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2. 

ABSTRACT 

are two solitary species with a sessile mode of life, coexisting 

in high densities in the mid-intertidal. Our aim was to show 

that spatial interactions between both species on a rocky shore 

could be described by means of a stochastic model, in our case a 

Markovian system with an infinite number of components inte-

racting locally. To check the model, simulations were compared 

to the real data through a family of functions which discrimi­

nate between different spatial chaotic configurations. 

Introduction 

are the two dominant · mid-intertidal space-occupants of the rocky 

shores of Sao Paulo state. Both are solitary suspension-feeders 
--
. with a sessile mode of life. Dispersion is assured by a great 

number of planktonic larvae, a reproductive strategy common for 

tropical marine organisms (Crisp, 1974). These larvae will even 

tually settl~ and metamorphose on suitable empty spaces. Barna -

cles are able to colonize almost any hard substratum, and are 
. 

· among the first organisms to settle on primary space (Crisp and 
' 

Barnes, 1954, Crisp, 1961). Mussels, on the other hand, attach 

preferentially to filamentous structures and rough surfaces 
. , 

(Penchaszadeh, 1973)~ arriving in a later successional stage. 
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Both species are potentially able to populate heavily 

a great extension of the coast. However, they coexist in a 

patchy distribution due to important temporal and spatial 

fluctuations in the density of both populations, which can even 

lead to the numerical dominance of one or the other alternately. 

Patches are common features of the intertidal landscape and are 

the consequence of different successional stages in nearby areas 

(Paine and Levin, 1981). It is quite possible that the Chthama1U6 · 

-Bll.a.ch.ldon:tu patchy configuration could be explained merely by 

factors such as recruitment and mortality patterns, and 

especially spatial interaction between adjacent individuals of 

the two species. 

Our starting point was a series of observations 

carried out by Jorge A. Petersen, John P. Sutherland and Sonia 

Ortega from 1979 to 1982. Our purpose was to define a simple 

mathematical model, more precisely a Markovian system with an 

infini~e number . of components interacting locally, that could 

throw -light on the primary rules responsible for the C. bi~~inua~u& 

and B. 40li4ianu~ community development. 

Study site and photographic records 

The model was based on- photographic records taken ~Y 

J.A. Petersen from the rocky shore at the Marine Biological 

Ce~~er (CEBIMar) of the Univ~rsity of Sio Paulo, at Si6 Sebastii9, 
, 

state of Sia Paulo . (Fig. 1). 
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Sets of 100 cm 2 fixed quadrats were photographed 

bimonthly over a period of 3 years (Nov. 1979 to Dec. 1982) on 

protected and moderately exposed areas. Each set consisted of 

several control and experimental quadrats positioned on nearly 

horizontal mid-intertidal rocky surfaces. Experimental quadrats 

were scraped and burnt, and the observation of new sets was 

initiated in April and November of each year in order to analyse 

the recruitment patterns of each species. 

We restricted our study to a series of sets totaling 

20 pairs of control-experimental quadrats, which belonged to 

the moderate 1 y exposed site, distributed over an area of approx i m~ 

tely 13 m2 • 

The model 

Our model is a Markov chain, no~-homogeneous in time, 
-

a·ssuming values in the set of the functions from Z 2 to { 0,1,1.1}. 

The following conventions were established: the rocky coast was 

represented by the z2 grid; _each point of intersection of Z2 could 

be empty or occupied by no more than one individual of any of the . 
two species tonsidered. Each spe6ies had a ~articular pattern of 

behavlour, all individuals of the same species behaving in the 

same way. Thus a configuration of organisms was represented by 

a function x: 7l.. 2 .... - {0,t ,1.1} , 0 indicating an empty space, 1 

represe~ting C. blAAlnuatuA and 1.1 B. AollAlanuA (1). Therefore, 

.. - - ., &... . 
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the occupation of a generic poin~ (i,j) of ~ 2 is expressed by 

x(i,j), which is the value of the function x at the point of 

intersection (i,j). Each temporal unit of this Markov chain 

corresponds to 3 months and only interactions between adults of 

the two populations are taken into account. 

5 • 

Let the Markov chain be represented by (X ) . t t=0,1,2, ... 

