but no 1/2 BPS analog is known.
There is a 1/2 BPS D2-brane (or M2-brane, in the M-theory frame), but unlike the 1/2 BPS
Wilson loop, it has a continuous modulus and was identified as the holographic dual of a vor-
tex loop operator [94]. The back-reaction of this brane on the geometry is known in terms of
bubbling geometries [95], but only in cases preserving 16 supercharges, so for k = 1, 2.
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The minimal surfaces reviewed in section 12 are the supergravity, saddle-point approximation
of the open string partition function holographically dual to the Wilson loop expectation
value. Quantum string corrections may be evaluated in a semiclassical fashion as an expan-

sion in inverse powers of the effective string tension, in this case 7' = 2 /2(>\ — 2—14) . In the

planar limit N,k — oc and A = N/k finite, fermionic Wilson loops at strong coupling are
then computed expanding perturbatively the path integral for a free, fundamental type 1A
Green—Schwarz string in the AdS,; x CP? background with Ramond—Ramond four-form and
two-form fluxes

(Wo) = Zuing = / DEXDT e~ Hat X W] T2 =T TO W] T )= 77O Xa] .. (13.1)

where X, is the classical solution, X denote the quantum fluctuations of the bosonic string
coordinates, ¥ stands for the 10d Majorana—Weyl spinors and TT(® = S, is the classical
result, a suitably regularized area of the minimal surface. While the computational setup for the
quantum correction in (13.1) is substantially the same as in the AdSs x S° case, the absence of
maximal supersymmetry in the AdS; x CP? background makes the construction of the corre-
sponding superstring action non-trivial. Also, the more complicated structure of the background
fluxes results in considerably more involved spectrum and interactions. In general, computing
the one-loop fluctuation determinant I'() and higher-order corrections presents all the subtle-
ties inherent to semi-classical quantization of strings in AdS backgrounds with fluxes [96].

13.1. One-loop determinants

Evaluating I'(!) requires only the quadratic part of the Lagrangian, and for the fermionic sec-
tor its structure is well-known in terms of the type IIA covariant derivative. The one-loop
path integral is given by functional determinants of matrix 2d differential operators, whose
coefficients have a complicated coordinate dependence. While the isometries of the classi-
cal backgrounds of interest here reduce the problem to one dimension, non-diagonal mass
matrices may hinder the solution to the spectral problem. This is the case for the general-
ized cusp I'(¢, @), reviewed in section 10, at finite ¢ and € (respectively, the geometric and
internal angles deforming the straight line). Setting to zero one of the angles, say § = 0, the
mass matrices diagonalise and the bosonic part of the Lagrangian reduces to six massless and
two massive scalars, while the fermionic part can be expanded in two massless and six mas-
sive 2-dimensional spinors. The resulting partition function comprises the kinetic operators of
these scalars in the denominator and fermions in the numerator as [83, 97]

det™? (i5°D,) det’/? (13D, — Le®~,) det®’? (159D, + Le®vw)
g

(13.2)
det®/? (—V2) det'/? (=V2 + R® + 4) det'/? (-V2 +2)

r=_1o
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The dependence on the angle ¢ is via the metric of the classical string, which defines the Ricci
curvature R®), the spinor covariant derivative D,, the scalar Laplacian V2 and distinguishes
curved Dirac matrices 4 from the flat 4“. The differential operators in (13.2) are compli-
cated functions of o, and T'() can only be given in an integral form. Analytic expressions
can be obtained expanding in small ¢ (or small 0, if ¢ is set to zero) with standard meth-
ods, and a special care for boundary conditions of massless fermions [97]. The associated
Bremsstrahlung functions—see (10.3) with Ny = N, and in planar limit—agree to one-loop

order By, = Bf/é =YD _ L O(A~1/?) and are consistent with the field-theory predic-

