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Abstract
In this paper additive partial linear models with generalized log-gamma errors and
P-spline smoothing are proposed for uncensored data. This class derived from the
generalized gamma distribution contains various continuous asymmetric distributions
to the right and to the left with domain on the real line and has the normal distribution
as a particular case. The location parameter is modeled in a semiparametric way
so that one has a generalized gamma accelerated failure time additive partial linear
model. A joint iterative process is derived, that combines the penalized Fisher scoring
algorithm for estimating the parametric and nonparametric regression coefficients and
a quasi-Newton procedure for obtaining the scale and shape estimates. Discussions
on the inferential aspects of the former estimators as well as on the derivation of
the effective degrees of freedom are given. Diagnostic procedures are also proposed,
such as residual analysis and sensitivity studies based on the local influence approach.
Simulation studies are performed to assess the empirical distributions of the parametric
and nonparametric estimators and a real data set on personal injury insurance claims
made in Australia from January 1998 to June 1999 is analyzed by the methodology
developed through the paper. Technical results, tables, graphs, R codes and the data
set used in the application are presented as Supplementary Materials.
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1 Introduction

The generalized log-gamma family has its most remote ancestor in the works by
the Italian economist (Amoroso 1925), on the distribution of the income. Almost
40years after, the generalized gamma distribution was derived with the work by Stacy
(1962). It was an effort to unifying the most important distributions in reliability and
survival analysis, such as exponential, Weibull, Inverse Weibull, gamma, log-normal
and Rayleigh among others. Some estimation properties and a new parametrization
of the generalized log-gamma distribution were studied in the 60s and 70s of the past
century by Stacy and Mihram (1965), Hager and Bain (1970), Prentice (1974) and
Lawless (1980, 2003).

Regression models with generalized log-gamma distributed errors have also been
studied in the last decades. As a special case of such models is the extreme value (Type
I) regression models, which was studied, for instance, by Paula and Rojas (1997) in
the context of one-sided tests under uncensored observations. Ortega et al. (2003) pre-
sented some estimation procedures and derived somediagnostic quantities based on the
local influence approach under the presence of censored observations and Fabio et al.
(2012) assumed a generalized log-gamma distribution for the random effect in ran-
dom intercept Poisson models, whereas Ortega et al. (2009) proposed the log-gamma
regression model with cure fraction giving emphasis to the local influence approach.
More recently, Agostinelli et al. (2014) derived robust and consistent estimators for
the three parameters of the distribution and developed the library robustlogamma
(Agostinelli et al. 2017) in the software R (R Core Team 2019) for fitting log-gamma
distributions.

Although this family is very flexible to allow distributions to the left and to the
right and has great potential of application in reliability studies as well as in survival
analysis, there are few works concerning this family in the context of semiparametric
analysis, particularly in GAMLSS (see, for instance, Stasinopoulos et al. 2017). So,
the aim of this paper is to propose a general framework for additive partial linear
models with generalized log-gamma errors and P-spline smoothing for uncensored
data, that corresponds to a generalized gamma accelerated failure time (AFT) model
in which the location parameter is modeled in a semiparametric way.

The paper is organized as follows. In Sect. 2 a review on the generalized gamma
distribution with various properties and graphs on its probability density function
(p.d.f.), hazard function and quantile function is given. The main results related with
the generalized log-gamma additive partial linear models are given in Sect. 3, such
as a review on the generalized log-gamma distributions and P-spline smoothing. In
Sect. 4, the penalized score function and the penalized Fisher information matrix are
derived for the parametric and nonparametric components. A joint iterative process
that combines the penalized Fisher scoring algorithm for estimating the parametric and
nonparametric regression coefficients and a quasi-Newton procedure for obtaining the
scale and shape estimates is developed. Some discussions on the asymptotic properties
of the former estimators are also given. An appropriate smoother and the effective
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degrees of freedom are derived in Sect. 5. Diagnostic procedures are proposed in
Sect. 6, such as residual analysis based on the quantile residual and sensitivity studies
based on local influence. Simulation studies to assess the large sample behavior of
the parametric and nonparametric estimators are presented in Sect. 7. In Sect. 8 a real
data set on personal injury insurance claims made in Australia, from January 1998 to
June 1999 and described in de Jong and Heller (2008), is analyzed by the procedures
developed through the paper. The last section deals with some concluding remarks and
various technical results, tables, graphs, R codes and the data set used in the application
are presented as supplementary materials.

2 Generalized gamma distribution

2.1 Definition and properties

Let T be a random variable following the generalized gamma distribution. The p.d.f.
of T (see, for instance, Lawless 1980) is given by

fT (t; η, σ, λ) =

⎧
⎪⎨

⎪⎩

C(λ)
tσ

(
t
η

) 1
σλ

e
− 1

λ2

(
t
η

) λ
σ

if λ �= 0

1
σ t

√
2π

e− 1
σ2

{log(t)−η}2 if λ = 0,
,

where t > 0 and C(λ) = |λ|
Γ (λ−2)

(λ−2)λ
−2
. The location, scale and shape parameters

are η > 0, σ > 0 and λ ∈ R, respectively, and we will denote T ∼ GG(η, σ, λ). This
family of distributions is very flexible as its special cases include log-normal (λ = 0),
exponential (η = σ = λ = 1), chi-squared (η = 1, σ = λ = √

2), gamma (σ = λ),
inverse gamma (λ = −σ), Rayleigh (λ = 1, σ = 1/2), Weibull (λ = 1), inverse
Weibull (λ = −1), Ammag (λ = 1/σ), inverseAmmag (λ = −1/σ), and half-normal
(η = 1, λ = 1/σ = √

2). In addition, if the distribution of Z belongs to the family
of exponential power distributions with location parameter τ and scale parameter ω

(that is, the density function of Z is proportional to exp{− 1
2 (|z − τ |/ω)2ν} for some

ν > 0), which includes the normal (ν = 1), Laplace or double exponential (ν = 1
2 ) and

uniform (ν → ∞) as special cases, then |Z − τ |/ω ∼ GG(ν− 1
2ν , 1/

√
2ν,

√
2ν) and

(Z−τ)2/ω2 ∼ GG(ν− 1
ν ,

√
2/ν,

√
2ν). Figure 1 describes the p.d.f. of the GG(1, σ, λ)

for some σ and λ values.
The main properties of the distribution of T are the following:

1. a T ∼ GG(a η, σ, λ) for all a > 0.
2. T a ∼ GG(ηa, |a|σ, sign(a)λ) for alla �= 0. For example,T −1 ∼ GG(η−1, σ,−λ).

3. E(T r ) = ηr
Γ (λ−2 + rσλ−1)

|λ|−2 rσ
λ Γ (λ−2)

for all r such that rσλ > −1. Therefore, when

they exist, the coefficient of variation, the coefficient of skewness, and the coeffi-
cient of kurtosis of T do not depend on η.

4. If V ∼ G(α=λ−2, β =λ−2), where V has mean αβ−1 and variance αβ−2, then T
may be expressed as ηV

σ
λ . Therefore,
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Fig. 1 Graph of the probability density function of T ∼ GG(1, σ, λ) for some values of λ and σ = 0.15
( ), σ = 0.3 ( ), σ = 0.7 ( ), σ = 1.1 (− · −·) and σ = 2 ( )

(a) if V1, . . . , Vn is a random sample drawn from V ∼ G(λ−2, λ−2), then

ηV
σ
λ

1 , . . . , ηV
σ
λ
n is a random sample drawn from T ∼ GG(η, σ, λ).