Thus, if Xt(i,j) = 1, for instance, at the end of trimester t 

the point (i,j) of the rocky coast is occupied by a barnacle. 

The transition probabilities of the chain are thus defined: 

· given k integer (i 1,j 1), .•• ,(ik,jk) in z 2 , and a1,a 2 , ... ,ak in 

{0,1,1.1} 

P{Xt+1(i,,j1) = a,, ••• ,xt+1{1k,jk)=ak 1Xt=X) = 

k 
a Il P(Xt+1<i1,j1)=a1 IXt=x). 

R,a1 

- ·'for-a·ny.·•c·ohfiguration x and instant t. Furthermore 

will be a function of the remainder of t/4, a, the x(i,j) value, · 

and the number of c. b.lti~~ and B. ~o¼.ia.nM at the 4 

nearest positions of (i,j}. Let R
0
(.,.,.} be the function in 

which n is the remainder of t/4 (e.g., R0 ~efines the particular 

_ rules of the model . during the first trimester considered, an so on), that is · 

( 1} - · This is an interesting convention for working with the total number of 
individua1s of both species inside a sufficiently small area. For ins­
tance, . i_f the sum obtained is 4. 1 , the total number of individuals is 
4, 1 being B. ~ol,i.J,.ia.fU.L6 and 3 C. b.ui~i.nua.tu..6 . 
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P(Xt+1(i,j) = a I xt = x) = 

= Rn(a,x(i 1 j). x{i+1,j) + x(i-1,j) + x(i,j+1) + x(i,j-1)) 

The functions Rn are therefore defined in the 

following way 
. .. ....... -· . .·.•.~---

• . ·••'. ~ - l 

R0(1.1,0,z) = p1 

R0{0,0,z) = 1-p 1 

R
0

(1 ,O,z) = p 2 

. R0(0,0,z) = 1-p2 

R0(0,1,z) = q2 

R0(1,1,z) = ~:-q 2 

R0 (0,1;z) = q 1 

R0 (1,1,z) = 1-q 1 

R0 c.o, 1. 1 , o > = 1 

- Ro ( 1. t, 1. 1 , z) = 1 

R1(1,0,z) = Pz 

R1(_0,0,z·) = 1:-P2 

if z ~ 2 

ifzS1.1 

if dec(z) i:: 3 

_if z ;.e 0 

· if dee ( z) < 3 

(2) - dec{z) is the· decimal part of the· number z: dec{4.3) = 3 

6. 
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R
1
(o,o,z) = 1 

R
1 

(0, 1,z) = q2 

R1(1,1,z) = 1-q2 

R 
1 

(0 , 1 , z ) = q1 

R
1
(1,1,z) = 1-q, 

R1(0,1.1,0) = 1 

R
1
(0,1.1,z) = q 1 

R
1
(1.1,1.1,z) = 1-q 1 

R2 (1,0,z) = p2 

R2 (0,0,z) = 1-p2 

R2 (0,1,z) = 92 

R 2 ( 1_, 1 , z ) = f'.- q 2 

if dec(z) ~ 3 

if dec(z) ~ 2 

if dec(z) ~ 3 

if dec(z) = int(z)(
3

) and z ~ 0 

if dec(z) ~ int(z) and z ~ 0 

if dec(z) $ 2 

if dec(z) c: 3 

if dec(z). ~ 2 

(3) irii(z) is -the integer part of the number z: int(4.J) = 4 

7. 
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( 0, 1 , z) = q 
1 

R2.(1,1,z) = 1-q 1 

R2(0,1.1,0) = 1 

R2 ( 1 • 1 , 1 • 1 , z) = 1 

R3 (1,0,z) = p2 

R
3

(0,0,z) = 1-p2 

R3 (0,1,z) = q2 

R3 (1, 1,z) = 1-q 2 

R3 (0, 1,z) = q 1 

R3(1,1,z) = 1-q 1 

R3(0,1.1,0) = 1 

R
3 

( 1. 1 , 1. 1 , i_) · = 1 

.. . . . 