4 472
tions in section 1123
The case of strong-coupling quantum corrections for smooth, supersymmetric Wilson
loops is much more subtle. The one-loop string partition function for the 1/2 BPS circle [98]
disagrees with the matrix model, something attributed to unknown, overall numerical factors
in the measure of the path integral. The latter are believed to cancel in the ratio of partition
functions for loops with the same topology. Indeed, the prediction for the latitude-to-circle
ratio of the matrix models in (3.3) and (8.3) has been matched. For small latitude angle, this
was obtained in [99] evaluating T'(") in a perturbative heat-kernel approach. For finite latitude
angles, phase-shift [51] and Gel’fand-Yaglom [52] methods can be used, where a key point
(developed first in [100]) is how to maintain diffeomorphism invariance in the regularization
procedure. It is customary to evaluate determinants on the curved geometry transforming it to
the flat cylinder, working namely with conformally rescaled operators, e.g. 0= 0?(0) O for
Laplacians. This transformation is singular at 0 = oo (tip of the worldsheet disk) and requires
an IR cutoff which, to be diffeo-invariant, must necessarily depend on the latitude angle. The
resulting determinants read then

et O (det g) det O det O (13.3)
det O anomaly det Oue cylinder

Above, the first factor is the conformal anomaly, which cancels among all operators as it
should in a consistent string theory. In the second factor, where O, denote the asymptotic
(Klein—Gordon and Dirac) operators, the IR regulator eventually cancels off, but a finite resi-
due remains in the third factor. This ‘IR anomaly’ and a special choice of boundary conditions
for massless fermions are the non-trivial contributions ensuring agreement with the field-
theory prediction [51, 52].

13.2. Higher orders

Beyond one-loop, the string action expanded near a classical background is formally non-
renormalizable [101]. The most efficient setup to verify explicitly UV finiteness is an AdS
light-cone gauge-fixing for the string action [102]. This is used in [103] for the evaluation of
the light-like Wilson loop to two-loop order at strong coupling, which is the state of the art in
AdS, x CP* sigma-model perturbation theory. In the light-like limit the Feynman diagram-
matics simplifies and standard techniques allow the reduction to a basis of two scalar integrals.
Dimensional regularization, together with powerful cancellations of logarithmic divergent
integrals, leads to a finite T'(>). The resulting h(\) = \/g — % — 48\1/ﬁ + O(A™!) matches
the integrability prediction for the ABJM cusp anomaly (14.7) [104, 105].

23 The lack of a holographic dual of the bosonic Wilson cusp prevents a genuine computation of Bf /6 and a check of

_ 0
BY s = 2B
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13.3. Future directions

In the BPS cases, it would be important to have a better understanding of individual Wilson
loops rather than their ratios, e.g. proving the triviality of the string one-loop partition func-
tion for the 1/6 BPS fermionic latitude [8] recently considered in [51]. A remarkable develop-
ment for our understanding of the string path integral (both in the AdS; x CP* and AdSs x S°
backgrounds) would come from giving an intrinsic string-theory derivation of the exact local-
ization results, calculating the one-loop exact determinant for string fluctuations around the
appropriate localization ‘worldsheet locus’. In the non BPS case, data at finite coupling may
be obtained with lattice field theory methods, as in [106], discretizing the Lagrangian of [102]
expanded around the chosen minimal surface and using Monte Carlo techniques. Another
stimulating direction, on the lines of [82], is to use the Type IIA action expanded in fluctua-
tions near the 1/2 BPS straight line (AdS>) minimal surface to evaluate correlators of string
excitations via Witten diagrams. This should give the strong coupling prediction for the corre-
lators of elementary operator insertions on the Wilson line with protected scaling dimensions,
see section 9, defining a defect CFT] living on the line.

Acknowledgements

We thank L Bianchi, M S Bianchi, A Brés, V Giangreco M Puletti and O Ohlsson Sax
for collaboration on [83, 103]. The works of VF is partially funded by the STFC Grant
ST/S005803/1 and by the Einstein Foundation Berlin. The work of EV is funded by the
STFC Grant ST/P000762/1.

