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REPRESENTATIONS OF GALOIS ALGEBRAS

Vyacheslav Futorny

Abstract

Galois algebras allow an effective study of their representation theory based on the
invariant skew group structure. In particular, this leads to many remarkable results on
Gelfand-Tsetlin representations of the general linear Lie algebra gln, quantum gln,
Yangians of type A and finite W -algebras of type A.

1 Introduction

A classical problem of the representation theory of simple complex finite dimensional Lie
algebras is the classification of simple modules. Today such a classification is known
only for the Lie algebra sl2 Block [1981]. Special attention is addressed to the study of
so-called weight modules, i.e. those on which a certain Cartan subalgebra is diagonaliz-
able. By the results of Fernando [1990] and Mathieu [2000], the classification of simple
weight modules with finite dimensional weight subspaces is well known for any simple
finite dimensional Lie algebra. On the other hand, a classification of simple modules re-
mains open even in the category of weight modules with infinite dimensional weight sub-
spaces. The largest subcategory of the category of weight module with some understand-
ing of simple objects is the category of Gelfand-Tsetlin modules. The Gelfand-Tsetlin
theory has attracted considerable interest in the last 40 years after the pioneering work of
Gelfand and Cetlin [1950] and was developed in Drozd, Ovsienko, and Futorny [1991],
Graev [2004], Graev [2007], Drozd, Ovsienko, and Futorny [1989], Mazorchuk [1998],
Mazorchuk [2001], Molev [2006], Želobenko [1973], among the others. Gelfand-Tsetlin
integrable systems were studied by Guillemin and Sternberg [1983], Kostant and Wallach
[2006a], Kostant andWallach [2006b], Colarusso and Evens [2010], Colarusso and Evens
[2014].

Gelfand-Tsetlin theory can be viewed in a more general context of Harish-Chandra cat-
egories Drozd, Futorny, and Ovsienko [1994], Futorny and Ovsienko [2007] which play
very important role in the representation theory. These are the categories of modules over
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a given algebra defined by the restriction onto a fixed subalgebra. General setting for
the study of Harish-Chandra categories was established in Drozd, Futorny, and Ovsienko
[1994]. Examples of Harish-Chandra categories include classical Harish-Chandra mod-
ules over a finite dimensional Lie algebra defined with respect to a reductive subalge-
bra (Dixmier [1974]), weight modules over semisimple finite dimensional Lie algebras
with respect to a Cartan subalgebra, Gelfand-Tsetlin modules over gln (Drozd, Ovsienko,
and Futorny [1991]), certain representations of Yangians (Futorny, Molev, and Ovsienko
[2005]) etc. In the case of generalized Weyl algebras of rank 1 this approach led to a com-
plete classification of simple modules (Bavula [1992], Bavula and van Oystaeyen [2004]).

Developed techniques turned out to be very useful in the study of Gelfand-Tsetlin mod-
ules for the Lie algebra gln (Drozd, Ovsienko, and Futorny [1991], Ovsienko [2002]).
Gelfand-Tsetlin modules form the full subcategory of weight gln-modules which are sums
of finite dimensional modules over the Gelfand-Tsetlin subalgebra Γ (certain maximal
commutative subalgebra of the universal enveloping algebra of gln) Drozd, Ovsienko,
and Futorny [1991], Futorny and Ovsienko [2010]. These modules are weight modules
with respect to some Cartan subalgebra of gln but they allow to have infinite dimensional
weight spaces.

Gelfand-Tsetlin theory had a successful development in Ovsienko [2002], where it was
shows that simple Gelfand-Tsetlin modules over gln are parametrized up to some finite-
ness by the maximal ideals of Γ. Different explicit constructions of Gelfand-Tsetlin mod-
ules for gln were recently obtained in Futorny, Grantcharov, and Ramirez [2014], Futorny,
Grantcharov, and Ramirez [2015], Futorny, Grantcharov, and Ramirez [2016b], Futorny,
Grantcharov, and Ramirez [2016a], Futorny, Ramirez, and Zhang [2016], Zadunaisky
[2017], Vishnyakova [2018], Vishnyakova [2017], Ramírez and Zadunaisky [2017]. Nev-
ertheless, the problem remains open.

As an attempt to unify the representation theories of the universal enveloping algebra of
gln and of the generalizedWeyl algebras a new concept of Galois orders was introduced in
Futorny and Ovsienko [2010]. These algebras have a hidden skew (semi)group structure.
In particular, the universal enveloping algebra of gln is an example of such algebra where
invariant skew group structure comes from the Gelfand-Tsetlin formulas. Representation
theory of Galois algebras was developed in Futorny and Ovsienko [2014]. It provides
a new framework for the study of representation of various classes of algebras. Recent
paper of Hartwig (Hartwig [2017a]) discovers new examples of Galois algebras for which
the theory can be effectively applied.
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2 Harish-Chandra modules

We recall basic facts about Harish-Chandra module categories following Drozd, Futorny,
and Ovsienko [1994]. Let U be an associative algebra over , Γ � U a subalgebra. The
set of maximal idealsm of Γ such that dimΓ/m < 1 will be called the cofinite spectrum
cfsΓ of Γ. Then every m 2 cfsΓ defines a unique simple Γ-module of dimension l(m)

where Γ/m ' Ml(m)().
We say thatM is aHarish-Chandramodule (with respect toΓ) ifM a finitely generated

U -module such that
M =

M
m2cfsΓ

M (m);

where
M (m) = fx 2 M j9k; mkx = 0g:

The support of a Harish-Chandra module M is a subset of cfsΓ consisting of those m
for which M (m) ¤ 0.