. 8. 

if dec(z) ~ 3 

if z ;t 0 

if dec(z) s 2 

if dec(z) ;;: 3 

if dec(z) S 2 

if dec(z) ~ 3 

if z ;t 0 
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Justifying the model 

Initially the use of a countable set of numbers, ~ 2 , 

to represent the continuous surface of the rocky coast may seem 

improper. Nevertheless, our choice is justified by the well 

defined shape and size of C. bi~Jinuatu4 and 8. ~oli~ianu~. 

Configurations of individuals of these two species have strong 

geometric constraints and are essentially discrete. Th~re are 

also a limited number of individuals that can occupy a circuns­

cribed surface, thus making reasonable the utilization of Z 2 

instead of R2 to represent configurations of organisms by punctual 

processes. This is easier to understand if we think of a box 

full of black and white buttons, of similar or dissimilar 

diameters, without superposition. 

The grid ~ 2 is not the only possible choice to 

represent the base of the configuration. Grids of other 

geometries (hexagonal, for example) would adjust better to the 

shape ~f the individual. As we consider this to be of minor 

importance, the computational simplification of Z 2 was preferred. 

In order to account ~or the large number of factors 

affecti~g the evolution of the comm~nity, it was natural to use 

a stochastic -model. Since Boltzmann's wo~k (2e~ Cohen and 

Thirr?ng, 1973) we know this is ·the right manner to deal with 

deterministic systems which have a great number of components. · 

Being a Markov chain, our mod~l does not take into account the 

agi of the organisms, and it is assumed that the state of one 

point at a given inst~nt refl~cts all its past evolution. The 

ch o i c e of a Ma r k o. v ch a i n -w a s · b a s e d on the a b sen c e of em p i r i ca l . · 
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evidence as to the longevity of the two species and on photographic 

observations leading to the belief that the organisms were 

predominantly killed instead of dying of old age. 

In our model, each individual interacts only with 

its 4 nearest neighbours, such that 

is only ·a function of a, n, x(i,j), x(i±1,j) and x(i,j±1). This 

was decided after verifying that the effects of the reproductive 

· strategies, larval settlement, or mechanisms of disappearance 
• 

acting on a given individual were restricted to its adjacent 

-organisms. These kinds of models are called in the literature 

Markovian systems with an infinite number of components 

interacting locally (Spitzer, 1970, Ligget, in press). 

Our model is spatially homogeneous (there is no reason 

. for a greater number of grooves to be clustered in a particular 

area of the rock), so if x and y are two configurations such that 

y(0,0) = x(i,j). 

y(±1,0) = x(i±1,j), 

y(0,±1) = x(O,j±1) then 

P(Xt(i,j) = a xt - x) = 

_c P(Xt(O,O) = a I xt = y) 

. We chose - a temporal unit so that it would denote 

meaningful changes in the configuration of the organisms without 

overlapping two important effects. The division in quarters of 

the year ~istinguished, for example, the heavy recruitment of 
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B. holihianuh, visible from mid-spring to mid-summer, from the 

period of significant mortality of this species, which occurs 

from mid-summer to mid~autumn. Due to the temporal unit chosen, 

it became reasonable to represent only the interaction among 
I 

adults . 

The biological parameters taken into account were: 

1. recruitment of Chtharnalu4 bihhinuatuJ: barnacles are able to 

settle on primary space and we have indications that 

C. bihJinuatuJ recruitment occurs during the whole year 

(J. A. Petersen, personal communication). Therefore, indi­

viduals of this species can occupy any bare space of the grid. 

In our model we will let the barnacles recruit all year 

round on empty intersections with less than 3 B. holiJianuh 

as neighbours. This rule accounts for the death of C. 

bihhinuatuh due to overgrowth caused by the mussels, while 

it ,also counts indirectly the age of the barnacles, since 

only the old ones can have 3 or 4 mussels as neighbours. 

2. · recruitment of B~achidonteh holihianuh: this species has 

maximal recruitment in late spring and early summer and 

attaches preferentially to irregular surfaces. As thi 

quadrats were not established over cracks, and settlement 

on algae was not common, the first B. Jolihianuh recruited 

on or between the barnacles. In our model each individual 

of this species recruits only during one quarter of the year, 

if it will be surrounded by at least 2 organisms of any 

species. 