(b) fT (t; η, σ, λ) may be expressed as fT (t; η, σ, λ) = fV [(t/η)
λ
σ ] |λ|

ση
(t/η)

λ
σ

−1,
where fV (·) is the p.d.f. of V .

(c) The c.d.f. (cumulative distribution function) of T , denoted as FT (·), may be
written as

FT (t) =
{
FV [(t/η)

λ
σ ] for λ > 0

1 − FV [(t/η)
λ
σ ] for λ < 0,

where FV (·) is the cumulative distribution function of V . The survival function
of T is given by ST (t) = 1 − FT (t), so one may notice from the expression
above that η acts multiplicatively on the survival time t .

(d) The quantile function of T , denoted as QT (α), may be written as

QT (α) =
{

η
[
QV (α)

] σ
λ for λ > 0

η
[
QV (1 − α)

] σ
λ for λ < 0,
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Fig. 2 Graph of the hazard rate function of T ∼ GG(1, σ, λ) for some values of λ and and σ = 0.5 ( ),
σ = 0.7 ( ), σ = 1.1 ( ), σ = 2 (− · −·) and σ = 4 ( )

where QV (·) is the quantile function of V .
(e) The hazard rate function of T , denoted as hT (t), satisfies the following: (i) If

λ = 1 and σ > 1 or 1 < λ ≤ σ then hT (t) is decreasing; and (i i) if λ = 1 and
σ < 1 or σ ≤ λ < 1 then hT (t) is increasing.

(f) if Ti = GG(ηi , σi , λ), for i = 1, . . . , n, then
n∑

i=1
(Ti/ηi )

λ
σi ∼ G(n/λ2, λ−2).

Figure 2 describes the hazard rate function of T ∼ GG(1, σ, λ) for some σ and λ

values. One may have, for instance, constant, increasing, decreasing, bathtub-shaped
and upside-down bathtub-shaped forms, among others, for the hazard rate function.

The parametric generalized gamma AFT model is defined as follows

1. Ti = ηi ξ
σ
i ,

2. log(ηi ) = x	i β and

3. ξi
iid∼ GG(1, 1, λ),

where xi = (xi1, . . . , xip)	 contains values of covariates and β = (β1, . . . , βp)
	 are

the regression coefficients, i = 1, . . . , n. Then, it follows that Ti
ind∼ GG(ηi , σ, λ), and

consequently the mean of Ti is proportional to ηi whereas the coefficient of variation
and the shape of the hazard rate function of Ti are constant for all observations. An
appealing property of the parametric AFTmodel is that it allows to write the 100(α)%
quantile of Ti as follows

log
{
QTi(α)

} = log
{
ηi Q

σ
ξ(α)

}
= σ log

{
Qξ (α)

} + x	i β,

where Qξ (α) is the 100(α)% quantile of ξ . Therefore, the model parameters also
may be interpreted by taking into account their multiplicative effects acting on QTi(α)

for all α ∈ (0, 1). Application of generalized gamma models to study the survival
of patients with AIDS under different therapies are given, for instance, in Cox et al.
(2007).
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Fig. 3 Description of the ellipses
concerning the probabilities
ST (t1) and ST (t2) for t2 > t1

2.2 The GG distribution as a lifetimemodel

Let suppose the status or condition of an object or individual may be quantified by
comparing its values on a set of latent markers, denoted as Z = (Z1, . . . , Zm)	,
with the “optimum”values of those markers, denoted as τ = (τ1, . . . , τm)	. So, the
probability that the lifetime of that object or individual exceeds a threshold, say t ,
decreases as the distance between Z and its “optimum”value τ increases. That is,

ST (t) = P[T > t] = P
[
(Z − τ )	Σ−1(Z − τ ) ≤ κ1 t

−κ2
]
,

for some κ1 > 0 and κ2 > 0,where τ andΣ are the location and scale parameters of the
distribution ofZ, respectively.Zmaybe assumed to have a veryflexiblem-dimensional
distribution such as the multivariate power exponential distribution, studied by Gómez
et al. (1998), with τ , Σ and ν parameters, where τ ∈ R

m , Σ is an m × m definite
positive symmetric matrix, and ν ∈ (0,∞). This family of distributions includes as
special cases the multivariate normal (ν = 1), the multivariate Laplace or double
exponential (ν = 1

2 ), and the multivariate uniform (ν → ∞). Then, the distribution
of the lifetime of the object or individual, T , is

GG

(
(κ1ν

m

)1
κ2 ,

√
2ν

κ2
√
m

,−
√
2ν√
m

)

,

as, according to Gómez et al. (1998, p. 4), the distribution of (Z− τ )	Σ−1(Z− τ ) is
G(m/2ν, 1/2) (see, illustration in Fig. 3 for m = 2).

Similarly, the status or condition of an object or individual may be quantified by
comparing its values on a set of latentmarkerswith the “worst”values of thosemarkers.
So, the probability that the lifetime of that object or individual exceeds a threshold,
say t , increases as the distance between Z and its “worst”value τ increases.
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3 Generalized log-gamma additive partial linear models

3.1 Generalized log-gamma distribution

In particular Y = log(T ) follows the generalized log-gamma distribution (see, for
instance, Lawless 1980), namely GLG(μ, σ, λ), whose p.d.f. takes the form

fY (y;μ, σ, λ) =
⎧
⎨

⎩

C(λ)
σ

e
1

λσ
(y−μ)− 1

λ2
e

λ
σ (y−μ)

if λ �= 0
1

σ
√
2π

e− 1
2σ2

(y−μ)2 if λ = 0,

where y ∈ R and μ = log(η). The location, scale and shape parameters are μ ∈ R,
σ > 0 and λ ∈ R, respectively. When λ = 0 one has the univariate normal family, if
λ = 1 one has the extreme value distribution type I for theminimum andwhen λ = −1
the extreme value distribution type I for themaximum. Various other distributionsmay
be derived as the logarithm transformation of the generalized gamma distribution.
Another feature of the GLG family is that one has asymmetric distribution to the right
if λ < 0 and asymmetric distribution to the left if λ > 0. Figure 4 describes the p.d.f.
of the GLG(0, σ, λ) for some σ and λ values. If λ �= 0, the mean and variance of Y

Fig. 4 Graph of the probability density function of Y ∼ GLG(0, σ, λ) for some values of λ and and σ = 0.2
( ), σ = 0.25 ( ), σ = 0.4 ( ), σ = 0.6 (− · −·) and σ = 1 ( )
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are, respectively, given by

E(Y ) = μ + σ

{
ψ(λ−2) − log(λ−2)

|λ|
}

and Var(Y ) = σ 2ψ ′(λ−2)

λ2
,

where ψ(·) and ψ ′(·) are, respectively, the digamma and trigamma functions. A
detailed study and on this family of distributionsmay be found, for instance, in Lawless
(2003).

3.2 Additive partial linear models

Awell known property of AFTmodels is that the covariates should actmultiplicatively
on the time t , as showed in Sect. 2.1 for generalized gammaAFTmodels. In the context
of regression, to obtain directly this effect, the location parameter should be modeled
on covariate values remaining constant the parameters σ and λ. So, in this section,
we will propose a semiparametric generalized log-gamma regression model in which
the location parameter is modeled in an additive partial linear form with the scale and
shape parameters being constant for all observations.

