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Abstract: This study develops a structure for mapping native vegetation in a transition area between
the Brazilian Cerrado and the Atlantic Forest from integrated spatial information of Sentinel-1 and
Sentinel-2 satellites. Most studies use integrated data to improve classification accuracy in adverse
atmospheric conditions, in which optical data have many errors. However, this method can also
improve classifications carried out in landscapes with favorable atmospheric conditions. The use of
Sentinel-1 and Sentinel-2 data can increase the accuracy of mapping algorithms and facilitate visual
interpretation during sampling by providing more parameters that can be explored to differentiate
land use classes with complementary information, such as spectral, backscattering, polarimetry, and
interferometry. The study area comprises the Lobo Reservoir Hydrographic Basin, which is part of an
environmental conservation unit protected by Brazilian law and with significant human development.
LULC were classified using the random forest deep learning algorithm. The classifying attributes
were backscatter coefficients, polarimetric decomposition, and interferometric coherence for radar
data (Sentinel-1), and optical spectral data, comprising bands in the red edge, near-infrared, and
shortwave infrared (Sentinel-2). The attributes were evaluated in three settings: SAR and optical data
in separately settings (C1 and C2, respectively) and in an integrated setting (C3). The study found
greater accuracy for C3 (96.54%), an improvement of nearly 2% compared to C2 (94.78%) and more
than 40% in relation to C1 (55.73%). The classification algorithm encountered significant challenges in
identifying wetlands in C1, but performance improved in C3, enhancing differentiation by stratifying
a greater number of classes during training and facilitating visual interpretation during sampling.
Accordingly, the integrated use of SAR and optical data can improve LULC mapping in tropical
regions where occurs biomes interface, as in the transitional Brazilian Cerrado and Atlantic Forest.

Keywords: backscattering coefficients; multisensor optimizing; synthetic aperture radar

1. Introduction

Alterations in land use and land cover (LULC) arising from anthropic activities are
one of the principal environmental problems studied by scientists [1-6]. Adverse changes
in conservation areas cause environmental damage and harm our quality of life, such as
reduction in the available water for human consumption, or reduction in soil nutrients for
food production [4]. Society is highly dependent on a functional and stable land system for
food production and access to natural resources, including water, timber, fiber, ore, and
fuel, among other ecosystem services [5,7]. In this instance, the functionality and stability
of land systems depend on the interaction of soil, water, and plants within the ecological
composition and the quality of native vegetation [8,9]. Thus, mapping the composition of
vegetation not only provides information on the region’s quantitative and qualitative state,
but is a crucial initial step in analyzing and monitoring its management, including the state
of the natural vegetation and the impact of anthropic activities on affected ecosystems [10].
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The Brazilian Cerrado biome is a global biodiversity hotspot. It encompasses part
of three South America’s largest river basins (Amazon, Sao Francisco, and Prata), which
contribute to nearly half of Brazil's surface water and recharge of Bambui, Urucuia, and
Guarani aquifers, depending on biome integrity [11]. Its vital significance for the conserva-
tion of species and the provision of ecosystem services notwithstanding, only 53.1% of its
original area has been preserved [12], as it lost 279,000 km? between 1985 and 2021 from
LULC changes arising from such anthropic endeavors as crops, pastures, forestry, mining,
industrialization, and human expansion [12].

A similar trend can be observed in the Atlantic Forest, where 70% of Brazilians live,
as only 24.3% remains as a forest formation [13]. The forest largely corresponds to legal
reserves (LRs) and permanent protection areas (PPAs), both instruments of Brazilian envi-
ronmental laws, whose role is to preserve the quality of water, soil, and biodiversity [4,8,9].
The quality of the vegetation cover has also been adversely impacted, as there was a 23%
loss of mature forest from 1985 to 2021 [5]. In 37 years, 98,000 km? of primary vegetation
were suppressed, while 88,000 km? were regenerated into secondary vegetation [13], which
comprises 26% of forest cover in the Atlantic Forest. Thus, mapping the spatial composition
of forest vegetation is fundamental for the evaluation of the spatial pattern of ecosystem
services in an environmental study [10].