3. death of C. bi-0-0lnuatu-0: it seems to be caused especially 

by overgrowth ot adjacent B. -0oli-0ianu6. Therefore, we 

1 2 • 

will let the barnacles vanish every quarte; of · ~he year with 

. different probabilities depending on the number of 

neighbouring mussels. 

4. death of B. Joli-0ianu6: during late summer there is a 

significant mortality of the mussels due to desiccation and 

high temperatures (J.A. Petersen, personal communication). 

This species is more susceptible to these abiotic factors 

than C. bi-0-0inuatu6 partly owing to differences in shell 

anatomy and body colour. Also B. -0oli-0ianu6 individuals cannot 

remain isolated. In our model, mussels left without neighbours 

are eliminated from the array, and during one quarter of the 

year they disappear, each one independently of the others, 

with different probabilities depending on the number of 

neighbourin~ barnacles. 

D~ad barnacles in the photographic records were considered 

empty spaces in the simulations, since they do not remain attached 

for a long period. C. bi-0-0inuatu-0 and 8. ~~li6ianu6 can_ be 

found piled up on the rocky coast, although this is not frequent; 
-therefore, this type of situation was excluded from the model: .· 

The simulations 

AS C • . bi66inuatu6 and B. -0oli&ianu-0 have a covering ·: 

area ~f roughly 0.5 cm in diameter, the simulations were plotted 

on a torus of 20 x 20 intersections in order to resemble the 



• 

• 

e 

approximate density of elements on a 100 cm 2 quadrat. The 

simulation records were compared to the control quadrats using 

the same 100-point reticulate applied to the latter . 

1 3. 

Each one of the 4 temporal units (or cycles) repre­

sented: mid-spring to mid-summer (R 0), mid-summer to mid-autumn(R 1), 

mid-autumn to mid-winter (R 2), and mid-winter to mid-spring {R 3). 

Simulations of 40, 100 and 500 cycles were run corresponding to 

10, 25 and 125 years respectively. 

We adjusted the probabilities of the model in order 

to picture an average quadrat of either all the quadrats placed 

near each other at the same level of the shore or of only one 

quadrat throughout the period of observations (spatial and temporal 

variation). 

The combined effects of minimal variations in wave 

shock, insolation, winds and other factors we did not consider may 

cause individual quadrats to correspond to different parameters 

in spite of their proximity and tidal level. This suggested the 

use of random probabilities independently chosen before each 

cycle which would, up to a certain point, compensate for the 

short observation period of the data (3 years) • 

Evaluation of the model 

To evaluate the accuracy of our model we needed cri­

teria to allow us to compare the results of the simulations with 

the real data. · An intuitive comparison would not lead us too far 
- -

because the images of both distributions gave a chaotic- ~~pression. 
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A point-by-point comparison would be as absurd as comparing in 

the same way two configurations of heads and tails obtained by 

throwing a hundred coins on a grid: the probability of a given 

point of the grid showing the same configuration (head or tail) 

is one half in both experiments. 

Therefore, to compare these two configurations in 

which chance was involved we used the following criteria: 

1) We first compared the empirical· densities of each species. 

Let 

d . 
c,p,y 

= points of the grid occupied by species c 
total number of points 

were pis the period considered in the year y. 

By analogy db,p,y is the density of species bin ·the period 

p and in the year y. 

14 •. 

We h·ave used the adjective empirical to refer to the result 

of one simulation. While the model does not specify _: determi­

nistically what will happen in each point of the grid, a compute~ 

simulation does so since it describes a function of the sample, 

Xt(w), · instea_d of describing a family of random variables-. Xt . . 

-- - .. 
Wh~n y tends to infinity these densities do not converge to 

a limit; they pulsate in a chaotic- way because the total number 

of points taken into account is small. To stabilize this chaotic 

behaviour we have calculated averages at longer and longer 

intervals of time (Cesaro mea·n, . in Choquet, 1964): if the limit · 

exists 
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N 
dc,p = lim-

1 l d N Y= 1 c,p,y 
for species c. 

In the same way we have db for species b. ,p 

15. 

