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Abstract
This is a compact review of recent results on supersymmetric Wilson loops in 
ABJ(M) and related theories. It aims to be a quick introduction to the state of 
the art in the field and a discussion of open problems. It is divided into short 
chapters devoted to different questions and techniques. Some new results, 
perspectives and speculations are also presented. We hope this might serve as 
a baseline for further studies of this topic.
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1.  Overview

Nadav Drukker1 and Diego Trancanelli2
1  Department of Mathematics, King’s College London, The Strand, WC2R 2LS London, 
United Kingdom
2  Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e 
Reggio Emilia, via Campi 213/A, 41125 Modena & INFN Sezione di Bologna, via Irnerio 46, 
40126 Bologna, Italy

1.1.  Genesis

This roadmap article grew out of a fortunate confluence. Recently, one of us organized a 
workshop at the University of Modena and Reggio Emilia18, which was attended by many 
researchers who have worked on Wilson loops in three-dimensional supersymmetric Chern–
Simons-matter theories. The number of participants and the talks they presented were a 
powerful illustration of the breadth of work on this topic. Moreover, in the run-up to the con-
ference, together with the authors of section 2 we realized, as part of ongoing research, that 
there is a simpler formulation of the 1/2 BPS Wilson loop [1] of ABJ(M) theory [2, 3], which 
is at the source of much of the research presented in the workshop. We thought that this new 
formulation could prompt a refreshed look at this research area, encouraging novel attempts 
to address the many questions which are still left unanswered or only partially understood.

We have therefore decided to put the status of this research area on paper. We suggested 
to the workshop participants (and several others who could not attend) to contribute to this 
roadmap and each volunteered a topic that they wanted to cover. They were instructed to fol-
low the new formulation in presenting the salient results, and also focus on the open questions. 
We hope that this review and this new approach will be beneficial both to the people already 
working on this area, by nudging them a bit from the comfort of their preferred way of think-
ing, and to people from the outside who would like to know the state of the art and possibly 
contribute to it.

In the rest of this introduction we discuss overall themes and questions that permeate 
throughout the chapters of this review.

1.2.  State of the art

Wilson loops in supersymmetric gauge theories are particularly interesting observables to 
study, both because of the possibility of computing them exactly in some cases and because 
of their relevance in the AdS/CFT correspondence, where they give rise to a rich dictionary 
between gauge theory and string theory quantities. While supersymmetric Wilson loops in 
four-dimensional N = 4 super Yang–Mills (SYM) theory have been studied extensively and 
are well understood for two decades now, their three-dimensional counterparts have a shorter, 
but arguably more interesting, life.

After the original formulation of the ABJM theory in 2008, the so-called bosonic Wilson 
loop was readily constructed [4–7]. This operator only couples to the gauge field and the 
scalar fields of the theory and turns out to preserve 1/6 of the supersymmetries of the theory. 

18 The Mini-workshop on supersymmetric Wilson loops and related topics took place on May 15/16, 2019. For 
details see https://agenda.infn.it/event/19090/
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It took some time to construct a more supersymmetric operator, preserving half of the super-
symmetries [1]. Its formulation mixes the two gauge groups and includes coupling to the 
fermionic fields as well. Moreover, the supersymmetry variation of this loop does not vanish 
locally, but it is rather a total derivative along the loop.

To preserve half of the supersymmetries, the loop has to be a straight line or a circle, 
although one can generalize the construction such that loops with more general shapes still 
preserve global supersymmetry [8], as explained in section 7. Rather awkward features of 
these original constructions were the explicit dependence of the fermionic coupling on the 
contour parametrization, as well as the need of introducing a global twist matrix to enforce 
the correct periodicity conditions. The new formulation presented in section 2 remedies these 
shortcomings in a rather elegant way.

The evaluation of the circular Wilson loops can quite easily be represented by a matrix 
model, after using localization techniques and a cohomological equivalence argument, as 
reviewed in section 3. The solution of this matrix model is sketched in section 4. After ardu-
ous work to develop perturbative methods in ABJM theory, the subject of section  5, the 
matrix model solution was matched to the perturbative calculation. The issue of framing of 
the loops turned out to be more subtle than in pure topological Chern–Simons, as explained 
in section  6. A proposal for a matrix model for the latitude Wilson loop of section  7 is 
reviewed in section 8.

The perturbative tools allowed also to calculate cusped Wilson loops and a variety of 
Bremsstrahlung functions (see sections 10 and 11). In section 14, a conjecture for the exact 
form of the function h(λ) is motivated from relating it to the matrix model for the 1/6 BPS 
Wilson loop. This function enters all integrability results, such as the giant magnon dispersion 
relation discussed in section 15.

A (perhaps unnecessarily) long time has passed until these constructions were general-
ized to theories with non-maximal supersymmetry. A surprising feature is the large parameter 
space of circular BPS Wilson loops with fermionic couplings, including previously (and for 
the most part also subsequently) ignored 1/6 BPS Wilson loops in the ABJM theory itself. 
These exist for theories with N � 2, but to keep the discussion relatively brief and concrete, 
we focus on the generalization to theories with N = 4, as reviewed in section 9.

A topic that has seen very small progress since the first days of this topic is the holo-
graphic duals of these Wilson loops. Clearly the 1/2 BPS loop is dual to a fundamental 
string in AdS4 × CP3, or an M2-brane in AdS4 × S7/Zk . A full understanding of the less 
supersymmetric loops as well as the analogs of ‘giant Wilson loops’ as the D3-branes and 
D5-branes in AdS5 × S5, or ‘bubbling geometries’, are thus far lacking. Still some nice 
work on the cases that are understood has been achieved, and it is presented in sections 12 
and 13.

Another topic that one would hope could tie in to this discussion, but was never elucidated, 
is how to implement integrability for cusped Wilson loops in ABJM theory. The example of 
N = 4 super Yang–Mills (SYM) suggests an open version of the integrable models describ-
ing the spectral problem in ABJM. This requires finding the appropriate boundary conditions 
(or boundary reflection matrices) for this problem. Though this has been studied by several 
groups, these works were never completed and nothing has ever been published on these 
attempts. Section 15 is the first such attempt to present this question in print and we hope that 
it will lead to progress.

J. Phys. A: Math. Theor. 53 (2020) 173001
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1.3.  Future directions

Each of the chapters presents some open problems, let us only highlight three here.

	 •	�There is an abundance of different operators sharing the same symmetries. An important 
open question is to understand their moduli space, whether it is lifted or modified at the 
quantum level and what are the holographic duals of these operators.

	 •	�The new formulation of the fermionic Wilson loops introduced in this roadmap raises 
several questions and possibilities. Is there an interpretation of the constant pieces in the 
connection in (2.8) as a background field? Is there a simpler way to implement localiza-
tion for these loops without using their cohomological equivalence to the 1/6 BPS bosonic 
loop? 

	 •	�It would be interesting to extend the analyses of Bremsstrahlung functions to other opera-
tors, including the fermionic 1/6 loops and loops in N = 4 theories.

Acknowledgements
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2.  1/2 BPS and 1/6 BPS circular Wilson loops

Gabriel Nagaoka1, Marcia Tenser1, Malte Probst2 and Maxime Trépanier2

1  Institute of Physics, University of São Paulo, São Paulo, 05314-970, Brazil
2  Department of Mathematics, King’s College London, London, WC2R 2LS, United Kingdom

2.1.  Background

Circular Wilson loops in ABJ(M) generally fall in two categories: the bosonic loops coupling 
to vector and scalar fields [5–7], and the fermionic loops which also couple to fermions and 
notably include a family of 1/6 BPS loops [9] and the 1/2 BPS loop [1]. While the discovery 
of these operators opens many directions of research, key aspects of their construction remain 
riddled with intricacies. In particular, these loops have hitherto not been written in a mani-
festly gauge and reparametrisation invariant way.

In this chapter we clarify some of these issues by giving a gauge equivalent formulation of 
the same operators. We find that, in this new language, the generic 1/6 BPS fermionic operator 
can be written naturally as a deformation of a bosonic loop, shedding new light on how these 
loops preserve supersymmetry and their moduli space.

2.2.  Bosonic loops

The simplest 1/6 BPS loops of ABJ(M) are bosonic. These can be understood as the 1/2 BPS 
loops of N = 2 theories, which were found in [10] and take the form19

Wbos
R = TrRP exp

(
i
∮

Abosdτ
)

, Abos = Aµẋµ − iσ|ẋ|,� (2.1)

where the loop is taken over a circle and σ is the auxiliary field in the N = 2 vector mul-
tiplet. In the N = 6 theory they can be defined independently for both gauge groups U(N1) 
and U(N2) [5–7], for which the auxiliary fields are fixed to σ(1) = 2πk−1MI

JCIC̄J with 
M = diag(−1,−1,+1,+1) up to equivalent choices, with CI, C̄J  bifundamental scalars, and 
similarly for σ(2). As is evident from the structure of M, the loop has residual SU(2)× SU(2) 
R-symmetry. These Wilson loops preserve four supercharges parametrised by anticommuting 
θ±12 and θ̄12

± , accompanied by the special supersymmetries fixed to20

ε12 = −iθ12
γ3

|x|
, ε̄12 = −i

γ3

|x|
θ̄12, γ3 = diag(1,−1).� (2.2)

2.3.  Fermionic loops

A wider class of 1/6 BPS operators preserving the same supercharges can be constructed from 
the two bosonic loops by allowing for nonzero coupling to the bifundamental fermions. These 
fermionic loops take the form

W fer
R = (−i)|R|sTrRP exp

(
i
∮

L(xµ, ẋµ)dτ
)

,� (2.3)

where R indicates a representation of U(N1|N2) whose Young diagram has weight |R|, the 
superconnection L is given by a deformation of the composite bosonic connection,

19 In accordance with [1] we take the path ordering to be left-to-right, so that the covariant derivative is ∂µ + i [Aµ, ·].
20 These conditions can equivalently be stated in terms of θ34 = −θ̄12, see the end of this chapter.

J. Phys. A: Math. Theor. 53 (2020) 173001
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L = Lbos +∆L, Lbos =

(
A(1)

bos 0

0 A(2)
bos

)
+

|ẋ|
4|x|

σ3,� (2.4)

and ∆L may be block off-diagonal. For ∆L = 0, the constant term σ3 = diag(+IN1 ,−IN2) 
can be exponentiated and we recover the sum of the usual trace of bosonic connections.

In order for (2.3) to preserve supersymmetry, we require the superconnection to transform 
under the preserved supercharges as δL = DτG ≡ ∂τG + i[L,G] for some G  [1, 11]. This 
relaxed notion of supersymmetry ensures that the variation takes the form of a supergauge 
transformation, under which the loop (2.3) is invariant. Consider then a deformation

∆L = i|ẋ|σ3
(
δ+G + iG2) ,� (2.5)

where δ+ is parametrised by θ+12, θ̄12
+  (and ε+12, ε̄

12
+  are given by (2.2)). The variation of ∆L with 

respect to δ+ assembles into a total derivative as required if

δ2
+G = −iσ3 (∂τG + [Lbos,G]) , θ+12θ̄

12
+ =

1
4

,� (2.6)

which is satisfied for G  comprised of C1, C̄1 C2, C̄2, breaking one SU(2) of the residual 
R-symmetry (here, α, ᾱ ∈ C2 are taken to be Grassmann odd and i, j = 1, 2)

G =

√
πi
2k

(
0 ᾱiCi

−αiC̄i 0

)
.� (2.7)

Using (2.6) one can show easily that δ+L = DτG. Invariance under δ− (parametrised by the 
remaining parameters θ−12, θ̄12

−
) is ensured because δ−G  is related to δ+G  by a gauge transfor-

mation, so that δ−L also takes the form of a total derivative.
The resulting family of 1/6 BPS loops is then parametrised by α, ᾱ and can be written 

explicitly as

L =


 A(1)

√
− 4πi

k |ẋ|ηiψ̄
i

√
− 4πi

k |ẋ|ψiη̄
i A(2)


 ,

A(1) = A(1)
bos −

2πi
k |ẋ|∆Mi

jCiC̄ j + |ẋ|
4|x| ,

A(2) = A(2)
bos −

2πi
k |ẋ|∆Mi

jC̄
jCi − |ẋ|

4|x| ,
� (2.8)

ηi = 2
√

2ᾱ jθ+ij Π+, η̄i = 2
√

2Π+θ̄
ij
+αj, ∆Mi

j = 2ᾱiαj, Π± ≡ 1
2

(
1 ± ẋµγµ

|ẋ|

)
.

� (2.9)
We note that (2.8) is related to the operators of [1, 9] by a gauge transformation para-

metrised by Λ = (π − 2φ)/8 · σ3, where 0 < φ < 2π  is the polar angle and π/8 accounts for 
different conventions for η, η̄. The fields transform as

A(1) → A(1) − |ẋ|
4|x|

, A(2) → A(2) +
|ẋ|

4|x|
, ψ →

√
−ie−iφ/2ψ, ψ̄ →

√
ieiφ/2ψ̄,

� (2.10)
where the right-hand side reproduces the original formulation. The discontinuity of Λ at 2π 
yields a delta function term which can be integrated to exchange the supertrace for a trace.