Then, let y1, . . . , yn be a set of random variable values and assume the following
relationship between the response and covariate values:

Yi = x	
i β + f1(ti1) + · · · + fr (tir ) + σεi , (1)

where xi = (xi1, . . . , xip)	 denotes a p × 1 vector of covariate values with β =
(β1, . . . , βp)

	 being a p × 1 vector of parametric regression coefficients, f�(t) are
smoothing functions of the observed values ti� of additional continuous covariates,

for example covariates of controlling, and εi
iid∼ GLG(0, 1, λ), for i = 1, . . . , n and

� = 1, . . . , r .
So, Yi has the distribution

Yi
ind∼ GLG

(
x	
i β +

r∑

�=1

f�(ti�), σ, λ
)
,

which implies that

E(Yi )=x	
i β +

r∑

�=1

f�(ti�) + σ

{
ψ(λ−2) − log(λ−2)

|λ|
}

and Var(Yi )=σ 2ψ ′(λ−2)

λ2
,

for i = 1, . . . , n. Model (1) may also be named generalized gamma AFT additive
partial linear model.
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3.3 B-splines

We will suppose the smoothing functions f�(t) approximated by B-splines (de Boor
1978 and Wood 2017, Chap. 5), namely f�(t) = ∑q�

j=1 N j�,k(t)γ j�, where

N j�,0(t) =
{
1 t0j� ≤ t < t0( j+1)�
0 otherwise

and

N j�,k(t) = ω j�,k(t)N j�,(k−1)(t) + {1 − ω( j+1)�,k(t)}N( j+1)�,(k−1)(t),

ω j�,k(t) = (t−t0j�)/(t
0
( j+k)�−t0j�), withN j�,k(t) denoting the B-spline basis functions

of degree k and γ j� are coefficients to be estimated, whereasm� = q� + k + 1 denotes
the number of internal knots, namely a� < t01� < · · · < t0m��

< b�, for j = 1, . . . , q�,
� = 1, . . . , r and k = 1, 2, 3, . . ..Wewill assume in this paper k = 3 (cubic B-splines)
so that the smoothing function f (t) will be re-expressed as f�(t) = ∑q�

j=1 N j�(t)γ j�

with N j�(t) = N j�,3(t).
Therefore, (1) may be written as a linear model

Yi = x	
i β + N	

i1γ 1 + · · · + N	
irγ r + σεi , (2)

where xi = (xi1, . . . , xip)	 is a p × 1 vector of explanatory variable values, Ni� =
(N1�(ti�), . . . ,Nq��(ti�))

	 is a q� × 1 vector with the �th cubic B-spline basis values,
β = (β1, . . . , βp)

	 and γ � = (γ1�, . . . , γq��)
	 are the regression coefficients and

εi
iid∼ GLG(0, 1, λ), for i = 1, . . . , n and � = 1, . . . , r .

3.4 P-spline smoothing

Let θ = (β	, γ 	, σ, λ)	 with γ = (γ 	
1 , . . . , γ 	

r )	 the parameter vector to be esti-
mated and the regular log-likelihood function expressed as

L(θ) = n log

{
C(λ)

σ

}

+ 1

λ

n∑

i=1

εi − 1

λ2

n∑

i=1

eλεi ,

where εi = (yi −x	
i β −N	

i1γ 1−· · ·−N	
irγ r )/σ with x	

i andN	
i� being, respectively,

the i th rows of X and N�, for i = 1, . . . , n and � = 1, . . . , r . Since the number of
parameters to be estimated increases with s = q1+· · ·+qr the direct maximization of
L(θ) may cause overfitting and non identification of γ , so some penalization should
be imposed for maximizing L(θ). A usual procedure is to consider as penalty the
integrated of the square of the second derivative of f�(t), which leads to the penalized
log-likelihood function
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Lp(θ,α) = L(θ) −
r∑

�=1

α�

2

∫ b�

a�

{ f ′′
� (t)}2dt, (3)

where α = (α1, . . . , αr )
	 is named smoothing parameter vector that is estimated

separately. One has α� > 0 and α� → 0 implies data interpolation, whereas α� → ∞
leads to linear approximation for f�(t). From Wood (2017, Chap. 5) the penalization
in (3) may be expressed as

∫ b�

a�

{ f ′′
� (t)}2dt = γ 	

� M�γ �,

whereM� is a q� ×q� positive semidefinite penalty matrix. However, Eilers and Marx
(1996) showed that the integrated of the square of the dth derivative of f�(t) is well
approximated by a penalty on finite differences of the coefficients γ � with much less
effort, namely

∫ b�

a�

{ f (d)
� (t)}2dt ∼=

q�∑

j=d+1

[Δdγ j�]2 = γ 	
� D

	
d�Dd�γ �,

where Dd� denotes the penalty difference matrix of order d. This approach is named
P-spline smoothing. In particular, for d = 2 and q� = 3, one has that

Δ2γ j� = γ j� − 2γ( j−1)� + γ( j−2)�

and

D2� =
⎡

⎣
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

⎤

⎦ .

We will consider in this paper cubic B-splines and the approximation above for the
integrated of the second derivative of each f�(t), for � = 1, . . . , r . Nevertheless,
extensions for other degrees of B-splines and penalty differences is straightforward
requiring few changes in the notation.

Thus, the penalized log-likelihood function will be expressed as

Lp(θ ,α) = L(θ) −
r∑

�=1

α�

2
γ 	

� M�γ �, (4)

where M� = D	
2�D2�.The maximum likelihood penalized estimate (MLPE) of θ will

be obtained by maximizing (4) for α fixed.
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4 Parameter estimation

To perform an iterative procedure for the estimation of the MPLE of θ = (ξ	, σ, λ)	,
where ξ = (β	, γ 	)	, the penalized score function and the penalized Fisher infor-
mation matrix are derived, see details in Sects. S.1, S.2 and S.3.

4.1 Penalized score function and penalized Fisher informationmatrix

Using the results given in Sect. S.1 we express the penalized score function for θ =
(ξ	, σ, λ)	 as

Uθ
p =

⎡

⎣
Uξ

p
Uσ

p
Uλ

p

⎤

⎦ =
⎡

⎣

1
λσ

N	{D(d) − In}1n − Mαξ
1

λσ
1	
n {D(d − In)}ε − n

σ

nζλ − 1
λ2
1	
n ε + 2

λ3
1	
n D(d)1n − 1

λ2
1	
n D(d)ε

⎤

⎦ ,

where N = [X,N1, . . . ,Nr ], Mα = blockdiag{Opp, α1M1, . . . , αrMr }, Opp is a
p × p matrix of zeros, In denotes the identity matrix of order n, 1n is an n × 1 vector
of ones, D(d) is a diagonal matrix of d = (d1, . . . , dn)	, ε = (ε1, . . . , εn)

	 with
di = eλεi and εi = (yi − x	

i β − N	
i1γ 1 − · · · − N	

irγ r )/σ , for i = 1, . . . , n, and
ζλ = 1

λ
+ 2

λ3
{ψ(λ−2) + 2 log(|λ|) − 1}.

