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ABSTRACT

Chthamalus bissinuatus and Brachidontes solisianus
are two solitary species with a sessile mode of 1ife, coexisting
in high densities in the mid-intertidal. Our aim was to show
that spatial interactions between both species on a rocky shore
could be described by means of a stochastic model, in our case a
Markovian systemlwith an infinite number of components inte-
racting locally. To check the model, simulations were compared
to the real data through a family of functions which discrimi-

nate between different spatial chaotic configurations.

Introduction

Chthamalus bissinuatus and Brachidontes solisdanus
are the two dominant mid-intertidal space—occupgnts of the rocky
shores ;f Sao Paulo state. Both are solitary sJ;pension-feeders
with a sessile mode of life. Dispersion is assured by a great
number of planktonic larvae, a reproductive strategy common for
tropicél marine organisms (Crisp, 1974). These larvae will even

. tuaf]y settle and metamorphose on suitable empty spaces. Barna -
cles are able to colonize almost any hard substratum, and are
among the first organisms to settle on primary space (Crisp and
Barnes, 1954, Crisp, 1961). Mussels, on the other hand, attach
preferential]ylto filamentous structures and rough surfaces

- (Penchaszadeh, 1973), arriving in a later successional stage.
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Both species are potentially able to populate heavily

a great extension of the coast.

However, they coexist in a

patchy distribution due to important temporal and spatial

fluctuations in the density of both populations, which can even

lead to the numerical dominance of one or the other alternately.

Patches are common features of the intertidal landscape and are

the consequence of different succe

(Paine and Levin, 1981). It is qu

ssional stages in nearby areas

ite possible that the Chthamalus

-Brachidontes patchy configuration could be explained merely by

factors such as recruitment and mortality patterns, and

especially spatial interaction between adjacent individuals of

the two species.

Our starting point was

a series of observations

carried out by Jorge A. Petersen, John P, Sutherland and Sonia

Ortega from 1979 to 1982. Our purpose was to define a simple

mathematical model, more precisely a Markovian system with an .

infinite number of components interacting locally, that could

throw 1ight on the primary rules responsible for the C.

bissinuatus

and B. solisianus community development.

Study site and photographic records

~

The model was based on
J.A. Petersen from the rocky shore
Center (CEBIMar) of the University
state of S3o Paulo (Fig. 1).

photographic records taken by
at the Marine Biological

of Sao Paulo, at Sao Sebastiao,



Sets of 100 cm? fixed quadrats were photographed
bimonthly over a period of 3 years (Nov. 1979 to Dec. 1982) on
protected and moderately exposed areas. Each set consisted of
several control and experimental quadrats positioned on nearly
horizontal mid-intertidal rocky surfaces. Experimental quadrats
ﬁere scraped and burnt, and the observation of new sets was
initiated in April and November of each year in order to analyse

the recruitment patterns of each species.

We restricted our study to a series of sets totaling
20 pairs of control-experimental quadrats, which belonged to
the moderately exposed site, distributed over an area of approxima

tely 13 m2.

The model

Our model is a Markov chain, non-homogeneous in time,
assuming values in the set of the functions ffom Z2 to {0,;1:1.1}.
The following conventions were established: the rocky coast was
represented by the Z2 grid; each point of intersection of Z2 could
be empty or occupied by no more than one individual of any of the
tws species considered. Each species had a particular pattern of
behaviour, all individuals of the same species behaving in the
same way. Thus a configuration of organisms was represented by
a function x: Z2 » {0,1,1.1} , 0 indicating an empty space, 1

representing C. bissinuatus and 1.1 B. sofLisdianus (1). Therefore,



the occupation of a generic point (i,j) of Z? is expressed by
x(i,3), which is the value of the function x at the point of
intersection (i,j). Each temporal unit of this Markov chain
corresponds to 3 months and only interactions between adults of

the two populations are taken into account.

Let the Markov chain be represented by (xt)t=0,1,2,."'

