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Bulk viscosity effects in event-by-event relativistic hydrodynamics
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Bulk viscosity effects on the collective flow harmonics in heavy-ion collisions are investigated, on an event-
by-event basis, using a newly developed 2+ 1 Lagrangian hydrodynamic code named V-USPHYDRO, which
implements the smoothed particle hydrodynamics algorithm for viscous hydrodynamics. A new formula for the
bulk viscous corrections present in the distribution function at freeze-out is derived, starting from the Boltzmann
equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients
from v,(pr) to vs(pr) when pr ~ 1-2.5 GeV, even when the bulk viscosity to entropy density ratio, /s, is

significantly smaller than 1/(47).
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I. INTRODUCTION

One of the most important discoveries that stemmed from
the relativistic heavy-ion collision program was the discovery
that the quark-gluon plasma (QGP) formed in these reactions
behaves as a relativistic fluid for which viscous effects appear
to be very small [1]. The large degree of collectivity evidenced
by the Fourier harmonics of the flow are compatible [2]
with viscous hydrodynamic calculations in which the shear
viscosity to entropy density ratio, n/s, nears the uncertainty
principle estimate ~1/(4m) [3,4]. Since n/s becomes much
larger than 1/(4s) in the high-temperature perturbative regime
[5,6] and also at sufficiently low temperatures [7], it was
suggested that in QCD this quantity should have a minimum
~1/(4m) in between these different temperature regimes [8,9].
Further support to this idea appeared in Ref. [10], where it was
shown that heavy resonances may already considerably lower
n/s in the hadronic phase.

While relativistic hydrodynamical studies that include shear
viscous corrections are currently considered to be the state of
the art in the field [11,12], there is a priori no reason that
effects from bulk viscosity ¢ should not also be included
in the description of the time evolution of the QGP. High-
temperature perturbative QCD calculations [13] show that
¢ /s vanishes as Naf /In(1/ay) for massless quarks and, thus,
it becomes negligible in comparison to n/s in this regime
(recent calculations of ¢{/s in a pion gas performed in the
regime T < mpjon can be found in Refs. [14,15]). Given
the multitude of mass states present in QCD at intermediate
temperatures in the hadronic phase and the maximal violation
of conformal invariance observed in lattice simulations when
T ~ 150-250 MeV [16], it has been suggested that ¢ /s may
display a peak in the same temperature region [17,18]. It
is not clear at the moment if such a peak exists in QCD,
though model calculations have given support to this idea
[19,20] and some of its phenomenological consequences in
heavy-ion collisions have already been investigated [21-23].
The effects of bulk viscosity in hydrodynamic simulations
of the QGP have not been investigated as thoroughly as in the
case of shear viscosity. Hydrodynamical calculations that have
used nonzero ¢ /s within averaged initial conditions include
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[24-29], while event-by-event simulations have been studied
in Refs. [30].

In this paper we study the effects of bulk viscosity on the
fluid-dynamical evolution of the QGP and also at freeze-out on
an event-by-event basis. The effects of bulk viscous pressure
on differential collective flow Fourier coefficients v,—v5 are
computed. Furthermore, a new formula for the bulk viscous
corrections in the distribution function at freeze-out is derived
starting from the Boltzmann equation for multiparticle hadron
species. Our calculations show that differential collective flow
Fourier coefficients from v, to vs are enhanced by bulk viscos-
ity in the range of py ~ 1-2.5 GeV even when ¢ /s is signif-
icantly smaller than 1/(47). Previously, this was only known
to occur to v, (see, for instance, Refs. [24,29]). The interplay
between shear and bulk viscosities in the evolution and freeze-
out of the QGP will be investigated in a forthcoming paper.

The calculations presented in this work were performed
using a new relativistic hydrodynamics numerical code called
viscous ultrarelativistic smoothed particle hydrodynamics
(V-USPHYDRO). In this code, the equations of 2+ 1 (i.e.,
boost invariant) relativistic viscous hydrodynamics are solved
using the smoothed particle hydrodynamics (SPH) Lagrangian
algorithm originally developed in Refs. [31,32] and later
adapted in Ref. [33] for applications in heavy-ion collisions.
SPH is a mesh-free algorithm widely used in several different
applications of fluid dynamics that range from cosmology [34]
to engineering [35]. Standard grid-based, Eulerian algorithms
are known to become very time-consuming and eventually run
into problems when dealing with fluid dynamical problems
involving free surfaces, deformable boundaries, and extremely
large deformations [35]. Given the extremely rapid time
evolution and the large gradients that appear in event-by-
event simulations of QGP, it is conceivable that mesh-free
methods such as SPH can be instrumental in solving the
equations of relativistic hydrodynamics in heavy-ion collision
applications. In fact, this algorithm has been the basis
for the hydrodynamic part of the well-known NEXSPHERIO
code [33,36-47]. However, an important distinction between
V-USPHYDRO and NEXSPHERIO, besides the assumption of
boost-invariant dynamics made in V-USPHYDRO, is that viscous
effects in the hydrodynamical evolution and freeze-out are
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included in V-USPHYDRO. The details of the code and the
tests made to confirm its accuracy are presented in several
appendices.

Definitions: Our metric signature in Minkowski space-time
is mostly minus, i.e., +, —, —, —, and we use natural units =
kg = ¢ = 1. We employ Greek indices for the four-vectors,
e.g, the four-momentum is p*, space-time coordinates are x*,
the flow field u*, while we use bold letters for vectors in the
transverse plane, e.g., a, and latin indices for the components
a;. The scalar product among four-vectors is denoted as p - u =
puut while for spatial vectors we have a-b = a,b; +a,b,.
Throughout this paper we will be using hyperbolic coordinates
x* = (7, r, n) defined by

T =12 —-72

11 t+z
=—-In{—— ).
g 2 t—z2

The metric in hyperbolic coordinates is g,, = (1, —1, —1,
—12) while the boost-invariant configuration for the flow is

u, = (/1 +u2 +u§,ux,uy,0) and, thus, u - u = 1.

II. THE EQUATIONS OF MOTION OF 2 +1 VISCOUS
RELATIVISTIC HYDRODYNAMICS INCLUDING BULK
VISCOSITY

(1)

We assume a vanishing baryon chemical potential and thus
investigate only the equations of motion that stem from energy
and momentum conservation within a boost-invariant setup.
The conservation of energy and momentum is given by

1
\/T_gau(«/ —ngw) + F;MT)L”’ = 0, (2)

where ./—g = 7 and the Christoffel symbol is
F;»}M = %gl)a(auga)h + a)\gau - 3agm)- 3)

The most general expression for the energy-momentum tensor
(in the absence of shear viscosity effects) is

T = euu’ — (p + I) A™, 4

where I1 is the bulk viscous pressure and the spatial projector
1S Ay = guv — Uy, Above, we use the Landau definition for
the local rest frame, u, T*" = eu*. The remaining dynamical
quantities are the energy density &, the pressure p, and the fluid
four-velocity u'. Besides energy-momentum conservation,
one also needs to specify the differential equation obeyed by IT.
In this paper we employ the simplest second-order formulation
of the fluid dynamical equations of motion that can be causal
and stable,

(DI +110) + T+ ¢6 = 0, &)

where D = u*9, is the comoving covariant derivative, 6 =
! d,, (tu*) is the fluid expansion rate, ¢ is the bulk viscosity,
and 1y is the relaxation time coefficient required to preserve
causality (see, e.g., the discussion in Ref. [48]). Equation (5)
is discussed in detail in Refs. [27,49]. Note that the differential
equation for IT in Eq. (5) includes the nonlinear term I16. For a
full derivation of the equations of motion using the method of
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moments for the Boltzmann equation, including the numerous
other terms that enter at that order, the reader is referred to
Ref. [50]. In this paper viscous effects associated with bulk
viscosity are encoded in only two transport coefficients, but
the inclusion of the remaining terms is straightforward and is
left for a future work.