Without adequate LULC management focused on sustainability, regional river basins
suffer persistent alterations. The Lobo Reservoir Hydrographic Basin (LRHB), hereafter
basin, is formed by streams and rivers that contribute to the reservoir [2—4,14]. It lies in
the center-west of the state of Sao Paulo, Brazil, a transitional region between the Brazilian
Cerrado and the Atlantic Forest, over 200 km from the city of Sao Paulo, one of the principal
financial, corporate, and commercial centers of South America [4,14]. The state encompasses
16.6% and 28.4% of the two biomes, respectively [12,13].

Algorithms using machine learning can efficiently classify images from remote sensing
and are capable of handling high-dimensional data and mapping thematic classes with
complex features [15]. As remote sensing can provide cost-efficient data, it is suitable for
LULC evaluation at higher spatial resolution. The free availability of medium-high-spatial
resolution imagery, such as Sentinel-1 radar data and Sentinel-2 optical data, can facilitate
mapping the state of native vegetation in regions where ecosystem services require finer-
scale assessments [16]. Several studies have examined the applicability of active synthetic
aperture radar (SAR) to map LULC in terms of specific objectives [10,16-23]. One study
delineated cocoa agroforests in Cameroon from textural features extracted from SAR
imaging [22], and another evaluated the value of short-time baseline coherence of SAR
images over a complex agricultural area in the state of Sao Paulo [21]. With all-day and all-
weather operational capability, these sensors provide diverse, complementary physical data
that enhance spectral data when combined with optical imaging [10,16,19,23]. In addition,
the integration of Sentinel-1 and Sentinel-2 increased the accuracy of LULC mapping,
using complementary information such as spectral [18,20], backscattering, polarimetry, and
interferometry [17].

However, the work in general has been carried out to map vegetated and nonvege-
tated areas without distinction in relation to vegetation characteristic of the region under
study. Furthermore, the mappings carried out in studies and published in high-impact
journals have not yet explored the expanded extraction of LULC thematic classes with the
intention of differentiating types of transitional vegetation between different biomes, and
reforestation for commercial and research purposes. In Brazil, research has focused on
mapping the vegetation characteristic of the Amazon Forest, thus leaving other biomes
with tropical characteristics without scientific reference. Therefore, this study seeks to fill
the gaps in the field of remote sensing using multisensor and spatial data typology. In
this sense, this methodology applied to the Brazilian biomes Cerrado and Atlantic Forest
interface can be used to study similar biomes present in other countries, such as Cerrado in
Bolivia, Paraguay, and Argentina (Chaco, Gran Chaco, or South American Cerrado), and
the Atlantic Forest interface in Paraguay, Argentina, and Uruguay.



Remote Sens. 2024, 16, 2559

30f15

Regarding remote sensing LULC mapping, advanced artificial neural networks, es-
pecially deep learning models, have gained increased attention due to their end-to-end
nature [16]. An obstacle affecting the performance of deep learning networks is the dearth
of training samples [24]. Accordingly, a framework based on deep learning for classifying
native vegetation in the transitional regions that can integrate SAR and optical data and
effectively handle training samples should be developed.

This study develops such an architecture for mapping native vegetation from inte-
grated spatial information from the Sentinel-1 and Sentinel-2 satellites. To this end, the Lobo
Reservoir Hydrographic Basin, which is in an environmental conservation unit protected
by Brazilian law for the purpose of sustainable use, was adopted as the study area, as it
is a region with significant agricultural, mining, and industrial development. The spatial
composition of the basin’s native vegetation is formed by permanent protection areas,
comprising fragments of the Atlantic Forest in rivers and streams margins, close to springs,
and the Ecological Station of Itirapina area, composed of typical vegetation of savannah
and grassland Brazilian Cerrado biome. This study further contributes to national and
international research, as the basin is part of the long-term ecological research program
of the National Council for Scientific and Technological Development, which promotes
advances in environmental and ecological research [2-4,8,14,25,26].

2. Materials and Methods

This study’s methodology is characterized as follows. Section 2.1 presents the char-
acterization of the study area; Section 2.2 describes the source and acquisition of spatial
data used to elaborate the LULC map; Section 2.3 describes the elaboration of LULC classi-
fication attributes derived from the integration of optical and SAR data; and Section 2.4
delineates the classification of the LULC map and the evaluation of the accuracy of the
architecture developed from the field visit.