We stress that in contrast to previous formulations, (2.3) is manifestly reparametrisa-
tion invariant. It is also gauge invariant without the need for an additional twist matrix (see 
for instance [8]), since the couplings η, η̄ and M +∆M are periodic by construction. This 
comes, of course, at the expense of introducing a constant piece in the connection Lbos, whose  
physical interpretation remains unclear.

J. Phys. A: Math. Theor. 53 (2020) 173001
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We obtain the moduli space of 1/6 BPS deformations (2.5) by noting that any rescaling α 
and ᾱ such that their product ∆M  is unmodified can be absorbed by a gauge transformation. 
The resulting manifold is the space of singular complex matrices, which is the conifold. This 
construction matches Class I of [9], while Class II is obtained by breaking the other SU(2), i.e. 
coupling to C3, C̄3, C4 and C̄4 in G . These two branches intersect at the origin singularity Lbos.

At particular points where ∆M  has eigenvalues 2 and 0, the full matrix M +∆M has enhanced 
SU(3) symmetry. It is easy to see that commuting the 4 preserved supercharges with this SU(3) 
symmetry gives rise to 12 supercharges, so these operators are 1/2 BPS, and we recover the loops 
of [1], as may be checked explicitly by performing the gauge transformation used above.

It would be interesting to check whether (2.5) covers the full moduli space of 1/6 BPS 
loops and to further investigate the geometry of these moduli. In particular, it would be inter-
esting to study deformations around a generic point of the moduli space and to understand the 
constant diagonal term in Lbos as a geometric feature of that space.

2.4.  Conventions and notations

We mostly adopt the conventions of [8] and denote the gauge group of ABJ(M) theory as 
U(N1)× U(N2). In addition to the gauge fields A(1) and A(2) transforming in the adjoint of 
their respective gauge group, the theory contains scalars CI and C̄I  and fermions ψα

I  and ψ̄I
α 

in the bifundamental, such that CC̄ and ψ̄ψ (C̄C and ψψ̄) transform in the adjoint of U(N1) 
(U(N2)), with the R-symmetry index I transforming in the fundamental of SU(4). These fields 
assemble in a single supermultiplet satisfying

δA(1)
µ = −4πi

k
CIψ

α
J (γµ)α

β
Θ̄IJ

β +
4πi
k

Θα
IJ(γµ)α

β
ψ̄I
βC̄J ,

δA(2)
µ =

4πi
k

ψα
I CJ(γµ)α

β
Θ̄IJ

β − 4πi
k

Θα
IJ(γµ)α

βC̄Iψ̄J
β ,

δψ̄I
β = 2i(γµ)β

α
Θ̄IJ

αDµCJ +
16πi

k
Θ̄

J[I
β C[JC̄K]CK] − 2iε̄IJ

β CJ ,

δψβ
I = −2iΘα

IJ(γ
µ)α

βDµC̄J − 16πi
k

Θβ
J[I C̄

[JCK]C̄K] − 2iεβIJC̄J ,

δCI = 2Θα
IJψ̄

J
α,

δC̄I = −2ψα
J Θ̄

JI
α ,

�

(2.11)

for a (Euclidean) superconformal transformation parametrised by ΘIJ = θIJ + εIJ(x · γ) and 

Θ̄ = θ̄IJ − (x · γ)ε̄IJ . The parameters are related by θ̄IJ
α = − 1

2ε
IJKLθβKLεβα (likewise ε̄IJ

α), but 
unlike in Minkowski space there is no reality condition (i.e. θ̄ �= θ†). Omitted spinor indices 
α = ± follow the NW-SE summation convention. A review of the theory in these conventions 
along with an action can be found in [12].
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3.  Localization of BPS Wilson loops and cohomological equivalence

Itamar Yaakov
Dipartimento SMFI, Università di Parma and INFN Gruppo Collegato di Parma. Parco Area 
delle Scienze, 7/A, 43124 Parma PR, Italy

3.1.  Background

It is possible to evaluate the expectation value of the BPS Wilson loop Wbos
R  (2.1) of section 2 

exactly, even at strong coupling. We begin by making a Weyl transformation to an S3 of radius 
r. It is straightforward to formulate a theory on curved space while preserving supersymmetry 
provided the space admits parallel (Killing) spinors, i.e. spinors satisfying ∇µε = 0. While 
these do not exist on S3, conformal Killing spinors satisfying the equation ∇µε = γµη exist, 
and can be used to generate the full osp (N|4) superconformal algebra by embedding εα, ηα 
in tensors like Θ̄IJ

α . This algebra includes diffeomorphisms by Killing, and conformal Killing, 
vectors as well as Weyl and R-symmetry transformations. In a more general setup, one may 
generate a supersymmetry using generalized Killing spinors whose equations involve back-
ground fields other than the spin connection and vielbein. Such spinors are solutions to the 
equations imposed by the vanishing of the variation of all fermions in a background super-
gravity multiplet [13].

A standard argument shows that an Euclidean path integral with a fermionic symmetry 
transformation Q, is invariant under Q-exact deformations of the action, as long as these are 
also Q-closed and do not affect the convergence properties. Convergence requires, in par
ticular, that Q2 be the generator of a compact bosonic symmetry, which in turn requires N � 2 
when working on S3. If such deformation invariance can be used to scale the coupling con-
stants, the calculation of the integral can be reduced to a calculation in a free theory—a pro-
cess known as localization [14, 15]. The result of a localization calculation is a sum or integral 
over an often finite dimensional moduli space of (classical) supersymmetric vacua, with an 
effective action which is given exactly by a one loop calculation.

Supersymmetric actions on S3 can be derived by coupling to supergravity, or by a trial and 
error process of adding terms of order 1/r and 1/r2. For a superconformal theory, one only 
needs to add the standard conformal mass term for dynamical scalars. Wilson loops which 
do not contain fermions can be mapped directly, since neither the operator nor the variation 
of the fields appearing in it contain derivatives. Supersymmetric contours for such loops are 
often integral contours of a spinor bi-linear vector field such as ε̄γµε. This is the case for Wbos

R . 
We now review the evaluation of the exact expectation value of this loop in the N = 2 for
mulation of the ABJ(M) model [16].

3.2.  Localization of N = 2 gauge theories on the three sphere

In any N = 2 supersymmetric gauge theory on S3
r=1, deformation invariance can be used to 

freely change the value of the Yang–Mills coupling [17]. The result is localization onto the 
moduli space of vector multiplet fields, i.e. the space of solutions to the equations for the van-
ishing of the variation of a gaugino

δλ =

(
1
2
γµνFµν + iγµDµσ − D

)
ε+ ση.� (3.1)
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Up to gauge transformations, this moduli space can be parameterized by an arbitrary space-
time independent profile for the vector multiplet adjoint valued scalar σ. The result is therefore 
a matrix model. No additional moduli arise from chiral multiplets of canonical dimension, due 
to the conformal mass term. The original action, and any operator insertions, should be evalu-
ated strictly on this moduli space.

The one-loop effective action can be derived by expanding all fields to quadratic order 
around the moduli space in appropriate spherical harmonics—eigenfunctions of the vari-
ous fluctuation operators Dσ

field—and computing the resulting functional determinant. 
Alternatively, one may use the index theorem for transversely elliptic operators [18], which 
has the advantage of making some cancellations manifest. In either approach, the result is an 
infinite product which must be carefully regularized. We can think of σ as defining a Cartan 
subalgebra of the gauge Lie algebra. We denote by α(σ) the eigenvalue for the action of σ 
on a field proportional to a root α, and by ρ(σ) for one proportional to a weight ρ . The fields 
comprising a vector multiplet, and proportional to a root pair α,−α, including the ghosts yield 
an effective action

e−Seffective(σ) =
detDσ

gauginos detDσ
ghosts√

detDσ
vector detDσ

scalar

= α(σ)2
∞∏

n=1

(
n2 + α(σ)2) = 4 sinh2 πα(σ).� (3.2)

Similarly, the weight ρ  fields in a massive hypermultiplet yield (2 coshπ (ρ(σ) + m))−1.

3.3.  Localization in Chern–Simons-matter theories with extended supersymmetry

The ABJ(M) model is based on the product gauge group U (N1)k × U (N2)−k with hypermul-
tiplets in the 

(
�, �̄

)
⊕
(
�̄,�

)
 representation [2, 3]. Denoting by µi/2π, νi/2π the eigenvalues 

for the respective σ(1,2) matrices, we have the following integral for the expectation value of a 
1/6 BPS Wilson loop in ABJ(M)

〈
Wbos

R

〉
=

1
N1!N2!︸ ︷︷ ︸

normalization

∫ N1∏
i=1

dµi

2π

N2∏
j=1

dνj

2π
︸ ︷︷ ︸

moduli space integral

e
ik

4π (
∑

i µ
2
i −

∑
j ν

2
j )︸ ︷︷ ︸

classical CS action

∑
ρ∈R

eρ(µ,ν)

︸ ︷︷ ︸
1/6 BPS Wilson loop

N1∏
i<j

4 sinh2 1
2
(µi − µj)

N2∏
i<j

4 sinh2 1
2
(νi − νj)

︸ ︷︷ ︸
vector multiplets

N1,N2∏
i,j

(
4 cosh2 1

2
(µi − νj)

)−1

︸ ︷︷ ︸
hypermultiplets

.

�

(3.3)

Above, the contour for Wbos
R  is a great circle on S3. Note that σ(1,2) are auxiliary fields in 

ABJ(M), with e.g. σ(1) equal on-shell to 2πk MI
JCIC̄J, which become dynamical in the process 

of localization.
Localization requires off-shell closure of the supercharge. An observable in a model with 

a larger on-shell realized supersymmetry algebra, such as ABJ(M), may be annihilated by 
supercharges which cannot be rotated into an N = 2 subalgebra. Localization of such an 
operator requires closing a single supercharge off-shell, possibly in a non-Poincaré-invariant 
way, by adding appropriate auxiliary fields (see e.g. [19]). This approach is currently being 
used in order to derive the conjectured matrix model, discussed in section 8, for the latitude 
Wilson loop discussed in section 7.
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Expectation values of operators within the same cohomology class coincide, regardless of 
off-shell closure. The 1/2 and 1/6 BPS fermionic Wilson loops of section 2 can be shown to 
be cohomologically equivalent to the bosonic 1/6 BPS Wilson loop within the ABJ(M) model 
[1], i.e. there exists a well defined operator V , a supercharge Q, and a map R → R such that

W fer
R = Wbos

R + QV .� (3.4)

A similar statement holds for the versions of the latitude loop reviewed in section 7.
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4.  Solution of the ABJM matrix model

Pavel Putrov
ICTP, Strada Costiera 11, Trieste 34151, Italy

4.1.  Background

In this chapter we take a close look at the matrix model that arises from localization of the 
ABJM theory with possible 1/6 or 1/2 BPS Wilson loop insertion, as reviewed in section 3. 
There are two natural limits when the matrix model can be analyzed

	 •	�the ’t Hooft limit N1, N2 → ∞, and k → ∞ while the ’t Hooft parameters λi = Ni/k  are 
kept fixed. This limit is natural for comparison with the holographic dual type IIA string 
theory on AdS4 × CP3. The string coupling constant is related to the level as gs = 2πi/k.

	 •	�the ‘M-theory limit’ N1, N2 → ∞ while the level k is kept fixed. This limit is natural for 
comparison with the holographic dual M-theory on AdS4 × S7, where the radius of the 
circle fiber of the Hopf fibration S7 → CP3 is 1/k.