Fluid-dynamical evolution can be described using either
the Eulerian or the Lagrangian approach. Eulerian methods
require the presence of a grid where the hydrodynamical
fields are defined while in Lagrangian methods the flow is
described following the trajectory of fluid “particles” and
one can consistently rephrase the field equations in this
language. In cosmology applications, Lagrangian methods
have become largely employed because they allow for quick
computational times and avoid other limitations that are inher-
ent to grid-based methods. Currently, in heavy-ion collisions
almost all hydrodynamical codes are written in the Eulerian
formulation with the exception of the Lagrangian-based codes
in Refs. [27,33,51]. The SPH formulation of the equations
of motion (2)-(5) is reviewed in Appendix A. Since the
results of this paper are based on a new relativistic fluid
dynamics simulation, we describe tests made to the algorithm
in Appendixes A and E.

In the following, we shall always assume the Bjorken
scaling solution for the longitudinal direction, in which the
component of the velocity field in the longitudinal direction
(in hyperbolic coordinates) is set to zero, i.e., u” = 0.

III. PARAMETERS OF THE MODEL

As in any hydrodynamical modeling of heavy-ion colli-
sions, there are a number of free parameters that must be fixed.
The initial time to start the fluid-dynamical evolution is fixed
to be 7p = 1 fm (in the Results section we check the effect of
this assumption). The initial conditions for the hydrodynamic
simulations are taken from a Monte Carlo Glauber code [52]
in which the initial energy density is given in the form

&(r) = ¢ neon(r), (6)

where n, is the number density of binary collisions in
the event and the constant c¢ is fixed to describe the final
multiplicities observed experimentally. The centrality classes
we used are defined in terms of the number of participant
nucleons and are in agreement with standard results from
other Monte Carlo Glauber simulations [53]. We assumed
that for /s = 200 GeV the Relativistic Heavy lon Collider’s
(RHIC’s) most central collisions at midrapidity there are about
300 s [54] and, since we assume that freeze-out occurs at
T = 150 MeV, we estimate that about 41% of pions would
come from direct thermal pions [55]. Thus, the constant ¢ was
adjusted for the ideal case using an average 0—5% most central
RHIC event so we obtain 123 7 *’s when Trg = 150 MeV.
Note that when bulk viscosity is included the total entropy of
the system increases in time and, in order to keep the total
number of pions at freeze-out the same as before, one has
to slightly reduce c. Here, we assume that IT and the spatial
components of u* vanish at 7.
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FIG. 1. The temperature dependence of the transport coefficients (a) ¢ /s and (b) g [see Eqs. (7) and (8), respectively].

Initial conditions that include the effects of gluon saturation,
such as those in Refs. [52,56,57], can also be studied using
V-USPHYDRO. However, this type of initial conditions displays
structure on smaller length scales than that of the usual
Glauber initial conditions and, thus, smaller values of the
smoothing parameter £ (more on that below) must be used
to systematically investigate the difference created in the flow
harmonics due to gluon saturation effects at early times.

We use the lattice-based equation of state from Ref. [58]
with chemical equilibrium. We have tested the dependence of
our results with the choice for the equation of state by using
the equation of state from Fodor et al. [16] which, however, led
to no noticeable difference in the flow harmonics. The results
shown in this paper were computed using EOS S95n-v1 [58]
(for T < 50 MeV this EOS is matched to that of a massive gas
of pions).

The bulk viscosity coefficient is parametrized in the

following way:
¢ 1 /1 )
s 8w (3 <)

where s is the entropy density and ¢, is the speed of sound.
As one can see in Fig. 1, ¢ /s is significantly smaller than the
standard value of /s ~ 1/(4m). Additionally, because of the
dip in the speed of sound, there is a peak in ¢ /s between 150
and 200 MeV. This formula for the bulk viscosity is inspired
by Buchel’s formula obtained within the gauge-gravity duality
[59]. Calculations performed in Ref. [13] showed that at
sufficiently large 7' in the QGP phase the bulk viscosity in
QCD follows the relation ¢/n ~ 15(1/3 — ¢2). The specific
functional form of ¢ /s does not make a significant difference
in our results as long as the overall magnitude is the same.

The temperature dependence of the relaxation time, tyy, is
described by the formula found in Ref. [60],

¢
e—3p’

(N

Tm=9 ®)

and shown in Fig. 1. Clearly, other choices for 7y are possible
but, for simplicity, in this paper we fix it as above. We chose a

time step d7 = 0.1 fm in our numerical simulations and tyy is
set to never be smaller than dt (this is why 7y plateaus when
T > 0.2 GeV). Also, the time step is considerably smaller
than 7, as required to resolve the gradients in the longitudinal
direction.

We set the isothermal freeze-out temperature in the Cooper-
Frye procedure [61] to be Tpo = 150 MeV. The Cooper-
Frye freeze-out method is written in the SPH language in
Appendix B. Lower freeze-out temperatures have a strong
effect on the viscous corrections to the Cooper-Frye freeze-out,
as will be explained in the next section. On the other hand,
higher freeze-out temperatures can run into issues because of
the effects coming from the production of heavy resonances
that could contribute strongly to the flow harmonics [62]. In
this paper all flow harmonics are shown for direct thermal
7T, without the inclusion of a hadronic afterburner or particle
decays. Thus, the purpose of the present study is to understand
the qualitative effects of bulk viscosity on the flow harmonics
event by event. In the future, we will include particle decays
(and possibly hadronic afterburner effects) into V-USPHYDRO
so the results of our calculations can be more directly compared
to experimental results.

As explained in detail in Appendix A, the Lagrangian
formalism we used includes a parameter, /, known as the SPH
length scale. The & parameter essentially works as a smoothing
parameter such that a larger 4 smoothes out initial conditions to
the point that fluctuations are minimized, whereas a too-small 4
requires a very large number of SPH particles so it overwhelms
standard computational times. Thus, one needs to choose a
value of & that is small enough to preserve as much of the
structure in the initial conditions as possible but that also
allows for a realistic running time. We found that 4 = 0.3 fm
and Ngpy = 27000 allow for relatively quick running times
(~10 min per hydro event in a single standard machine)
while still preserving the structure seen in the Monte Carlo
Glauber initial fluctuations for both centrality classes studied
in this paper. If one increases & beyond that value the initial
fluctuations are smoothed out and we see v, increase by about
5% at high pr when one uses & = 0.5 fm. For further details
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and discussion, see Appendix E. Conservation of energy and
momentum in our simulations hold up to 0.01%.