2.1. Study Area

Located in the center-west region of the state of Sao Paulo, between Brotas and
Itirapina, at the geographic coordinates 22°15'S and 47°49'W (Figure 1), the Lobo Reservoir
Hydrographic Basin (LRHB), officially designated the Carlos Botelho Reservoir, has an area
of 230 km?, drainage density of 0.75 km/km?, maximum altitude of 800 m, and slope of
0.0075 m/m [8].

Constructed in 1936 to generate electricity, the Lobo Reservoir is currently used for
irrigation, tourism, and research. One of Brazil’s most studied reservoirs, it is known
worldwide as the Broa model, reflecting the scientific research it has generated since the
1970s as a strategic project of two major universities, the University of Sao Paulo and
the Federal University of Sao Carlos [2—4,14,25]. The reservoir is primarily formed by
contributions of the Itaqueri river and the Lobo stream, augmented by contributions from
the Agua Branca, Geraldo, Limoeiro, and Perdizes streams. The region is in the Tieté/Jacaré
Water Resources Management Unit (number 13) and part of the Tieté river basin and,
consequently, those of the Parana and Prata rivers.

The basin is in the special use region of the Corumbatai Environmental Protection
Area, created by State Decree 20,960 [27]. Among its ecological attributes, its highly diverse
natural environments, rich historical and archaeological heritage, quality hydrological
resources, and scenic landscape stand out. The protection area seeks to regulate develop-
ment ensuring the basin’s sustainability through sustainable use, which balances the use of
natural resources with their conservation.

The Itirapina Ecological and Experimental Stations are also located in the basin and
are under the management of the Brazilian Forestry Institute. The former station was
created by State Decree 22,335 in 1984 and the latter by expropriation decrees. The stations
focus on environmental preservation and conservation through forestry management, envi-
ronmental education, research, visitation, and control of activities as agriculture, hunting,
fishing, road construction, fire, and vandalism. The ecological station has a crucial role
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in conserving the Brazilian Cerrado, a typically savannah and grassland biome. Marked
by characteristics of soil and climate, it includes formations originated during the glacial
periods in which the global temperature dropped, and the climate became drier, favoring
the retraction of forests and, consequently, the expansion of a more open vegetation, which

required less moisture [28].
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Figure 1. South America (a), Sao Paulo State (b) and Lobo Reservoir Hydrographic Basin (c) localiza-
tion and points used for field validation.

2.2. Spatial Data Used to Evaluate LULC and Classify Native Vegetation

Table 1 details spatial data used for LULC evaluation and classification of native vege-
tation in transitional regions between the Brazilian Cerrado and Atlantic Forest interface.

Table 1. Types of data, source, acquisition date, and resolution used to create the LULC map.

Data Source Acquired Acquisition Resolution
. . 19 December 2022
Sentinel 1 image [29] 5x20m
LULC 31 December 2022
Sentinel 2 image 25 March 2023 [29] 20 m
Waterways Digital elevat'ior} model, Advar.lced Spa.ceborne 2015 [30] 1:50,000
LRHB contour Thermal Emission and Reflection Radiometer

The LULC map was created from two single-look complex (SLC) images from Sentinel-
1A (C band) in interferometric wide-swath (IW) mode, in descending orbit and in VV-VH
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polarizations to obtain the following attributes from radar data: backscatter coefficients
(0% e o), polarimetric decomposition entropy (H) and alpha («), and interferometric
coherence (yyy € vyv) [17,31,32]; and an image with 20 m spectral bands: red edge (BO5,
B06, B07, and B8A), near-infrared (B08) and shortwave infrared (B11 and B12) of the
Sentinel-2A satellite sensors to derive attributes from optical data. The images dated
19 and 31 September 2022 for the radar images and 25 March 2023 for the optical image
were obtained free of charge from the website of the Copernicus Open Access Hub of the
European Space Agency [29]. This study used radar data to the maximum extent and
supplemented them with optical data to enhance LULC classification.