4.2.  ’t Hooft limit solution

In the ’t Hooft limit the matrix model can be analyzed by the rather standard and general 
technique of spectral curve and topological recursion [20, 21]. The same matrix model, up 
to an analytic continuation in ranks Ni, was previously considered in the context of bosonic 
Chern–Simons on a Lens space and topological strings on local P1 × P1 [22–24]. The main 
idea is that in the ’t Hooft limit the leading (also known as planar) contribution is given by 
the configurations where eigenvalues eµi and eνi in the matrix integral are distributed along 
two intervals in the complex planes. These intervals can be found by solving the equations of 
motion for an eigenvalue in the background of all the other eigenvalues and can be interpreted 
as cuts of a Riemann surface spread over the complex plane. The Riemann surface is described 
by an algebraic equation

Y + X2Y−1 − β(X2 + iκX − 1) = 0, X, Y ∈ C∗,� (4.1)

and is referred to as a spectral curve. The density of the eigenvalues along the cuts is given by 
the jumps of a meromorphic 1-form across the cut. Namely, if one defines the resolvent 1-form 
as the following expectation value in the matrix model

ω := gs

〈
N1∑

i=1

X + eµi

X − eµi
−

N2∑
i=1

X − eνi

X + eνi

〉

MM

dX
X

,� (4.2)

it admits a genus expansion of the following form

ω =
∑
g�0

g2g
s ωg, ω0 = log Y

dX
X

.� (4.3)

The complex parameters β and κ of the curve are fixed by the two equations λi =
∫
Ai

ω0, 
where the contours Ai encircle the cuts (see figure 1). Any one-point correlation function 
in the matrix model can be expressed via the resolvent. For example, the expectation value 
of 1/6 BPS Wilson loop in the fundamental representation of U(N1) is given by (see (2.1) 
and (3.3))
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〈
Wbos

(�,1)

〉
=

〈∑
i

eµi

〉
MM

=
1

2πigs

∫

A1

X ω =
∑
g�0

g2g−1
s

〈
Wbos

(�,1)

〉
g

,� (4.4)

where the last equality is its genus expansion. From now on, for the technical simplicity of 
the formulas let us assume that N1 = N2 = N  so that there is a single ’t Hooft parameter 
λ1 = λ2 = λ. For more general expressions we refer to the papers cited. It follows that β = 1 
in the spectral curve equation  (4.1). The relation between the ’t Hooft parameter and the 
parameter κ of the elliptic curve then explicitly reads

λ =
κ

8π 3F2

(
1
2

,
1
2

,
1
2

; 1,
3
2

;−κ2

16

)
.� (4.5)

The planar limit of the expectation value of the 1/6 BPS Wilson loop can be determined by 
the following equation

∂
〈
Wbos

(�,1)

〉
0

∂κ
= − i

π
√

ab(1 + ab)
(aK(s)− (a + b)Π(n|s)),� (4.6)

where K(s) and Π(n|s) are complete elliptic integrals of the first and third kind respectively, 
and a, b, s and n are the related to the curve parameter κ as follows

a =
1
2

(
2 + iκ+

√
κ(4i − κ)

)
, b =

1
2

(
2 − iκ+

√
−κ(4i + κ)

)
,

� (4.7)

s2 = 1 −
(

a + b
1 + ab

)2

, n =
b
a

a2 − 1
1 + ab

.� (4.8)

The free energy F = log Z  also admits the genus expansion F =
∑

g�0 g2g−2
s Fg(λ) with the 

planar limit determined by another period of the resolvent

∂F0(λ)

∂λ
=

∫

B
ω0 = 2π2 log κ+

4π2

κ2 4F3

(
1, 1,

3
2

,
3
2

; 2, 2, 2;−16
κ2

)
,� (4.9)

where the contour B is shown in figure 1. The strong coupling limits of the planar contrib
utions to the free energy and the Wilson loop take the following form

∂
〈

Wbos
(�,1)

〉
0
∼ eπ

√
λ, F0(λ) ∼

4π3
√

2λ3/2

3
, λ → ∞,� (4.10)

which is in perfect agreement with AdS4/CFT3 correspondence. The strong coupling limit can 
be also obtained directly by the methods of [25] or [26]. The higher genus corrections can be 

Figure 1.  The distribution of the eigenvalues in the ABJM matrix model and the 
contours in the X-plane.
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produced order-by-order via topological recursion procedure of [27] or by solving holomor-
phic anomaly equations [21, 28].

4.3.  M-theory solution via Fermi gas representation

In [29] a different approach to solving the ABJM matrix model was developed. It is well suited 
to study the partition function and the Wilson loop directly in the ‘M-theory limit’. The main 
idea is presentation of the matrix model as a partition function of a free Fermi gas with a cer-
tain 1-particle Hamiltonian. In particular this leads to direct derivation of the exact perturba-
tive (w.r.t. 1/N) contribution to the partition function

Z(N) = eAAi
[
C−1/3 (N − B)

] (
1 +O(e−c

√
N)
)

,
�

(4.11)

where Ai is the Airy function of the first kind, C = 2/π2k, B  =  k/24  +  1/3k, and A is a certain 
special function of k. The same result was first obtained by resummation of the genus expan-
sion in the ’t Hooft limit in [30].
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5.  Perturbative methods for the 1/2 BPS Wilson loop

Marco S Bianchi
Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia, Chile

5.1.  State of the art

Two loops is the state of the art for the perturbative determination of the 1/2 BPS Wilson loop 
expectation value. The relevant one- and two-loop diagrams, based on the definition of the 
operator of [1], evaluate [5–7, 12, 31, 32]

�

(5.1)

Solid, dashed and wavy lines stand for fermions, scalars and gluons, respectively and blobs 
represent one-loop self-energy corrections. The final two-loop result for the expectation value 
reads

〈
W1/2

〉
= (N1 + N2)

[
1 − π2

6k2

(
N2

1 + N2
2 − 4N1N2 − 1

)
+O

(
k−4)

]
.� (5.2)

It coincides with the prediction from localization, after removing a framing phase eiπ(N1−N2)/k  
from the latter (see section 6 on this issue). This agreement provides a successful test of local-
ization in ABJM.

The computation outlined above can be extended to include multiple windings [33] and, 
equivalently, different gauge group representations. Its backbone can be utilized for evaluat-
ing the two-loop expectation value of similar fermionic operators, existing in quiver Chern–
Simons-matter theories with lower supersymmetry of section 9. Moreover, the same diagrams 
appear, albeit with some deformations, when determining the expectation value of latitude 
Wilson loops in ABJM, discussed in sections 7 and 8.

5.2.  New versus old formulation

The reformulation of the 1/2 BPS operator presented in section  2 differs from [1] in two 
aspects: additional ±|ẋ|/4|x| terms in the diagonal entries of the superconnection (2.8) and 
different fermionic couplings η, η̄ . On the maximal circle C : {0, cos τ , sin τ}, 0 � τ < 2π, 
the former evaluate to ±1/4 and the spinors read

ηαI =
1√
2

(
1 −ie−iτ) δ1

I , η̄I
α =

1√
2

(
1

ieiτ

)
δI

1.� (5.3)

These modifications produce a different perturbative expansion, which eventually re-sums 
into that of the old formulation. To see this explicitly, let us consider the fermion exchange 
diagram at one-loop. The following shorthand notation is used xi ≡ x(τi), xij ≡ xi − xj and 
ηi ≡ η(τi). Expanding the exponential of (2.3) to second order gives the fermion contractions
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−4π
N1N2

k

∫ 2π

0
dτ1

∫ τ1

0
dτ2

〈
(ηψ̄)1(ψη̄)2 − (ψη̄)1(ηψ̄)2

〉
= i22−2εK

(η1γµη̄2 − η2γµη̄1) xµ12

(x2
12)

3/2−ε
,

� (5.4)
where dimensional regularization (d = 3 − 2ε) is used in the fermion propagator and an 

ubiquitous factor is defined K ≡ Γ(3/2−ε)
21−2επ1/2−ε

N1N2
k . An integral of trigonometric functions is 

obtained, that can be performed turning them into infinite sums, according to the method 
described in [12]

∫ 2π

0
dτ1

∫ τ1

0
dτ2

1 − cos(τ1 − τ2)(
sin2 τ1−τ2

2

)3/2−ε
=

4π3/2Γ(ε)

Γ (1/2 + ε)
.� (5.5)

This result exhibits a 1/ε pole and differs from the analogous evaluation in the original papers, 
using the old formulation. The discrepancy lies in the fact that, at fixed 1/k order, infinite 
additional contributions arise expanding the exponential (2.3) in the new definition. They 
come from insertions of the constant terms ±1/4 in the diagonal entries of the superconnec-
tion. They do not depend on the coupling, hence any number of them contributes to the same 
perturbative order. The perturbative series is thus re-organized in terms of a new expansion in 
the number of ±1/4 insertions. For the fermion exchange diagram it reads explicitly

�

(5.6)
Then, (5.5) is the zeroth order in this alternative expansion, A0. Let us separate terms from 

the upper-left and lower-right blocks, before taking the supertrace, Al = A(+)
l − A(−)

l . A gen-
eral expression for A(+)

l = −
(
A(−)

l

)∗ can be derived in terms of generalized zeta functions 
ζs(x) ≡

∑∞
k=0(k + x)−s

A(+)
l =

K(−i)lπl

2−l−1l!

{
π−2i(l+1)

ε + 2π log 2 + i(π(π + 2i)l − 4(l + 1)(1 + log 2)) l even
π−2il

ε + 2πl2 + il
(
π2 − 4(1 + log 2)

)
+ π(2 log 2 − 2 − iπ)− 14l(l+1)ζ3

π l odd

− K
� l−2

2 �∑
m=0

(−1)mπ2m
(
2πζl−2m(

3
2 ) + (2i(l + 1)− π)ζl−2m+1(

3
2 )− i(l + 1)ζl−2m+2(

3
2 )
)

2−l−2(2m)!
+O(ε).

� (5.7)
To retrieve the complete result, such contributions can be re-summed efficiently at the level of 
the integrand. Performing combinatorics and contour integral manipulations, the ±1/4 expan-
sion is cast into the form

� (5.8)

Summing over l reproduces the factor appearing in the fermion exchange diagram in the old 
formulation [12]

� (5.9)
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The sign swaps across the upper-left and lower-right blocks ultimately reconstruct the twist 
matrix of [1].

In conclusion, the perturbative expansion of fermionic graphs in the old and new for
mulations differ substantially, but they prove to be equivalent. This should be the case, being 
they related by a gauge transformation. The new definition appears more natural and elegant 
in some respects, spelled out in section 2. However its perturbative expansion entails re-sum-
mations as in (5.8), which in the original definition of [1] are already built-in. The latter is thus 
more compact and better suited for the purpose of a perturbative evaluation.

5.3.  Future directions

The two-loop computation of fermionic diagrams has only been performed at trivial framing. 
Conversely, the cohomological equivalence described in section 3 imposes constraints on the 
expectation values at framing one. These imply that fermionic diagrams must possess non-
trivial framing contributions, however a direct computation thereof is lacking. It would be 
interesting to improve the efficiency of the perturbative expansion by adopting a superspace 
description, which has not been developed thus far. Finally, a more direct test of localization 
would entail directly considering the theory on a curved background, but perturbation theory 
in this setting seems challenging with current technology.
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6.  Framing in Chern–Simons-matter theories

Matias Leoni
Departamento de Física, Universidad de Buenos Aires & IFIBA—CONICET. Ciudad 
Universitaria, pabellón 1 (1428) Buenos Aires, Argentina

6.1.  Pure Chern–Simons

In its simplest formulation, pure Chern–Simons theory can be written down without refer-
ence to any metric of the manifold where it is formulated. One could naively think that this 
would mean that any gauge invariant observable defined for this theory should depend only 
on topological properties of the manifold, the gauge group, the Chern–Simons level and the 
observable in question. This expectation turns out to be too optimistic: it is a well-known fact 
[34–36] that when a regularization of the theory is introduced, some extra data is needed. In 
particular, for ordinary Wilson loops defined in pure Chern–Simons theory this extra informa-
tion is the framing of the paths in the loop.

Consider the basic Wilson loop in pure Chern–Simons theory defined on a closed path Γ in 
the fundamental representation of U(N): 〈WΓ〉 =

〈
TrP exp

(
i
∮
Γ

Aµdxµ
)〉

. The only Feynman 
diagram at leading order in perturbation theory is a simple contractible gauge propagator 
〈Aµ(x1)Aν(x2)〉 joining two points of the curve with both points integrated over the curve. To 
avoid divergences when both points collide we choose to deform the path of the second gauge 
field (which we call Γf ) in the following way

xµ(τ) → yµ(τ) = xµ(τ) + δ nµ(τ),� (6.1)

with nµ(τ) a unit vector and δ a parameter which we may eventually take to be arbitrarily 
small. In a sense we can think that instead of a curve travelled by both transported fields, we 
are defining a two-dimensional object, a ribbon. When removing the regularization by taking 
δ → 0, we are left with an ambiguity. The straightforward computation leads to the following 
integral

link(Γ,Γf ) =
1

4π

∮

Γ

dxµ
∮

Γf

dyνεµνρ
(x − y)ρ

|x − y|3
= f .� (6.2)

This is the very well-known Gauss linking integral topological invariant. This means that even 
if we took the limit of δ → 0 when both curves coincide, the twisting of one curve over the 
other survives the limit and the ambiguity is just the number of times (f ) one of the curves 
winds over the other. This is the extra piece of information one has to add to the definition of 
the Wilson loop (see [37] for a thorough review).

While we just explained the leading appearance of framing, it was shown in [36] that 
framing-dependent parts of the Wilson loop computation exponentiate in a controlled way in 
pure Chern–Simons theory

〈WΓ〉f = e
iπN

k link(Γ,Γf )〈WΓ〉f=0.� (6.3)

6.2.  Enter matter

While the framing subtlety is clearly important to understand to which degree pure Chern–
Simons theory is a topological theory, when matter is coupled to it and the theory becomes 
an ordinary non-topological theory as ABJ(M), one could in principle choose to put framing 
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to zero. The main reason why framing is still relevant in Chern–Simons-matter theories is 
because the localization technique for finding exact results of Wilson loops returns results 
with non-vanishing framing. Specifically, the result from localization, as presented in sec-
tions 3 and 4 is necessarily at framing 1 for both 1/2 BPS [1] and 1/6 BPS [5–7] Wilson loops. 
This is because the regularization compatible with supersymmetry, when one localizes the 
function integral on S3, has the path and its frame wrapping different Hopf fibers [17].