IV. BULK VISCOSITY CONTRIBUTION TO THE
MULTIHADRON DISTRIBUTION FUNCTION

A. Method of moments

In order to compute the particle distribution at freeze-out,
one needs to evaluate the nonequilibrium distribution function
for each hadron species on the freeze-out hypersurface. In
general, the distribution function for each hadron species is

1?) = (l) + Sf('), where f(l) [exp(BoEix — o) —|— al™!
the local equlhbrlum distribution function and § fk is the
corresponding nonequilibrium part. In this work, we use the
method of moments, as developed in Refs. [50,63], to compute
the nonequilibrium contribution §f, @ associated with bulk
viscosity effects to the momentum distribution function of
a hadronic mixture. A
First, we factorize 8 f, “ in the following way:

Sf(l) f(l)f(l) (1)’

where f W =144 fok W (g =-1 /1 for fermions/bosons) and
¢|((' ) is an out-of- equilibrium contribution. Next, d)(’) is ex-
panded in terms of its moments using a complete and
orthogonal basis constructed from particle four-momentum,
kl” , and fluid four-velocity, u*. As done in Refs. [50,63], we use
an expansion basis with two basic ingredients: the irreducible
tensors

lak1'<M>’kz kzv)’kl klkl L

analogous to the well-known set of spherical harmonics

and constructed by the symmetrized traceless projection of
Kk e K = AR and the

orthonormal polynomials

P(nK)

Z a(e)’ (u-k),

which are equivalent to the associated Laguerre polynomials
in the limit of massless, classical particles.

Then, the momentum distribution function of the i-th
particle species becomes

¥4
(t) (I)ZZHI(;I( ),0”'1 Wkl e

£=0 n=0

K=o+ ki )
where we introduced the energy-dependent coefficients,
He! =N /01, al PR (u - ki) (see the details in
Ref [50]). The fields p/","" can be exactly determined using
the orthogonality relations satisfied by the expansion basis and
can be shown to correspond to irreducible moments of §f, ’, @

Pl = (ER k™ k), () = dei (.08,
(10)

where g; is the degeneracy factor of the i-th hadron species and
dK; = gid’k/[(27)? k?]. As long as this basis is complete, the
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above expansion fully describes f, ) no matter how far from
equilibrium the system is.

Here, we are interested only on the effects arising from the
bulk viscous pressure. For this case, it is enough to consider
only the £ = 0 (scalars) terms in the expansion above, i.e.,
neglect all irreducible first-rank tensors, e.g., heat flow, second-
rank tensors, e.g., shear-stress tensor, and tensors with rank
higher than 2 (that never appear in fluid dynamics). The next
approximation is the truncation of the expansion in momentum
space, keeping only the terms corresponding ton = 0, 1, 2 (for
£ = 0). Then we obtain (for classical particles)

k(i) — (l) + (Sf(l), (11)
Sf(l) f?k {[1+ 0y 50)1 +a(0)t (0)l+( )i (0)t +a(0)t (0)1)
00
ki + a) asy (- k)] picoy (12)

+ay) a5y +as) u - ki +a%y) (- k) oy} (13)

The coefficients J! = and a'% are thermodynamic quantities
that appear in the definition of the orthogonal polynomicals
Pl.(l:’[). These functions are defined in Appendix D. Note that
m? pio = pi2 — 3T1;, with IT; being the bulk viscous pressure
of the i-th particle species, respectively. Likewise, ¢;, and p;
are the energy density and thermodynamic pressure of the i-th
particle species, respectively.

In order to apply this expression to describe freeze-out,
further approximations are required. This happens because in
fluid dynamics one evolves the total bulk viscous pressure
of the system (IT =), I1;) and it is not possible to know,
just from fluid dynamics itself, how these quantities are
distributed among the individual bulk viscous pressure of each
hadron species (IT;). We remark that IT = — Z,-(m,-z/3),0i,()
and ), pi» = 0, the second relation arising from the Landau
matching condition. Therefore, we need to relate the scalar
moments p; o, 0i.1, and p; » to the fluid-dynamical variables IT.

In this work, we assume that the system is close to the
Navier-Stokes limit. Even though this assumption does not
happen in practice, we consider it good enough to provide a
rough estimate for the nonequilibrium distribution function. In
this case,

IT= _ng Pi,m = _ai,m9 = Pim = %Tmn
Then
51 = fokn{[l +al'al) +al) )’
‘]00
+( (0)i (0)l+ 0)i (0)1) k +a(0)l (0)1( k)z] ;
(14)

+a(o), [a;%)l‘f—a(())lu k; _l_a(O)t (u - k)z] . } (15)
= fo[By + Dy'u ki + EY -k ]. (16)

The coefficients B(()i) s Dg) , and Eg) are defined as implied.
In general, while these coefficients depend on the freeze-out
temperature and the particle’s mass and degeneracy, they
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cannot be simply expressed in terms of thermodynamical
quantities such as energy density per particle and so on.

Note that the dependence of § ) with the particle’s four-
momentum differs qualitatively from that commonly used for
shear viscous effects where § fshear ~ nwkf‘ki"/(ei + p))/T?,
where "V is the shear tensor [63]. Taking the equivalent
Navier-Stokes limit for the shear correction, one can see
the relevant quantity in this case is n/s. Thus, if n/s is
sufficiently small, the §f expansion may still be well defined
for intermediate values of pr. However, for bulk viscosity,
even in the Navier-Stokes limit the relevant quantity in the 6 f
series is not ¢ /s. Rather, one can see that at low momenta
the relevant quantity is ~¢6 By while as one increases the
momentum the important quantity becomes ~ E (u - k;)* 6.
Therefore, a relatively small ¢ /s (in comparison to /s, for
example) does not necessarily mean that the actual values that
matter in the viscous contribution to freeze-out are going to be
small.

B. Simple model of hadrons

In order to compute the coefficients «; ,, appearing in § fk(')
we must provide a set of hadronic cross sections. In this work,
we estimate these coefficients using a simple hadronic model
in which all hadrons have the same constant cross section.
Note that in this case the ratios «; o/¢ and «; > /¢ are actually
independent of the value of cross section chosen. We consider
only elastic collisions between the hadrons and include all
hadrons up to a mass of 1.2 GeV (heavier hadrons are not
included due to the exceedingly large computational cost).

Since we consider only elastic collisions among the
hadrons, the particle number of individual species is conserved
and the moments p; | vanish, p; | = 0. In this case, the coef-
ficients By, Dy, and E for pions with freeze-out temperature
Tro = 150 MeV are

By = —65.85 fm*,
D" = 171.27 fm*/GeV, 17)
EJ” = —63.05 fm*/GeV?,

and the nonequilibrium correction in the distribution function
for pions is

AT = £ [B + DS u - ky + B (- k)] (18)

For freeze-out temperatures lower than 150 MeV, the §f
contribution to the distribution function can become compa-
rable to the ideal distribution f;, which makes a perturbative
analysis of the viscous effects at freeze-out untrustworthy.
Thus, we used Trg = 150 MeV for the calculations in this
paper.