We denote by H(U;Γ) the full subcategory consisting of all Harish-Chandra modules
in U � mod. It is closed under the operations of taking submodules, quotients and direct
sums.

In Drozd, Futorny, and Ovsienko [ibid.] a concept of a Harish-Chandra subalgebra was
introduced. For any m 2 cfsΓ denote by Lm the unique simple Γ/m-module. We say
that Γ is quasi-commutative if Ext1(Lm; Ln) = 0 for all m ¤ n. We also say that Γ is
quasi-central if for every u 2 U , the Γ-bimodule ΓuΓ is finitely generated as a left and
as a right Γ-module. Clearly, for a noetherian Γ it is sufficiently to check this condition
only for the generators of Γ (cf. Drozd, Futorny, and Ovsienko [ibid.], Proposition 8). A
subalgebra Γ is called Harish-Chandra if it is quasi-central and quasi-commutative.

Example 2.1. Let g be a finite dimensional Lie algebra andF its reductive Lie subalgebra.
Then Γ = U (F) is a Harish-Chandra subalgebra of U = U (g). Indeed, Γ is quasi-
commutative since any m 2 cfsΓ is cofinite. Also Γ is quasi-central since g is finite
dimensional.

The concept of a Harish-Chandra subalgebra is essential for understanding the cate-
gories of Harish-Chandra modules. We address to Drozd, Futorny, and Ovsienko [ibid.]
for further properties of Harish-Chandra subalgebras in the general setting. The most stud-
ied is the case of commutative Γ which we consider next.

2.1 Commutative Γ. Let U be an associative algebra and Γ � U a noetherian com-
mutative subalgebra. A natural idea is to try to parametrize simple modules in the Harish-
Chandra categoryH(U;Γ) by simpleΓ-modules. Since any simpleΓ-module is 1-dimensional
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it defines a homomorphism from Γ to which we call a character of Γ. The kernel of any
such character is a maximal ideal of Γ, thus there is a one-to-one correspondence between
the characters of Γ and elements of SpecmΓ. The following problem of extension of char-
acters to simple modules in H(U;Γ) is of prime importance for description of possible
supports of simple Harish-Chandra modules.

Problem 1. Given m 2 SpecmΓ is there a (simple) module M 2 H(U;Γ) such that
M (m) ¤ 0.

Recall that in the classical setting when both U and Γ are commutative and extension
Γ � U is integral then we have a map between the sets of prime (maximal) ideals ' :

SpecU ! SpecΓ and the fiber '�1(p) is non-empty for every p 2 SpecA. In particular,
every character of Γ can be extended to a character of U . Moreover, if U is finitely
generated module over Γ then all fibers '�1(p) are finite and the number of different
extensions of each character of Γ is finite. By the Hilbert-Noether theorem this is the case
when U = S(V ) is the symmetric algebra of a finite dimensional vector space V and Γ

is the subalgebra of G-invariants of U for some finite subgroup G of GL(V ).
If U is noncommutative then the restriction functor from the category H(U;Γ) to the

category of torsion Γ-modules induces a map Φ from SpecmΓ to the set of isomorphism
classes I rr(U ) of simple U -modules in H(U;Γ). Given a maximal ideal m 2 SpecmΓ,
Φ(m) consist of those simple V 2 H(U;Γ) such that V (m) ¤ 0 (or left maximal ideals
of U which contain m).

Example 2.2. (i) Let g be a reductive Lie algebra with a Cartan subalgebra H, U =

U (g) and Γ = U (H). Then for any weight � 2 H� the fiber Φ(�) is infinite (even
in the category O which is a subcategory of H(U;Γ)).

(ii) Let U = Un = C[Sn], U1 � : : : � Un, Zk the center of C[Uk ]. Then Γ =<

Z1; : : : ; Zn > is maximal commutative. It is generated by the Jucys-Murphy ele-
mentsXi = (1i)+: : :+(i�1i), i = 1; : : : ; n. The elements of SpecmΓ parametrize
the irreducible representations of the group Sn Okounkov and Vershik [1996].

The freeness of U over Γ as a right module guarantees the lifting of characters of Γ
(all examples above are of this kind). Finding sufficient conditions for the fiber Φ(m) to
be non-empty for any point m 2 SpecmΓ is a difficult problem in general. In particular,
if U is a special filtered such conditions were obtained in Futorny and Ovsienko [2005]
generalizing the Kostant’s theorem (see further examples in Futorny and Ovsienko [ibid.]
and Futorny, Molev, and Ovsienko [2005]).
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3 Galois algebras

A class of Galois rings (orders) was introduced in Futorny and Ovsienko [2010] to deal
with the problem of extension of characters of commutative subalgebras.

