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Abstract We use an infinite-range Maier–Saupe
model, with two sets of local quadrupolar variables
and restricted orientations, to investigate the global
phase diagram of a coupled system of two nematic
subsystems. The free energy and the equations of
state are exactly calculated by standard techniques of
statistical mechanics. The nematic–isotropic transition
temperature of system A increases with both the
interaction energy among mesogens of system B, and
the two-subsystem coupling J. This enhancement of
the nematic phase is manifested in a global phase
diagram in terms of the interaction parameters and
the temperature T. We make some comments on the
connections of these results with experimental findings
for a system of diluted ferroelectric nanoparticles
embedded in a nematic liquid-crystalline environment.

Keywords Phase transitions · Lattice models ·
Complex fluids

1 Introduction

A dilute suspension of ferroelectric nanoparticles in
a liquid-crystalline host has been shown to display an
enhancement of the nematic order, with an increase
of the isotropic–nematic transition temperature, which
is a behavior of interest from the point of view of
technological applications [1–3]. This effect has been
explained by the introduction of a coupling between
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the usual nematic order parameter of the liquid crystals
and a set of extra degrees of freedom associated with
a coarse-graining average of the electric dipole field
produced by the ferroelectric nanoparticles [4, 5]. This
work was the motivation for our investigation of the
global phase diagram of a basic Maier–Saupe (MS)
model on a lattice with two coupled sets of quadrupolar
degrees of freedom.

Although the nematic–isotropic transition is perhaps
the most explored transition in liquid-crystalline sys-
tems, there are still a number of questions and open
problems, which can be formulated in terms of simple
statistical lattice models. An interesting question is the
onset of a biaxial nematic phase [6], which we have
recently investigated in the context of a MS model for
a mixture of disks and cylinders [7, 8]. Now we analyze
the global phase diagram of a similar type of statistical
model, with the inclusion of two sets of quadrupolar
degrees of freedom, which leads to a connection with
the work by Lopatina and Selinger [4, 5]. The ne-
matic MS model is the liquid-crystalline analog of the
Curie–Weiss model of ferromagnetism [9–11]. In this
approach, the standard nearest-neighbor interactions
between lattice sites are adequately replaced by scaled
interactions of infinite range. The statistical-mechanics
problem is exactly solvable and leads to a very conve-
nient framework to perform calculations at the mean-
field level. The MS model can be further simplified
if we suppose that the local mesogen orientations are
restricted to a discrete set of states, according to an
early proposal by Zwanzig [12]. Some model calcula-
tions with continuous orientations for uniaxial [13] and
biaxial [8] nematic systems give support to the idea
that this simplification does not lead to qualitatively
different results. In recent publications, we have used
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extensions of this Maier–Saupe-Zwanzig (MSZ) lattice
model to investigate the existence of biaxial nematic
phases [7, 14, 15] and the thermodynamic properties of
nematic elastomers [16].

In Section 2, we define the MSZ model with two sets
of coupled degrees of freedom and use standard tools
of statistical mechanics to write a thermodynamic free
energy. This approach has a number of advantages. In
contrast with the standard Landau phenomenological
approach, the microscopic interactions are explicitly
stated and the calculations are not restricted to the
neighborhood of the transitions. Also, the model is
simple enough to allow exact bona fide calculations of
the free energy and equations of state. In Section 3, we
study the global phase diagram. Contact with a dilute
system of ferroelectric nanoparticles embedded in a
nematic host is made in Section 4. We then conclude
with a summary of the main results, which do support
the experimental enhancement of the nematic order.

2 Coupled MSZ Model

The energy of a model with two coupled subsystems A
and B can be written as

H = EA + EB + EAB, (1)

where EA and EB are given by standard Maier–Saupe
soft quadrupolar forms,

EA = −εA

N
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Aμν

i Aμν

j , (2)
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with the quadrupole components
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where {ai} and
{
bi
}

are the respective sets of unit
vectors associated with mesogenic units of types A and
B, εA and εB are energy parameters, δμν is a Kronecker
symbol, and the coupling term is given by

EAB = − J
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∑
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Aμν

i Bμν

j , (5)

where J is the coupling parameter. Note that the energy
global forms for EA, EB, and EAB are consistent with
the mean-field level of calculations considered in this
paper.