We obtained 8 limit average densities (for C. bi-0-0inuatu-0, 

B. ~oli-0ianu-0, in the simulation periods Oto 3), strongly corre 

lated, therefore not enough to ascertain the 5 parameters of 

our model (p
1

,p 2 , q1 ,q 2 , q3). 

2) The second step of our analysis took into account the geo­

metric shape of the configurations. Intuitively a very homogeneous 

configuration as mussels on the black squares of a chess-board 

and barnacles on the white ones is very different from filling 

one half of the board with mussels and the other with barnacles, 

the densities of the two species being equal in both cases (see . 

Fig. 2). 

One of the.simplest ways to distinguish two functions with 

- the same average is to consider the square differences between 

them. Unfortunately we could not apply this procedure to the · 

indicatrix function of each species because· the two indicatrix 

functions <1> 1. and cj> 2 , leading to· the same density d, · would take 

the values one or zero exactly the same numb e r of times. Therefore, 

the square deviations of cj) 1 and <1> 2· are equal: 

= f 
. 
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This situation changes when the function takes more than two 

values. - So we decided to consider functions on the discrete 

segment . (1, ••. ,10), cutting a square Q by vertical and horizontal 

lines. This idea came from integral geometry (see appendix). 

Let f~,p,y(j) be the number of individuals of species c, 

placed in the j-th column at period p of the year y, and fh P Y(j) 
C , , 

the number in the j-th row. In the same way we can define 

f~,p,y(j) and f~,p,y(j) for species b. Thus 

1 0 · 1 0 
fh ( . ) }: f~ P Y(j) I c,p,y J 

d = 
j = 1 ' , 

= 
j = 1 and c,p,y 100 100 

10 V 1 0 
f~,p,y(j) j!1fb,p,y(j) 2 

d = = j = 1 
b,p,y 100 100 

To compare each function to its mean we consider 

· 10 
o(f) = 2 (f{j) f) 2 

j = 1 

1 10 
where f =nr l f(j). 

j = 1 

Therefore we obtain the square deviations 

(1° C 

• , p ,y 

1.P . . 
l (t· (j} ·- i· )2 • 1 .,p,y .,p,y . 

JC . 

--
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These values oscillate considerably due top and toy. The 

p represents seasonal fluctuations to which the distribution of 

the two populations is sensitive. To eliminate fluctuations in 

time we use the Cesaro mean once again. The values 

N , 1 a • 
T Y=1 .,p,y 

of the simulation seemed to converge afterwards, although in a 

slow way. 

The integer y can be substituted by the label of different 

sites at approximately the same tidal height of the seashore. 

Therefore, working with Petersen's data we have obtained an 

estimate of the spatial square deviations. That is, exchanging 

j and y allows us to measure spatial oscillations. Nevertheless, 

that would make sense if the number of years of observations 

taken into account have been on the order of 10 . 
. 

We defined a family of functions discriminating between 

various values of the parameters. To estimate the error of those 

functlons, a precise computation of the real data was compared _with 

a less time consuming procedure which caused a minimal counting 
- - . 

errpr (±1) dues misplacing C. bi66inuatu6, B. 6oll6l~nu6 ~nd b~re 

space. Jhe · Tittle -difference between _ both counting pro-
-cedures gave us an indication of the confidence interval 

we should adopt for the function d when comparing the simulations 

with the real data (Table I). 

......_ 
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There was a difference between the values calculated for the 

a functions of lines and columns for both the simulations and the 

real data. This difference in the real data could be a consequen­

ce of factors such as gravity and inclination of the surface. 

However the size of the quadrats (100cm 2 ) is certainly not enough 

to cause such a difference. Furthermore, the simulations show 

these same deviations which were reduced with a longer simu1ation 

time. This led us to believe that the difference observed in both 

cases is just an effect of statistical deviations which are 

expected in samples of small size. Nevertheless, the values of 

this difference gave us an indication of what should be the order 

of magnitude of the confidence interval for cr (Table I). 

Finally we looked for the probabilities that set the 

functions d and o within the confidence interval established by · 

the parameters of the real data. 