Let R be a ring, M a monoid acting on R by ring automorphisms. We will denote the
action of m 2 M on r 2 R by rm. Consider the skew monoid ring R � M. Any element
of R � M can be written in the form x =

P
m2M xmm. Define supp x as the set of those

m 2 M for which xm is not zero.
Let G be a finite group acting on M by conjugation. Then we have an action of G on

R � M by ring automorphisms: g(rm) = g(r)g(m), g 2 G; r 2 R, m 2 M.
Assume now that Γ is an integral domain, K the field of fractions of Γ and L a finite

Galois extension of K with the Galois group G = Gal(L/K). Consider the action of
G by conjugation on Aut(L). Let M be any G-invariant submonoid of Aut(L). For our
purposes we will always require M to be K-separating, that is m1jK = m2jK ) m1 =

m2 for m1; m2 2 M. The action of G on L and on M (by conjugations) extends to the
action of G on the skew monoid ring L � M. Denote by K = (L � M)G the subring of
invariants.

Definition 3.1. A finitely generated Γ-subring U of K is called a Galois ring over Γ if
UK = KU = K.

We have the following characterization of Galois rings:
We will always assume that all Galois rings are -algebras. In this case we say that a

Galois ring is a Galois algebra over Γ.

Example 3.1. Let U = Γ(�; a) be a generalized Weyl algebra of rank 1 (Bavula [1992]),
where Γ is a unital integral domain, a 2 Γ, � an automorphism of Γ of infinite order. It
is generated over Γ by X and Y such that X
 = �(
)X; Y
 = ��1(
)Y; YX = a;

XY = �(a): Let K be the field of fractions of Γ and M ' Z is a subgroup of AutΓ
generated by � . Then U can be embedded into the skew group algebra K � Z when
X 7! � and Y 7! a��1. Clearly, U is a Galois algebra over Γ. Note that U ' Γ � Z if
a is invertible in Γ.

3.1 Galois orders. Now we discuss a special class of Galois rings which are called
Galois orders. Galois orders were introduced in Futorny and Ovsienko [2010] as a natu-
ral noncommutative generalization of a classical notion of order in skew group rings (cf.
McConnell and Robson [1987]).

A Galois ring U over Γ. is right (respectively left) Galois order, if for any finite dimen-
sional right (respectively left) K-subspace W � U [S�1] (respectively W � [S�1]U ),
W \ U is a finitely generated right (respectively left) Γ-module. A Galois ring is Galois
order if it is both right and left Galois order.
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For a right Γ-submodule M � U denote

Dr(M ) = fu 2 U j9
 2 Γ; 
 ¤ 0 such that u � 
 2 M g:

It follows immediately that Dr(M ) is a Γ-module.
We have the following characterization of a Galois order.

Proposition 3.1 (Futorny and Ovsienko [2010], Corollary 5.1, 5.2). (i) A Galois ring
U over a noetherian Γ is right (left) Galois order if and only if for every finitely
generated right (left) Γ-module M � U , the right (left) Γ-module Dr(M ) is finitely
generated.

(ii) If a Galois ringU over a noetherian domainΓ is projective as a right (left)Γ-module
then U is a right (left) Galois order.

In the commutative case if K is the field of fractions of Γ, U � K is finitely gener-
ated over Γ and the extension Γ � U is integral then U is Galois order over Γ. Further
examples of Galois orders include: generalized Weyl algebras over integral domains with
infinite order automorphisms (e.g. the n-th Weyl algebra An, the quantum plane, the q-
deformed Heisenberg algebra, quantized Weyl algebras, the Witten-Woronowicz algebra
Bavula [1992]; the universal enveloping algebra of gln over the Gelfand-Tsetlin subalge-
bra Drozd, Ovsienko, and Futorny [1991], Drozd, Futorny, and Ovsienko [1994], finite
W -algebras Futorny, Molev, and Ovsienko [2005]).

There is a strong connection between Galois orders and maximality of Harish-Chandra
subalgebras. Namely, we have

Theorem 3.1. (i) Let Γ be a finitely generated domain over and U a Galois order
over Γ. Then Γ is a Harish-Chandra subalgebra in U .

(ii) Let U be a Galois ring over finitely generated -algebra Γ and M be a group. If Γ
is a Harish-Chandra subalgebra in U then U is a Galois order if and only if Ue is
an integral extension of Γ.

(iii) Let U be a Galois ring over a normal noetherian Harish-Chandra subalgebra Γ

and M be a group. Then U is a Galois order over Γ if and only if Γ is maximal
commutative in U .

Proof. First item follows from [Futorny and Ovsienko [2010], Corollary 5.4]. Second
item follows from [Futorny and Ovsienko [ibid.], Theorem 5.2, (2)]. Let U be a Galois
ring over a normal noetherian Harish-Chandra subalgebraΓ. IfΓ is maximal then applying
[Futorny and Ovsienko [ibid.], Corollary 5.6, (2)] and the fact that U has no torsion as a Γ-
module we conclude that U is a Galois order over Γ. To prove the converse, it is sufficient
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to show that U \ K = Γ by [Futorny and Ovsienko [ibid.], Theorem 4.1]. Since U \ K

is an integral extension of Γ by the second item, the statement follows from the normality
of Γ.