In the MSZ model, calculations of the canonical par-
tition function involve sums over the local orientations
of the mesogenic units, which are restricted to the six
directions along the three Cartesian axes,

ai, bi ∈ {(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)}. (6)

The partition function can be written as
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where β = 1/(kT) is the inverse temperature, k is the
Boltzmann constant, and we have discarded irrelevant
terms in the thermodynamic limit. In order to linearize
the quadratic forms, we consider the set of identities
∫ ∞
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where we have used the complex representation of the
Dirac δ-function. We then write
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∫
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where [dz] =∏μ,ν dzμν

A dzμν

B , [dQ] =∏μ,ν dQμν

A dQμν

B ,
and we have discarded contributions to the free energy
of O(ln N). Since the interaction energies, given by
(2–5), are of infinite range, the sum over states has been
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reduced to a simple problem, with decoupled sites, and
the final results are of mean-field nature. The sum over
the A variables leads to
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which also holds with the exchange A↔B.
For large N, the integrals over the Q variables can

be obtained by the Laplace method. To leading order,
we have
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The stationary point conditions,
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which can also be written as
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may be used to switch to the former Q variables. Equa-
tions (11) and (12) can be used to write the partition
function
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Note that, on the grounds of mathematical simplicity,
we decided to begin the integrations by the Q rather
than the z variables.

The complex integrals over the z variables may be
done by the method of steepest descents. For μ �= ν, the
integral over zμν gives a contribution of O(ln N), which
will then be discarded. The saddle-point conditions
for the diagonal variables lead to the self-consistent
equations,
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where we have switched to the Q variables using (13)
and (14). Note that we recover the simple MSZ model
in the limit J → 0 and that the Q tensors are traceless.
The free energy is finally written as
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3 Global Phase Diagram

The equations of state and the free energy are further
simplified if we consider the standard parametric form
of the order parameter tensors,
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so that
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and

f = −2T ln 2 + 3
4

[
SA(SA − 2) + εBSB(SB − 2)

+ 2J(SASB − (SA + SB))
]

− T ln
[
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× [1 + 2 e−9(εB SB+JSA)/4T] . (22)

Here we have written the free energy f and the energy
parameters εB and J, as well as the temperature T, in
terms of the energy parameter εA.

Assuming εB < εA, we can write an expansion of the
free energy f in terms of SA, up to O(SA

2),

f = −2 T ln 6 + 3
16

(
3εB − 3J2 − 4T

)

(3εB − 4T)2 T
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]
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so that the coefficient of SA
2 is proportional to T − T∗,

where T∗ is given by

T∗ = 3
8

(
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√
(1 + εB)2 + 4(J2 − εB)

)
. (24)

If we suppose that the coefficients of higher powers
of SA in (23) are weakly dependent on temperature,
T∗ is associated with the spinodal temperature of a
Landau–de Gennes theory of nematics and establishes
the threshold of stability of the isotropic phase. For
εB → 0, the spinodal temperature is given by T∗ = 1 +√

1 + J2, which increases with the coupling parameter
J, and is thus an indication of the enhancement of
the nematic phase. For εB → 1, T∗ increases approx-
imately linearly with J. The global behavior is shown
in the diagram of Fig. 1, in terms of εB, J, and T∗. In
particular, the coefficient of SA

2 becomes proportional
to (T − 3/4) in the limit of zero coupling between the

Fig. 1 Stability threshold of the isotropic phase in terms of the
spinodal temperature T* and the energy parameters εB and J.
The isotropic phase is unstable below the surface

Fig. 2 Global phase diagram in terms of temperature T and
energy parameters εB and J. The transition from the nematic
(below the surface) to the isotropic phase (above the surface) is
discontinuous, with a jump in the nematic order parameters SA
and SB

subsystems, J → 0, in agreement with previous results
for the simple Maier–Saupe–Zwanzig model [7].