The authors of [1] showed that the 1/2 BPS Wilson loops and a combinations of the bosonic 
1/6 BPS pairs are in the same cohomology class under the localizing supercharge. In [12, 31] 
evidence was given that this cohomological equivalence is realized at the quantum level spe-
cifically at framing 1, once again emphasizing the importance of framing for non-topological 
realizations of Chern–Simons theories. The two-loop results of [12, 31] also show that at least 
to that perturbative order, the relation between framing 1 and framing 0 quantities is a simple 
phase necessary for consistency with the cohomological equivalence.

The authors of [38] went further and made a combined analytical/numerical analysis of 
the 1/6 BPS Wilson loop (2.1) up to third order in perturbation theory. The result for arbitrary 
framing f  is consistent with the expansion

〈
Wbos〉

f = eiπ(λ1−π2λ1λ
2
2/2+O(λ5)) f

(
1 − π2

6
(
λ2

1 − 6λ1λ2
)
+O(λ4)

)
,� (6.4)

where λ1 = N1/k , λ2 = N2/k  are the ’t Hooft couplings of ABJ theory. This result deserves 
some comments: firstly, while the framing-dependent contributions seem to exponentiate as 
in (6.3), the exponent becomes a non trivial function of the coupling, as opposed to the simple 
linear exponent of pure Chern–Simons theory; secondly, the analysis of [38] shows that while 
up to two-loops all the framing contributions came from purely gauge contractible propaga-
tors, at three-loops vertex-like diagrams with matter also contribute to the framing anomaly. 
An interesting consequence of the non-triviality of the exponent of (6.4) has to do with the 
fact [39–42] that the Bremsstrahlung function (sections 10 and 11) associated to 1/2 BPS 
Wilson loops in ABJM theory (N1 = N2) can be written as B1/2 = (8π)−1 tanΦB where ΦB 
is the complex phase of the 1/6 BPS Wilson loop at framing 1: this implies a curious and very 
intimate connection between framing and the Bremsstrahlung physics of the theory which 
deserves further study.

Finally, framing also plays an important, albeit odd role in the DGRT-like construction 
[8] of Wilson loops in ABJ(M) theory (see section 7). The latitude deformations of both the 
1/2 BPS and bosonic 1/6 BPS Wilson loops belong to the same cohomology class [39]. More 
specifically, it was shown in [39] from a perturbative computation that in order to realize 
the cohomological equivalence at the quantum level, the analysis has to be done at arbitrary 
framing f  and then a formal identification of the integer f  with the effective latitude parameter 
q = sin 2α cos θ0 has to be performed (here α and θ0  are angles that characterize the geometry 
of the latitude Wilson loops). This is an awkward choice since f  is an integer number whereas 
q is a real one. This is however supported by the matrix model construction of [41], where a 
single q parameter is needed in the matrix integral and operator definitions in order to match 
the known perturbative results with f   =  q (see section 8).
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7.1.  Background

Four-dimensional N = 4 SYM theory admits a variety of different BPS Wilson loops, that 
generalize non-trivially the original straight line and circular ones [43, 44]. A complete clas-
sification of admissible contours with the appropriate scalar couplings has been performed in 
[45], exploiting the properties of the relevant Killing spinors. Two important classes of loops 
have been widely studied and used to derive interesting results: the so-called Zarembo loops 
[46] and the DGRT loops [47]. A subset of DGRT operators, preserving 1/8 of the original 
supersymmetry, are contained in an S2 and their quantum behavior is governed by perturbative 
2d Yang–Mills theory [47–49].

In this chapter two families of BPS fermionic Wilson loops in ABJM theory are described: 
they can be considered the analogs of the Zarembo and DGRT loops in three dimensions, 
their bosonic and fermionic couplings depending non-trivially on their path [8]. The key idea, 
already exploited to construct 1/6 BPS fermionic circles in section 2, is to embed the natural 
U(N1)× U(N2) gauge connection present in ABJM theory into a superconnection parameter-
ized by the path-dependent functions MI

J, ηαI  and η̄I
α (see (2.8)). The strategy is to derive first a 

general set of algebraic and differential conditions for them that guarantee the local preserva-
tion of a fraction of supersymmetry, up to total derivative terms along the contour. Then one 
imposes that solutions of these constraints can be combined into a conformal Killing spinor 
Θ̄IJ = θ̄IJ − (x · γ)ε̄IJ, where θ̄IJ and ε̄IJ are constant. Finally the total derivative terms, organ-
izing into a supergauge transformation, should become irrelevant by taking the super-trace of 
the Wilson loop operator. This last step requires in general to improve the bosonic part of the 
connection with a background term, as done in section 2 (see (2.8)), curing the non-periodicity 
of the couplings and avoiding the presence of the twist-matrix originally introduced in [8].

7.2.  Zarembo-like Wilson loops

This is a family of Wilson loops of arbitrary shape, which preserve at least one supercharge 
of Poincaré type, i.e. a supercharge with ε̄IJ = 0. These operators can be viewed as the three-
dimensional companion of the loops discussed in [46] and a generalization of the BPS straight-
line constructed in [1], which is the simplest example enjoying this property. In this case, the 
differential condition is solved trivially and the problem is completely fixed by choosing four 
constant spinors sI

α with completeness relation s̄I
βsαI = δαβ . Defining Π+ as in (2.9), the gen-

eral form of the couplings is obtained [8]

ηI = sIΠ+, η̄I = Π+s̄I , MJ
I = δJ

I − sI s̄J − ẋµ
|ẋ|

sIγ
µs̄J .� (7.1)

The loops are generically 1/12 BPS and the finite supergauge transformations generated by 
the relevant supersymmetry transformations are well-defined on any closed contour in R3. 
Taking the super-trace (see (2.3)) a SUSY-invariant operator is obtained without introducing 
background terms. The explicit form of the superconnection is
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L =


 A(1)

√
− 4πi

k |ẋ|ηIψ̄
I

√
− 4πi

k |ẋ|ψI η̄
I A(2)


 ,

A(1) = A(1)
µ ẋµ − 2πi

k |ẋ|MI
JCIC̄J ,

A(2) = A(2)
µ ẋµ − 2πi

k |ẋ|MI
JC̄JCI .

�

(7.2)

7.3.  DGRT-like Wilson loops

A second family of Wilson loops, defined for an arbitrary curve on the unit sphere 
S2 ⊂ R3 (xµxµ = 1), can be easily obtained from the previous one. The central idea is 
to introduce a matrix U constructed with the coordinates xµ(τ) of the circuit, namely 
U = cosα+ i(xµγµ) sinα, with α a free constant angular parameter. Defining an auxiliary 
constant supercharge ∆̄IJ = Θ̄IJU  and introducing a background term in the bosonic part of 
the connection as in section 2

A(1) = A(1)
µ ẋµ − 2πi

k |ẋ|MI
JCIC̄J + q|ẋ|

4 ,

A(2) = A(2)
µ ẋµ − 2πi

k |ẋ|MI
JC̄JCI − q|ẋ|

4 ,
q ≡ sin 2α,� (7.3)

the problem becomes formally equivalent to the Zarembo-like one [8]. The solution for the 
couplings, preserving the superconformal charge Θ̄IJ , is obtained by rotating the spinors sI

α 
appearing in the Zarembo-like solution

ηI = U†sIΠ+, η̄I = Π+s̄IU, MI
J = δI

J − sJ

(
1 +

ẋµγµ
|ẋ|

cos 2α+ xµ
ẋν

|ẋ|
γρεµνρ sin 2α

)
s̄I .

�
(7.4)

A particularly interesting example of DGRT-like Wilson loops is the fermionic latitude, which 
can be found from (7.4) by taking the curve to be a latitude on the S2. Since a latitude is con-
formal to any other circle, the real feature of this loop are the scalar and fermionic couplings 
(with q as in (7.3))

MJ
I =




−q e−iτ
√

1 − q2 0 0
eiτ

√
1 − q2 q 0 0
0 0 1 0
0 0 0 1


 , ηαI =

1√
2




√
1 + q

−
√

1 − qeiτ

0
0




I

(1,−ie−iτ )α,

� (7.5)
with τ ∈ [0, 2π).

At the classical level, the fermionic latitude Wilson loop is cohomologically equivalent 
[41] to a linear combination of bosonic latitudes21

W fer(q) = e−iπq/2W(1)
bos (q)− eiπq/2W(2)

bos (q) + Q(q)V ,� (7.6)

where W(1,2)
bos (q) are bosonic latitude Wilson loops with scalar coupling governed by a matrix 

MJ
I  that coincides with (7.5) changing the last diagonal entry from 1 to  −1. In the above form

ula Q(q) is a linear combination of supercharges preserved by both bosonic and fermionic 
latitudes, while V  is a functional of the scalar fields and of the superconnection. Fermionic 
latitudes preserve 1/6 of the original supersymmetries and it is always possible to find two 
supercharges that do not depend on the parameters of the loops. The bosonic latitudes are 
instead 1/12 BPS and do not admit common preserved supercharges.

21 Loops in the fundamental representation for U(N1|N2), U(N1) and U(N2), respectively, are considered here.
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7.4.  Future directions

A natural question that remains to be answered is of course if any DGRT-like Wilson loop pre-
sented here is cohomologically equivalent to a bosonic Wilson loop, generalizing the bosonic 
circle constructed in (2.1). It would be also important to clarify the origin of the background 
term in the superconnection (7.3), a fact that seems a generic feature of fermionic loops, as 
already pointed out in sections 1 and 2.
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8. The matrix model proposal for the latitude
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Among the family of Wilson operators on S2 introduced in section 7, the latitudes are the 
simplest deformations of the circle. One may therefore hope that they are captured by a matrix 
model, as it occurs in D  =  4. The fermionic latitude (7.5) is 1/6 BPS and preserves osp(2|2), 
while the bosonic one (see section 7) is 1/12 BPS and only preserves u(1|1). These two opera-
tors are cohomologically equivalent (7.6) as in the case of the two circle operators presented 
in section 2. Below we discuss a proposal for a matrix model evaluating both these latitudes.

8.1.  An educated guess for the matrix model

The pattern of preserved supercharges and the analogies with the circle suggest that the expec-
tation value of the bosonic latitude can also be computed in closed form using localization 
techniques. However the localization procedure has to yield a matrix model, which is a signifi-
cant deformation of the one obtained in section 3 and solved in section 4. In fact, an explicit 
three-loop computation of this observable in the fundamental representation (with q defined 
in (7.3)) at framing f  in ABJM (N1 = N2 = N ) gives [41]

〈Wbos(q)〉f = 1 +
iπfN

k
+

π2

6k2

[
N2 (3(q2 − f 2) + 2

)
+ 1

]

− iπ3N
6k3

[
N2 ( f 3 + f

(
1 − 3q2)+ (

q2 − 1
)

q
)
− 4f − q

(
q2 − 1

)]
+O

(
k−4) .

� (8.1)
Analyzing this expression, we immediately realize that the q-dependence cannot be reab-
sorbed by a simple redefinition of the coupling constant at variance with the four-dimensional 
case. Therefore we expect that the deformation might affect both the measure of the matrix 
model and the observable that we average to evaluate the Wilson loop. However, when we 
replace the observable with the identity the remaining matrix integral over the deformed mea-
sure must still give the partition function of ABJ(M) on S3, namely the dependence of the par-
tition function on q must become trivial. We can perform an educated guess on the structure 
of this modification if we recall that the original matrix model can be also viewed as a sort of 
supermatrix version of the partition function of Chern–Simons with gauge group U(N1 + N2) 
on S3/Z2 , where we have selected the vacuum that breaks the symmetry to U(N1)× U(N2) 
(see section 4).

A simple deformation enjoying this property is obtained by replacing S3 with the squashed 

sphere S3√
q . Because of the topological nature of Chern–Simons, the partition function is 

unaffected by the squashing, up to framing anomalies. For ABJM this anomaly cancels, and 
we have the same partition function, while for ABJ they differ by a phase which is a poly
nomial in (N1 − N2) and cancels when we compute the average of the Wilson loop. The 
modification amounts to replacing the original gauge contribution in the measure (3.2) with ∏Ni

i<j 4 sinh2 (µi−µj)
2 �→

∏Ni
i<j 4 sinh

√
q(µi−µj)

2 sinh
(µi−µj)

2
√

q  and similarly for the hypermulti-

plets. Namely we propose the following deformation [41] of the circle matrix model (3.3)
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Z =
1

N1!N2!

∫ N1∏
i=1

dµi

2π
e

ik
4πµ2

i

N2∏
j=1

dνj

2π
e−

ik
4π ν2

j

N1∏
i=1

N2∏
j=1

(
4 cosh

√
q(µi − νj)

2
cosh

(µi − νj)

2
√

q

)−1

×
N1∏
i<j

4 sinh
√

q(µi − µj)

2
sinh

(µi − µj)

2
√

q

N2∏
i<j

4 sinh
√

q(νi − νj)

2
sinh

(νi − νj)

2
√

q
.

� (8.2)
This is the simplest non-trivial deformation of (3.3) that lands back on the usual expression 
at q  =  1, and whose measure is symmetric under q ↔ 1/q. This symmetry is instrumental 
in recovering the correct conjectured 1/6 BPS θ-Bremsstrahlung introduced in [50] (see sec-
tions 10 and 11). The expectation value of the bosonic Wilson latitude, for instance with a 
connection in the first gauge group, corresponds to the insertion in the matrix model of the 
quantity 

∑N1
i=1 e

√
q µi .