From Sects. S.2 and S.3 the penalized Fisher information matrix for θ may be
expressed as

Kθθ
p =

⎡

⎢
⎣

Kξξ
p Kξσ

p Kξλ
p

Kσξ
p Kσσ

p Kσλ
p

Kλξ
p Kλσ

p Kλλ
p

⎤

⎥
⎦ =

⎡

⎣

1
σ 2 {N	N + σ 2Mα} uλ

σ 2N
	1n − uλ

λσ
N	1n

uλ

σ 2 1
	
n N

n
σ 2 (1 + vλ)

n
λ2σ

κ2,λ

− uλ

λσ
1	
n N

n
λ2σ

κ2,λ
n
λ2

κ1,λ

⎤

⎦ ,

with

κ1,λ = τλ − 2

λ2
{ψ(λ−2) − 2log(|λ|)} + 6

λ2
− 4

λ
uλ + vλ,

κ2,λ = uλ − λvλ − 1

λ
{ψ(λ−2) − 2log(|λ|)},

τλ = 1 − 1

λ2

{
10 − 12log(|λ|) − 6ψ(λ−2) − 4

λ2
ψ ′(λ−2)

}
,

uλ = E(εeλε)

= 1

|λ| {ψ(1 + λ−2) + 2log(|λ|)},
vλ = E(ε2eλε)

= 1

λ2
[ψ ′(1 + λ−2) + {ψ(1 + λ−2) + 2log(|λ|)}2]

and ε ∼ GLG(0, 1, λ). Note that the parameters in θ = (ξ	, σ, λ)	 are not orthogonal.
In particular, for λ = 1, the distribution of ε is the standard extreme value distribution
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of type I for the minimum. Since ψ(1) = −γm , ψ(2) = 1 − γm , ψ ′(1) = π2

6 and

ψ ′(2) = π2

6 − 1, one has some simplifications, τ1 = 4π2

6 − 6γm − 9, u1 = 1 − γm

and v1 = π2

6 − 1 + (1 − γm)2, where γm denotes de Euler–Mascheroni constant.

Consequently, one obtains κ1,1 = 5π2

6 +(1−γm)2−8 and κ2,1 = −π2

6 −(1−γm)2+2.
On the other hand, for λ = −1, the distribution of ε is the standard extreme value
distribution of type I for the maximum. Here, one has τ−1 = τ1, u−1 = u1 and
v−1 = v1, and then κ1,−1 = 5π2

6 +(1−γm)2−8γm and κ2,−1 = π2

6 +(1−γm)2−2γm .

4.2 Iterative processes

Different iterative processes may be proposed to obtain the MPLE θ̂ . For example, the
well known backfitting (Gauss–Seidel) algorithm described, for instance, by Hastie
and Tibshirani (1990, Chap. 6) and Green and Silverman (1994, Chap. 4). Although
elegant and easy to be implemented this algorithm gets slow as the number of nonpara-
metric components increases. On the other hand, penalized score Fisher algorithms
may be applied to speed the convergence for obtaining θ̂ , such as extensions of the P-
GAM algorithm proposed byMarx and Eilers (1996) for generalized additive models.

Then, consider the starting values (ξ (0)	 , σ (0), λ(0))	 and that N is a full column
rank matrix. The penalized Fisher scoring algorithm for obtaining the MPLE ξ̂ , given
σ and λ and by remaining α fixed, may be expressed as

ξ (l+1) = (N	N + σ 2Mα)−1N	y(l)
d , (5)

for l = 0, 1, . . ., where yd = μ+ σ
λ
{D(d)−In}1n is the pseudo-response andμ = Nξ .

The iterative process (5) should be alternatedwith the following quasi-Newton iterative
process for obtaining the MPLEs of σ and λ:

(σ (m+1), λ(m+1))	 = argmax(σ,λ)Lp(ξ
(m+1), σ, λ,α), (6)

for m = 0, 1, 2 . . ., where ξ (m+1) corresponds to the profiled MPLEs of ξ , obtained
at the (m + 1)th convergence of the iterative process (5).

Then, for α fixed, one has the following algorithm:

1. Give starting values for θ , keeping fixed σ and λ and performing the iterative
process (5) for obtaining the profiled MPLE of ξ . The starting values ξ (0) and σ (0)

are obtained from the unpenalized fit of the linear model (2) by keeping λ fixed.
It is assumed either λ(0) = −1 or λ(0) = 1 if there is asymmetry of the empirical
distribution of Y to right or to left, respectively.

2. Given the profiledMPLEs of ξ obtained at the (m+1)th convergence of the iterative
process (5), obtain from (6) the profiled MPLEs of σ and λ.

3. Alternating the iterative processes (5) and (6) until the joint convergence for obtain-
ing the MPLE of θ for α fixed.
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However, since one has Uθ
p and Kθθ

p written in closed-form expressions, one may

apply, alternatively, a full penalized Fisher scoring algorithm for obtaining θ̂ , given
by

θ (m+1) = θ (m) + {(Kθθ
p )(m)}−1(Uθ

p)
(m),

for m = 0, 1, 2 . . . and α fixed. This iterative process requires fewer steps than the
iterative process (5)–(6), so may speed the convergence, but simplifications such as in
(5) are more difficult to be obtained.

For λ = 0 one has the normal case, whose MPLEs for α fixed are given by

ξ̂ = (N	N + σ̂ 2Mα)−1N	y

and

σ̂ 2 = 1

n
(y − Nξ̂)	(y − Nξ̂).

For a grid of α values, the MPLE of θ is obtained by minimizing either the Akaike
(1974) criterion or the Schwarz (1978) criterion, respectively, defined as

AIC(α) = −2Lp(θ ,α) + 2{2 + df(α)}

and

BIC(α) = −2Lp(θ ,α) + log(n){2 + df(α)},

where df(α) denotes the effective degrees of freedom that will be defined in Sect. 6.
Alternatively, the generalized cross-validation method (see, for instance, Wood 2017,
Chap. 6), which consists in minimizing the function,

GCV(α) = n
∑n

i=1{yi − Ê(Yi )}2
{n − 2 − df(α)}2

may be applied for selecting an appropriate smoothing parameter. A faster option to
obtain α is a direct maximization of the function

Lp(ξ
(m+1), σ (m+1), λm+1),α)

after each cycle of the algorithm (1)–(3). For example, by using the procedure optim
available in the R package. The Gauss-Seidel and Fisher scoring algorithms for max-
imizing (4) are implemented in the R package sglg (Cardozo et al. 2021) available
from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/
package=sglg.
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5 Effective degrees of freedom

Themain idea behind the definition of effective degrees of freedom is trying to provide
the cost of estimating the parameters in the linear predictor μ = Nξ , for α fixed. A
useful procedure consists in defining an appropriate smoother that projects a pseudo-
response onto μ̂ and then to take the sum of its eigenvalues as the effective degrees of
freedom, denoted by df(α) (see, for instance, Hastie and Tibshirani 1990, Chap. 5).