2.3. LULC Classification Attributes from Integrated Optical and SAR Data

Sentinel-1A data were preprocessed using SNAP 8.0 software to obtain SAR attributes,
and RStudio 2024.04.0 Build 735 software was used to obtain optical attributes. As the
study’s assessment of the spatial composition of native vegetation in transitional regions
between the Brazilian Cerrado and Atlantic Forest interface was confined to the LRHB, the
spatial pattern of its water ecosystem services could be examined with greater accuracy.
The digital elevation model (DEM) was obtained free of charge from the European Space
Agency’s Copernicus Open Access Hub website [29], collected by the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) sensor in the year 2015 [30]. The
outline of the hydrographic basin was attained from DEM to delimit the study area and
drainage network. Figure 2 depicts the preprocessing of LULC classification.

Pre-processing
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Figure 2. Preprocessing flowchart of LULC classification.

In the initial preprocessing step, the two Sentinel-1A SLC images were subconfigured
through split processing considering the bandwidth covering the LRHB extension and to
minimize SNAP data processing time. Apply Orbit File was applied to this subset to update
the information in the image metadata. Thermal noise removal was applied to remove
additive noise in subswaths and reduce discontinuities between subswaths. To determine
backscatter values (6”yy and 0yy), radiometric calibration was applied to provide imagery
in which the pixel values can be directly related to the radar backscatter intensity, using
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sensor calibration parameters in the Ground Range Detected (GRD) metadata. This process
consists of converting digital numbers of the GRD metadata into backscatter values per
area (o9, Equation (1)), to represent Earth surface targets as physical units , where DNi
are the pixels’ digital numbers. Ai is obtained from the application of absolute calibration
constant found in the lookup table (LUT) (Sentinel-1 data processing products by European
Space Agency), which is a range-dependent gain to produce o°.

DN?
0 _
0j = Aizl (1)

The Sentinel-1A data present only two polarizations, and the calculation of polari-
metric decomposition was carried out using the dual-form coherence matrix (Tgya1). The
2 x 2 coherence matrix was created using dual polarization data to attain the entropy (H)
and alpha (). Cloude [33] proposed it as an adaptation of the 3 x 3 coherence matrix
applied to quad-pol data and implemented in SNAP (Equations (2) and (3)):

T 2)
clual:(Tll Tu):U[?\l }\2]UH:)\1u1uI{I+7\2uZuIZ_I
Ty1 Ta2
2 2 _
H=) ., (—Pjlog, P;) and o = Zi:1 P; cos l(\uli\) (3)

where P; represents the relative importance of the eigenvalues of the coherence matrix (A;)
and is obtained from Equation (4):
A
Pi — i= 1,2 (4)

B 2]'2:1 A

The two Sentinel-1A images were acquired within 12 days, allowing coregistration to
obtain interferometric coherence (yygandyyy). The interferometric coherence calculation
(Equation (5)) was performed using a 10 x 3 window.

o l510%:(9) -

y{Jsi007]) {fs2007)

where vy represents the interferometric coherence, S1 and S2 are two SLC images from
different dates, and () is the mean over window size.

Deburst processing was applied to merge the subtracts, Multilook (4 x 1 looks) and
Lee filter with 3 x 3 window [34] for speckle noise reduction. Finally, the topographic
correction of the SAR attributes was performed with range Doppler terrain correction,
using DEM Alos-PalSAR-1, with 12.5 m spatial resolution, from Alaska Satellite Facilities.

2.4. Image Classification and Accuracy Assessment

The LULC map was derived from random forest (RF) algorithm classification [35,36],
using R 2.07.2022 software and the SIRGAS 2000 geodetic reference system in the Universal
Transversal Mercator cartographic projection, Zone 23 South. For RF, the parameters Ntree
were defined as 500, and Mtry as the square root of the number of input variables. Firstly,
ten training sample polygons were collected for each LULC class that were chosen for
the purpose of study. Then, the RF algorithm was used to classify, pixel by pixel, from
a training of collected samples and generate a model that derived the LULC map. The
ten identified classes were agriculture, water (reservoir), wetlands, urban area, Brazilian
Cerrado, native vegetation (Atlantic Forest), pasture, experimental reforestation (Itirapina
Experimental Station), productive reforestation (wood production), and exposed soil. The
study classified native vegetation of the Brazilian Cerrado and experimental reforestation
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distinctly from productive reforestation to better understand the relevance of each type of
activity that uses land for economic and social development.