40



J. Phys. A: Math. Theor. 53 (2020) 173001 Topical Review

14. Integrability I: the interpolating function h(\)
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14.1. Background

A key feature of the ABJM theory is integrability, i.e. an infinite-dimensional hidden sym-
metry which emerges in the 't Hooft limit and leads to a plethora of nonperturbative results,
especially for the spectrum of conformal dimensions/string states (see [107] for a review).
This parallels a similar development for the 4d N = 4 super Yang-Mills theory [108]. While
this property remains a conjecture, it has been extensively tested for the case of equal gauge
group ranks Ny = N, when the corresponding ’t Hooft couplings \; = N;/k become equal
A1 = X2 = X (while N; and k tend to infinity). We mostly focus on this regime. One major
outcome of the integrability program is a finite set of functional equations, known as the
Quantum Spectral Curve [109], which provide the exact spectrum of anomalous dimensions
of all local single-trace operators [110]. However, the result for ABJM is given in terms of
an interpolating function A(\), which enters all integrability-based results (for example, the
giant magnon dispersion relation (15.2) discussed in the next chapter) but itself is not fixed
by integrability.

14.2. Fixing h(\)

Remarkably, one can make a proposal for the exact form of 4(\) by relating an integrability
calculation with the matrix model arising in the localization description of the 1/6 BPS Wilson
loop presented in sections 3 and 4 [105]. The idea behind this link comes from the observation
that in A/ = 4 super Yang-Mills the expectation value of a circular Wilson loop is similar to
the anomalous dimension of an operator built from L scalars and S covariant derivatives in the
limit when S — O [111]. It is natural to expect that some link of this type should also exist in
ABJM theory. For ABJM one can use integrability to compute the anomalous dimension A of
an operator with twist L and spin S, when S is small,

A=L+S+7(NS+0(s?), (14.1)

where «y.(A) is a nontrivial function of the coupling known as the slope function. In [105] it
was computed from the Quantum Spectral Curve analytically, and the result can be written
concisely using building blocks defined as

__ pdmh _ a—4mh o B
% dy ¢ dz Vy ety - ety (14.2)
\/z—e“”h\/z—e—“”h z—y

747rh, e47rh]

with the integrals going around the cut [e . As any integrability prediction, this result
is written in terms of (). One can notice that the integrand here has four branch points, at

71 =¥, 7 =e 4, 73 = 00, 74 =0. (14.3)

Similarly, the integrand in the localization result of section 4 for the 1/6 BPS Wilson loop also
has four branch points, located at a, 1/a, b and 1/b in the notation of that chapter. Requiring
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that one set of four branch points can be mapped to the other one by a conformal transforma-
tion fixes % in terms of a and b, and gives as a result

1 ab+1
= 71 .
Using the explicit form of a, b from equations (4.5) and (4.7), this gives
__ sinh(27h) 111 3 .,
A= T3F2 (2, 375 1, ok sinh (27rh)> , (14.5)

which is an equation that determines # as a function of the coupling .

14.3. Tests of the conjecture

While this proposal for the exact form of 4(\) may seem rather bold, it has passed several
highly nontrivial tests. Namely, it reproduces all known data at weak coupling (four-loops, i.e.
the first two coefficients [112, 113]) and at strong coupling (the first two terms in the expan-
sion [114-116]), with the corresponding expansions being

w23
h(\) = A — 3+ o), A—=0, (14.6)
1 1 log?2 >y
N UL m , 14,
h(\) 5 ()\ 24) 5 +0 ), A= (14.7)

Curiously, the 1/24 shift at strong coupling matches the anomalous AdS radius shift discussed
in [21, 117].

14.4. Extension to Ny # Na

For the case of unequal gauge group ranks, tests of integrability have been much more scarce.
Nevertheless, the very algebraic structure of the Quantum Spectral Curve makes it rather non-
trivial to introduce a second coupling into the problem, and it was conjectured in [118] that
the integrability description remains the same as for N; = N,, provided one uses a new func-
tion h(A;, A;) instead of A(\). The above calculation then provides the same result (14.4) for
h(\1, \y) where a, b are still the branch points in the localization approach which are now indi-
rectly fixed in terms of Aj, A, [20, 21]. Remarkably, this conjecture reproduces [118] all known
data from the literature: one new coefficient at weak coupling at 4 loops [112, 113], the strong
coupling behavior, a prediction [119, 120] to all orders in A, when A; — 0, and the expected
invariance under the Seiberg-like duality which replaces (A1, A2) = (2A2 — A\ + 1, Ap). If
correct, the proposal means that all integrability-based results computed for the A\; = A, case
immediately carry over to the case of general \i, A, via replacing h(\) by the new function
h(A1, A2).