The problem of lifting of characters for Galois orders was studied in Futorny and
Ovsienko [2014]. In particular, sufficient conditions for the fiber Φ(m) to be nontriv-
ial and finite were established. Let U � (L � M)G be a Galois ring over Γ. Consider the
integral closure Γ̄ of Γ in L. It is a standard fact that if Γ is finitely generated as a -algebra
then any character of Γ has finitely many extensions to characters of Γ̄.

Let m̄ be any lifting ofm to the integral closure of Γ inL, andMm the stabilizer of m̄ in
M. Note that the group Mm is defined uniquely up to G-conjugation. Thus the cardinality
of Mm does not depend on the choice of the lifting. We denote it by jmj.

For m;n 2 SpecmΓ set

S(m;n) = fm 2 M j n̄ 2 GmG � m̄g;

which is a G-invariant subset in M. If M is a group then we have

jS(m;n)/Gj � jfx 2 M j xm̄ = n̄gj:

Denote by r(m;n) the minimal number of generators of U (S(m;n)) as a right Γ-
module.

Theorem 3.2. [Futorny and Ovsienko [ibid.], Theorem A, , Theorem 8] Let Γ be a com-
mutative domain which is finitely generated as a -algebra, U � (L � M)G a right Galois
order over Γ, m 2 SpecmΓ. Suppose jmj is finite.

(i) The fiber Φ(m) is non-empty.

(ii) If U is a Galois order over Γ, then the fiber Φ(m) is finite.

(iii) Let U be a Galois order over normal noetherian Γ, M 2 H(U;Γ) a simple U -
module andm 2 SpecmΓ. If U is free as a right Γ-module then for any n

dim M (n) � jS(m;n)/Gj:

3.2 Principal Galois orders. Further examples of Galois orders were recently con-
structed by Hartwig [2017a]. As before denote K = (L � M)G . Clearly, K is its own
Galois subring over Γ. But, K is a Galois order if and only if Λ = L, where Λ is the
integral closure of Γ in L [Hartwig [ibid.], Corollary 2.15].

Let x =
P

�2M x�� 2 L�M and a 2 L. Define the evaluation x(a) :=
P

�2M x��(a)

[Hartwig [ibid.], Definition 2.18]. Then we have



1306 VYACHESLAV FUTORNY

Theorem 3.3 (Hartwig [2017a], Theorem 2.21).

KΓ = fx 2 K j x(
) 2 Γ for all 
 2 Γg

is a Galois order over Γ in K.

One immediately sees that any Galois subring of KΓ over Γ is a Galois order. Such
orders are called principal Hartwig [ibid.].

A new class of principal Galois orders, rational Galois orders, was introduced in
Hartwig [ibid.]. These structures are attached to an arbitrary finite reflection group and a
set of difference operators with rational function coefficients. In particular, the parabolic
subalgebras of finite W -algebras of type A are rational Galois orders [Hartwig [ibid.],
Theorem 1.2]. This extends the result of Futorny, Molev, and Ovsienko [2005] for W -
algebras of typeA. Other examples of principal Galois orders include orthogonal Gelfand-
Tsetlin algebras (Hartwig [2017a], Theorem 4.6) introduced in Mazorchuk [1999] and
quantum orthgonal Gelfand-Tsetlin algebras (Hartwig [2017a], Theorem 5.6) introduced
in Hartwig [2017b]. The family of quantum orthogonal Gelfand-Tsetlin algebras includes
in particular quantized universal enveloping algebra Uq(gln) and, as a consequence, im-
plies the maximality of the Gelfand-Tsetlin subalgebra of Uq(gln) when q is not a root of
unity (this was conjectured by Mazorchuk and Turowska [2000]).

4 Gelfand-Tsetlin modules

Now we address the Lie algebra gln consisting of all n � n complex matrices with the
standard basis of elementary matrices fei;j j 1 � i; j � ng. For each k 6 n denote by
glk the Lie subalgebra of gln spanned by feij j i; j = 1; : : : ; kg. We have the following
embeddings of Lie subalgebras

gl1 � gl2 � : : : � gln:

We have corresponding embeddings U1 � U2 � : : : � Un of the universal enveloping
algebras Uk = U (glk), 1 � k � n. Set U = Un.