Thus, if Xt(i,j) = 1, for instance, at the end of trimester t
the point (i,j) of the rocky coast is occupied by a barnacle.
The transition probabilities of the chain are thus defined:
"given k integer (11,51),.",(ik,jk) in Z2, and PPL PPN 1 in
0, 1:4:11

P(Xg, 1 (iqsd9) = agaem Xy g (103, )=, [X =x) =

k

- P(Xy,q(i,.d,)=a,]X =x).

" for-any-configuration x and instant t. Furthermore

P(Xy,q(i,3) = a | X, = x)

will be a function of the remainder of t/ﬁ, a, the x(i,j) value,
and the number of C. b:{'AAinua,tuA and B. solisianus at the 4
nearest positions of (i,j). Let Rn(.,.,.) be the function in
which n is thg remainder of t/4 (e.g., R0 Qefines the particular

rules of the model during the first trimester considered, an so on), that is

(1) - This is an interesting convention for working with the total number of
individuals of both species inside a sufficiently small area. For ins-
tance, if the sum obtained is 4.1, the total number of individuals is

- 4, 1 being B. solisianus and 3 C. bissinuatus.

r
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E R0(1,1,z)

‘R1(0,0,z)

P(Xp,q(i,3) = a | Xy = x) =

= Rn(asx(iaj)s X('i+1,j) + X(i'1sj) + X(.isj+1) + X(“:j"1))

The functions Rn are therefore defined in the

following way

R0(1-1,0,Z) = p‘l

ifzz2 2
Rg(0,0,2) = 1-p, .
R0(1,0,z) = P,

ifz s 1.1

Ry(0,0,2) = 1-p,

R0(0,1,Z) = q2 (2)

if dec(z) 2.2
R0(1,1,z) = 1-q,

Ro(os1sz) = q1 =
if dec(z) 2 3

1-q1

RO(D,1.1.0) =.1

Rg(1.1,1.1,2) = 1 if z =0

R1(1,0,z) =

I
-
N

if dec(z) < 3

fl

(2) - dec(z) is the decimal part of the number z: de§(4.3) =3
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A
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integer part of the number z: int(4.3) = 4
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Justifying the model

Initially the use of a countable set of numbers, Z2,
to represent the continuous surface of the rocky coast may seem
improper. Nevertheless, our choice is justified by the well
defined shape and size of C. bissinuatus and B. solisianus.
Configurations of individuals of these two species have strong
geometric constraints and are essentially discrete. There are
also a limited number of individuals that can occupy a circuns-
cribed surface, thus making reasonable the utilization of Z2
instead of R?2 to represent configurations of organisms by punctual
processes. This is easier to understand if we think of a box
full of black and white buttons, of similar or dissimilar

diameters, without superposition.

The grid Z2 1is not the only possible choice to
represent the base of the configuration. Grids of other
geometries (hexagonal, for example) would adjust better to the
shape éf the individual. As we consider this to be of minor

importance, the computational simplification of Z2 was preferred.

In order to account for the large number of factors
affgcting the evolution of the community, it was natural ;o use
a stochastic'model. Since Boltzmann's work (see Cohen and |
Thirring, 1973) we know this is the right manner to deal with
deterministic systems which have a great number of components.
Being a Markov chain, our model does not take into account the
age of the organisms, and it is assumed that the state of one
point at a given instant reflects all its past evolution. The

choice of a Markov chain was based on the absence of empirica]f
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evidence as to the longevity of the two species and on photographic
observations leading to the belief that the organisms were

predominantly killed instead of dying of old age.

In our model, each individual interacts only with

its 4 nearest neighbours, such that
P(Xy,1(1,3) = a | X, = x)

is only a function of a, n, x(i,j), x(i*t1,j) and x(i,j*1). This
was decided after‘verifying that the effects of the reproductive
"strategies, larval settlement, or mgchanisms of disappearance
acting on a given individual were restricted to its adjacent
.organisms. These kinds of models are called in the literature
Markovian systems with an infinite number of components

interacting locally (Spitzer, 1970, Ligget, in press).