14.5. Future directions

While the conjectured form of A(\) has passed a variety of tests, it is obviously important to
put it on firmer ground, especially in the case of N; # N,. At weak coupling this seems highly
challenging, since new tests would involve a six-loop calculation. At strong coupling one may
be able to compute in the dual string model the exponential instanton corrections indicated in
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(14.7). A more definitive verification would be to compute one and the same observable from
both localization and integrability, a promising candidate being the Bremsstrahlung function
(see section 15). On a more conceptual level, the calculation described here provides a curi-
ous and rare link between the integrability and localization approaches, whose implications
should be understood more completely. A fascinating possibility is that it could open the
way to extend integrability beyond the planar limit, using as inspiration the calculation above
where the branch cuts in the two pictures map to each other. In the localization approach the
cuts of the spectral curve become discretized at finite Ny, N, [25], leading one to speculate that
the same should happen to the cuts appearing in the integrability framework.

Acknowledgements
I thank A Cavaglia, N Gromov and G Sizov for discussions and collaboration on related sub-

jects. My work is supported by Agence Nationale de la Recherche LabEx Grant ENS-ICFP
ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL.

43



J. Phys. A: Math. Theor. 53 (2020) 173001 Topical Review

15. Integrability II: the question of the cusped Wilson loop

Diego H Correa
Instituto de Fisica de La Plata—CONICET & Departamento de Fisica, Facultad de Ciencias
Exactas, Universidad Nacional de La Plata C.C. 67, 1900 La Plata, Argentina

15.1. Background

The cusp anomalous dimension in N = 4 super Yang-Mills can be studied using integrabil-
ity [80, 81]. First, one can solve the spectrum of local operators on a Wilson line using an
asymptotic Bethe ansatz. The spectrum is described in terms of magnons propagating in an
open spin chain, in which the boundaries are associated with the Wilson line at each side of
the local operator. The reflection matrix of magnons is determined to all-loop order using
the symmetries common to the Wilson line and the operator used as the reference in the
Bethe ansatz. Then, rotating the reflection matrix of one boundary, one gets the spectrum of
operators inserted in a cusp. Finally, the solution to the Thermodynamics Bethe Ansatz (TBA)
equations for the ground state, when the size of the insertion is shrunk to zero, gives the cusp
anomalous dimension.

When we turn to ABJM theories, since matter fields are bifundamentals of U(N;) x U(N,),
the spin chain describing the spectral problem is alternating, because distinct types of fields
occupy odd and even sites. One can take for instance

(C,C%, (15.1)

as a reference state invariant under an SU(2|2) C OSp(6]4) [121]. Fundamental excitations
can be of type A or B [122], depending if they propagate over odd or even sites of the chain.
There is an additional symmetry U(1)exira, under which type A and B magnons have opposite
charge, and magnons accommodate in a (2]2)4 @ (2|2)p representation of SU(2|2) [121]. The
numerical values of the central extensions of the algebra su(2|2), that characterize the repre-
sentations, can be related to the energy and momentum of the magnons. For short representa-
tions, a relation between them gives rise to a dispersion relation [123]

E(p) = %\/Q2 +16R2(\) sin?(p/2). (15.2)

This includes an unspecified function of the coupling which in ABJM is non trivial. The
residual symmetry SU(2|2) x U(1)extra constrains the scattering of magnon excitations on the
chain. The alternating nature of the spin chain splits the S-matrix into blocks, but the U(1)extra
implies that the type of magnon A/B is preserved in the scattering. Then, symmetry fixes the
AA, BB and AB scatterings to the famous SU(2|2) S-matrix [124] known to specify an inte-
grable bulk scattering problem.