In order to derive df(α) for the MPLE ξ̂ we will consider the following expression
of the iterative process (5) at the convergence:

ξ̂ = {N	N + σ̂ 2Mα}−1N	ẑd ,

where ẑd = η̂ + σ̂

λ̂
{D(d̂) − In}1n . It follows that μ̂ = Nξ̂ = Ĥ(α)ẑd with

Ĥ(α) = N{N	N + σ̂ 2Mα}−1N	

being named smoother or linear predictor for α fixed. The effective degrees of freedom
is defined as df(α) = tr{Ĥ(α)}. From Eilers and Marx (1996) (see also Vanegas and
Paula 2016) one has that

df(α) = tr{N{N	N + σ̂ 2Mα}−1N	}
= tr{{N	N + σ̂ 2Mα}−1N	N}
= tr

{(
Ip+s + σ̂ 2Q− 1

2MαQ− 1
2

)−1
}

=
p+s∑

i=1

1

1 + φi (α)
,

where φi (α) ≥ 0 are the eigenvalues of the non-negative definite matrix σ̂ 2Q− 1
2

MαQ− 1
2 withQ

1
2 being a positive definite matrix such thatQ

1
2Q

1
2 = N	N. Since the

first p eigenvalues of σ̂ 2Q− 1
2MαQ− 1

2 are zeros it follows that

df(α) = p +
p+s∑

i=p+1

1

1 + φi (α)
.

Additionally, one has p + s > df(α) > p + zero, where zero denotes the number of
zeros eigenvalues of Mα . The effective degrees of freedom associated to γ̂ �, namely
df(α�), correspond to the sum of the principal diagonal elements of Ĥ(α) from the
(p+q1+· · ·+q(�−1))th position to the (p+q1+· · ·+q�)th position, for � = 1, . . . , r .
Then, one has that df(α) = p + ∑r

�=1 df(α�).
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5.1 Inference

The inference for θ may be based on the assumption of asymptotic normality for θ̂ with
the approximate variance-covariancematrix obtained from the inverse of the penalized
Fisher information matrix Kθθ

p . This result has support on the Bayesian approach for
the model y = Nξ + ε, where ε follows a multivariate normal distribution. Then, by
assuming an improper prior for ξ the posterior distribution ξ |y follows a multivariate
normal distribution of mean ξ̂ and variance-covariance matrix that corresponds to
the inverse of the respective penalized Fisher information matrix for ξ . So, credible
intervals may be constructed for any quantities derived from γ . As pointed out by
Wood (2017, Sect. 6.10) this result may be extended for large n for regression models
fitted by penalized iteratively re-weighted least square algorithms.

Another inference of interest is to construct asymptotic confidence bands for each
function vector f� = ( f�(t1�), . . . , f�(tn�))

	. Such bands, named pointwise confi-
dence bands (see, for instance, Vanegas and Paula 2016), are formed by joining the
asymptotic confidence intervals for f�(t1�), . . . , f�(tn�) which are centered in f̂� and
whose standard errors are derived from the principal diagonal of the approximate
variance-covariance matrix Var(f̂�) = N�Var(γ̂ �)N

	
� .

6 Diagnostic procedures

The aim of diagnostic procedures is to assess departures from the assumption made
for the model, such as error assumptions and the functional form between the location
parameter and the covariates, to detect outlying observations and to perform sensitivity
studies of the parameter estimates under perturbations made in the model/data. In this
section we will discuss the derivation of the quantile residual (Dunn and Smyth 1996)
formodel (1) and the curvatures of local influence (Cook 1986) to assess the sensitivity
of the parameter estimates under small perturbation in the model/data.

6.1 Quantile residual

The aim of residual analysis is to detect outlying observations and to assess important
departures from the assumptions made for the error distribution in regression models.
The quantile residual proposed by Dunn and Smyth (1996) have been largely applied
due to its easy interpretation and may be performed from the c.d.f. of the postulated
error distribution. Such residual for independent observations (y1, . . . , yn)	 is defined
as

rqi = Φ−1{FY (yi ; θ̂)},

where FY (y; θ) and Φ(·) denote, respectively, the c.d.f. of Y and the c.d.f. of N(0, 1).
For large n and under the postulated model rq1, . . . , rqn follow i.i.d. standard normal
distribution. So, the normal probability plot between rqi , for i = 1, . . . , n, and the
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quantiles of the standard normal distribution may assess the goodness-of-fit of the
fitted model.

The c.d.f. of Y ∼ GLG(μ, σ, λ) is given by

FY (y; θ) =

⎧
⎪⎨

⎪⎩

1 − I(λ−2, eλ
(y−μ)

σ ) if λ > 0

I(λ−2, eλ
(y−μ)

σ ) if λ < 0
Φ

( y−μ
σ

)
if λ = 0,

where I(k, x) = 1
Γ (k)

∫ x
0 νk−1e−νdν and Γ (k) denote, respectively, the incomplete

gamma function and the gamma function. The survival function and the hazard func-
tion of Y are defined as SY (y; θ) = 1− FY (y; θ) and hY (y; θ) = fY (y; θ)/SY (y; θ),
respectively.

6.2 Local influence

A key reason behind of diagnostic methods is to answer the following natural and
important question: how the parameter estimates change under perturbations in the
model/data? One quite original approach to this question was given by Cook (1986).
Through the perturbed log-likelihood function Cook assessed the influence of small
perturbations in the model/data on the parameter estimates. So, a reasonable extension
to semiparametric models is

Lp(θ ,α|ω) = L(θ |ω) −
r∑

l=1

αl

2
γ 	
l Mlγ l ,

whichwe call perturbed penalized log-likelihood function, whereω = (ω1, . . . , ωm)	
is a perturbation vector in some open subset Ω of IRm in which lives ω0 a reference
point in the analysis. At ω0 the perturbed penalized log-likelihood function satisfies

Lp(θ ,α|ω0) = Lp(θ ,α).

So, we have the non-perturbed penalized log-likelihood function. Cook also employed
the concept of the likelihood displacement function, given by

LD(ω) = 2[Lp(θ̂ ,α|ω0) − Lp(θ̂ω,α|ω)],

where θ̂ and θ̂ω are the maximum penalized likelihood estimates of θ under
Lp(θ ,α|ω0) and Lp(θ,α|ω), respectively. Let φ(ω) = (ω	,LD(ω))	 be the influ-
ence graph. If the likelihood displacement function is a smooth function then the
influence graph will be a regular surface and we can define normal curvatures. The
essential idea, in the Cook’s approach, is to study the normal curvatures for φ(·) at
(θ̂,ω0) in the unitary direction �. Such curvature is expressed as

C�(θ) = 2 | �	Δ	(Jθ̂ θ̂
p )−1Δ� |,
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where Jθθ
p denotes the observed information matrix of θ , Δ = (Δ	

βω,Δ	
γω,Δ	

σω,

Δ	
λω)	 is a (p + s + 2) × n matrix with Δβω being a p × n matrix with ele-

ments (Δβω) j i = ∂L2
p(θ ,α|ω)/∂β j∂ωi for j = 1, . . . , p and i = 1, . . . , n, whereas

Δγω = (Δ	
γ1ω

, . . . ,Δ	
γrω

)	 withΔγlω beingql×nmatriceswith elements (Δγlω) j il =
∂L2

p(θ,α|ω)/∂γ jl∂ωi for j = 1, . . . , ql , i = 1, . . . , n and l = 1, . . . , r . Similarly,
Δσω and Δλω are 1 × n vectors with elements (Δσω)i = ∂L2

p(θ , α|ω)/∂σ∂ωi and
(Δλω)i = ∂L2

p(θ , α|ω)∂λ∂ωi for i = 1, . . . , n, respectively. All the quantities are

evaluated at θ̂ and ω0.
Cook suggests to take the index plot of |�max |, the largest eigenvector relative to

the largest eigenvalue Cmax of the matrix Δ	(Jθ̂ θ̂
p )−1Δ. The observations pointed out

in the graph are suspected to have large influence on the parameter estimates under
the adopted perturbation scheme. Alternatively, Poon and Poon (1999) proposed the
conformal normal curvature in order to have a curvature invariant under uniform
change of scale, defined as

B�(θ) = | �	Δ	(Jθ̂ θ̂
p )−1Δ� |

√

tr
(
{Δ	(Jθ̂ θ̂

p )−1Δ}2
) .