Our model is spatially homogeneous (there is no reason
.for a greater number of grooves to be clustered in a particular

area of the rock), so if x and y are two configurations such that

¥(0,0) = x(1,5).

y(21,0) = x(i#1,3),

y(0,%21) = x(0,j*1) then

P(X(i,3) = a | X, = x) =
N = P(Xt(O,D) = a l Xt = y)

We chose-a temporal unit so that it would denote
meaningful changes in the configuration of the organisms without
overlapping two important effects. The division in quarters of

the year distinguished, for example, the heavy recruitment of



B.

1.

so0Lisianus, visible from mid-spring to mid-summer, from the

period of significant mortality of this species, which occurs

from mid-summer to mid-autumn. Due to the temporal unit chosen,

it became reasonable to represent only the interaction among

adults.

The biological parameters taken into account were:

recruitment of Chthamalus bissinuatus: barnacles are able to
settle on primary space and we have indications that

C. bissinuatus recruitment occurs during the whole year

(J. A. Petersen, personal communication). Therefore, indi-
viduals of this species can occupy any bare space of the grid.
In our model we will Tet the barnacles recruit all year
round on empty intersections with less than 3 B. solisdanus
as neighbours. This rule accounts for the death of C.
bissinuatus due to overgrowth caused by the mussels, while
it also counts indirectly the age of the barnacles, since

only the old ones can have 3 or 4 mussels as neighbours.

recruitment of Brachidontes solisianus: this species has

. maximal recruitment in late spring and early summer and

attaches preferentially to irregular sdrfaces. As the
quadrats were not established over cracks, and settlement
on algae was not common, the first B. so0fisianus recruited

on or between the barnacles. In our model each individual

~of this species recruits only during one quarter of the year,

if it will be sﬁrrounded by at least 2 organisms of any

species.
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3. death of C. bdissinuatus: it seems to be caused especially
by overgrowth of adjacent B. so0fisianus. Therefore, we
will let the barnacles vdnish every quarter of the year with
different probabilities depending on the number of

neighbouring mussels.

4. death of B. solisianus: during late summer there is a
significant mortality of the mussels due to desiccation and
high temperatures (J.A. Petersen, personal communication).

This species is more susceptible to these abiotic factors

than C. bissinuatus partly owing to differences in shell
anatomy and body colour. Also B. sofisianus individuals cannot
remain isolated. In our model, mussels left without neighbours
are eliminated from the array, and during one quarter of the
year they disappear, each one independently of the others, '
with different probabilities depending on the number of

neighbouring barnacles.

Dead barnacles in the photographic records were considered
empty'spaces in the simulations, since they do not remain attachéd
for a 16ng period. C. bissinuatus and B. dolisianus can be _
found piled up on the rocky coast, although this is not frequent;

therefore, this type of situation was excluded from the model.. °

The simulations

AS C. bissinuatus and B. solisianus have a covering .
area of roughly 0.5 cm in diameter, the simulations were plotted

on a torus of 20 x 20 inférsections in order to resemble the
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approximate density of elements on a 100 cm? quadrat. The
simulation records were compared to the control quadrats using

the same 100-point reticulate applied to the latter.

Each one of the 4 temporal units (or cycles) repre-
sented: mid-spring to mid-summer (RO), mid-summer to mid-autumn(R1),
mid-autumn to mid-winter (RZ)’ and mid-winter to mid-spring (R3).
Simulations of 40, 100 and 500 cycles were run corresponding to

10, 25 and 125 years respectively.

We adjusted the probabilities of the model in order
to picture an average quadrat of either all the quadrats placed
near each other at the same level of the shore or of only one
quadrat throughout the period of observations (spatial and temporal

variation).

The combined effects of minimal variations in wave
shock, insolation, winds and other factors we did not consider may
cause individual quadrats to correspond to different parameters
in spite of their proximity and tidal level. This suggested the
use of random probabilities independently chosen before each
cycle which would, up to a certain point, compensate for the

short observation period of the data (3 years).