Simulations X reality 

L 

W i th a n a pp r op r i a t e ch o i c e o f p r o b a b i1 i t i es ( p 
1 

,'. •• , q 3 ) , th e 

simulations emulated reasonably well the den$ity variations of 

both species inside the quadrats as well as. variation of . thes~ 

densities along rows or columns (cr(f)) (Fig. 3) •. Values ford 

functions obtained from the simulations seemed to converge 

reasonably after 40 cycles (10 years) while the cr values fell 

within intervals of size 0.4 and 0.2 after 100 and 500 cycles 

respect i v e 1 y. -
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We analysed the results of simulations combining a wide 

range of different probability values to check for the ones which 

fell within the confidence interval based on the real data. We 

verified that the former matched with the real data for only a 

limited interval of q1 ,q 2 and q3 values. Therefore, we fixed 

q1,q 2 and q3 within that class of matching values (q 1=0.75, q2=0.15, 

q3=0.25) and ran _ simulations combining only the p1 and p2 values 

(0.2 to 0.8, interval of 0.05). We obtained practically a segment 

of a line, as far as the functions d and o are concerned (Fig. 4) . 

. As this curve is almost a line of positive inclination, to 

compensate for any increase of p1 we should proportionally increase 

. p2(D.4 ~ p1 ~ 0.65, 0.5 ~ p2 ~ 0.75). 

As far as the functions d and a a re concerned, it is possible 

to find probabilities 0 0 0 0 0 such that the values of p 1 , P2, q 1 ' q2, q3 

the empirical d and a are close to the values obtained with random 

probabilities. But if we computed the temporal quadratic dispersion 

T, this new function would probably distinguish the model with 

random probabilities from the model considered in this paper. 

However as Petersen's data covered only a period of 3 years, to 

calculate the observed quadratic dispersion T would not be 

statistically significant. Thus we stuck to the model with fixed 

probabilities. 

Stochastic models have already been proposed to describe 

ecological processes such as competition for a limited resource 
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and succession (Clifford and Sudbury, 1973, Horn, 1975, Usher, 1979, 

Greene and Schoener, 1982). An interesting aspect about working 

with stochastic -models is that they can, up to a certain extent, 

_predict the evolutionary trend of the process observed. Also, they 

are useful to discriminate among the factors involved, thus giving 

a clearer image of the role of those factors in the process. 

;· Patterns of recruitment and death were considered to be of 

major importance in our model because both species considered were 

solitary with a sessile mode of life. The arrival of larvae of both 

species can occur, independently form one another, wherever there 

is bare space. Therefore, we have a system composed of infinite 

boundaries where interactions occur, these being restricted to the 

nearest neighbours. Within the same given area the · total 

interacting perimeter of the boundaries is much greater in the case 

of solitary than colonial species. 

Mytilids are dominant competitors for space and can even be 

found as extensive monocultures (Dean, 1981, Paine and Levin, 1981, 

- Harms and Anger, 1983). However, B • .6oli..6i.a.nu.6 never completely 

dominated the community at Sao Sebastiao. The absence of 

competitive exclusion ·of C. bi..6.6inua.tu.& by B • .6oli.&ia.nu..6 seemed to 

be i consequence of: 1) recruitment of the mussels within a limited 

period_ of time; 2) barnacle recruitment all year round and 3) mass 

mortality of the mussels during the hot period of the year. 
-· 

Considering the situations where both species are present in a 

heavily occupied space, any increase in the recruitment of one - . . 
species should be accompanied by a proportional increase in the 

recruitment of the other. ·1f not; · coexistence of both species is_ 

compromi_sed. 
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Predation is frequently mentioned as a major factor 

preventing monopolization of space (Dayton, 1971, Paine and Levin, 

1981). Top predators found at Sao Sebastiao were the gastropods 

Thai-0 haema-0toma, Leucozonia na-0-0a and the crab E~Jphia gonag~a . 

However their density was very low at the level where 

C. bi-0-0inuatu-0 and B. -0oli-0ianu-0 coexist. Thus the effect of these 

carnivores was considered of slight importance. 