The method of moments [50,63] can be used to derive
a relativistic dissipative fluid-dynamical theory from kinetic
theory which provides a good description of all dissipa-
tive phenomena. This has been explicitly demonstrated in
Refs. [64,65] where calculations performed within this theory
were shown to match the corresponding numerical solutions
of the relativistic Boltzmann equation. However, in order
to estimate the systematic uncertainties in our calculation

PHYSICAL REVIEW C 88, 044916 (2013)

0.6 A \ ; ‘
—ideal ,'

0.5 A
— -moments /

0.4¢ ,

003~ DS A

—MH -2 E

0.2} - :

01" avg 20-30% |

0.0 ‘ ‘ ‘ ‘

0.0 0.5 1.0 1.5 2.0 2.5
pr [GeV]

FIG. 2. (Color online) Dependence of the direct 7+ differential
elliptic flow on the specific formula for the viscous §f contribution
from the bulk viscosity that enters in the Cooper-Frye freeze-out. The
results are for RHIC’s /200 GeV 20-30% most central collisions in
the case where the initial condition corresponds to a single average
Glauber initial condition. The ideal case is the solid black line, our
result for v, computed using the §f obtained via the method of
moments is the long dashed black line, results for the §f described
in Ref. [29] is the short dashed red curve, while the short and long
dashed brown curve is the result computed using the §f described in
Ref. [24].

due to the approximations performed in this section in the
determination of §f, we also consider two other options. The
first one corresponds to the result derived by Monnai and
Hirano in Ref. [24] using an implementation of Grad’s 14-
moment method for multiparticle species. The other formula
for §f was obtained by Dusling and Schafer in Ref. [29] using
the relaxation time approximation and the assumption that the
deviation from equilibrium for each hadron species comes the
near-zero mode similar to that found in scalar field theory [15].
The formulas for §f computed in these works can be put in

0.10 - ; :
—cbe ideal 0-5%
0.08f— -ebe bulk _
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o 006k avg bulk ==
-
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FIG. 3. (Color online) Comparison of the effects of bulk viscosity
in event-by-event Glauber initial conditions vs averaged Glauber
initial conditions for RHIC’s /s =200 GeV 0-5% most central
collisions. We have considered 150 events. For event-by-event
simulations, the black solid line shows v,(p7) for an ideal fluid while
the long dashed black line shows the effect of bulk viscosity both in
the hydrodynamical evolution and freeze-out. In the case of a single
averaged Glauber simulation, the red dashed dotted line shows v,(pr)
for an ideal fluid while the short dashed red line shows the effect of
bulk viscosity both in the hydrodynamical evolution and freeze-out.
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FIG. 4. (Color online) The effect of varying the initial time, 7y, on (a) the spectrum, (b) vy, (c) v3, and (d) vy for 20-30% centrality.

the form (18) with the coefficients:

By = —0.69 fm*,

D" = —38.96 fm*/GeV, (19)
E” = 49.69 fm*/GeV?,

for Ref. [24] and
By = —71.96 fm*,
D" = 121.50 fm*/GeV, (20)
E =0

for Ref. [29].

In Fig. 2 the variation of v,(p7) with the different Ansatze
for the §f contributions from the bulk viscosity is shown.
The results are for midrapidity RHIC’s /200 GeV 20-30%
most central collisions in the case where the initial condition
corresponds to a single average (over 150 events) Glauber
initial condition. The ideal case is the solid black line, our
result for v, computed using the §f obtained via the method

10* ‘ ‘ ‘
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K N
~ 1 —-+df AN
N N
~N
N
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of moments is the long dashed black line, results for the §f
described in Ref. [29] is the short dashed red curve, while the
short and long dashed brown curve is the result computed using
the 6f described in Ref. [24]. One can see that all the different
approaches lead to an enhancement of v,(p7y) when pr ~
1-2.5 GeV in comparison to the ideal fluid case. However,
note that v,(pr) is more well behaved in the intermediate
1-2.5 GeV range when the result for §f computed within
the method of moments developed in Refs. [50,63] is used in
comparison to the expressions obtained in Refs. [24,29]. In
the next section, the newly developed formula in Eq. (18) will
be used to study the effects of bulk viscosity on the collective
flow harmonic coefficients.

V. RESULTS FOR THE COLLECTIVE
FLOW COEFFICIENTS

In this section we present our results for the effects of
bulk viscosity on the collective flow coefficients associated
with direct, thermal ™. The flow coefficients were computed

1000 : . .
_ o)
100k 20-30% x1.5
~
o 10+
©
Z ~ 1 . ™
T X —ebe ideal "
& 01F ¢
N B
0.01 s
0.001 : : : : :
00 05 10 15 20 25 3.0
pr [GeV]

FIG. 5. (Color online) The =+ spectra d N /(27 prdpr) for (a) 0-5% and (b) 20-30% centrality classes. The ideal fluid case is shown in a
solid blue line, the result in the case where effects of bulk viscosity are included only on the hydrodynamical evolution but not on the freeze-out
is shown by the short dashed black line while the long dashed black curve includes bulk effects on both the hydro evolution and freeze-out.
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FIG. 6. Results for the bulk viscosity ¢ /s shown for (a)—(d) most central collisions (0-5%) and (e)—(h) noncentral collisions (20-30%)
computed using event-by-event simulations. The solid lines correspond to the ideal fluid result, the short dashed lines include bulk viscosity
only on the hydrodynamical evolution but not at freeze-out while the long dashed lines include bulk viscosity effects both on the hydro evolution

and at freeze-out.

event by event using the event-plane method [66] described for
completeness in Appendix C. In the following all results were
computed for pr = 0-2.5 GeV for RHIC’s /s = 200 GeV
most central collisions (0—5%) and peripheral collisions (20—
30%). For each centrality class we have considered 150
events. In Fig. 3 we show a comparison of the effects of
bulk viscosity in event-by-event Glauber initial conditions vs
averaged Glauber initial conditions for the 0-5% most central
collisions. For event-by-event initial conditions, the black solid

line shows vy(pr) for an ideal fluid while the long dashed
black line shows the effect of bulk viscosity from Eq. (18)
both in the hydrodynamical evolution and freeze-out. For a
single averaged Glauber simulation, the red dashed dotted line
shows v,(pr) in the case of an ideal fluid while the short
dashed red line shows the effect of bulk viscosity both in the
hydrodynamical evolution and freeze-out. As one can see in
Fig. 3, bulk viscosity enhances v,(pr) when pr ~ 1-2.5 GeV
with respect to the ideal fluid result and this enhancement is
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FIG. 7. Ratio between the integrated flow coefficients v,’s including bulk viscosity effects (including viscous corrections within the Cooper
Frye) and the corresponding ideal fluid results, computed in event-by-event simulations, as a function of n for (a) most central collisions (0-5%)

and (b) peripheral collisions (20-30%).

actually more pronounced in event-by-event simulations. We
shall see in the following that this enhancement is also present
for higher flow harmonics.