~

Evaluation of the model

To evaluate the accuracy of our model we needed cri-
teria to allow us to compare the results of the simulations with
the real data. An intuitive comparison would not lead us too far

because the images of both distributions gave a chaotic impression._
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A point-by-point comparison would be as absurd as comparing in

the same way two configurations of heads and tails obtained by
throwing a hundred coins on a grid: the probability of a given
point of the grid showing the same configuration (head or tail)

is one half in both experiments,

Therefore, to compare these two configurations in

which chance was involved we used the following criteria:

1) We first compared the empirical  densities of each species.

Let

d _ points of the grid occupied by species ¢
CsPsY total number of points

were p is the period considered in the year y.

By analogy db D,y is the density of species b in ‘the period
p and in the year y.

We have used the adjective empirical to refer to the result
of one simulation. While the model does not specify determi-
nistically what will happen in each point of the grid, a computer
simulation does so since it describes a function of the sample,

Xt(w),'instead of describing a family of random variables, Xgo .

When‘y tends to infinity these densit{és'do"not converge to
a limit; they pulsate in a chaotic way because the total numbef
of points taken into account is small. To stabi]fze this chaotic
behaviour we have calculated averages at longer and longer
intervals of iime (Cesaro mean, in Choquet, 1964): if thérlihit.:

exists
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1 N
d = lim Y

c,p Try=1d for species c.

CsPHY

In the same way we have db p for species b.

]
We obtained 8 1imit average densities (for C. bissinuatus,
B. s0lisianus, in the simulation periods 0 to 3), strongly corre

lated, therefore not enough to ascertain the 5 parameters of

our model (p1,p2, 9q:95> q3).

2) The second step of our analysis took into account the geo-
metric shape of the configurations. Intuitively a very homogeneous
configuration as mussels on the black squares of a chess-board

and barnacles on the white ones is very different from filling

one half of the board with mussels and the other with barnacles,
the densities of the two species being equal in both cases (seef

Fig. 2).

One of the simplest ways to distinguish two functions with
the same average is to consider the square differences between
them. Unfortunately we could not apply this procedure to the -
indicatrix function of each species because the two indicatrix
functions ¢4 and $o > leading to the same density d, would take
the values one or zero'exactly the same number of times. Therefbre,

the square deviations of ¢ and ¢, are equal:

[Hoy - ale < [ 1oy - al= .
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This situation changes when the function takes more than two

values.- So we decided to consider functions on the discrete

segment. (1,...,10),

lines. This idea
v .
Let fc,p,y(J)

placed in the j-th

cutting a square Q by vertical and horizontal

came from integral geometry (see appendix).

be the number of individuals of species c,

column at period

p of the year y, and fz

the number in the j-th row. In the same way we can define
¥ : h . )
fb,P’Y(J) e fb,p,y(J) for species b. Thus
10 - 10
Yfr oo 3 1 f ()
d . j 1 CsPsy ) j=1 CsP,Y o
10 10
e : h .
i
j1fb’p’y(3) 321 b,p,y'd)
d = _

To compare

0

each function to its mean we consider

1 =
o(f) = .21(f(j) - f)2

J:

where f = ‘
J

1 10
CEPRIEY

Therefore we obtain the squére deviations

i
o = f(f' o i~ B
<3Py j=1 *

f 2
;Pay) ;

Py

(j)
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These values oscillate considerably due to p and to y. The
p represents seasonal fluctuations to which the distribution of
the two populations is sensitive. To eliminate fluctuations in
time we use the Cesaro mean once again. The values

N
1 ‘

L ny.,p,y
of the simulation seemed to converge afterwards, although in a

slow way.

The integer y can be substituted by the label of different
sites at approximately the same tidal height of the seashore.
Therefore, working with Petersen's data we have obtained an
estimate of the spatial square deviations. That is, exchanging
j and y allows us to measure spatial oscillations. Nevertheless,
that would make sense if the number of years of observations

taken into account have been on the order of 10.

We defined a family of functions discriminating between
various values of the parameters. To estimate the error of those
functions, a precise computation of the real data was compared with
a less time consuming procedure which caused a minimal counting :
error (1) dues misplacing C. bissinuatus, B. solisianus and bare
space. The  Tittle difference between _both counting pro-
ceduréﬁ gave us an indication of the confidence interval
we should adopt for the function d when comparing the simulations

with the real data (Table 1).