To evaluate the use of attributes from the Sentinel-1A and Sentinel-2A satellites in
LULC mapping, three settings were classified and compared, using the attributes for SAR
and optical data separately and integrated (Table 2).

Table 2. Evaluation of SAR and optical attributes separately and combined.

Set Attributes Data Type

C1 ovh + 0%y + H+ o+ yyp + vy SAR

C2 B05 + B06 + B07 + BO8 + BSA + B11 + B12 Optical
0 0

C3 O vH*0vy +H+a+ vy +yvy + Integrated

B05 + B06 + B07 + BO8 + BSA + B11 + B12

From field observations at forty-seven points (Figure 1) widely distributed in the basin,
new pixel samples were collected for precision tests related to each LULC class as a field
reference [37-39]. The field visit was conducted on 23 April 2023. The elaboration of the
LULC map was used as support in preprocessing the interpretation of high-resolution
satellite images with optical and radar data, through the RGB combination of spectral
bands and radar, in addition to high-resolution images via Google Earth [4,14,40]. The
results were analyzed using a confusion matrix to evaluate the classification accuracy by
comparing it with field reference data [37-39]. From the confusion matrix of the reference
and prediction data, the producer and user accuracy values, omission, and inclusion errors
for each class, as well as the overall classification accuracy, were identified.

3. Results
3.1. Detailed LULC Classification for Integrated SAR and Optical Data

Figure 3 presents the separability of LULC classes by attribute value in box plot graphs
created from the 10 training samples collected per class, with upper, lower, median, mean,
maximum, and minimum values for each class. Regarding SAR attributes, the urban area
class demonstrated the highest separability, while for optical attributes, urban area, pasture,
exposed soil, and water showed the greatest variation.

Figure 4 depicts values for each band. This fundamental RF algorithm result shows the
importance of each attribute in classifying data. The figure plots mean decrease accuracy
(MDA) shows the precision the model loses by excluding each variable. Accordingly, the
more a variable decreases in precision, the greater its importance for sound classification.
The mean decrease gini (MDG) is a measure of how each variable contributes to the
homogeneity of nodes and leaves in RE. The greater the precision value of its MDA or MDG
rating, the greater the importance of the variable in the model. In Figure 4, it is observed
that when SAR data are used exclusively (C1), the importance values are high, highlighting
the backscatter coefficients (6%y e 6%yy). When they are integrated with optical data,
greater homogeneity is observed for MDA importance values. MDG importance values,
however, demonstrate that integrating SAR and optical data (C3) resulted in high use of
optical data, with emphasis on spectral bands B05, B11 and B12, while still using SAR
attributes, with emphasis on the backscatter coefficients (0% e 6%vv).

Figure 5 depicts RGB band compositions for C1, C2, and C3. The C1 bands present
greater homogeneity in differentiating classes, enabling differentiation of water, pasture,
urban area, and native vegetation, while the C2 bands present greater heterogeneity, which
facilitates the collection of RF training samples. Finally, the C3 bands clearly differentiate
the classes, highlighting distinctions between experimental and productive reforestation,
native vegetation and Brazilian Cerrado, exposed soil, and wetlands.
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Figure 5. RGB band compositions for C1, C2, and C3.

3.2. LULC and Accuracy Assessment

The overall accuracy (OA) values attained through RF classification for C1, C2, and
C3 were 55.73%, 94.78%, and 96.54%, respectively. Figure 6 depicts the spatial composition
of transitional regions between the Brazilian Cerrado and Atlantic Forest interface. The
classes identified were agriculture, water, flooded and urban areas, Brazilian Cerrado,
native vegetation (Atlantic Forest), pasture, experimental and productive reforestation, and
exposed soil. Figure 7 provides photographic records of field reference data for each LULC
class observed.

The accuracy assessment for C1, C2, and C3 used the confusion matrix. Figure 8
presents the producer (PA) and user (UA) accuracy values, omission (OE) and inclusion
(IE) errors for each class, as well as the overall accuracy (OA). The results indicate that
using only SAR data makes it difficult to attain high PA and UA values for some classes.
The agriculture, wetlands, pasture, and Brazilian Cerrado classes obtained low PA and
UA values and, consequently, high OE and IE values, while water and urban area classes
attained high accuracy values.