It is generally assumed that the higher /s the smaller 7,
becomes. For most of the results shown in this paper, we
assumed that 7y = 1 fm (for instance, one could assume that at
the Large Hadron Collider tp = 0.6 fm). However, in order to
check the robustness our analysis, in Fig. 4 we show the effects
of different choices for ty: 79 = 0.75 fm, 79 = 1 fm, and 7 =
1.25 fm. We then adjust the constant in Eq. (6) accordingly so
we still maintain 300 total 7w s after freeze-out. As one can see
in Fig. 4, the effect of our choice in 7 is minimal in comparison
to the effect of bulk viscosity itself. Moreover, differences only
occur above pr > 2 GeV, where the effect from bulk viscosity
alone is already apparent above pr > 0.75 GeV. Changing
the 79 has a similar effect across all the flow harmonics as is
evident in v; and vy.

Results for the pr spectra of =+, dN/(dyprdpr), are
shown in Fig. 5 for 0-5% and 20-30% centrality classes.
Effects from particle decays are not included in any of the
plots shown in this paper. One can see that bulk viscosity
steepens the spectra in both centrality classes compared to the
ideal case, as can be guessed from Eq. (18). This is responsible
for the enhancement in v,(p7) at high pr, as noted in Refs.
[24,29]. Note that when the §f correction is not included in
the Cooper-Frye procedure (i.e., §f = 0), the effect of bulk
viscosity on spectra is very small in both centrality classes.

In Fig. 6 the flow harmonics from v, to vs are shown for
our two centrality classes for event-by-event Glauber initial
conditions. In all the different plots in Fig. 6, solid lines
correspond to the ideal fluid dynamics solution, whereas
short dashed curves include the effects of bulk viscosity
only on the hydrodynamical evolution (i.e., §f = O at freeze-
out) and the long dashed curve takes into account the
effects of bulk viscosity both in the hydro evolution and at
freeze-out.

Note that, similarly to what is generally seen in the case
of shear viscosity [67], when the contribution from §f is not
included in the Cooper-Frye procedure the overall effect of
bulk viscosity on the differential flow anisotropies is small,
with basically no deviation from the ideal fluid result. On the
other hand, when one considers the additional nonequilibrium
correction §f there is a universal enhancement in the v,’s

regardless of centrality class, mostly above pr = 1 GeV. The
effect is most significant in noncentral collisions. Thus, bulk
viscosity affects higher-order flow harmonics in the opposite
way that shear viscosity does. In fact, while shear viscosity
suppresses v,(pr), bulk viscosity actually enhances it. One
could expect that in the case where both shear and bulk
viscosity are included in event-by-event simulations there
could be some competition between the two effects. This
interesting question is left for a future study.

In Fig. 7 we show our results for the integrated v,
coefficients for the two centrality classes. The plot shows v,
divided by the corresponding ideal fluid result as a function
of the mode number n. For the bulk viscosity and relaxation
time coefficients used in this work, we found that the integrated
v,’s computed in the viscous fluid are only slightly higher than
those found for the ideal fluid for both centrality classes. This
indicates that the value of ¢ /s chosen in this work is small
and does not affect the fluid four-velocity and temperature by
much. In contrast with v,(pr), in this case we found that the
viscous corrections in the Cooper Frye have minimal effect on
the integrated yields.

On the other hand, as one increases the bulk viscosity
coefficient the viscous effects on the integrated v, can become
large (when compared to the ideal fluid solution, vi%®). In

1.0f — _ _ _
A A

<08 * A
>: _ {/S * A
o6t .
= A8 /s
204 4 16 /s

0.2f 20-30%

1 2 3 4 5 6

n

FIG. 8. (Color online) Ratio between the integrated flow coeffi-
cients v, ’s including bulk viscosity effects (without the § f correction)
and the corresponding ideal fluid results as a function of n for different
choices of ¢/s(T). This calculation was performed using an initial
condition averaged over 150 MC Glauber events of the 20-30%
centrality class.
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Fig. 8 we show the ratio v, /vi% computed for several values
of ¢ /s. This simulation was performed for an initial condition
constructed from an average over 150 MC Glauber events
taken from the 20-30% centrality class. Note that, even though
this initial condition is considerably smoother than the usual
MC Glauber one, it still has nonzero v;3 and vs. Also, the
integrated v,,’s showed in Fig. 8 were computed without the
3f correction since our main interest is to investigate the effect
of bulk viscosity on the flow and temperature of the system.
One can see that, when the ¢ /s taken from Eq. (7) is multiplied
by 8 (leaving it with approximately the same magnitude as the
shear viscosity coefficient, ¢ /s ~ 0.08) the flow harmonics are
considerably reduced by bulk viscosity. If we multiply it by 16,
the effect is even greater. This result indicates that, if the order
of magnitude of the bulk viscosity is close to the one expected
for the shear viscosity (as may happen in the hadronic phase),
it is not a good approximation to neglect it. We remark that
the §f correction has an effect on integrated flow harmonics
when the bulk viscosity becomes large (around 10-30%), but
we will leave this discussion to a future work.

We did not compute v, (pr) for such larger values of ¢ /s
because the §f correction (for any of the §f’s discussed
in this paper) becomes too large and, consequently, renders
the resulting calculation meaningless. This indicates several
possibilities: (1) the bulk viscous §f’s computed so far in
the field are still not precise enough, (2) the bulk viscosity
coefficient is actually very small, and/or (3) the §f originating
from shear viscosity will cancel the one from bulk, allowing
for larger values of bulk viscosity to be used even for the
currently existing §f’s. From the results of this paper, we are
not able to state which of the above is actually true.

VI. CONCLUSIONS

In this paper we used the newly developed, Lagrangian
2+ 1 viscous hydrodynamic code V-USPHYDRO to study the
effects of bulk viscosity on the collective flow harmonics
observed in ultrarelativistic heavy-ion collisions. We found
that flow harmonics can be significantly affected by bulk
viscosity effects even in the case where the maximum of the
temperature-dependent ¢ /s is nearly an order of magnitude
smaller than the standard n/s = 1/(4m) value commonly used
in hydrodynamical simulations including only shear viscosity.
The inclusion of bulk viscous effects at freeze-out for a system
of multihadron species was computed using the method of
moments [50,63], which led to a consistent nonequilibrium
correction to the distribution function of pions that remains
well behaved when pr = 0-2.5 GeV. It would be interesting
to investigate how the inclusion of heavier hadrons and
experimentally measured hadron cross sections affects the
coefficients in §f of each hadron species.

We performed event-by-event simulations (using Monte-
Carlo Glauber initial conditions) that allowed us to study
for the first time the effects of bulk viscosity on collective
flow harmonics of higher order. We have found that bulk
viscosity enhances the differential flow coefficients v,(pr),
for n = 2, 3, 4, and 5, with respect to their ideal fluid values
when pr ~ 1-2.5 GeV. This shows that bulk viscosity affects

PHYSICAL REVIEW C 88, 044916 (2013)

differential flow anisotropies in the opposite way than that
found in the case of shear viscosity, which is known to lead to
an overall suppression of v,(pr) in the same intermediate pr
range. Thus, our results indicate that a realistic description of
the QGP hydrodynamical evolution should include (preferably
temperature-dependent) shear and bulk viscosities in order
to correctly describe the suppression of differential flow
harmonics within relativistic heavy-ion collisions. The bulk
viscosity driven enhancement of v,(pr) found in this paper
also opens up the interesting possibility that bulk and shear
viscosity effects may actually compete in the suppression of
flow anisotropies in the viscous QGP.