Let Zk be the center of Uk . This is the polynomial algebra generated by the following
elements

(1) cks =
X

(i1;:::;is)2f1;:::;kgs

ei1i2ei2i3 : : : eis i1 ;

s = 1; : : : ; k.
Let Γ be the subalgebra of U (gln) generated by the centers Zk , k = 1; : : : ; n, the

Gelfand-Tsetlin subalgebra Drozd, Ovsienko, and Futorny [1991]. The generators cks ,
k = 1; : : : ; n, s = 1; : : : ; k are algebraically independent Želobenko [1973].
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Let Λ be the polynomial algebra in the variables f�ij j 1 6 j 6 i 6 ng. Consider the
embedding � : Γ�! Λ such that

cks 7!

kX
i=1

(�ki + k � 1)s
Y
j ¤i

�
1 �

1

�ki � �kj

�
:

One can easily check that �(cks) is a symmetric polynomial in Λ of degree s in vari-
ables �k1; : : : ; �kk . Let G =

Qn
i=1 Si be the product of symmetric groups. Then G acts

naturally onΛwhere Sk permutes the variables �k1; : : : ; �kk , k = 1; : : : ; n. The image of
Γ, �(Γ), coincides with the subalgebra ofG-invariant polynomials inΛwhich we identify
with Γ.

Consider the Harish-Chandra category H (U;Γ). We will call the modules of H (U;Γ)

Gelfand-Tsetlin modules. If M 2 H (U;Γ) then

M =
M

m2SpecmΓ

M (m);

where M (m) = fv 2 M jmkv = 0 for some k � 0g: Clearly, any simple Gelfand-Tsetlin
module over gl(n) is a weight module with respect to the Cartan subalgebra spanned by
ei i , i = 1; : : : ; n. Moreover, for n = 2 any simple weight module is a Gelfand-Tsetlin
module. For n > 2 this is not true in general, but holds for modules with finite weight
multiplicities. For a Gelfand-Tsetlin module M (m) 2 H (U;Γ) and m 2 SpecmΓ we
call the dimension of M (m) the Gelfand-Tsetlin multiplicity of m.

4.1 Finite dimensional modules over gln. We recall a classical result of Gelfand and
Cetlin [1950] which gives an explicit basis for all simple finite dimensional gln-modules.

For convenience we consider the elements of the space Ck as k-tuples whose entries
are labeled as follows (vk1;:::;vkk

). We also identify C
n(n+1)

2 with Tn(C) = Cn � Cn�1 �

: : : � C. Then every vector v in C
n(n+1)

2 can be written in the following form:

v = (vn1; :::; vnnjvn�1;1; :::; vn�1;n�1j � � � jv21; v22jv11)

to which we associate the following array T (v)

vn1 vn2 � � � vn;n�1 vnn

vn�1;1 � � � vn�1;n�1

� � � � � � � � �

v21 v22
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v11

Such an array will be called a Gelfand-Tsetlin tableau of height n.
For a fixed element v = (vij )

n
j �i=1 2 Tn(C) consider the set

v + Tn�1(Z) = fv + w j w = (wij )
n
j �i=1; wij 2 Z; wnk = 0 ; k = 1; : : : ; ng:

Denote by V (T (v)) the complex vector space spanned by the set v + Tn�1(Z) as a basis.
Clearly, the spaces V (T (v)) and Tn(C) are not isomorphic as T (v +w) ¤ T (v)+T (w)

in V (T (v)).
A Gelfand-Tsetlin tableau T (v) of height n is called standard if vki � vk�1;i 2 Z�0

and vk�1;i � vk;i+1 2 Z>0 for all 1 � i � k � n � 1.

Theorem 4.1 (Gelfand and Cetlin [1950]). Let L(�) be the simple finite dimensional gln-
module of highest weight � = (�1; : : : ; �n). Then the set of all standard tableaux T (v)

with fixed top row vni = �i � i + 1, i = 1; : : : ; n forms a basis of L(�). Moreover, the
action of the generators of gl(n) on L(�) is given by the Gelfand-Tsetlin formulas:

ek;k+1(T (v)) = �

kX
i=1

 Qk+1
j=1(vki � vk+1;j )Qk

j ¤i (vki � vkj )

!
T (v + ıki );

ek+1;k(T (v)) =

kX
i=1

 Qk�1
j=1(vki � vk�1;j )Qk

j ¤i (vki � vkj )

!
T (v � ıki );

ekk(T (v)) =

 
k � 1 +

kX
i=1

vki �

k�1X
i=1

vk�1;i

!
T (v):

If ek;k+1(T (v)) or ek+1;k(T (v)) contains a summand with a non-standard T (v ˙ ıki ),
then the summand is assumed to be zero.

These formulas define a Gelfand-Tsetlin modules where the action of the generators of
Γ is given by:

cmk(T (v)) = 
mk(v)T (v);

where

(2) 
mk(v) :=

mX
i=1

(vmi + m � 1)k
Y
j ¤i

�
1 �

1

vmi � vmj

�
:

To every w 2 v+Tn�1(Z)we associate the maximal ideal ofΛ generated by �ij �wij

and the maximal ideal mw of Γ generated by cij � 
ij (w), where 
ij (w) are symmetric
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polynomials defined in (2). Again, the correspondence w 7! mw is not one-to-one, a
given m 2 SpecmΓ defines the finite fiber of maximal ideals of Λ corresponding to the
set bm of w 2 v + Tn�1(Z) withmw = m.

The basis of tableaux defined in Theorem 4.1 is called the Gelfand-Tsetlin basis. Dis-
covery of Gelfand-Tsetlin bases are among the most remarkable results of the representa-
tion theory of classical Lie algebras. It provides a convenient realization of every simple
finite dimensional representation of the Lie algebra gln. For other types of simple finite
dimensional Lie algebras we refer to Molev [2006].