As Figure 8 indicates, both C2 and C3 present higher values of OA, PA, and UA than
C1. However, C3 modestly exceeded C2, with nearly 2% greater GA, fewer classes with EO
and EI, and more classes with higher values of PA and UA, having little difficulty in dis-
tinguishing EO in wetlands, productive reforestation, exposed soil, and native vegetation,
using the RF algorithm.
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Figure 6. LULC for C1, C2, and C3 with native vegetation in transition between Brazilian Cerrado

and Atlantic Forest interface.
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Figure 7. Photographic record for each LRHB class.
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Accuracy Assessment for C1, C2 and C3 using the Confusion Matrix
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Figure 8. Producer and user accuracy values, omission, and inclusion errors for each class for C1, C2,
and C3.

4. Discussion

Evaluation of the methodological approach used in this study verifies the integrated
use of data from the Sentinel-1 and Sentinel-2 satellites to classify the spatial composition
of native vegetation in transitional areas between the Brazilian Cerrado and Atlantic Forest
interface. The composition of the basin’s native vegetation (Figure 6) is formed by PPAs,
in the margins along rivers and streams and close to springs, as fragments of the Atlantic
Forest, and the area comprising the Itirapina Ecological Station, composed of characteristic
vegetation of the Brazilian Cerrado biome. Mapping such areas comprising the basin’s
native vegetation types is essential for evaluative studies of water ecosystem services [16],
as they play a vital role filtering sediment that would otherwise be deposited in waterways
and reservoirs [9,41-43]. In addition, they represent conservation areas that seek to preserve
the basin’s natural resources [4,26].

This study’s analysis of the importance of attributes for LULC classification depicted
in Figure 4 indicated that in C1 the most important, in order of descending importance,
were the backscatter coefficients (0%yg e 00yvy), the H-oac polarimetric decomposition, and,
finally, the interferometric coherence (yyy e yyy). In C2, the order was B11, B12, B05, BSA,
B06, B07, and B08, and in C3, the order was that of C2 followed by that of C1.

The C1 confusion matrix demonstrated the difficulties of LULC classification using
solely radar data, as it attained the worst values of the three methods assessed in the study,
achieving only 55.73% OA. The RF algorithm was extremely difficult to classify, confusing
the wetlands and water classes, representing 100% OE and IE. As Figure 3 indicates, the
only SAR variable able to differentiate them was the backscatter coefficient o%vy. The
basin’s water class is primarily composed of the Lobo Reservoir, formed from the rivers and
streams that constitute the basin drainage network. However, the other watercourses with
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small width are difficult to distinguish from wetlands of native vegetation in RGB band
composition using only radar data (Figure 5). Ref. [44] noted that wetlands, in addition to
being spatially complex, are temporally variable, and suggest that temporal information
from Sentinel-1 has greater discriminatory effectiveness over forested and nonforested
wetlands and nonwetlands. While this study did not use time series, it was able to attain
sufficient precision for the wetlands class in C3 with 77.78% PA and 94.92% UA, in which all
optical data differentiated the two classes quite well and optimized the SAR classification.

In addition, the capacity of 0%yy to distinguish wooded and nonwooded wetlands
is related to sensitivity to volume dispersion, which largely depends on the vegetative
structures of the tree canopy [45]. While this variability is evident in the boxplot graphs,
depicting the variables by class (Figure 3), it was not possible to observe the same distinction
during the collection of training samples, likely due to the small transitional gradient among
the basin’s natural characteristics.

Among the difficulties in LULC classification using only SAR data, the RF algorithm
did not distinguish pasture well, confusing it with agriculture and Brazilian Cerrado,
and attaining 84.73% EO and 45.36% EI. Agriculture was confused with experimental
reforestation and exposed soil, attaining 81.18% EO and 90.75% EI. Ref. [46] used C-band
backscatter coefficient values (RISAT-1) to map rice, vegetation, buildings, and water
bodies, through HH and VH polarizations, obtaining 88.57% OA, while [31] mapped the
agricultural land, dense vegetation, sparse vegetation, building, fallow, water bodies, and
sand classes and obtained 80.27% (OA) accuracy with only backscattering and 87.7% when
adding textural variables.