It should be noted that all the §f’s used in this work
imply that even a small bulk viscosity can have a large effect
on differential flow harmonics. This happens for values of
bulk viscosity that do not even affect the fluid-dynamical
evolution of the plasma. For values of bulk viscosity of
¢/s ~ 0.08, which actually have a considerable effect on
the fluid-dynamical evolution of the system, the §f correc-
tion arising from bulk terms becomes too large, making it
physically meaningless to apply it to compute pr-differential
observables. Therefore, it is important to verify how precise the
current § f’s in the field actually are. For the case of the moment
expansion this can be verified by checking the convergence of
the series. It is possible that the truncation employed in this
work is still far from the converged solution, but this can only
be confirmed in a future work.
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APPENDIX A: RELATIVISTIC FLUID DYNAMIC
EQUATIONS IN THE SPH FORMALISM

In the SPH approach one introduces a conserved reference
density current J* = ou" where o is the local density of a
fluid element in its rest frame. As the fluid flows, the cell
is deformed but its density obeys Do + o6 = 0, which in
hyperbolic coordinates is equivalent to 9, (tou*) = 0. In terms
of this reference density, the equations of motion used in this
paper can be written as [27]

drt o o

ds+l'[0_0
Viar\o c )T 7

d (11 I1
my — (—) + — 4+ <£>9 =0.
dt \o o o

(A2)

(A3)
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FIG. 9. (Color online) Kernel function W{r; k] as a solid black
curve for & = 0.3 fm (denoted by the vertical dashed blue line) used
in this paper.

These equations are completely equivalent to those in Sec. 11
but they are more suitable for the Lagrangian implementation
via SPH, as will be explained in the following.

The fundamental idea behind a mesh-free method such as
SPH is that the boost-invariant hydrodynamical fields can be
reconstructed, at any given point in space and time, using a dis-
crete set of Lagrangian coordinates {r,(7),« = 1, ..., Nspu}
together with a normalized piecewise distribution function
W [r; h] for the discretization procedure. The kernel is chosen
to have a finite support given by A, i.e., its value strictly
vanishes for |r| > h. Also, the kernel is a delta sequence
in the sense that lim;,_.o W[r;h] = §(r). The parameter / is
a length scale that represents the width of the kernel and
it defines a cutoff for modes with shorter wavelength. The
smaller the & the larger is the number of SPH particles needed
to accurately describe the flow. In general, the choice of
h dictates how much of the initial structure in the initial
conditions will be reproduced and used as initial values for
the subsequent dynamics. In practice, the actual size of 4 is
also limited by the computational time available. We shall
discuss our choice for # in more detail in the next section.
For boost-invariant hydrodynamics, the kernel function (in
hyperbolic coordinates) is normalized as

/W[r;h]dzr =1. (A4)
The Kernel function used in V-USPHYDRO can be seen in Fig. 9.

As was mentioned above, the conserved reference current
density obeys the equation 9, (tou”) = 0 in hyperbolic coor-
dinates. Within SPH, the reference density in the laboratory
frame is expressed in Lagrangian coordinates as

Nspu

Tyo = o*(r, 1) = Z Vg Wr —ry(1); 0],

a=1

(A5)

where v, are constants. Due to the normalization of the
kernel, one can see that integral of the reference density in the
transverse plane is a constant, i.e., fdzr o*(r,7) = Zévi"f' Vy.
Therefore, it is natural to interpret the quantity v, as a
conserved quantity attached to the Lagrangian coordinate
ro(t) and o* as a sum of small piecewise distributions

Ve W[r — ry(7); h], which are called “SPH particles.”
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One now defines the vector current

i ( )—Nf DOyt vkl (A6)
J r,7)= Vo d r Ire(7); B

T
a=1

so the continuity equation d,0* (r, 7) + V; - j*(r, 7) = 0 for
the reference density is automatically satisfied [33]. Equa-
tion (A6) shows that each Lagrangian coordinate (or SPH par-
ticle) ry(7) has velocity u,(7) = y,(7)v4(7), Where v, (1) =
dry(t)/dt and y, = 1/,/1 — v2, and it carries a quantity v,
for the reference density o *.

Now, let a(r,t) be the density associated with some
extensive quantity. The SPH description of this quantity is

S alr(0)
a(r,7) = Z Vg — W Ir—rq(t):h]l. (A7)

¢ o (ry (1))

One can then see that any spatial gradient of a(r, T) acts only on
the kernel function and this gradient is still a smooth function.
For instance, for the zeroth component of the entropy current
in the laboratory frame s* = sy 7 one finds

a=1

. S s(ra(0)
s*(r, 1) = Z v, W r —ry(7); h]

e ———— (A8)
£ 5 (ry(0))
while for the bulk term
Nspu 1 u
M, 7) =Y vy—r (-) WIr —re(t);h].  (A9)
a=1 Yol 0/

The dynamical variables in the SPH method are then

s I1
{ra,ua, <—> s <—) o= 1, ey NSPH} (A]O)
o o o o

and they represent the position, velocity, entropy, and bulk

viscosity associated with the a-th SPH particle, respectively.

Using that 9,(tou*) = 0, we see that *V - v = —‘2—‘? and,

consequently, the fluid expansion rate for each SPH particle is

doz o ado';
V+V Yo 40q

6, = (D,u", =
o = (Dyue dt T o} dt

(Al1)

From the equations of motion in Eqs. (A1)-(A3) we obtain
the following equations associated with each SPH particle

*d((8+p+l'l)a )
of— | ———Fuiq

Oy

Nspu
Pg + Hﬁ Pa + Ha
=T ) vgo, +
; P ( @7 (o)
x 0; W[r, —rg(t); hl, (A12)
d (s n I 0 _0 (A13)
i \o N o) \T),

and

tnayai (E) +(E> +(£> 6, =0. (Al4)
dt \o /, o/, o/,

The right-hand side of Eq. (A12) is the SPH representation
of the gradients of pressure and bulk viscosity and, in the
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case of vanishing bulk viscosity, these equations become those
found using the variational principle [33]. Egs. (A12)—(A14)
are the SPH representation of the equations of motion which
are solved in V-USPHYDRO. The beauty of the SPH method to
solving hydrodynamics is that the coupled, nonlinear partial
differential equations in the Eulerian view are described in
terms of a set of nonlinear ordinary coupled differential
equations for the Lagrangian variables.

We remark that in our Lagrangian approach no numerical
viscosity is needed even in the inviscid case. Moreover, in
our approach no extra conditions on the dynamical fields at
very low temperatures needs to be imposed. In fact, we show
below that our code in the absence of bulk viscosity exactly
matches the analytical solution for 2 4 1 inviscid conformal
hydrodynamics derived by in Ref. [68], which provides a
very stringent test of our approach to solve the equations of
relativistic fluid dynamics. We have also checked that our code
matches the calculations performed in Ref. [27].