8.2.  Comparison with the perturbative results

We can check the proposal (8.2) up to three loops against the perturbative result (8.1) and 
similar results for ABJ presented in [41]. We find perfect agreement if we assume that our field 
theory perturbative computation is performed at framing q. That the agreement manifests for 
this specific value of the framing is highly suggestive, since this is the precise value at which 
the conjectured cohomological equivalence with the fermionic Wilson loop is supposed to 
hold (7.6) and thus it allows us to use the matrix model results to reconstruct the expectation 
value of the fermionic latitude as well.

8.3.  Comparison with the string results

The matrix model (8.2) can be reformulated in terms of a Fermi gas. This representation 
provides a powerful tool for systematically expanding the partition function and Wilson loop 
observables in powers of 1/N at strong coupling. For simplicity we restrict the analysis to the 
ABJM slice, N1 = N2 = N . The final result can be expressed in terms of Airy functions and 
for the fermionic latitude takes a particular simple and elegant form

〈W fer(q)〉q = −
qΓ

(
− q

2

)
Ai

(
C−1/3 (N − B − 2q/k)

)

2q+2
√
π Γ

(
3−q

2

)
sin (2πq/k)Ai

(
C−1/3 (N − B)

) ,� (8.3)

where C and B have been defined right after (4.11). From this we can extract the leading 
contribution at large N

〈W fer(q)〉q
∣∣
g=0 = −i

Γ
(
− q

2

)

2q+2
√
π Γ

(
3−q

2

)eπq
√

2λ−1/12.� (8.4)

Classical string configurations that are dual to the fermionic latitude operators have been 

discussed in [50] and their leading exponential behavior scales according to exp
(
πq

√
2λ

)
 

(see (12.6) below), which remarkably agrees with the expansion of the matrix model at strong 
coupling. Recently the one-loop string correction to the classical configuration were also 
computed in [51, 52] and again perfect agreement with the matrix model was found (see sec-
tions 12 and 13).
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8.4.  Future directions

Despite the strong tests passed by the matrix model (8.2), it would be nice and instructive to 
have a complete derivation of it using localization. This might also help to understand if the 
other DGRT-like Wilson loops, which anyway share two supersymmetries with the fermionic 
latitude, can be evaluated in terms of a similar matrix model. In case of a positive answer, one 
might wonder whether an effective lower-dimensional theory describes this family of loops as 
it occurs in four dimensions.
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9.1.  General classification

BPS Wilson loops in N = 4 supersymmetric Chern–Simons-matter (SCSM) theories were 
first studied in [53, 54]. More general operators and an exhaustive classification for N � 2 
SCSM quiver theories were successively given in [9, 55–57]. Generalizing the operator of 
ABJM theory (2.1), a bosonic BPS operator which includes bi-linear couplings to scalars 
can be constructed for all theories with 2 � N � 6 supersymmetry. This is unique, up to 
R-symmetry rotations, and always preserves four real supercharges. More general classes 
of BPS operators with different amount of supersymmetry are obtained by introducing also 
couplings to fermions, in the spirit of [1].

In this chapter we review the general classification of BPS Wilson loops in N = 4 
necklace quiver SCSM theories with gauge group and levels 

∏r−1
l=0 [U(N2l)−k × U(N2l+1)k] 

[58, 59]. These theories are all conformal and can be obtained by a quotient of the 
U(N)k × U(M)−k  ABJ theory where we decompose N = N1 + N3 + ... + N2r−1 and 
M = N0 + N2 + ... + N2r−2. They have a string dual description in terms of M-theory on the 
orbifold background AdS4 × S7/(Zr ⊕ Zr)/Zk . When N0 = ... = N2r−1 they reduce to the 
Zr-orbifold of ABJM [16] which is dual to M-theory on AdS4 × S7/(Zr ⊕ Zrk).

A large class of fermionic BPS Wilson loops in N = 4 SCSM theories can be obtained 
by the orbifold decomposition of fermionic 1/6 BPS and 1/2 BPS operators of the ABJM or 
ABJ theories [56]. For circular contours this leads in general to 1/4 BPS fermionic operators 
corresponding to superconnections of the form (for r � 3)

L =




A(1) f (1)
1 h(1)

1 0 · · ·

f (1)
2 A(2) f (2)

1 h(2)
1

. . .

h(1)
2 f (2)

2 A(3) f (3)
1

. . .

0 h(2)
2 f (3)

2 A(4) . . .
...

. . . . . . . . . . . .




.� (9.1)

Here the diagonal blocks A(l) contain the usual gauge and scalar field couplings, the next-to-

diagonal blocks f (l)
1,2 are linear in fermions, mimicking the entries of (2.8) for ABJM operators, 

whereas the next-to-next-to-diagonal blocks h(l)
1,2 are quadratic expressions in the scalars. For 

the case of orbifold ABJM theory their explicit expressions can be found in [56], as func-

tions of several complex parameters. Up to R-symmetry rotations, the corresponding Wilson 
loops have been classified into two independent classes, where each class is parametrized by 
three complex moduli [56]22. Wilson loops belonging to different classes differ primarily by 
the chirality of the fermionic couplings. The classification of the corresponding preserved 

22 The other two classes found in [9, 55, 56] are equivalent to the bosonic Wilson loop. We thank Drukker for point-
ing it out.
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supercharges reveals a high degree of degeneracy: the operators of the two classes share the 
same set of supersymmetries. More general 1/4 BPS Wilson loops can be constructed, which 
are not obtained by orbifold decompositions of ABJM operators. These operators fall outside 
the aforementioned classes, but are block-diagonalizable to them.

For special choices of the parameters the superconnection in (9.1) becomes block-diagonal 
and the corresponding Wilson loop reduces to a sum W =

∑r
l=1 W(l), where the ‘double-

node’ W(l) is the holonomy of a U(Nl−1|Nl) superconnection of the type (2.8), which includes 
(Nl−1, Nl) gauge fields and matter coupled to them. In each of the two classes, for a particular 
set of parameters the preserved supersymmetry gets enhanced and we obtain fermionic 1/2 
BPS Wilson loops [53, 54, 56]. In the notation of [54] we refer to the corresponding double-
node operators as ψ1-loop and ψ2-loop, respectively.

All fermionic 1/4 and 1/2 BPS operators are in the same Q-cohomological class of the 
bosonic 1/4 BPS Wilson loop, where Q is a conserved supercharge shared by all the opera-
tors. Therefore, they are in principle amenable of exact evaluation via the matrix model that 
computes the bosonic operator [17, 60].

9.2.  Degenerate Wilson loops

As already mentioned, fermionic 1/4 BPS Wilson loops belonging to different classes pre-
serve the same set of supercharges. In particular, this occurs for the two kinds of 1/2 BPS 
Wilson loops, ψ1-loop and ψ2-loop. In the orbifold ABJM case these two operators come from 
quotienting two 1/2 BPS Wilson loops of the ABJM theory that share eight real supercharges. 
Therefore, the total degeneracy appearing in the N = 4 theory can be understood as the leg-
acy of the partial overlapping of conserved supercharges already present in the parent ABJM 
theory. In a Higgsing construction, ψ1- and ψ2-loops correspond to exciting non-relativistic 
infinitively massive particles or antiparticles, respectively [61].

The degeneracy of 1/2 BPS Wilson loops opens important questions. Which are their grav-
ity duals? Do we expect degeneracy also in the corresponding M2-brane solutions or is the 
actual BPS Wilson loop that survives at strong coupling a linear combination of operators, 
as first suggested in [54]? Second, which is the fate of this degeneracy at quantum level? Do 
degenerate operators share the same expectation value and how does this expectation value 
match the matrix model prediction? 

For the orbifold ABJM theory, the first question was answered in [61] by identifying the 
degeneracy of ψ1- and ψ2-loops with the degeneracy of a pair of M2 and anti-M2-branes 
localised at different positions in the compact space, and preserving the same set of super-
charges. The second question has been addressed in [62, 63] for theories with groups of une-
qual ranks. Assuming that the classical cohomological equivalence is compatible with the 
localization procedure, the matrix model predicts 〈Wψ1〉 = 〈Wψ2〉 and its exact expression 
expanded at weak coupling and at framing zero exhibits vanishing contributions at odd orders. 
However, in [63] it was shown that at three loops, at least in the three-node color sector, 
〈Wψ1〉|λ3 = −〈Wψ2〉|λ3 �= 0. This implies that in theories with unequal group ranks only the 
linear combination 〈Wψ1 + Wψ2〉 can match the matrix model prediction, pointing towards a 
non-trivial uplifting of the classical degeneracy.

9.3.  Future directions

At the moment there are no exhaustive answers to the previous questions. In the orbifold 
ABJM theory the degeneracy is not broken at strong coupling, in line with the matrix model 
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prediction, but a confirmation from a genuine perturbative calculation is still lacking. In the 
more general case of theories with unequal ranks, the matching with the matrix model implies 
an uplifting of degeneracy, but it would be important to find the dual M2-brane configurations 
to have confirmation at strong coupling. Moreover, a similar analysis should be extended to 
degenerate fermionic 1/4 BPS Wilson loops for which the dual configurations are not known. 
In particular, for generic parametric dependent operators in the two classes, a perturbative 
calculation would provide parametric dependent expectation values [57], but there is no corre
spondingly free parameter in the matrix model prediction. Moreover, if the gravity duals of all 
of these degenerate operators exist as different brane configurations, it would be interesting to 
understand how to flow in the moduli space from one brane configuration to another. This is 
another problem that deserves further investigation.

Finally, similar configurations of degenerate Wilson loops occur also in N < 4 SCSM 
theories, where the problem of identifying the corresponding gravity duals and matching the 
matrix model predictions with their expectation values [57] is still to be fully addressed.
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10.  Bremsstrahlung functions I: definition and perturbative results
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10.1. The generalized cusp and the Bremsstrahlung functions in ABJ(M)

The bosonic and fermionic Wilson operators (2.1) and (2.3) can be also supported along infi-
nite lines. In this case, the constant piece |ẋ|/4|x| introduced in the fermionic superconnection 
(2.3) disappears, while the couplings to the matter become constant.

When a cusp with angle ϕ is introduced into the 1/2 and 1/6 BPS lines, as in figure 2, super-
symmetry is completely broken and the expectation value of the Wilson operator develops a 
divergence. The coefficient of the divergence can be analysed in very general terms [64] and 
is called cusp anomalous dimension. Moreover, one can introduce a second deformation by an 
internal angle θ affecting the scalar and fermionic couplings (the latter are fully fixed by the 
scalar ones as in (2.9)) such that

Tr[(Ma +∆Ma)(Mb +∆Mb)] =

{
4 cos2 θ

2 a �= b,
4 a = b,

,� (10.1)

where the indices a, b = 1, 2 represent the two sides of the cusp contour (see figure 2) and 
∆M  vanishes in the bosonic case. Then the expectation value of the Wilson operators can be 
written as

log〈Wbos
cusp〉 ∼ −Γ1/6(k, N1, N2,ϕ, θ) log L/ε log〈W1/2

cusp〉 ∼ −Γ1/2(k, N,ϕ, θ) log L/ε,� (10.2)

where L and ε are the IR and UV regulators, respectively. Since the cusp anomalous dimen-
sion for the cusp with 1/2 BPS rays is only known for equal ranks of the gauge group, we set 
N1 = N2 = N  for this quantity. The coefficients Γ1/6 and Γ1/2 of the logarithm depend on 

both angles and are called generalized cusp anomalous dimensions [50, 65]. W1/2
cusp preserves 

two supercharges when ϕ2 = θ2, while W1/6
cusp is only BPS for ϕ = θ = 0. As a consequence, 

for small angles the cusp anomalous dimensions take the form

Γ1/6 ∼ θ2Bθ
1/6(k, N1, N2)− ϕ2Bϕ

1/6(k, N1, N2), Γ1/2 ∼ (θ2 − ϕ2)B1/2(k, N).
�

(10.3)

The B’s are known as the Bremsstrahlung functions. In a conformal field theory, these func-
tions also govern the energy radiated by an accelerating massive probe [66], hence the name.

10.2.  Renormalization and perturbation theory

Following [64], the cusp anomalous dimension is extracted from 〈Wcusp〉. First one subtracts 
the IR gauge-dependent divergences by introducing a multiplicative renormalization Zopen, 
which is equivalent to the subtraction of the straight line. For 〈Wbos

cusp〉 this term vanishes, so 
the renormalized Wilson loops are

〈Wbos
cusp〉ren = Z−1

1/6〈W
bos
cusp〉 and 〈W1/2

cusp〉ren = Z−1
1/2Z−1

open〈W1/2
cusp〉.� (10.4)

Γ arises from the renormalization group equations for the anomalous dimensions of the non-
local operators
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Γ1/6 =
d log Z1/6

d logµ
and Γ1/2 =

d log Z1/2

d logµ
,� (10.5)

where the derivative is taken with respect to the renormalization scale µ.
Given Γ, it is possible to compute the Bremsstrahlung functions using (10.3)

B1/2 =
1
2
∂2Γ1/2

∂θ2

∣∣∣∣
ϕ,θ=0

= −1
2
∂2Γ1/2

∂ϕ2

∣∣∣∣
ϕ,θ=0

, Bθ
1/6 =

1
2
∂2Γ1/6

∂θ2

∣∣∣∣
ϕ,θ=0

and Bϕ
1/6 = −1

2
∂2Γ1/6

∂ϕ2

∣∣∣∣
ϕ,θ=0

.