4.2 U (gln) is a Galois order over Γ. We identify Tn�1(Z)with the free abelian group
M ' Z

n(n�1)
2 generated by ıij , 1 6 j 6 i 6 n � 1, where (ıij )ij = 1 and all other

(ıij )k` are zero, 1 � j � i � n�1. The group M acts naturally on Tn(C) by translations.
We also have the action of G = Sn � Sn�1 � � � � � S1 on Tn(C) as follows:

�(v) := (vn;��1[n](1); : : : ; vn;��1[n](n)j : : : jv1;��1[1](1)):

where v 2 Tn(C), � 2 G and � [k] 2 Sk . This leads to the action of the semidirect product
G Ë Tn�1(Z) on Tn(C) .

Denote by K the field of fractions of Γ and by L the field of fractions of Λ. We have
LG = K, ΛG = Γ and G = G(L/K) is the Galois group of the field extension K � L.
The group M acts naturally on L and U is a subalgebra of (L � M)G . Following Futorny
and Ovsienko [2014], define a linear map � : U 7�! (L � M)G where

�(emm) = emm � e; �(em m+1) =

mX
i=1

a+
mi ı

mi ; �(em+1m) =

mX
i=1

a�
mi (ı

mi )�1;

where

a˙
mi = �

Q
j (�m˙1;j � �mi )Q
j ¤i (�mj � �mi )

;

and e is the identity element of the group M.
In fact, themap � is algebra homomorphism since the defining relations ofgln are given

by some rational functions which agree on finite dimensional modules, thus relations are
satisfied.

Moreover, we have

Theorem 4.2 (Futorny and Ovsienko [2010], Proposition 7.2). � is an embedding and U

is a Galois order over Γ.
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Applying Theorem 3.2 we obtain that the number of isomorphism classes of simple
Gelfand-Tsetlin U -modules with a given maximal ideal of Γ in the support is bounded byQn�1

i=1 i !: Another consequence of Theorem 4.2 is the following. If M is a Gelfand-Tsetlin
U -module andm = mv 2 SpecmΓ for some v 2 Tn(C) then

ek;k˙1M (m) �

kX
i=1

M (mv˙ıki ):

From here and Theorem 3.1 one easily obtains

Corollary 4.1. (i) Γ is a Harish-Chandra subalgebra of U .

(ii) Γ is maximal commutative in U .

4.3 Tableaux modules. The explicit nature of the Gelfand-Tsetlin formulas in Theo-
rem 4.1 and the fact that the coefficients in the formulas are rational functions on the
entries of the tableaux, naturally raises the question whether this construction can be ex-
tended for more general tableaux.

If V is a Gelfand-Tsetlin modules which has a basis parametrized by the tableaux and
the action of Γ is determined by the entries of tableaux as in (2) then such V will be called
tableau module. The problem of constructing of tableaux modules was studied by Gelfand
and Graev in Gelfand and Graev [1965] and by Lemire and Patera (for n = 3) in Lemire
and Patera [1979], Lemire and Patera [1985]. Tableux relalization for Generalzied Verma
modules was considered in Mazorchuk [1998].

If the action of the generators of gln on a tableau Gelfand-Tsetlin module V is given by
the classical Gelfand-Tsetlin formulas as in Theorem 4.1 then V will be called standard
tableau module. Modules considered in Gelfand and Graev [1965], Lemire and Patera
[1979], Lemire and Patera [1985] are standard tableau modules.

We call T (v) a generic tableau and v a generic vector if vrs � vrt … Z for any r < n

and all possible s ¤ t . For a generic tableau all denominators in the Gelfand-Tsetlin
formulas are nonintegers and one can use the same formulas to define generic standard
tableau Gelfand-Tsetlin module V (T (v)) (Drozd, Futorny, and Ovsienko [1994], Section
2.3). All Gelfand-Tsetlin multiplicities of maximal ideals of V (T (v)) are 1.
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Definition 4.1. For each generic vector w and any 1 � r; s � n define

drs(w) :=

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�

Qs
j=1(ws�1;1�ws;j )Qs�1

j=2(ws�1;1�ws�1;j )

s�2Y
j=r

 Qj+1
t=2 (wj1 � wj+1;t )Qj

t=2(wj1 � wj t )

!
; if r < s;

Qs�1
j=1(ws1�ws�1;j )Qs

j=2(ws1�wsj )

rY
j=s+2

 Qj �2
t=2 (wj �1;1 � wj �2;t )Qj �1
t=2 (wj �1;1 � wj �1;t )

!
; if r > s;

r � 1 +
rP

i=1

wri �

r�1P
i=1

wr�1;i ; if r = s;

Let 1 � r < s � n � 1. Set "rs := ır;1 + ır+1;1 + : : : + ıs�1;1 2 Tn(Z); "rr = 0 and
"sr = �"rs .