1. Comparison to Gubser flow

In Ref. [68], an analytical solution of 2+ 1 (i.e., boost
invariant) ideal conformal (i.e., ¢ = 3p) hydrodynamics was
derived that can be used as a nontrivial check for the numerical
hydrodynamic codes. They found the following analytical
solution for the energy density profile:

€0 29)*"
T3 (1 +2¢2(12 + r2) + g4 (2 — r2243°
(A15)

e(t,r)=

where
r?=x%+y? (A16)

and ¢ (in 1/fm) and gy are constants set to 1 (the overall
magnitude of the energy density, set by &g, is immaterial for
this type of check). The analytical solution for the flow is [68]

sinh[« (7, r)]x

u(t,r)y= ——,
,
Al7
sinh[k (T, r)]y ( )
uy(t,r)y= ——,
r
where
(, r) = arctanh 247t (A18)
k(t,r) =arctanh | ———— | .
1 +q%t2+ g%

We take the analytical formulas shown above computed
at to = 1 fm to define the initial conditions for the energy
density and flow. These initial conditions are used as input for
our numerical code and we then compare our numerical results
to the analytical solution for several values of 7, as shown in
Figs. 10 and 11.

This system expands very rapidly, the energy density falls
very steeply, and it requires a relatively small /2, which in turn
requires a great deal of SPH particles to achieve an accurate
description of the analytical solution. V-USPHYDRO was able to
match the analytical solution very well using 7 = 0.12 fm and
a total of 103041 SPH particles, as seen in Figs. 10 and 11.
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FIG. 10. (Color online) Comparison between our numerical
results for the energy density computed using V-USPHYDRO (dashed
blue lines) and the analytical solution in Eq. (A15), shown as solid
red lines, for times T = 1, 1.2, 1.4, 1.8, 2.2, and 2.4 fm. The energy
density at the origin starts at 1 fm~* at 7o = 1 fm and is reduced by
an order of magnitude after 1.4 fm.

Note, however, that the Glauber initial conditions used in the
numerical analysis in this paper do not expand as fast as this
analytical solution (they also do not have initial transverse
flow) and not as many SPH particles are needed in this case.
The dependence of our results for the flow coefficients shown
in Sec. V with the choice of / and the total number of SPH
particles is studied in Appendix E.

APPENDIX B: SOME DETAILS ABOUT THE
COOPER-FRYE FREEZE-OUT WITHIN
THE SPH APPROACH

In this section we present some details about the
Cooper-Frye formalism employed in hadronic freeze-out [61]
within the SPH approach [36,39,69]. In the Cooper-Frye

VRraDIAL

r (fim)

FIG. 11. (Color online) Comparison between our numerical
results for the radial velocity , /u? + u2 computed using V-USPHYDRO

(dashed blue lines) and the analytical solution in Eq. (A17), shown
as solid red lines, for times T = 1, 1.2, 1.4, 1.8, 2.2, and 2.4 fm. The
initial transverse flow has a peak around 1 at » ~ 1.4 fm and peaks
around 2.5 at r ~ 2.6 fm when 7 = 2.4 fm.
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freeze-out procedure [61], the particle flux through an isother-
mal hypersurface ¥ defines the momentum distribution of
a given particle species of degeneracy g, mass m, energy

E = p% + m?2, and distribution function f

dN 8
dyprdprd¢ — (2m)?

where Tro is the freeze-out temperature, y is the particle’s
rapidity, and IT is the bulk viscosity contribution. Note that pu
and IT are the only Lorentz invariant structures that need to
be taken into account to describe the viscous effects coming
solely from bulk viscosity.

As explained in Refs. [36,39,69], in the SPH formalism the
integral over the isothermal hypersurface is written in terms of
a sum of SPH particles as

/ dp f(pu. 11, Tro), (BI)
>

Nspu
dN g (p-n)a Vo
= 3 i f(TFOa (pu)a, HO{)’
dyprdprd¢ 2m) — (n-u)y og4

(B2)

o0
Ti(e,m, Tro) =2 _(—a)' A" {EZFO(,I)(H)KO [

= Tro

n+DEy,
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where the index « indicates the SPH particle, Ngpy is the
total number of SPH particles, (n,), is the normal vector of
the isothermal hypersurface reconstructed using the «-th SPH
particle, (u, ), is the four-velocity of the SPH particle, and
I1, is the bulk viscosity of the SPH particle. The distribution
function in the equation above is the sum of the ideal
distribution function and the nonequilibrium correction §f
shown in Eq. (18) (for the sake of generality, here we do
not use classical statistics).

In explicit form, the particle distribution for a given particle
species is

dN g Nspu
- o Li(o,m, T
dyprdprd¢p  (2n)} ; [q0a Z1(ct, m, Tro)
—(pr - 7)o Lo, m, Tro)], (B3)
where

(nv)a Vo

(QU)Q = (B4)
|(n ) M)Oll Ja

and

]

(1) 2 17(2)
+ K, |:(}’l + 1)Eya] E <Fo({0)(}’l) + Fa (m)Tro + EZFOEZ)(I’Z)> + E Fa (m)Tro K, |:(n + l)EVai“ (B5)

FO (n + I)Va
and
o0
Ty(et,m, Tro) =2 ) _(—a)' Ay {Ko [
n=0
HE
+ EK, |:(}’l +1) Yo
Tro

with a = 1 (—1) for fermions(bosons) and O for classical par-
ticles, A, = e Prur)e/Tro K [x]is a modified Bessel function,
and

FO(m) =14 (n + IR

x [Bo — Do(pr - ur)e + Eo(pr -ur)z], (B7)
FOm) = (n + Dlaye [Do — 2Eo(pr -ur)e],  (BY)
F2(n) = (n + DI, y? Ey. (B9)

APPENDIX C: EVENT-PLANE METHOD FOR
COLLECTIVE FLOW COEFFICIENTS

We use the event-plane method to compute the collective

flow coefficients [66]. First, we use that given the differential
dN;i(pr,$) . .. .

number Dprdprds .of hadrons of' species i in a given event,

we can integrate it over the azimuthal angle ¢ to find the

n+DEy,

(n+ Dy, Tro

T ] (FP(n) + FP(n)E?)

F2(n)Tro
F(l) + aQ _)} B6
]( NPT B0
[
spectrum
dN; m dN;
ANi(pr) _ f dp—""1 (C1)
dyprdpr  Jo dyprdprd¢
We then define the event-plane vectors
) PT max 2 dN:
Oitn = [ dpr v} [ do costnp) T
R dyprdprdg
(€2)
. PT max 5 2w dN;
' [n] =/ d / d¢ sin(ngp) ———,
% R P G dprds
(C3)
and the event-plane angles
: 1 Qi [n]
‘In]=—tan™' [ == , C4
v n Q' [n] 0

where in this paper prmin = 0 GeV and prmax = 3 GeV.
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The collective flow coefficients as functions of the trans-
verse momentum are then

o dg N T cosln(¢ — ¥'[n ])]

dNi(pr)
dyprdpr

v (pr) = (C5)

The integrated v,,’s are given by

i f;rrm dpr pr fo 49 Tpravras dyppoTdtﬁ cos[n(¢ — ¥ [n])]
v

n DT max ANi(pr)
PT min PT PT qyprdpr dyprdpr

(Co)

APPENDIX D: FORMULAS FOR THE COEFFICIENTS
IN§f

In this paper, & fli’) is computed following the steps outlined
in Refs. [50,63]. In this Appendix, we just outline how the
coefficients that appear in 8 f, @ can be computed.