This curvature has the property that 0 ≤ B�(θ) ≤ 1 for any unitary direction � and an
aggregate influential measure for all q-influential eigenvectors is defined as

m(q)i =
√
√
√
√

k∑

j=1

λ̂i�
2
j i ,

where λ̂max = λ̂1 ≥ · · · ≥ λ̂k ≥ q/
√
n > λ̂k+1, . . . , λ̂n ≥ 0 denote the ordered

normalized eigenvalues of Δ	(Jθ̂ θ̂
p )−1Δ and � j i is the i th element of the j th unitary

eigenvector � j , for i = 1, . . . , n, j = 1, . . . , k and q = 0.1.2, . . .. The index plot
of m(q)i is suggested to assess those observations that are influential for all eigen-
vectors such that B� j (θ) ≥ q/

√
n. A particular influential measure that considers the

conformal normal curvature in the direction of the i th observation is defined as

Bei (θ) = Bi = m2(0)i =
n∑

i=1

λ̂ j�
2
j i ,

where ei is an n × 1 vector of zeros with 1 at the i th position. The measure Bi may be
interpreted as the square of the total contribution of the unitary eigenvectors.According
to Lee and Xu (2004) we may use Bi > B̄+c∗SD(B) to discriminate if an observation
is suspect or not to be influential, where B̄ and SD(B) denote, respectively, the mean
and the standard deviation of Bi , for i = 1, . . . , n and c∗ is selected appropriately.

In particular, if one has the partition θ = (θ	
1 , θ	

2 )	 and the interest is on the
subvector θ1, for example θ1 = β, θ1 = γ , θ1 = σ or θ1 = λ, one may perform

123



C. A. Cardozo et al.

the index plot of the largest eigenvector relative to the largest eigenvalue Cmax of the
matrix Δ	B1Δ or then to evaluate the conformal normal curvature

B�(θ1) = | �	Δ	B1Δ� |
√

tr
(
{Δ	B1Δ}2

) ,

whereB1 = (Jθ̂ θ̂
p )−1−blockdiag{0, (−Jθ̂2 θ̂2

p )−1} and Jθ2θ2
p is the observed information

matrix of θ2. Here the index plot of Bei (θ1) may also be considered.

6.2.1 Perturbation schemes

6.2.1.1 Case-weight perturbation For this perturbation scheme we assume that

Lp(θ ,α|ω) =
n∑

i=1

ωiLi (θ) −
r∑

l=1

αl

2
γ 	
l Mlγ l ,

where Li (θ) = log
{
C(λ)

σ

}
+ εi

λ
− eλεi

λ2
with εi = (yi −x	

i β −N	
1 γ 1−· · ·−N	

r γ r )/σ ,

0 ≤ ωi ≤ 1, for i = 1, . . . , n, and ω0 = (1, . . . , 1)	 is the reference point.
Then, we obtain

(Δβω) j i

∣
∣
∣
ω0

= − xi j
λσ

+ xi j eλεi

λσ
, (Δγlω)kil

∣
∣
∣
ω0

= −Nkil

λσ
+ Nkil eλεi

λσ
,

(Δσω)i

∣
∣
∣
ω0

= − 1

σ
− εi

λσ
+ εi eλεi

λσ
and (Δλω)i

∣
∣
∣
ω0

= ζλ − εi

λ2
+ 2eλεi

λ3
− εi eλεi

λ2
,

where ζλ = 1
λ

+ 2
λ3

{ψ(λ−2) + 2log(|λ|) − 1}, Nkil = Nkl(ti�), for i = 1, . . . , n,
j = 1, . . . , p, k = 1, . . . , ql and l = 1, . . . , r , with all the parameters being evaluated
at the estimate θ̂ .

6.2.1.2 Response perturbation For this perturbation scheme we will consider that
each yi is perturbed as

yiω = yi + ωi .

where ωi ∈ IR, for i = 1, . . . , n. Hence εiω = (yiω − x	
i β −N	

1 γ 1 − · · ·−N	
r γ r )/σ

with ω0 = (0, . . . , 0)	. So, we obtain

(Δβω) j i

∣
∣
∣
ω0

= xi j eλεi

σ 2 , (Δγlω)kil

∣
∣
∣
ω0

= Nkil eλεi

σ 2 ,

(Δσω)i

∣
∣
∣
ω0

= 1

λσ 2

(
λεi e

λεi + eλεi − 1
)
and (Δλω)i

∣
∣
∣
ω0

= 1

λσ

(eλεi

λ
− εi e

λεi − 1

λ

)
,
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for i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , ql and l = 1, . . . , r ,with all the parameters
being evaluated at the estimate θ̂ .

7 Simulation studies

In this section we will describe the results from simulation studies performed to assess
the empirical behavior of the MPLEs from the partially linear model

Yi = β1xi1 + β2xi2 + f (ti ) + σεi , (7)

with σ > 0 and εi ∼ GLG(0, 1, λ), f (ti ) = cos(4π ti ) for ti = (2i − 1)/2n and
i = 1, . . . , n. The values assigned for the parameters are β1 = 2, β2 = 0.5, σ = 1.0
and 2, and λ = −1,−0.6, 0.4 and 1. The explanatory variable values xi1’s were
generated from Bernoulli with probability 0.5, whereas xi2’s were generated from a
uniform distribution in the interval [−3,3]. These variable values were generated and
fixed for each sample size of n = 50, 100, 200 and 500. We considered 10 internal
knots equally spaced and the value α = 0.025 for the smoothing parameter.

In order to study the consistency of theMPLEs β̂1, β̂2, σ̂ and λ̂ and their asymptotic
normality we computed themean squared error (MSE), the bias (in absolute value) and
the statistic of the Kolmogorov-Smirnov (KS) goodness-of-fit test for each estimator
under each scenario and sample size. The MSE and bias for the parameter θ were cal-

culated, respectively, as R−1 ∑R
r=1(θ̂

(r)−θ0)
2 and | ¯̂θ−θ0|, where ¯̂

θ = R−1 ∑R
r=1 θ̂ (r)

with θ̂ (r) being the estimate of θ from the r th replicate and θ0 is the true parameter
value. The consistency of the cubic B-spline estimator Nγ̂ is verified by graphing the
shape of the true function f (t) = cos(4π t) jointly with the average estimates N ¯̂γ for
each scenario and sample size considered, where ¯̂γ = R−1 ∑R

r=1 γ̂
(r) with γ̂

(r) being
the estimate of γ from the r th replication. We considered for each scenario R = 5000
replicates. The algorithm of this simulation study is described below:

1. Fix the number of replications R, the sample size n, the true parameter vector
θ0 = (β01, β02, σ0, λ0)

	, the nonlinear component f (t) and α. Then, generate the
variable values of X1 ∼ Be(0.5) and X2 ∼ U[−3, 3].