-
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There was a difference between the values calculated for the
o functions of lines and columns for both the simulations and the
real data. This difference in the real data could be a consequen-
ce of factors such as gravity and inclination of the surface.
However the size of the quadrats (100cm2?) is certainly not enough
to cause such a difference. Furthermore, the simulations show
these same deviations which were reduced with a longer simulation
time, This led us to believe that the difference observed in both
cases is just an effect of statistical deviations which are
expected in samples of small size. Nevertheless, the values of
this difference gave us an indication of what should be the order

of magnitude of the confidence interval for o (Table I).

Finally we looked for the probabilities that set the
functions d and ¢ within the confidence interval established by'

the parameters of the real data.
Simulations X reality

With an a}pfopriate choice of probabilities (p1,.",q3), the
simulations emulated reasonably well the density variations of
both sbecies inside the quadrats as well as. variation of these
densities a]dng rows or columns (o(f)) (Fig. 3). Values for d
functibns obtained from the simulations seemed to converge
reasonably after 40 cycles (10 years) while the o values fell
within intervals of size 0.4 and 0.2 after 100 and 500 cycles

respectively. -
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We analysed the results of simulations combining a wide
range of different probability values to check for the ones which
fell within the confidence interval based on the real data. We
verified that the former matched with the real data for only a
lTimited interval of 949, and a3 values. Therefore, we fixed
SPELP and qs within that class of matching values (q1=0.75, q2=0.15,
q3=0.25) and ran_simu]ations combining only the Py and Py values
(0.2 to 0.8, interval of 0.05). We obtained practically a segment
of a line, as far as the functions d and ¢ are concerned (Fig. 4).
-As this curve is almost a line of positive inclination, to
compensate for any increase of py we should proportionally increase
pp(0.4 < p, s 0.65, 0.5 s p, s 0.75).

As far as the functions d and o are concerned, it is possible
to find probabilities p?, pg, q?, qg, qg such that the values of
the empirical d and o are close to the values obtained with random
probabilities. But if we computed the temporal quadratic dispersion
T, this new functioﬁ would probably distinguish the model with
random probabilities from the model considered in this paper.
However as Petersen's data covered only a period of 3 years, to
calculate the observed quadratic dispersion T would not be
statistically significant. Thus we stuck to the model with fixed
probabilities; |

~

Discussion

Stochastic models have already been proposed to describe

ecological processes such as competition for a limited resource
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and succession (Clifford and Sudbury, 1973, Horn, 1975, Usher, 1979,
Greene and Schoener, 1982). An interesting aspect about working
~with stochastic models is that they can, up to a certain extent,
predict the evolutionary trend of the process observed. Also, they
are useful to discriminate among the factors involved, thus giving

a clearer image of the role of those factors in the process.

‘7Patterns of recruitment and death were considered to be of
major importance in our model because both species considered were
solitary with a sessile mode of 1ife. The arrival of larvae of both
species can occur, independently form one another, wherever there
is bare space. Therefore, we have a system composed of infinite
boundaries where interactions occur, these being restricted to the
nearest neighbours. Within the same given area the total
interacting perimeter of the boundaries is much greater in the case

of solitary than colonial species.

Mytilids are dominant competitors for space and can even be
found as extensive monocultures (Dean, 1981, Paine and Levin, 1981,
Harms and Anger, 1983). However, B.sofisianus never completely
dominated the community at Sao Sebastiao. The absence of
competitive exclusion of C. bissinuatus by B. solisianus seemed to
be a consequence of: 1) recruitment of the mussels within a limited
period. of time; 2) barnacle recruitment all year round and 3) mass
mortality of the mussels dufing the hot period of the year,
Considering the situations where both species are present in a
heavily occupied space, any increase;in the recruitment of one
species should be accompanied by a proportional increase in the
recruitment of the other. If not, coéXistence of both species 1is

compromised.
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Predation is frequently mentioned as a major factor
preventing monopolization of space (Dayton, 1971, Paine and Levin,
1981). Top predators found at S3o Sebastido were the gastropods
Thais haemastoma, Leucozonia nassa and the crab Erdiphia gonaghra.
However their density was very low at the level where
C. bissinuatus and B. solisianus coexist. Thus the effect of these

carnivores was considered of slight importance.