Let eSk be the subset of Sn consisting of the transpositions (1; i), i = 1; : : : ; k. For
s < `, set Φs` = eS`�1 � � � � �eS s . For s > ` we set Φs` = Φ`s . Finally we let Φ`` = fIdg.
Every � in Φs` will be written as a js � `j-tuple of transpositions � [k] (where � [k] is the
k-th component of � ).

Proposition 4.1 (Futorny, Grantcharov, and Ramirez [2015]). Let v 2 Tn(C) be generic.
Then the gln-module structure on V (T (v)) is defined by the formulas:

(3) ek`(T (v + z)) =
X

�2Φk`

dk`(�(v + z))T (v + z + �("k`));

for z 2 Tn�1(Z) and 1 � k; ` � n. Moreover, V (T (v)) is a Gelfand-Tsetlin module with
action of Γ given by the formulas (2).

Note that if v � v0 2 Tn�1(Z) then V (T (v)) and V (T (v0)) are isomorphic as vectors
spaces but not necessarily as the gln-modules. Simple generic Gelfand-Tsetlin modules
were described in Futorny, Grantcharov, and Ramirez [ibid.].

The main difficulty in the defining of a tableau Gelfand-Tsetlin module structure on
V (T (v)) is the existence of entries in one row of T (v) that have integer difference. Let
v 2 C

n(n+1)
2 . A pair of entries (vkij ; vkis ) such that k > 1 and vkij � vkis 2 Z is

called a singular pair. We say that v (and T (v)) is singuar if v has singular pairs. First
examples of infinite dimensional tableau Gelfand-Tsetlin modules with singular tableaux
were considered in Gelfand and Graev [1965], Lemire and Patera [1979], Lemire and
Patera [1985]. A new effective method of constructing standard tableau simple Gelfand -
Tsetlin modules was proposed in Futorny, Ramirez, and Zhang [2016]. It allowed to obtain
a large family of simple modules that have a basis consisting of Gelfand-Tsetlin tableaux
and the action of the generators of gln is given by the classical Gelfand-Tsetlin formulas.
All examples obtained inGelfand andGraev [1965], Lemire and Patera [1979], Lemire and
Patera [1985] are particular cases of this construction. But the class of modules defined in
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Futorny, Ramirez, and Zhang [2016] ismore general. They build out of a tableau satisfying
certain FRZ-condition.

A tableau T (v) is critical if it has equal entries in one or more rows different from the
top row. Otherwise, tableau is noncritical.

Theorem 4.3 (Futorny, Ramirez, and Zhang [ibid.], Theorem II). Let T (w) be a tableau
satisfying the FRZ-condition. There exists a unique simple Gelfand-Tsetlin gln-module
Vw having the following properties:

(i) Vw(mw) ¤ 0;

(ii) Vm has a basis consisting of noncritical tableaux and the action of the generators
of gln is given by the classical Gelfand-Tsetlin formulas (4.1).

(iii) All Gelfand-Tsetlin multiplicities of maximal ideals of Γ in the support of Vw equal
1.

Theorem 4.3 provides a combinatorial way to explicitly construct a large class of infi-
nite dimensional simple Gelfand-Tsetlin modules.

Conjecture 1. If V is a simple Gelfand-Tsetlin gln-module which has a basis consisting
of noncritical tableaux with classical action of the generators of gln then V ' Vw for
some w satisfying the FRZ-condition.

The conjecture holds for n � 4.
A systematic study of singular modules was initiated in Futorny, Grantcharov, and

Ramirez [2015] where the case of a singular tableau T (v) with a unique singular pair
was considered (1-singular case). A significant difference from all previous cases is the
existence of derivative tableaux in the basis of V (T (v)) which reflects the fact that the
exact bound for the Gelfand-Tsetlin multiplicities of V (T (v)) is 2. Alternative interpre-
tation of a tableau Gelfand-Tsetlin module structure on V (T (v)) in 1-singular case was
given independently in Vishnyakova [2018] and Zadunaisky [2017]. Simple subquotients
of V (T (v)) were described in Gomes and Ramirez [2016].

We say that v is singular of index m � 2 if:

(i) there exists a row k, 1 < k < n, and m entries vki1 ; : : : ; vkim on this row such that
vkij � vkis 2 Z for all j; s 2 f1; : : : ; mg;

(ii) m is maximal with the property (i).

The case of arbitrary singularity of index m = 2 was solved in Futorny, Grantcharov, and
Ramirez [2016a]. In this case any number of singular pairs (but not singular triples) and
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multiple singular pairs in the same row were allowed. Finally, the general case of an arbi-
trary singularity was solved in Vishnyakova [2017] (for p-singularity) and Ramírez and
Zadunaisky [2017] (for arbitrary singularity). We provide the construction from Ramírez
and Zadunaisky [ibid.] whose spirit is closer to our original approach.

Recall that L is the field of rational functions in �ij , i = 1; : : : ; n, j = 1; : : : ; i , and
a˙

mi 2 L for all 1 � i � k < n. Consider a set of all tableau with integral entries
whose top row consists of zeros. We set VC to be the C-vector space with this basis, and
VL = L ˝C VC . Since � (4.2) is a homomorphism, VL is a U -module, with the action of
gln given by the Gelfand-Tsetlin formulas.