2. Generate R random samples of size n of the response variable Y , based on the
equation (7).

3. FitM1, M2, . . . , MR generalized log-gamma partially linear models from the algo-
rithm given in Sect. 4.2.

4. Then, from the MPLEs θ̂
(1)

, . . . , θ̂
(R)

calculate the MSE, bias and KS statistic for
the respective parameter setting and sample size.

The results are summarized in Tables S1-S4 and Figures S1-S8. We may notice
from Tables S1-S4 indication of consistency and asymptotic normality of the four
estimators considered and that the bias and MSE in general decreases as the sample
size increases. However, the consistency of the dispersion parameter estimator seems
slower than the consistency of the remaining parameter estimators. Looking at Figures
S1-S8, one may observe strong indication that the cubic B-spline estimator converge
to the true function f (t).
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8 Application

In order to illustrate the methodologies developed in this paper we will analyze a
subset of the data set on 769 personal injury insurance claims made in Australia from
January 1998 to June 1999 and described in de Jong and Heller (2008, pp. 4 and 14–
15). Claims settled with zero payment were not included. In this data set the following
variables were considered: amount (amount of paid money by an insurance policy or
claim size, in Australian dollars), legrep (with legal representation or not), month
(month of occurrence of the accident) and optime (operational time in % with range
[0, 100]). Operation time is known in the insurance area as the percentage of cases
settle faster in the group than the given case. So, it is expected longer delays for larger
claim sizes. Since we are analyzing only the years of 1998 and 1999 of the insurance
data, the operation time for these cases changes in the range [0.1; 31.9]. Similarly
to Paula et al. (2012), that analyzed the group with legal representation by applying
log-Birnbaum-Saunders-t error models, we will also discard the predictor month due
to the lack of correlation with the response variable log(amount). However, our
analysis we be concentrated on the group without legal representation. Thus, 227
personal injury insurance claims will be analyzed in this study.

Figure 5 describes the empirical density (left) and the robust boxplot (right) (Hubert
and Vandervieren 2008) of log(amount) and one may notice a left-skewed distribution
indicating that a log-gamma distribution with positive shape parameter may be suit-
able to describe the distribution of log(amount). The robust boxplot points out four
observations with the largest values for log(amount) as possible outliers. In addition,
the scatter plot between log(amount) and optime, described in Fig. 6, presents a non-
linear tendency suggesting a nonlinear model to explain the location of log(amount)
given the optime.
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Fig. 5 Density estimate (left) and robust boxplot (right) of the response log(amount)
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Fig. 6 Scatter plot between
log(amount) and optime with the
tendency obtained from the
command smooth.spline
available in the R software
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Table 1 Parameter estimates
and their approximate standard
errors for the intercept, scale and
shape parameters, and cubic
B-spline coefficients as well as
the smoothing parameter
estimate, basis dimension and
effective degrees of freedom
from the fit of the partially linear
model (8) to the insurance data

Parameter Estimate SE z value

μ −1.1718 2.5735 0.65

σ 1.2143 0.0687 17.67

λ 0.7152 0.1620 4.42

γ1 8.4069 2.9179 2.88

γ2 9.3179 2.5856 3.60

γ3 9.8456 2.5380 3.88

γ4 9.8598 2.5736 3.83

γ5 9.9353 2.5795 3.85

γ6 9.7850 2.5748 3.80

γ7 9.9288 2.6155 3.80

γ8 10.6258 2.7871 3.81

Covariate α q df(α)

Optime 2 8 4.36

Then, according to the above descriptive analysis we will propose to fit this data
set the following partially linear model:

Yi = μ + f (ti ) + σεi , (8)

where Yi = log(amounti ), ti = optimei and f (t) = ∑q
j=1 N j,3(t)γ j , where N j,3(t)

is expressed recursively

N j,3(t) = ω j,3(t)N j,2(t) + {1 − ω( j+1),3(t)}N( j+1),2(t),

ω j,3(t) = (t − t0j )/(t
0
( j+1) − t0j ), with N j,2(t) being computed from N j,1(t) and

N( j+1),1(t), whereas N j,1(t) is computed from N j,0(t) and N( j+1),0(t), for t0j ≤ t <

t0( j+1), j = 1, . . . , q, and εi ∼ GLG(0, 1, λ), i = 1, . . . , 227.
The number of knots was selected from a rough manner by changing q in the

interval [4, 8] until to guarantee a good fit. We choose q = 8 and consequently
m = 12 internal knots (t01 , . . . , t012) calculated from the sample quantiles of optime.
The parameter estimates of the selected model are presented in Table 1. Note that the
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Fig. 7 Empirical distribution of the quantile residual (left) and normal probability plot of the quantile
residual(right) from the fit of the partially linear model (8) to the insurance data
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Fig. 8 Index plots of |�max | (left) and Bi (right) under case-weight perturbation scheme from the fit of the
partially linear model (8) to the insurance data

95% interval estimate for the shape parameter is given by [0.3977; 1.0327], which is
accordingwith the descriptive analysis.All the coefficients of the cubicB-spline appear
marginally significant confirming the existence of a nonlinear tendency between the
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Fig. 9 Index plots of |�max | (left) and Bi (right) under response perturbation scheme from the fit of the
partially linear model (8) to the insurance data
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Fig. 10 Pointwise confidence band for f (optime) (left) and the estimated hazard rate function from the fit
of the partially linear model (8) to the insurance data

location of log(amount) and optime. However, since one has df(α) = 4.36 degrees
of freedom associated with the MPLE ξ̂ = (μ̂, γ̂

	
)	, is expected smaller p-values

for the estimated coefficients γ̂1, . . . , γ̂8 than the ones based on the standard normal
distribution.

From Fig. 7, that presents the empirical distribution and the normal probability
plot (left) of the quantile residual (right), one may observe indication of a suitable fit.
Figures 8 and 9 present the index plots of |�max | and Bi under the case-weight and

123



C. A. Cardozo et al.

Table 2 Results of fitting partially linear models under some asymmetric error distributions to the insurance
data

Distribution #Par AIC Distribution #Par AIC

Generalized log-gamma 3 785.43 Skew-t type 1 4 789.78

Skew-normal type 1 3 796.53 Skew-t type 2 4 792.78

Skew-normal type 2 3 783.04 Skew-t type 3 4 784.83

Skew-PE type 1 4 789.04 Skew-t type 4 4 789.41

Skew-PE type 2 4 795.27 Generalized B2 4 4243.10

response perturbation schemes, respectively. Some observations are pointed out as
possible influential on the parameter estimates. Particularly, the values of log(amount)
and optime for the observations #30, #42 and #46 disagree with the tendency observed
in Fig. 6. Their large values for log(amount), $8.98, $9.55 and $9.45, correspond to
small values for optime, 1, 1.7 and 2.2, respectively. In the sample the median values
of log(amount) and optime are $7.95 and 7.50, respectively. The other observation
#173 pointed out in the graphs has the largest amount $10.72 and a large optime 16.9.
Finally, in Fig. 10 (left) one has the pointwise confidence band of 95% for the nonlinear
function f (optime) and from Fig. 10 (right) one may notice that the estimated hazard
rate function decreases as the claim size increases. An interpretation for this graph is
that the probability of the insurer to pay a determinate amount for the insured, given
that the insured paid for this amount in the insurance policy, decreases as the amount
increases.