The coefficient a'% is a function of the temperature and the

nr
mass of the i-th hadron species,

(0)i i \2
ay _ Jio (iy2 _ (Jéo)
IO T (@) = —— i
ap 00 Jzojoo - (JIO)
a21 _ 20710 = J30400 azo Jfoj,%lo - (leo)
(0)1 - . . NG (())l - . . NG
ay ToJd0 = (Jio) o) o0 = (Jio)

(a")’

i \3
. . J3
iy (J;o - a)

The thermodynamic functions J! o are defined as

. . . . . —1
— 2y Ty i + (J;o)zfao)
‘]210 JOO - (JIIO)
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where g; is the degeneracy factor, dK; = d’k/ [(2n)3k?], and
Jok 1s the local equilibrium distribution function,

1
exp(Bu - k) +a’

with a being @ = 1(—1) for fermions(bosons), and 0 for
classical particles, and we assumed that the chemical potential
is zero. For completeness, we shall also define the thermody-

namic function Ir‘lq,

o d*k (
=8 o) k9

where we defined E; = u - k;. In this paper we only consider

classical particles for constructing an approximate expression

f(;k =

En)" (_Aaﬁk?kf)qf(ik’

for the 8 of hadrons. Therefore, the functions I[’;q and Jéq are
equivalent.
The coefficients «; ,, are given by

@io\ _ -1 Bio
(ot,-,z) = Mo (ﬂi,z) ’

J — Jo(eg + P,
B = Ji, 3010 — Jao (o 0)9
J30J10 — J20J20

i Joono — Jio (60 + Po)
T Lo dio — Ja0da0

N

_ i

HQ_E : nq’ Inq—E :Inq
i=1

Above, M(o) isa 2N — 1) x 2N — 1) matrix that can be

where

= [ =D I+ Lole.

Ji g d’k (- k=2 (-A kakﬁ)qfi (1 —afl ) derived from the collision term of the Bolt.zr.nann equation.
ng = & ) k° i ap®i % ) Jok Ok/> Since we consider only elastic 2-to-2 collisions, it can be
! simplified to be
|
00 00 02 02
Ml - Mino Mn(()) MNN(O) o My C10) = Miino
00 00 02 g2 02 ' 02
Iy My - Muno My 10 = Mino - Myv-10) = Mano
0 =
2 02
MII(O) MIN(O) Mn(()) MNN(O) MI,N—I(O) = Myno
2 ' 02 g2
MN 1,10) * "+ MN 1,N(0) My 110 = Mavo - My-1v-10) MNN(O)
where
o o
M= ALDS; + P,
and

0) _ 88
A0 — 227 Z/dl( dK'dP,dP}y;;W?
00 j=1

0 8i8j
Cl0 = o /deK dPd Py Woh g

pp’ —kK’

IO (B [hy) (Epi — Exi) + 1) (EL — EG) ]

© 4O oy [ @
Fod Fiw (B [ (Eyj — Ex )+ by (Ep s — i) ]
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FIG. 13. (Color online) The ef-
fect of the choice of & on the total
convergence of the v,’s (h = 0.3 fm,
h = 0.5 fm, and 2 = 0.7 fm). On the
left [(a)—(e)] the percentage deviation
[see Eq. (E1)] is shown compared to
h = 0.1 fm for 159 600 SPH particles.
On the right [(f)-(j)] we show the
v,(pr)’s varying Nspy and h. We
used a single optical Glauber initial
condition averaged over 150 events in
the 20-30% centrality class.
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with W o = s0i;(27)°6%(p; + p}; — ki — k}) being the
transition rate, N is the number of hadrons considered,
vij =1—(1/2)6;;, s is the Mandelstan variable, and we
defined

0 _ O O | 40 O
hOi =1+a +a ay >

o) _ (0)l (0)1 (0)1 (O)l
hy; tay a
o) _ (O)l (0)1
hy = ayy a s

a _ (0)1 (0)1 (0)i (0)l
hy = ayy T ay ap s

a _ (0)1 (O)l (0)i (0)1
hy = ayy T ay a,

a _ (0)l (0)i
hs; a

=dy) Ay,

2 _ (0)1 (0)i
hot = ayy ay, s
2 _ (0)1 (0)i
hyi = ay ay

2 _ (0 (0)
hy' =ay a .

APPENDIX E: CONVERGENCE OF THE RESULTS
WITH THE CHOICE OF h AND THE NUMBER
OF SPH PARTICLES

In this paper, the effects of bulk viscosity on collective
flow coefficients were computed using V-USPHYDRO with & =
0.3 fm and a total number of SPH particles (Ngpy) of roughly
3 x 10*. However, it is important to test the convergence of our
results with the choice of these parameters, i.e, if one were to
include more SPH particles would there be a change in the flow
harmonics and if so by what percentage? To demonstrate this
we first set # = 0.3 fm and vary the number of SPH particles
using averaged initial conditions in the 20-30% centrality
bin. The initial condition was averaged over roughly 150
events, which means that it is mostly smooth but there is still
some small remaining structure that generates small, though
nonzero, higher-order flow harmonics. In Fig. 12 we show
our results for both the v,(p7)’s and the relative percentage

PHYSICAL REVIEW C 88, 044916 (2013)

difference defined as

'Un% (NSPH) — 100 vn(NSPH) - vn(Noo) ’ (El)
Vn(Noo)
where Noo = 159600 SPH particles is the maximum number
of particles set by our computational limitations.

As one can see in Fig. 12, our choice of about 27000
SPH appears reasonable with the corresponding 7 = 0.3 fm
(at very low pr there is a greater deviation because the v,’s
approach zero, which makes the comparison more difficult).
Quite generally, the different choices for Ngpy differ from the
“infinite” N limit by only 2-5% depending on the specific
v,(pr) and the difference is practically indiscernible with the
naked eye (see the right plot in Fig. 12). Elliptic flow is found
to be by far the most robust. The one exception being vg(pr),
which after this study we have decided not to include in the
paper in the results section due to the large deviation. To
perform a reliable study of vg(pr) an extremely large number
of SPH particles would be needed, which would significantly
slow down computation time.

Additionally, we test the convergence of our results with
our choice for & . Because h is a smoothing parameter, if we
choose h = 0.3 fm this inherently limits our ability to probe
very short length scales. Thus, it is important that 4 is small
enough to take into account necessary fluctuations but also
large enough to allow for a reasonable computational time. We
show the variation of our results for the flow coefficients with
the choice of % in Fig. 13. The left plot shows the percentage
difference with respect to the Ny, limit and 2 = 0.1 fm while
the right plot shows the actual values of the coefficients versus
pr for various values of 4 and Nspy. One can see in Fig. 13
that the difference between 4 = 0.5 fm and & = 0.3 fm is
not that large; however, results for 2 = 0.7 fm consistently
show a larger deviation for v, to vs. This suggests that for the
averaged Glauber initial conditions used in these tests most of
the important structure is larger than 0.5 fm. Clearly, if one
were to consider other types of initial conditions which display
structure at smaller length scales, such as those that include
gluon saturation effects [56], the type of analysis discussed in
this appendix must be performed again.
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