In this study, the land use classes were divided into ten categories (Figure 7) with
the aim of spatializing the distribution of native vegetation (Atlantic Forest and Brazilian
Cerrado) and conservation areas (experimental reforestation and wetlands) that are present
in the LRHB (transitional Brazilian-Cerrado and Atlantic Forest interface). The number of
distinct classes can make the classification procedure more difficult, and for this reason,
C1 achieved only 55.73% OA, with the backscatter coefficients being the most significant
variable (Figure 4). Differently, several studies achieve a good percentage of global accuracy
when dividing land use classes into a smaller number of distinct categories [17,31,43,45,46].

The inclusion of SAR data did not significantly improve RF performance in relation
to general accuracy, but the methodology can be used to improve classification when it
comes to many distinct categories. The relatively small improvement found in our study is
due to the image’s clear atmospheric conditions. Images with bad atmospheric conditions
were not used, such as moments of large cloud cover. Generally, studies that present the
comparison of optical data with SAR data use images with some degree of cloudiness,
so the range of improvement is greater when SAR data are integrated [31,43,45,46]. In
this study, we were able to assess and show that SAR data can also be used to improve
cases containing favorable atmospheric conditions, considering that it demonstrates great
potential to perform urban or anthropized classes, in addition to assisting in the more
stratified differentiation of classes in the same region. By integrating SAR and optical data,
C3 increased OA to 96.54%. The results indicate that while SAR data are widely used
because they can differentiate some LULC classes, when used in isolation, they encounter
difficulties, for example, in visual interpretation during training sample collection.

The study maps the basin’s native vegetation, but C1 encountered difficulties, with
the Brazilian Cerrado class registering OE and IE rates of 62.42% and 67.03%, respectively,
and was confused with experimental reforestation. In addition, the native vegetation class,
which obtained 49.25% OE and 20.80% IE, was confused with productive reforestation.
This type of class confusion is reported by other studies as well, and [17] observed that the
polarimetric decomposition attributes (H-oc) were crucial in the stratified identification of
different classes in the Brazilian Amazon Forest; however, certain similarities were noted in
the distribution of forest and agriculture classes.

In Figure 3, the values of entropy and alpha (H-x) for the Brazilian Cerrado were,
on average, slightly higher (0.76-0.88) than those for native vegetation (Atlantic Forest)
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(0.70-0.80) and resemble those of pasture, wetlands, and experimental reforestation classes.
According to [47], this may result from the presence of trees or shrubs in pasture areas,
which increase surface roughness, generating an SAR signal similar to forest areas and
savannah and grassland forests (Brazilian Cerrado).

Ref. [32] noted an increase in mean entropy values (0.6-0.7) in some areas of dry
tropical deciduous forests in India, while [17] obtained mean entropy values (0.65-0.75)
for Amazon Forest classes. Thus, the SAR variable best able to distinguish Brazilian Cer-
rado and native vegetation (Atlantic Forest), as well as other classes, was the backscatter
coefficient 6y, corroborating the results presented in Figure 4. Integrating optical data in
classification, the RF algorithm attained PA and UA values of 100% and 97.76%, respec-
tively, for the Brazilian Cerrado and 94.21% and 91.97%, respectively, for native vegetation
(Atlantic Forest).

The overall accuracy of 96.54% attained by C 3 conforms with results in other studies
integrating SAR and optical data [10,16,21-23,37-39]. Ref. [10] evaluated the integrated
use of Sentinel-1 and Sentinel-2 data for LULC mapping in a Mediterranean region and
attained 90.33% OA. Ref. [23] assessed the same data integration for mapping woody plants
in savannas and attained 93% OA. Accordingly, the study’s objective was achieved, with
an overall accuracy slightly better than in some studies [10,16,21-23].

5. Conclusions

By evaluating the use of SAR and optical data separately and in an integrated manner,
the study demonstrated differences between preprocessing attributes, classification, and
accuracy. Using optical data as variables is easier and faster than using SAR data, partic-
ularly in preprocessing. The sole use of either SAR or optical data, however, may fail to
meet expectations when a study’s objective is complex and may require, for example, more
detailed stratification of LULC classes or obtaining data on days with considerable atmo-
spheric interference. The use of integrated SAR and optical data offers an improvement to
optimize LULC mapping in tropical regions, due to the low influence of the atmosphere on
images in the microwave range.
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