Table 2 summarizes the AIC from the partially linear model (8), under 9 different
skew distributions available in GAMLSS (Righy et al. 2020), fitted to the insurance
data. We may notice that the partially linear model (8) under the generalized log-
gamma distribution presents an excellent performance taking into account the number
of parameters and the qqplot of the quantile residual (see a comparison among the
qqplots in Figures S9–S18). In addition, the generalized log-gamma error model has
interesting features pointed out in Sects. 2 and 3, such as the equivalence with the
GG AFT partially linear model and the possibility of performing quantile regression
directly from the location parameter regression. Also, a P-GAM type iterative process
is easily developeddue to the closed-formexpressionderived for theFisher information
matrix.

9 Conclusions

Generalized gamma AFT partially linear models under uncensored data and P-spline
smoothing are proposed in this paper. A penalized Fisher scoring iterative process is
developed for estimating the regression coefficients of the parametric and nonpara-
metric components, which is alternated with a quasi-Newton algorithm for estimating
the dispersion and shape parameters. The effective degrees of freedom are derived
from the proposed iterative process. Extensions of the quantile residual and the local
influence approach are also performed as well as a simulation studies to assess the
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consistency and asymptotic normality of the parametric and nonparametric estimators.
An illustrative example is given, in which the amount of paid money by an insurance
policy in Australia is fitted by a nonlinear model given the operational time (in %)
and for the group without legal representation. All the numerical analyzes and graphs
were performed in the R package sglg (Cardozo et al. 2021) available from the Com-
prehensive RArchive Network (CRAN) at http://CRAN.R-project.org/package=sglg.
The codes developed for the simulation studies and application are presented in Sect.
S.6.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-022-01300-4.

Acknowledgements The authors are grateful to the associate editor and two reviewers for their helpful
comments and suggestions. The first and second authors were partially supported by the Brazilian source
CNPq, whereas the first author was also supported by the Colombian source COLCIENCIAS.

References

Akaike H (1974) A new look at the statistical identification model. IEEE Trans Autom Control 19:716–723
Agostinelli C, Marazzi A, Yohai V (2014) Robust estimators of the generalized log-gamma distribution.

Technometrics 56:92–101
Agostinelli C,Marazzi A, Yohai V (2017) robustloggamma: robust estimation of the generalized log gamma

model. http://CRAN.R-project.org/package=robustloggamma
Amoroso L (1925) Richerche intorno alla curve die redditi. Ann Math Pure Appl 21:123–159
Cardozo CA, Paula GA, Vanegas L (2021) Fitting semi-parametric generalized log-gamma regression

models. http://CRAN.R-project.org/package=sglg
Cook D (1986) Assessment of local influence (with discussion). J R Stat Soc B 48:133–169
CoxC,ChuH,ShneiderMF,MunozA (2007) Parametric survival analysis and taxonomyof hazard functions

for the generalized gamma distributions. Statistics in Medicine 26:4352–4374
de Boor C (1978) A practical guide for splines. Springer, New York
de Jong P, Heller GZ (2008) Generalized linear models for insurance data. Cambridge University Press,

Cambridge
Dunn PK, Smyth GK (1996) Randomized quantile residuals. J Comput Graph Stat 5:236–244
Eilers P, Marx B (1996) Flexible smoothing with B-spline and penalties. Stat Sci 11:89–102
Fabio L, Paula GA, de CastroM (2012) A Poisson mixed model with nonnormal random effect distribution.

Comput Stat Data Anal 56:1499–1510
Gómez E, Gómez-Villegas MA, Martín JM (1998) A multivariate generalization of the power exponential

family of distributions. Commun Stat Theory Methods 27:589–600
Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models. Chapman and

Hall/CRC, London
Hager H, Bain L (1970) Inferential procedures for the generalized gamma distribution. J Am Stat Assoc

65:1601–1609
Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall/CRC, London
Hubert M, Vandervieren E (2008) An adjusted boxplot for skewed distributions. Comput Stat Data Anal

52:5186–5201
Lawless JF (1980) Inference in the generalized gammaand log-gammadistributions. Technometrics 22:409–

419
Lawless JF (2003) Statistical models andmethods for life time data, 2nd edn.Wiley-Interscience, NewYork
Lee SY, Xu L (2004) Influence analyses of nonlinear mixed-effects models. Comput Stat Data Anal 45:321–

341
Marx B, Eilers P (1996) Direct generalized additive modeling with penalized likelihood. Comput Stat Data

Anal 28:193–209

123

http://CRAN.R-project.org/package=sglg
https://doi.org/10.1007/s00362-022-01300-4
https://doi.org/10.1007/s00362-022-01300-4
http://CRAN.R-project.org/package=robustloggamma
http://CRAN.R-project.org/package=sglg


C. A. Cardozo et al.

Stasinopoulos MD, Righy RA, Gillian ZA, Voudouris V, de Bastiani F (2017) Flexible regression and
smoothing using GAMLSS in R. Chapman and Hall/CRC, Boca Raton

Ortega E, Paula GA, Bolfarine H (2003) Influence diagnostics in generalized log-gamma regressionmodels.
Comput Stat Data Anal 42:165–186

Ortega E, Cancho V, Paula GA (2009) Generalized log-gamma regression models with cure fraction. Life-
time Data Anal 15:79–106

Paula GA, Rojas O (1997) On restricted hypothesis in extreme value regression models. Comput Stat Data
Anal 25:143–157

Paula GA, Leiva V, Barros M, Liu S (2012) Robust statistical modeling using the Birnbaum–Saunders-t
distribution applied to insurance. Appl Stoch Models Bus Ind 28:16–34

Poon W, Poon Y (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc
61:51–61

Prentice R (1974) A log gamma model and its maximum likelihood estimation. Biometrika 61:539–542
R Core Team (2019) R: a language and environment for statistical computing. https://www.R-project.org/
Righy RA, Stasinopoulos MD, Gillian ZA, de Bastiani F (2020) Distributions for modeling location, scale,

and shape using GAMLSS in R. Chapman and Hall/CRC, Boca Raton
Schwarz G (1978) Estimating the dimension of a model. The Annals of Statistics 6:461–464
Stacy E (1962) A generalization of the gamma distribution. Ann Math Stat 33:1187–1192
Stacy E, Mihram G (1965) Parameter estimation for a generalized gamma distribution. Technometrics

7:349–358
Vanegas L, Paula GA (2016) An extension of log-symmetric regression models: R codes and applications.

J Stat Comput Simul 86:1709–1735
Wood S (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC,

London

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.R-project.org/

	Generalized log-gamma additive partial linear models with P-spline smoothing
	Abstract
	1 Introduction
	2 Generalized gamma distribution
	2.1 Definition and properties
	2.2 The GG distribution as a lifetime model

	3 Generalized log-gamma additive partial linear models
	3.1 Generalized log-gamma distribution
	3.2 Additive partial linear models
	3.3 B-splines
	3.4 P-spline smoothing

	4 Parameter estimation
	4.1 Penalized score function and penalized Fisher information matrix
	4.2 Iterative processes

	5 Effective degrees of freedom
	5.1 Inference

	6 Diagnostic procedures
	6.1 Quantile residual
	6.2 Local influence
	6.2.1 Perturbation schemes


	7 Simulation studies
	8 Application
	9 Conclusions
	Acknowledgements
	References