� (10.6)

The Z’s can be evaluated in perturbation theory in dimensional regularization d = 3 − 2ε 
as in section 5. The Feynman diagrams providing an expansion in the coupling 1/k and the 
relevant integrals can be performed directly in x-space, solving first the internal integrations 
and then the ones on the Wilson line contour. A more efficient strategy at higher loops is to 
Fourier transform the integrals to momentum space and perform the contour integration first. 
Using this procedure, the integrals resemble those of non-relativistic Feynman integrals aris-
ing in the heavy quarks effective theory (HQET) [67, 68]. Finally, using (10.5), it is possible 
to extract the anomalous dimensions from the residues of the simple poles in ε of Z1/6 and Z1/2.

In the following we summarize the main perturbative results at weak-coupling for these 
functions. The strong coupling expansions are presented in section 13.

10.3.  Weak coupling expansion of the Bremsstrahlung function for the fermionic cusp

The cusp anomaly Γ1/2(k, N,ϕ, θ) was computed at two-loops via perturbation theory in [65]. 
In the limit in which only ladder diagrams contribute, it is known exactly by resumming the 
perturbative series with the Bethe-Salpeter method [69]. The case ϕ = 0 was explored at 
three-loops using the HQET formalism in [40, 70]. Using (10.6) one obtains

B1/2(k, N) =
N
8k

− π2N(N2 − 3)
48k3 +O

(
k−5) .� (10.7)

The computation suggests that B1/2 has an expansion in odd powers of the coupling. This fact is 
confirmed by the exact computation in terms of multiple-wound Wilson circles (see section 11).

10.4.  Weak coupling expansion of the Bremsstrahlung functions for the bosonic cusp

The function Bϕ
1/6 associated to the small angle limit of the geometric bosonic cusp anomaly 

was computed using (10.6) in [39, 65] and it is given by

Figure 2.  The planar Euclidean cusp with angular opening π − ϕ between the Wilson 
lines parametrized by xµ = {τ cosϕ/2, |τ | sinϕ/2, 0} with −∞ � τ � ∞. The 
operators lying on it possess also a discontinuity in the R-symmetry space represented 
by the different orientations of the matter couplings Ma +∆Ma, with a = 1, 2.
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Bϕ
1/6(k, N1, N2) =

N1N2

2k2 +O
(
k−4) .� (10.8)

This result at equal gauge group ranks coincides with the proposed exact formula in [71].

The function Bθ
1/6 corresponding to a cusp in R-symmetry space along a 1/6 BPS straight 

line (ϕ = 0) is computed at two-loop in [39] and at higher order in [72, 73], leading to

Bθ
1/6(k, N1, N2) =

N1N2

4k2 − π2N2(5N1
2N2 + N1N2

2 − 3N1 − 5N2)

24k4 +O
(
k−6) ,

�

(10.9)

for generic ranks of the gauge groups. This result is compatible with the exact computation via 
defect theory (see section 11) and the bosonic latitude matrix model proposal (see section 8).

As expected, both (10.8) and (10.9) have an expansion in even power of the coupling. 
Indeed, ABJ(M) Wilson loops with planar contours computed at framing zero (see section 6) 
automatically have vanishing expectation values at odd loops [7].

10.5.  Future directions

In analogy with the four-dimensional case [74, 75], it could be interesting to extend the defini-
tions of the Bremsstrahlung functions by adding L units of R-charge. This could make them 
accessible from both integrability and localization techniques. Another possible future direc-
tion is the evaluation of the cusp anomalous dimension and its small angle limit for the cusp 
with 1/2 BPS rays in the case of generic ranks. This study could shed some light on the expo-
nentiation property of the fermionic Wilson loops in ABJ. It would be interesting to extend the 
analyses of Bremsstrahlung functions to the operator with fermionic 1/6 BPS rays.
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11.  Bremsstrahlung functions II: nonperturbative methods
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11.1.  Wilson lines as superconformal defects

Since the cusped Wilson line does not preserve any supersymmetry, one may expect this 
would kill any hope of using supersymmetric localization. Nevertheless, for small angles one 
can relate the cusp anomalous dimension to conformal defect correlation functions [66], lead-
ing to exact results. A supersymmetric Wilson line breaks translational as well as R-symmetry 
leading to the associated Ward identities

∂µTµµ̄ = δ2(x⊥)Dµ̄(τ), ∂µjµI = δ2(x⊥)OI(τ),�
(11.1)

where the delta function localizes the r.h.s. on the defect profile (a straight line along the 
direction 1 in this case), µ̄ = 2, 3 label orthogonal directions and the index I  spans 
the subset of R-symmetry generators that are broken by the defect. The defect excita-
tion Dµ̄ is usually called displacement operator. The bosonic Wilson line (2.1) preserves 
su(1, 1|1)⊕ su(2)⊕ su(2) ⊂ osp(6|4), thus breaking 8 of the 15 SU(4)R generators. We label 
the associated defect operators as Oaȧ and Ōȧa, with a and ȧ fundamental indices for the pre-
served R-symmetry SU(2)× SU(2)× U(1) [76]. The fermionic Wilson line (2.3), instead, 
preserves su(1, 1|3)⊕ u(1) ⊂ osp(6|4), breaking only 6 generators. The associated defect 
operators are organised in fundamental OA, and antifundamental ŌA representations of the 
preserved SU(3). It is worth stressing that equations (11.1) are written in a loose notation and 
must be interpreted as a Ward identity when both sides are inserted inside a correlation func-
tion with other operators. In particular, for the fermionic case, the natural object to be inserted 
on the Wilson line is a U(N|N) supermatrix and both the displacement and the R-symmetry 
operators admit an explicit realization in terms of supermatrices [42].

Considering a generalized cusp deformation one finds [42, 50]

Bosonic 〈〈Dµ̄(τ)Dν̄(0)〉〉bos = 12Bϕ
1/6

δµ̄ν̄

|τ |4
, 〈〈Oaȧ(τ)Ōḃb(0)〉〉bos = −4Bθ

1/6
εabεȧḃ

|τ |2
,� (11.2)

Fermionic 〈〈Dµ̄(τ)Dν̄(0)〉〉ferm = 12B1/2
δµ̄ν̄

|τ |4
, 〈〈OA(τ)ŌB(0)〉〉ferm = −4B1/2

δA
B

|τ |2
.� (11.3)

The smaller amount of preserved supersymmetry naively prevents one from relating Bϕ
1/6 and 

Bθ
1/6 using defect supersymmetric Ward identities (in this case D and O do not belong to the 

same supermultiplet as it happens for the 1/2 BPS case). Nevertheless, it was shown in [76] 
that a class of vanishing three-point functions allows to write Ward identities with broken 
supercharges giving a formal derivation of the relation

Bϕ
1/6 = 2Bθ

1/6.� (11.4)

11.2.  Relation to circular Wilson loops

Using the fact that defect two-point functions are the same for the straight line and the circu-
lar case, one can relate the Bremsstrahlung functions to specific deformations of the circular 
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Wilson loop. Specifically, for the latitude bosonic and fermionic Wilson loops (see section 7) 
one can prove [42, 50]

Bθ
1/6 =

1
4π2 ∂q log |〈Wbos(q)〉|

∣∣∣
q=1

, B1/2 =
1

4π2 ∂q log〈W fer(q)〉
∣∣∣
q=1

.

�

(11.5)

For the fermionic case, this relation was previously conjectured in [39]. The problem with 
these relations for ABJM theory is that no first-principle localization calculation exists for the 
latitude Wilson loops (see, however, section 8 of this review for a proposal in this direction 
[41]). Furthermore, to extend the localization results to the fermionic case one has to rely on 
the cohomological equivalence (see section 3), which involves subtleties associated with non-
integer framing (see section 6) [38, 39]. Despite these difficulties one can still achieve exact 
expressions for the Bremsstrahlung functions as we discuss in the following.

11.3.  Exact Bremsstrahlung for the bosonic Wilson loop

An exact expression for Bϕ
1/6 appeared already in [71], based on the conjectured relation with 

the stress tensor one-point function

Bϕ
1/6 = 2aT , 〈T11(x⊥)〉bos =

aT

|x⊥|3
,� (11.6)

which was later shown, in a slightly different context, to be a consequence of supersymmetric 
Ward identities [77]. The convenient feature of equation (11.6) is that the stress tensor one-
point function can be computed by supersymmetric localization. In particular, exploiting the 
definition of the supersymmetric Rényi entropy of [78], the authors of [71] showed that aT can 
be computed by

aT =
1

8π2 ∂m log〈Wm〉
∣∣∣
m=1

,� (11.7)

where Wm is a circular Wilson loop winding m times [20, 79]. Despite no closed form expres-
sion is available for the r.h.s. of (11.7), it is not too hard to expand it at weak and strong cou-
pling, or evaluate it numerically at finite coupling (see figure 3 (left) for a plot and [71] for 
further details).

11.4.  Exact Bremsstrahlung for the fermionic Wilson loop

The first proposal for the fermionic Bremsstrahlung function appeared in [39], based on sev-
eral assumptions related to the cohomological equivalence and the dependence on the framing, 
which were then clarified in various papers [38, 39, 41, 42, 76]. The upshot is that, combin-
ing the relations (11.5), (11.6) and (11.7) it is possible to establish a connection between the 
matrix model for the winding Wilson loop and the matrix model for the geometric defor-
mation ν . This leads to interesting relations between bosonic and fermionic Bremsstrahlung 
functions as well as, notably, to a closed form expression for B1/2, which was derived in [76] 
and we present here in a new and simpler form for the large N case

B1/2 =
κ

64π 2F1

(
1
2

,
1
2

; 2;−κ2

16

)
, λ =

κ

8π 3F2

(
1
2

,
1
2

,
1
2

; 1,
3
2

;−κ2

16

)
,

�
(11.8)
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where the effective coupling κ was already defined in (4.5). In figure 3 (right) we plot this 
function together with the weak and strong coupling expansions.

11.5.  Future directions

A natural future direction would be to obtain an expression of the ABJM Bremsstrahlung 
function using integrability, along the lines of the N = 4 SYM result [80, 81]. This would 
lead to an honest derivation of the interpolating function h(λ) (see section 14). Another inter-
esting avenue to explore is the study of higher points correlation functions of defect operators. 
The defect theory provides a tractable example of 1d CFT with an interesting AdS2 dual [82].
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Figure 3.  Left: the Bremsstrahlung function for the bosonic Wilson loop at large N 
computed using (11.7). It interpolates nicely between the weak coupling (blue, dotted) 
and strong coupling (red, dashed) expansions. Right: the Bremsstrahlung function for 
the fermionic Wilson loop at large N, given by (11.8). It interpolates nicely between the 
weak coupling (blue, dotted) and strong coupling (red, dashed) expansions.
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12.  Holography for ABJM Wilson loops I: classical strings
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12.1.  Holographic duals of ABJM theory

ABJM theory is dual to M-theory on AdS4 × S7/Zk . In the large k limit, the theory reduces 
to type IIA string theory on AdS4 × CP3. Sticking to the string picture, the IIA background 
comprises

ds2 = L2(ds2
AdS4

+ 4ds2
CP3), e2φ = 4

L2

k2 , F(4) =
3
2

kL2 vol(AdS4), F(2) =
k
4

dA,
� (12.1)

with A = cosα dχ+ 2 cos2 α
2 cos θ1dϕ1 + 2 sin2 α

2 cos θ2dϕ2 and the CP3 metric written as

ds2
CP3 =

1
4

[
dα2 + cos2 α

2
(
dθ2

1 + sin2 θ1dϕ2
1

)
+ sin2 α

2
(
dθ2

2 + sin2 θ2dϕ2
2

)

+ sin2 α

2
cos2 α

2
(dχ+ cos θ1dϕ1 − cos θ2dϕ2)

2
]
.

�

(12.2)

The relation between IIA string theory and ABJM parameters in the ’t Hooft limit is: 

L2/α′ = π
√

2
(
λ− 1

24

)
 and g2

s = π(2λ)5/2/N2.

ABJM Wilson loops in the fundamental representation map to IIA open strings partition 
functions. The leading order contribution at strong coupling arises from minimal surfaces. We 
expect the specific boundary conditions for the string worldsheet to be dictated by the Wilson 
loop data C, M and η.

12.2. The known

We start by noting that minimal surfaces dual to Wilson loops in R3 inside R4 of 4d SYM 
(with fixed position in the internal space) are straightforwardly embedded inside AdS4 and 
hence are also solutions for the 10d sigma model dual to ABJM theory. However, the dif-
ference between S5 and CP3 implies that non-trivial profiles in internal space become more 
subtle. We discuss two examples, see figure 4.