Herbivores frequently observed at that tidal level were 

Acmaea -0ub~ugo-0a, Litto~ina 6lava and Litto~ina zic-zac. Of these 

the bull-dozer Acmaea -0ub~ugo-0a is the major herbivore to affect 

the community. As it scrapes the substratum (Steneck and 

Watling, 1982) Acmaea affects the earlier stages of colonization 

by removing newly settled larvae. Since our model deals with 

interactions among adults the aspect of herbivory considered was 

the delay of the rate of occupation of bare space and not its 

effect on survival of the larvae. 

The main cause for space clearance, with the consequent patchy 

- structure within the community, was mass mortality of the mussels. 

Patchy configurations were distinguished through the o functions. 

Patchiness could also be measured, defining _ for each point of the 

grid occupied by species s a function for the number .of neighbours 

of the same species s. · The integral of this function on the torus 

would be: 1) zero, if species s wa~ positioned on the black 

squares of a · chess-board; 2) close to the area of the board (Q) 

ifs was filling every_ second column and 3) close to twice this area 

Q ifs was clustered on one half of the board (Fig. 2A, Band C). 



22. 

Although the model describes reasonably well the development 
' 

of the configuration of the Chthamalu6 b166inuat~h-B~achidonte6 

holihianuh community on a rocky coast, a longer observation period 

or else a greater . number of quadrats would have been more 

appropriate for the confidence intervals of the real data to be 

shortened and the probabilities of the model better defined. 
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Appendix 

The Radon transformation(Gel 'fand et al, 1966): 

Let f be a function from the plane to R. From f we 
A 

will obtain a new function . f . 

Let A be the space of all lines contained in the plane. 

This space A is a surface as a line can be moved in two essentially 

different ways: translation and rotation around a given point of 

the line. 

We can now calculate on each line D the integral 

Jo f = f(D) 

When f is zero outside a disk of R2 whatever its size, 
" and it is both limited and measurable, f will be defined for all 

lines. We used a small part of the information contained in the 

" function f, precisely the restriction off to two curves of A. 

" By substituting f by f information is not lost, because 

f can be recovered out off. Such an inverse Radon transform is 

computed by scanning. This explains why a measurement along a 

sufficient number of lines allows a scanner to reconstitute a 

3-dimensional object. 

In relation to our square deviations (~) it is not a 

surprise it allows us to distinguish between different types of 

configurations. If the a functions are "diffirent, so must be the 
A A 

Radon ·transforms of f. Thus the inverse Radon · transforms of f, 

--which" are the initia.1 functions f, should .be also different. 
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Table I~ Confidence intervals established for comparison of the simulation 
with the real data • 

cycles -function d function o 

(a) 

d (a) d (b) 
c,p,y _ b,p,y 

o (a) 
c,p,y 

5.0~x .. ~6.0 2.0::;x .. $3,0 1.0~x .. $5.0 
, ,J , ,J 1 ,J 

5.1::ix .. s6.1 1.6::;x .. :;;2,6 0.5::ix
1 
.. :;;6.0 

, ,J 1 ,J . ,J 

5, 3 :i X. . ::; 6, 3 1 . 25 ~ X. , :$ 2, 25 1. 2 $ X. . $ 3, 5 
1,J 1,J 1,J 

5.95·s-x .. ~6.95 1.2$x .. :i2.2 
1 ,J 1 ,J · 

dc,p,y and oc,p,y refer to 

1.3$x .. $3.1 
1 ,J 

(b) db,p,y and ob,p,y refer to B. 4DW.i..anLUi 

o ( b) 
b,p,y 

1.6~x .. $3,4 
1 ,J 

0,6:;;x .. :::2.5 
1 ,J 



• 

Fig. 1 - Study site: Sio Sebastiio, state of Sio Paulo. · 

Fig. 2 - Different types of configurations for the theoretical 

position of mussels and barnacles on a board . 

Fig. 3 - Comparison of simulation cycle nQ 499 (R
3
), 

p1=0,55, p2=0.65, q1=0.75, q2=0.15 and q3=0.25 (A) 

with control quadrat nQ 9 ~hotographed in October 

1981 (B); example chosen by chance . 

Fig. 4 - Range of recruitment probabilities (0.2 to 0.8, 0.05 

intervals) and death fixed values (q 1=D.75, q2=D.15 and 

q3=0.25) for the simulation functions comprised within 

the confidence interval established. 
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