The very first question to address in the hope that the cusp anomalous dimensions in ABJM
theories could be computed using integrability is whether ABJM Wilson loops impose inte-
grable open boundary conditions for insertions along the loop. This spectral problem would be
integrable if the open spin chain Hamiltonian for the mixing of the operator insertions could
be diagonalized with a Bethe ansatz. For that it is necessary that the reflection matrix satis-
fies the Boundary Yang—Baxter Equation (BYBE). Since the ultimate goal would be to obtain
all-loop expressions for the cusp anomalous dimension, one would need to determine all-loop
expressions for the reflection matrix of magnon excitations. Thus, a way to proceed is to use
the symmetries common to the Wilson loop and the Bethe ansatz reference state to constrain
the reflection matrix and see if the latter is consistent with the BYBE.
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15.2. Symmetries

Common symmetries and supersymmetries between the Wilson line and the reference vacuum
state depend on the relative orientations in the internal space and can be sought either for 1/6
or 1/2 BPS Wilson lines.

The bosonic 1/6 BPS Wilson line with Mf =diag(—1 — 1,1, 1), as in (2.1), is invariant
under supersymmetry transformations generated by C:)f and @34. If one considers it as the
boundary to an insertion (C;C*)¥, the two SU(2) of the vacuum symmetry SU(2|2) are broken
and only ©'? survives. Thus, the overall residual symmetry is in this case U(1|1) X U(1)extra-
The most general right reflection matrix would be in principle of the form

Rsa  Rap
R = . 15.3
(RBA RBB) (53)

However, since the U(1)extra is preserved by the boundary, the mixing of different types of
magnons is ruled out. Commutation of the action of R with the generators of the residual sym-
metry U(1|1) restricts the form of the reflection matrix but leaves two undetermined functions
in each block

Rup = RgAdiag(l, ra,e P2 —rAei”/2), Rpp = RgBdiag(l, rg, e P/2, —rBei”/z). (15.4)

The BYBE, using (15.4) and ABJM bulk S-matrix [124], would not be satisfied for generic
undetermined functions unless they were further restricted to specific expressions.

The 1/2 BPS Wilson line seems more promising as one expects a larger residual symme-
try. In the case it has M} = diag(—1, 1,1, 1), it is invariant under transformations generated
by (:)ﬂrj and @~ with I,J # 1. Under these supersymmetry transformations, the supercon-
nection changes as a supercovariant derivative and P exp(i § £) changes covariantly, so one
needs an appropriate U(N;|N,) local insertion ) to preserve some of the original supersym-
metries of the Wilson line. For an insertion involving C; C? it is possible to preserve the super-
symmetries generated by (:)ﬁ_2 and @f. These supersymmetries altogether with the surviving
SU(2) R-symmetry give rise to a residual SU(2|1). The blocks in a reflection matrix of the
form (15.3) would be further constrained in this case

Rus = R, diag(1,1,e77/2 —eiP/2), Rup = Rpdiag(1,1,e77/2, —eiP/?), (15.5)

and similar expressions for Rpp and Rps. The BYBE would be satisfied in this case when
RgB = Rg 4+ = 0 and there is no mixing between type A and B magnons.

15.3. Open problems

The residual symmetry analysis presented here is not found in the literature, but various col-
leagues who have considered the problem in the past have arrived to similar conclusions [125].
In both cases discussed, the residual symmetry does not seem to be enough to indicate whether
the problem is integrable or not, either because some functions in the reflection matrix are left
undetermined or because the mixing between type A and B magnons is not ruled out. It might
be useful to do a perturbative derivation of the 2-loop open spin chain Hamiltonian for the
mixing of the operator insertions. If no mixing between type A and B magnons is observed,
one might take this to hold for all-loops as a working assumption.

Even in that case, one still needs the overall dressing phase of the reflection matrix. To
determine it, one should derive a boundary crossing condition and look for the appropriate

45



J. Phys. A: Math. Theor. 53 (2020) 173001 Topical Review

solution. In particular, introducing cusp angles by rotating one of the reflection matrices and
considering the leading Luscher correction in the weak coupling limit, one should be able to
reproduce the perturbative result for the cusp anomalous dimensions computed in [65] and, for
small cusp angles, the perturbative Bremmstrahlung function (10.7).

If the TBA program could be completed for ABJM Wilson loops and the Bremmstrahlung
function could be computed exactly as in N = 4 super Yang—Mills [74], the comparison with
the localization results of section 11, for example (11.8), could provide another way of deter-
mining the function A(\) seen in section 14.
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