Generalized cusp: after conformally mapping R3 to S2 × R, the piecewise linear Wilson 
line with a cusp shown in figure 2 is mapped to a pair of anti-parallel lines separated by an 
angle π − ϕ along a great circle on the S2. The (non-susy) string dual to the static configura-
tion on S2 × R for arbitrary values of ϕ, θ coincides with the solution found in [83] for 4d 
SYM. The embedding, in global AdS (t, ρ,ϑ,ψ), takes the form [47, 84–86]

t = τ , ρ = ρ(σ), ϑ =
π

2
, ψ(σ) = σ, θ1 = θ1(σ), α = ϕ1 = 0,

� (12.3)
with ρ , θ1 expressible analytically in terms of Jacobi elliptic functions. The AdS coordinate 
ψ varies between [ϕ/2,π − ϕ/2] and the CP3 coordinate θ1 in [−θ/2, θ/2]. The leading order 
expression for Γ1/2 in (10.2) at strong coupling is obtained from the string on-shell action 
stripping away the temporal extension. Expanding around the straight line configuration 
θ = ϕ = 0 one finds [83]
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Γ1/2 =
√

2λ
[

1
4π

(θ2 − ϕ2) +O((θ,ϕ)4)

]
,� (12.4)

which vanishes for the BPS configurations θ = ±ϕ and perfectly matches (10.6) using (12.7).
Fermionic Latitude: this is an adaptation to ABJM of a solution found in [87] for 4d SYM, 

with non trivial profile in internal space. The string solution spans a disc at fixed time in global 
AdS and a cap bound by an S1 ⊂ CP3

t = 0, sinh ρ(σ) =
1

sinhσ
, ϑ =

π

2
, ψ(τ) = τ , sin θ1(σ) =

1
cosh(σ0 + σ)

, ϕ1(τ) = τ , α = 0.

� (12.5)
As we approach the AdS boundary σ → 0 the worldsheet describes a circle in internal space, 
sin θ1(σ) → sin θ0 = 1/coshσ0. As σ → ∞ the worldsheet closes up, θ1(σ) → 0, resulting 
in a disk topology. A supersymmetry analysis shows that 4 out of the 24 supercharges are 
preserved, hence, the solution is 1/6 BPS for generic values of θ0 . For σ0 → ∞ the worldsheet 
is fixed in internal space, (12.5) reduces to the AdS2 ⊂ AdS4 geometry originally found in  
[85, 88] and supersymmetry enhances to 1/2 BPS.

The identification of the dual Wilson loops was elucidated in [50]. The worldsheet (12.5) 
describes the 1/6 BPS fermionic loop presented in sections 7 and 8. Indeed, the MI

J matrix is 
reconstructed from the string endpoints in CP3 ⊂ C4 in terms of four complex coordinates zI. 
Exploiting the ansatz MI

J = δI
J − 2żJ ˙̄zI/|ż|2 proposed in [7] one obtains (7.5) with q = cos θ0. 

The leading contribution to the fermionic latitude in the fundamental representation at strong 
coupling arises from the on-shell worldsheet action, which after appropriate regularization 
gives

〈W fer(q)〉 ∼ eπ
√

2λ cos θ0 .� (12.6)

This result coincides exactly with the expansion of (8.4) at strong coupling. Moreover, it also 
provides a non-trivial check of the strong coupling expansion of the Bremsstrahlung function 
(11.5)

B1/2 =

√
2λ

4π
+O(1).� (12.7)

12.3. The unknown: symmetry is not enough

The above examples are the only Wilson loops for which the dual worldsheets is identified. All 
other classical string solutions are expected to be dual to Wilson loops with some MI

J and ηI 
couplings preserving locally U(1)× SU(3), but the exact form has never been worked out. So 

Figure 4.  Left: the generalized cusp’s dual worldsheet sits on the geometrical cusp ϕ 
at z  =  0 and spans a great arc of amplitude θ in CP3. Right: string dual (12.5) to the 
latitude Wilson loop (7.5) with q = cos θ0. Pictures by E. Vescovi.
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we really have a full holographic dictionary for Wilson loops that are globally BPS or break 
SUSY at points (cusps).

Even less is know for the 1/6 BPS Wilson loops. Based on the SU(2)× SU(2) R-symmetry 
of the bosonic loops, it was suggested in [5, 7], that they should be dual to the 1/2 BPS world-
sheet ‘smeared’ over CP1 ⊂ CP3. This statement has not been precisely defined and in fact 
smearing only over one CP1 breaks the Z2 symmetry between the two SU(2) factors. It is even 
less clear how to represent all the 1/6 BPS fermionic Wilson loop interpolating between the 
bosonic and the 1/2 BPS loops found in [55]. Could they be realized in terms of mixed bound-
ary conditions as in [89]? 

Further questions arise for Wilson loops in high dimension representation, where in the 
context of N = 4 SYM in 4d the holographic duals are D3-branes, D5-branes, or ultimately 
‘bubbling geometries’ [90–93]. The analog of this in 3d has also not been resolved.

A D6 brane solution which is 1/6 BPS was found in [5], but no 1/2 BPS analog is known. 
There is a 1/2 BPS D2-brane (or M2-brane, in the M-theory frame), but unlike the 1/2 BPS 
Wilson loop, it has a continuous modulus and was identified as the holographic dual of a vor-
tex loop operator [94]. The back-reaction of this brane on the geometry is known in terms of 
bubbling geometries [95], but only in cases preserving 16 supercharges, so for k = 1, 2.
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13.  Holography for ABJM Wilson loops II: quantum strings

Valentina Forini1,2 and Edoardo Vescovi3
1  Department of Mathematics, City, University of London, Northampton Square, EC1V 0HB 
London, United Kingdom
2  Institut für Physik, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 
Berlin, DE
3  The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom

The minimal surfaces reviewed in section 12 are the supergravity, saddle-point approximation 
of the open string partition function holographically dual to the Wilson loop expectation 
value. Quantum string corrections may be evaluated in a semiclassical fashion as an expan-

sion in inverse powers of the effective string tension, in this case T = 2
√

2
(
λ− 1

24

)
. In the 

planar limit N, k → ∞ and λ ≡ N/k finite, fermionic Wilson loops at strong coupling are 
then computed expanding perturbatively the path integral for a free, fundamental type IIA 
Green–Schwarz string in the AdS4 × CP3 background with Ramond–Ramond four-form and 
two-form fluxes

〈W�〉 = Zstring ≡
∫

DδXDΨ e−SIIA[Xcl+δX,Ψ] T�1
= e−T Γ(0)[Xcl]−Γ(1)[Xcl]− 1

T Γ
(2)[Xcl]+...,

�

(13.1)

where Xcl is the classical solution, δX  denote the quantum fluctuations of the bosonic string 
coordinates, Ψ stands for the 10d Majorana–Weyl spinors and T Γ(0) ≡ Scl is the classical 
result, a suitably regularized area of the minimal surface. While the computational setup for the 
quantum correction in (13.1) is substantially the same as in the AdS5 × S5 case, the absence of 
maximal supersymmetry in the AdS4 × CP3 background makes the construction of the corre
sponding superstring action non-trivial. Also, the more complicated structure of the background 
fluxes results in considerably more involved spectrum and interactions. In general, computing 
the one-loop fluctuation determinant Γ(1) and higher-order corrections presents all the subtle-
ties inherent to semi-classical quantization of strings in AdS backgrounds with fluxes [96].

13.1.  One-loop determinants

Evaluating Γ(1) requires only the quadratic part of the Lagrangian, and for the fermionic sec-
tor its structure is well-known in terms of the type IIA covariant derivative. The one-loop 
path integral is given by functional determinants of matrix 2d differential operators, whose 
coefficients have a complicated coordinate dependence. While the isometries of the classi-
cal backgrounds of interest here reduce the problem to one dimension, non-diagonal mass 
matrices may hinder the solution to the spectral problem. This is the case for the general-
ized cusp Γ(ϕ, θ), reviewed in section 10, at finite ϕ and θ (respectively, the geometric and 
internal angles deforming the straight line). Setting to zero one of the angles, say θ = 0, the 
mass matrices diagonalise and the bosonic part of the Lagrangian reduces to six massless and 
two massive scalars, while the fermionic part can be expanded in two massless and six mas-
sive 2-dimensional spinors. The resulting partition function comprises the kinetic operators of 
these scalars in the denominator and fermions in the numerator as [83, 97]

Γ(1) = − log
det2/2 (iγ̃aDa) det

3/2 (iγ̃aDa − 1
2ε

abγab
)
det3/2 (iγ̃aDa +

1
2ε

abγab
)

det6/2 (−∇2) det1/2 (−∇2 + R(2) + 4
)
det1/2 (−∇2 + 2)

.

�

(13.2)
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The dependence on the angle ϕ is via the metric of the classical string, which defines the Ricci 
curvature R(2), the spinor covariant derivative Da, the scalar Laplacian ∇2 and distinguishes 
curved Dirac matrices γ̃a  from the flat γa . The differential operators in (13.2) are compli-
cated functions of ϕ, and Γ(1) can only be given in an integral form. Analytic expressions 
can be obtained expanding in small ϕ (or small θ, if ϕ is set to zero) with standard meth-
ods, and a special care for boundary conditions of massless fermions [97]. The associated 
Bremsstrahlung functions—see (10.3) with N1 = N2 and in planar limit—agree to one-loop 

order B1/2 = Bϕ
1/6 =

√
2λ

4π − 1
4π2 +O(λ−1/2) and are consistent with the field-theory predic-

tions in section 1123.
The case of strong-coupling quantum corrections for smooth, supersymmetric Wilson 

loops is much more subtle. The one-loop string partition function for the 1/2 BPS circle [98] 
disagrees with the matrix model, something attributed to unknown, overall numerical factors 
in the measure of the path integral. The latter are believed to cancel in the ratio of partition 
functions for loops with the same topology. Indeed, the prediction for the latitude-to-circle 
ratio of the matrix models in (3.3) and (8.3) has been matched. For small latitude angle, this 
was obtained in [99] evaluating Γ(1) in a perturbative heat-kernel approach. For finite latitude 
angles, phase-shift [51] and Gel’fand-Yaglom [52] methods can be used, where a key point 
(developed first in [100]) is how to maintain diffeomorphism invariance in the regularization 
procedure. It is customary to evaluate determinants on the curved geometry transforming it to 
the flat cylinder, working namely with conformally rescaled operators, e.g. Õ = Ω2(σ)O for 
Laplacians. This transformation is singular at σ = ∞ (tip of the worldsheet disk) and requires 
an IR cutoff which, to be diffeo-invariant, must necessarily depend on the latitude angle. The 
resulting determinants read then

detO =

(
detO
det Õ

)

anomaly

(
det Õ
det Õ∞

)

cylinder

det Õ∞.� (13.3)

Above, the first factor is the conformal anomaly, which cancels among all operators as it 
should in a consistent string theory. In the second factor, where Õ∞ denote the asymptotic 
(Klein–Gordon and Dirac) operators, the IR regulator eventually cancels off, but a finite resi-
due remains in the third factor. This ‘IR anomaly’ and a special choice of boundary conditions 
for massless fermions are the non-trivial contributions ensuring agreement with the field-
theory prediction [51, 52].

13.2.  Higher orders

Beyond one-loop, the string action expanded near a classical background is formally non-
renormalizable [101]. The most efficient setup to verify explicitly UV finiteness is an AdS 
light-cone gauge-fixing for the string action [102]. This is used in [103] for the evaluation of 
the light-like Wilson loop to two-loop order at strong coupling, which is the state of the art in 
AdS4 × CP3 sigma-model perturbation theory. In the light-like limit the Feynman diagram-
matics simplifies and standard techniques allow the reduction to a basis of two scalar integrals. 
Dimensional regularization, together with powerful cancellations of logarithmic divergent 

integrals, leads to a finite Γ(2). The resulting h(λ) =
√

λ
2 − log 2

2π − 1
48
√

2λ
+O(λ−1) matches 

the integrability prediction for the ABJM cusp anomaly (14.7) [104, 105].