The group G acts acts on VL by the diagonal action, while M acts on Λ and L by
translations: ık;i � �l;j = �l;j + ık;lıi;j .

Denote by A the algebra of regular functions over generic tableaux, that is those el-
ements in L which can be evaluated in any generic tableau, and let VA to be the A-
submodule of VL generated by all integral tableaux. Given a generic tableau T (v), we
can recover the corresponding generic module V (T (v)) by specializing VA at v. If T (v)

is a singular tableau then we replace A with an algebra B � L such that there exists
a B-submodule VB � VL which is also a U -submodule and any element of VB can be
evaluated at v. Specialization at v finally defines V (T (v)).

Each point v 2 C
n(n+1)

2 defines the following refinement �(v) of v, which measures
of how far is v from being generic Ramírez and Zadunaisky [ibid.]. Fix 1 � k � n � 1.
Construct a graph with vertices i = 1; : : : ; k, put an edge between i and j if and only if
vk;i �vk;j is integer. The graph is the disjoint union of connected components, we set �(k)

to be a sequence of their cardinalities arranged in descending order. The entries vk;i that
form one connected component are called an �-block of v. If v is generic then �(k) = (1k),
a sequence consisting of n ones. We set � = (�(1); : : : ; �(n�1); 1n) to be the �-type of v

and �(v) to be the element in C
n(n+1)

2 obtained from v by rearranging of it components
to match the �-blocks.

Let B be the localization of Λ by the multiplicative subset of Λ generated by the ele-
ments

�k;i � �k;j � z; 1 � i < j � k < n; z 2 Z n f0g:

Following Ramírez and Zadunaisky [ibid.], we say that v is in an �-normal form if
vk;i � vk;j 2 Z�0 implies that vk;i and vk;j belong to the same �-block of v and i < j .
Clearly, the orbit G �v has at least one (but not necessarily unique) element in normal form.
We also say that v is an �-critical if it is in �-normal form and vk;i � vk;j 2 Z implies
vk;i = vk;j .

Consider a subgroup G� � G consisting of those elements of G which preserve the
block structure of �(v).
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Fix � and an �-critical v. Set B� to be the localization of B by the multiplicative set
generated by all �k;i � �k;j such that vk;i ¤ vk;j .

Now we consider divided difference operators that play a key role in the construction
of V (T (v)). Denote by s

(k)
i the simple transposition in G� which interchanges �k;i and

�k;i+1 and fixes all other elements. The divided difference associated to s
(k)
i is

@
(k)
i =

1

�k;i � �k;i+1

(id � s
(k)
i ):

It can be viewed as an element of the smash product L#G� , where (f ˝ �) � (g ˝ � 0) =

f �(g) ˝ �� 0 for f; g 2 L and all �; � 0 2 G� .
Let G�;k � G� be the corresponding component of Sk , k = 1; : : : ; n. If � =

s
(k)
i1

s
(k)
i2

� � � s
(k)
il

is a reduced decomposition for � 2 G�;k then set @� = @
(k)
i1

� @
(k)
i2

� � � @
(k)
il

which does not depend of the chosen reduced decomposition. This naturally extends to
the whole group G� .

For each � 2 G� we define the symmetrized divided difference operator

D�
� = sym� �@� ;

where sym� = 1
jG�j

P
�2G�

� .
Since B� is closed under the action of G� , we have D

�
� (f ) 2 B� for all f 2 B� .

Denote by V� � VL the B�-span of fD
�
� T (z) j � 2 G�; z 2 Tn�1(Z)g. Then V� is a

U -submodule of VL. Denote N� = fz 2 Tn�1(Z) j v + z is in normal formg: If z 2 N�

then the stabilizer subgroup of z in G� is G�(z) where �(z) is some refinement of �. Fix
z 2 N. We say that � 2 G� is a �(z)-shuffle if it is increasing in each �(z)-block. We
denote the set of all �(z)-shuffles in G� by Shuffle�

�(z). Write D̄
�
� (v + z) = 1 ˝ D

�
� (z)

for z 2 N and � 2 Shuffle�

�(z).
Combining Theorems 5.3 and 5.6 of Ramírez and Zadunaisky [2017] we obtain

Theorem 4.4. Let V (T (v)) = C ˝B�
V� , where C is a right B�-module such that 1 ˙f =

f (v). Then V (T (v)) is a Gelfand-Tsetlin module with a basis fD̄
�
� (v + z) j z 2 N�; � 2

Shuffle�

�(z)g and mv belongs to the support of V (T (v)).

Conjecture 2. Any simple Gelfand-Tsetlin module V with V (mv) ¤ 0 is isomorphic to
a subquotient of V (T (v)) for any singular v.

The conjecture was stated for any singular v of index 2 in Futorny, Grantcharov, and
Ramirez [2016a]. It is known to be true for n = 2 and n = 3, and for the 1-singular v

Futorny, Grantcharov, and Ramirez [2017]. In particular, it gives a complete classification
of all simple Gelfand-Tsetlin gl(3)-modules, Futorny, Grantcharov, and Ramirez [2014].
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