Herbivores frequently observed at that tidal level were
Acmaea subrugosa, Littonina g§Lava and Littorina zic-zac. Of these
the bull-dozer Aecmaea subrugosa is the major herbivore to affect
the community. As it scrapes the substratum (Steneck and
Watling, 1982) Acmaea affects the earlier stages of colonization
by removing newly settled larvae. Since our model deals with
interactions among adults the aspect of herbivory considered was
the delay of the rate of occupation of bare space and not its ‘

effect on survival of the larvae.

The main cause for space clearance, with the consequent patchy
structure within the community, was mass mortality of the mussels.
Patchy configurations were distinguished through the o functions.
Patchingss could also be measured, defining for each point of the
grid occupied by species s a function for the number of neighbours
of thg same species s. The integral of this function on the torus
would be: 1) zero, if species s was positioned on the black
squares of a chess-board; 2) close to the area of the board (Q)
if”s was filling every second column and 3) close to twice this area

Q if s was clustered on one half of the board (Fig. 2A, B and C).
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Although the model describes reasonably well the development
of the configuratibn of the Chthamafus bissinuatus-Brachidontes
s0lisianus community on a rocky coast, a longer observation period
or else a greater number of quadrats would have been more
appropriate for the confidence intervals of the real data to be

shortened and the probabilities of the model better defined.
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Appendix

The Radon transformation(Gel'fand et al, 1966):
Let f be a function from the plane to R. From f we

~

will obtain a new function.f

Let A be the space of all lines contained in the plane.
This space A is a surface as a line can be moved in two essentially
different ways: translation and rotation around a given point of

- the line.

We can now calculate on each Tine D the integral
ID f = £(D)

When f is zero outside a disk of R? whatever its size,
and it is both limited and measurable, f will be defined for ail
lines. We used a small part of the information contained in the

function f, precisely the restriction of f to two curves of A.

~

By substituting f by f information is not lost, because
f can be recovered out of f. Such an inverse Radon transform is
computed by scanning. This explains why a measurement along a
sufficient number of lines allows a scanner to reconstitute a

3-dimensional object.

In relation to our square deviations (o) it is not a
surprise it allows us to distinguish between different types of
configuration;. If the o functions are different, sd must be the
Radon transforms of f. Thus the inverse Radon transforms of ?,

which are the initial functions £, should be also different.



Table I - Confidence intervals established for comparison of the simulation

with the real data.

-function d

function o

cycles
@) 4 () s (@ ()
C,p,)’, bsp’y C’p’y b’p9y

R0 &OSthsﬁﬂ &Osxhj§3ﬂ 105xtj§5ﬂ 16$ij§3A
M 515xhj56J 165xtj52£ &5SXLJ§GJ 07£xhj§2j
R2 &35xhj563 1£5§XL'$225 125x“j§3ﬁ 07§xtj52J
R3 SJSthj$&95 LZSxtj$&2 135xhj53J Oﬁsxhjs25

(a) dc,p,y and oc,p,y refer to C. bissinuatus

(b) db and % 5,y refer to B. sofisdianus

sPsY




Fig.

Fig.

Figs

Fig.

Study site: Sao Sebastiao, state of Sao Paulo.

Different types of configurations for the theoretical

position of mussels and barnacles on a board.

Comparison of simulation cycle nQ 499 (R3),
p1=0,55, p2=0.65, q1=0.75, q2=0.15 and q3=0.25 (A)
with control quadrat n® 9 nhotographed in October

1981 (B); example chosen by chance .

Range of recruitment probabilities (0.2 to 0.8, 0.05
intervals) and death fixed values (q1=0.75, q,=0.15 and
q3=0.25) for the simulation functions comprised within

the confidence interval established.
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