23 The lack of a holographic dual of the bosonic Wilson cusp prevents a genuine computation of Bθ
1/6 and a check of 

Bϕ
1/6 = 2Bθ

1/6.
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13.3.  Future directions

In the BPS cases, it would be important to have a better understanding of individual Wilson 
loops rather than their ratios, e.g. proving the triviality of the string one-loop partition func-
tion for the 1/6 BPS fermionic latitude [8] recently considered in [51]. A remarkable develop-
ment for our understanding of the string path integral (both in the AdS4 × CP3 and AdS5 × S5 
backgrounds) would come from giving an intrinsic string-theory derivation of the exact local-
ization results, calculating the one-loop exact determinant for string fluctuations around the 
appropriate localization ‘worldsheet locus’. In the non BPS case, data at finite coupling may 
be obtained with lattice field theory methods, as in [106], discretizing the Lagrangian of [102] 
expanded around the chosen minimal surface and using Monte Carlo techniques. Another 
stimulating direction, on the lines of [82], is to use the Type IIA action expanded in fluctua-
tions near the 1/2 BPS straight line (AdS2) minimal surface to evaluate correlators of string 
excitations via Witten diagrams. This should give the strong coupling prediction for the corre-
lators of elementary operator insertions on the Wilson line with protected scaling dimensions, 
see section 9, defining a defect CFT1 living on the line.
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14.  Integrability I: the interpolating function h(λ)
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rue Lhomond, 75005 Paris, France; Also at Institute for Information Transmission Problems, 
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14.1.  Background

A key feature of the ABJM theory is integrability, i.e. an infinite-dimensional hidden sym-
metry which emerges in the ’t Hooft limit and leads to a plethora of nonperturbative results, 
especially for the spectrum of conformal dimensions/string states (see [107] for a review). 
This parallels a similar development for the 4d N = 4 super Yang–Mills theory [108]. While 
this property remains a conjecture, it has been extensively tested for the case of equal gauge 
group ranks N1 = N2 when the corresponding ’t Hooft couplings λi = Ni/k  become equal 
λ1 = λ2 = λ (while Ni and k tend to infinity). We mostly focus on this regime. One major 
outcome of the integrability program is a finite set of functional equations, known as the 
Quantum Spectral Curve [109], which provide the exact spectrum of anomalous dimensions 
of all local single-trace operators [110]. However, the result for ABJM is given in terms of 
an interpolating function h(λ), which enters all integrability-based results (for example, the 
giant magnon dispersion relation (15.2) discussed in the next chapter) but itself is not fixed 
by integrability.

14.2.  Fixing h(λ)

Remarkably, one can make a proposal for the exact form of h(λ) by relating an integrability 
calculation with the matrix model arising in the localization description of the 1/6 BPS Wilson 
loop presented in sections 3 and 4 [105]. The idea behind this link comes from the observation 
that in N = 4 super Yang–Mills the expectation value of a circular Wilson loop is similar to 
the anomalous dimension of an operator built from L scalars and S covariant derivatives in the 
limit when S → 0 [111]. It is natural to expect that some link of this type should also exist in 
ABJM theory. For ABJM one can use integrability to compute the anomalous dimension ∆ of 
an operator with twist L and spin S, when S is small,

∆ = L + S + γL(λ)S +O(S2),� (14.1)

where γL(λ) is a nontrivial function of the coupling known as the slope function. In [105] it 
was computed from the Quantum Spectral Curve analytically, and the result can be written 
concisely using building blocks defined as

∮
dy

∮
dz

√
y − e4πh

√
y − e−4πh

√
z − e4πh

√
z − e−4πh

yαzβ

z − y
� (14.2)

with the integrals going around the cut [e−4πh, e4πh]. As any integrability prediction, this result 
is written in terms of h(λ). One can notice that the integrand here has four branch points, at

z1 = e4πh, z2 = e−4πh, z3 = ∞, z4 = 0.� (14.3)

Similarly, the integrand in the localization result of section 4 for the 1/6 BPS Wilson loop also 
has four branch points, located at a, 1/a, b and 1/b in the notation of that chapter. Requiring 
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that one set of four branch points can be mapped to the other one by a conformal transforma-
tion fixes h in terms of a and b, and gives as a result

h =
1

4π
log

(
ab + 1
a + b

)
.� (14.4)

Using the explicit form of a, b from equations (4.5) and (4.7), this gives

λ =
sinh(2πh)

2π 3F2

(
1
2

,
1
2

,
1
2

; 1,
3
2

;− sinh2(2πh)
)

,� (14.5)

which is an equation that determines h as a function of the coupling λ.

14.3. Tests of the conjecture

While this proposal for the exact form of h(λ) may seem rather bold, it has passed several 
highly nontrivial tests. Namely, it reproduces all known data at weak coupling (four-loops, i.e. 
the first two coefficients [112, 113]) and at strong coupling (the first two terms in the expan-
sion [114–116]), with the corresponding expansions being

h(λ) = λ− π2λ3

3
+O(λ5), λ → 0,� (14.6)

h(λ) =

√
1
2

(
λ− 1

24

)
− log 2

2π
+O(e−π

√
8λ), λ → ∞.� (14.7)

Curiously, the 1/24 shift at strong coupling matches the anomalous AdS radius shift discussed 
in [21, 117].

14.4.  Extension to N1 �= N2

For the case of unequal gauge group ranks, tests of integrability have been much more scarce. 
Nevertheless, the very algebraic structure of the Quantum Spectral Curve makes it rather non-
trivial to introduce a second coupling into the problem, and it was conjectured in [118] that 
the integrability description remains the same as for N1 = N2, provided one uses a new func-
tion h(λ1,λ2) instead of h(λ). The above calculation then provides the same result (14.4) for 
h(λ1,λ2) where a, b are still the branch points in the localization approach which are now indi-
rectly fixed in terms of λ1,λ2 [20, 21]. Remarkably, this conjecture reproduces [118] all known 
data from the literature: one new coefficient at weak coupling at 4 loops [112, 113], the strong 
coupling behavior, a prediction [119, 120] to all orders in λ2 when λ1 → 0, and the expected 
invariance under the Seiberg-like duality which replaces (λ1,λ2) → (2λ2 − λ1 + 1,λ1). If 
correct, the proposal means that all integrability-based results computed for the λ1 = λ2 case 
immediately carry over to the case of general λ1,λ2 via replacing h(λ) by the new function 
h(λ1,λ2).

14.5.  Future directions

While the conjectured form of h(λ) has passed a variety of tests, it is obviously important to 
put it on firmer ground, especially in the case of N1 �= N2. At weak coupling this seems highly 
challenging, since new tests would involve a six-loop calculation. At strong coupling one may 
be able to compute in the dual string model the exponential instanton corrections indicated in 
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(14.7). A more definitive verification would be to compute one and the same observable from 
both localization and integrability, a promising candidate being the Bremsstrahlung function 
(see section 15). On a more conceptual level, the calculation described here provides a curi-
ous and rare link between the integrability and localization approaches, whose implications 
should be understood more completely. A fascinating possibility is that it could open the 
way to extend integrability beyond the planar limit, using as inspiration the calculation above 
where the branch cuts in the two pictures map to each other. In the localization approach the 
cuts of the spectral curve become discretized at finite N1, N2 [25], leading one to speculate that 
the same should happen to the cuts appearing in the integrability framework.
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15.  Integrability II: the question of the cusped Wilson loop

Diego H Correa
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15.1.  Background

The cusp anomalous dimension in N = 4 super Yang–Mills can be studied using integrabil-
ity [80, 81]. First, one can solve the spectrum of local operators on a Wilson line using an 
asymptotic Bethe ansatz. The spectrum is described in terms of magnons propagating in an 
open spin chain, in which the boundaries are associated with the Wilson line at each side of 
the local operator. The reflection matrix of magnons is determined to all-loop order using 
the symmetries common to the Wilson line and the operator used as the reference in the 
Bethe ansatz. Then, rotating the reflection matrix of one boundary, one gets the spectrum of 
operators inserted in a cusp. Finally, the solution to the Thermodynamics Bethe Ansatz (TBA) 
equations for the ground state, when the size of the insertion is shrunk to zero, gives the cusp 
anomalous dimension.

When we turn to ABJM theories, since matter fields are bifundamentals of U(N1)× U(N2), 
the spin chain describing the spectral problem is alternating, because distinct types of fields 
occupy odd and even sites. One can take for instance

(C1C̄3)�,� (15.1)

as a reference state invariant under an SU(2|2) ⊂ OSp(6|4) [121]. Fundamental excitations 
can be of type A or B [122], depending if they propagate over odd or even sites of the chain. 
There is an additional symmetry U(1)extra, under which type A and B magnons have opposite 
charge, and magnons accommodate in a (2|2)A ⊕ (2|2)B  representation of SU(2|2) [121]. The 
numerical values of the central extensions of the algebra su(2|2), that characterize the repre-
sentations, can be related to the energy and momentum of the magnons. For short representa-
tions, a relation between them gives rise to a dispersion relation [123]

E( p) =
1
2

√
Q2 + 16h2(λ) sin2(p/2).� (15.2)

This includes an unspecified function of the coupling which in ABJM is non trivial. The 
residual symmetry SU(2|2)× U(1)extra constrains the scattering of magnon excitations on the 
chain. The alternating nature of the spin chain splits the S-matrix into blocks, but the U(1)extra 
implies that the type of magnon A/B is preserved in the scattering. Then, symmetry fixes the 
AA, BB and AB scatterings to the famous SU(2|2) S-matrix [124] known to specify an inte-
grable bulk scattering problem.

The very first question to address in the hope that the cusp anomalous dimensions in ABJM 
theories could be computed using integrability is whether ABJM Wilson loops impose inte-
grable open boundary conditions for insertions along the loop. This spectral problem would be 
integrable if the open spin chain Hamiltonian for the mixing of the operator insertions could 
be diagonalized with a Bethe ansatz. For that it is necessary that the reflection matrix satis-
fies the Boundary Yang–Baxter Equation (BYBE). Since the ultimate goal would be to obtain 
all-loop expressions for the cusp anomalous dimension, one would need to determine all-loop 
expressions for the reflection matrix of magnon excitations. Thus, a way to proceed is to use 
the symmetries common to the Wilson loop and the Bethe ansatz reference state to constrain 
the reflection matrix and see if the latter is consistent with the BYBE.
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15.2.  Symmetries

Common symmetries and supersymmetries between the Wilson line and the reference vacuum 
state depend on the relative orientations in the internal space and can be sought either for 1/6 
or 1/2 BPS Wilson lines.

The bosonic 1/6 BPS Wilson line with MI
J = diag(−1 − 1, 1, 1), as in (2.1), is invariant 

under supersymmetry transformations generated by Θ̄12
+  and Θ̄34

−
. If one considers it as the 

boundary to an insertion (C1C̄3)�, the two SU(2) of the vacuum symmetry SU(2|2) are broken 
and only Θ̄12

+  survives. Thus, the overall residual symmetry is in this case U(1|1)× U(1)extra. 
The most general right reflection matrix would be in principle of the form

R =

(
RAA RAB

RBA RBB

)
.� (15.3)

However, since the U(1)extra is preserved by the boundary, the mixing of different types of 
magnons is ruled out. Commutation of the action of R  with the generators of the residual sym-
metry U(1|1) restricts the form of the reflection matrix but leaves two undetermined functions 
in each block

RAA = R0
AAdiag(1, rA, e−ip/2,−rAeip/2), RBB = R0

BBdiag(1, rB, e−ip/2,−rBeip/2).� (15.4)

The BYBE, using (15.4) and ABJM bulk S-matrix [124], would not be satisfied for generic 
undetermined functions unless they were further restricted to specific expressions.

The 1/2 BPS Wilson line seems more promising as one expects a larger residual symme-
try. In the case it has MI

J = diag(−1, 1, 1, 1), it is invariant under transformations generated 
by Θ̄1J

+  and Θ̄IJ
−

 with I, J �= 1. Under these supersymmetry transformations, the supercon-
nection changes as a supercovariant derivative and P exp(i

∮
L) changes covariantly, so one 

needs an appropriate U(N1|N2) local insertion Y  to preserve some of the original supersym-
metries of the Wilson line. For an insertion involving C1C̄3 it is possible to preserve the super-
symmetries generated by Θ̄12

+  and Θ̄14
+ . These supersymmetries altogether with the surviving 

SU(2) R-symmetry give rise to a residual SU(2|1). The blocks in a reflection matrix of the 
form (15.3) would be further constrained in this case

RAA = R0
AAdiag(1, 1, e−ip/2,−eip/2), RAB = R0

ABdiag(1, 1, e−ip/2,−eip/2),
�

(15.5)

and similar expressions for RBB and RBA. The BYBE would be satisfied in this case when 
R0

AB = R0
BA = 0 and there is no mixing between type A and B magnons.

15.3.  Open problems

The residual symmetry analysis presented here is not found in the literature, but various col-
leagues who have considered the problem in the past have arrived to similar conclusions [125]. 
In both cases discussed, the residual symmetry does not seem to be enough to indicate whether 
the problem is integrable or not, either because some functions in the reflection matrix are left 
undetermined or because the mixing between type A and B magnons is not ruled out. It might 
be useful to do a perturbative derivation of the 2-loop open spin chain Hamiltonian for the 
mixing of the operator insertions. If no mixing between type A and B magnons is observed, 
one might take this to hold for all-loops as a working assumption.

Even in that case, one still needs the overall dressing phase of the reflection matrix. To 
determine it, one should derive a boundary crossing condition and look for the appropriate 
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solution. In particular, introducing cusp angles by rotating one of the reflection matrices and 
considering the leading Luscher correction in the weak coupling limit, one should be able to 
reproduce the perturbative result for the cusp anomalous dimensions computed in [65] and, for 
small cusp angles, the perturbative Bremmstrahlung function (10.7).

If the TBA program could be completed for ABJM Wilson loops and the Bremmstrahlung 
function could be computed exactly as in N = 4 super Yang–Mills [74], the comparison with 
the localization results of section 11, for example (11.8), could provide another way of deter-
mining the function h(λ) seen in section 14.
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