In Fig. 2, we show the global phase diagram of this
model in terms of the temperature T and the energy pa-
rameters εB and J, obtained from numerical solutions
of the exact equations of state (21) and free energy (22).
The transition from the nematic (low-temperature) to
the isotropic (high-temperature) phase is of first order,
with a jump in both nematic order parameters SA and
SB. The nematic phase is enhanced by the increase
of the energy parameters εB and J. As it should be
anticipated, this surface is very similar to the threshold
of stability of the isotropic phase.

4 Suspensions of Ferroelectric Nanoparticles
in Nematic Systems

A coupled system of two types of nematic subsystems
has been considered by Lopatina and Selinger to repre-
sent a dilute suspension of ferroelectric nanoparticles
in a nematic host [4, 5]. The mechanism behind this
mapping is the effect on the nematic mesogenic units
of the dipole aligning electric fields produced by the
ferroelectric nanoparticles. For a range of parameters,
assuming uniform nematic order, one may integrate out
the position variables and thus eliminate the compli-
cated spatial dependence of the interactions between
mesogens and nanoparticles. It is then possible to as-
sociate a nematic-like order parameter with the distri-
bution of orientations of the dipole moments of the
nanoparticles. The energy of interaction turns out to be
proportional to SLC · SNP, where SLC and SNP represent
the nematic order parameters of the liquid crystal and
nanoparticle systems, respectively [4, 5], and which has
essentially the same form as the coupling energy of (5).



Braz J Phys (2012) 42:261–266 265

0.4 0.8 1.2
T

0

0.4

0.8

S
A
, S

B

(a)

J=0

J=0.5
J=1

0.6 0.9
T

-3

-2

f

(b)

0.976

-3.5

Fig. 3 a Nematic order solutions for SA (full curves) and SB
(dashed curve) as a function of temperature for εB = 0 and the
indicated values of J. There may be up to three solutions: stable
nematic, unstable nematic, and isotropic (S = 0). The transition
from the nematic (upper solution) to the isotropic phase (S = 0)
takes place where the two free energies become equal. b Free

energy as a function of temperature for the stable and unstable
nematic (full curves) and the isotropic solution (dashed curve),
with εB = 0 and J = 0.5. The inset shows a magnification of the
region where the stable nematic and the isotropic solutions have
the same free energy

Though the interaction among the nanoparticles has
dipole symmetry, one expects the limit εB → 0 to ap-
proximately represent a situation in the dilute regime.

In Fig. 3a, we show the nematic solutions for SA

(full curves) and SB (dashed curves) as a function of
temperature, for εB = 0 and some values of the cou-
pling parameter J. In general, there may be up to three
solutions, two nematic and one isotropic. The lower
curve is unstable, and the nematic–isotropic transition
takes place at the temperature at which the stable ne-
matic (upper curve) and isotropic (S = 0) free energies
become equal. The free energies for the three solutions
are shown in Fig. 3b, for J = 0.5. In agreement with
some previous experimental [2] and theoretical studies
[3–5], the nematic order is enhanced by the coupling
with an ordered subsystem B, which may be inter-
preted as representing the set of local orientations of
ferroelectric nanoparticles. Note that our model always
predicts an increase of TNI with the addition of ferro-
electric nanoparticles, even though a scenario where
the nematic–isotropic transition temperature decreases
has also been observed [17]. This scenario is probably
suppressed by the assumption of uniform nematic order
around the nanoparticles, which our model inherits
from Lopatina and Selinger’s derivation of the nematic-
nanoparticle coupling [4, 5].

5 Summary

We have used a Maier–Saupe–Zwanzig lattice model
to study a coupled system of two types of nematic
subsystems. The model is simple enough to allow an

exact calculation of the free energy. In contrast to
the usual phenomenological approaches, it explicitly
contains the microscopic energy parameters involved
in the nematic–isotropic transition. We show that the
nematic–isotropic transition temperature of subsystem
A increases with both the interaction energy among
mesogens of system B and the two-subsystem coupling
J. We draw the global phase diagram in terms of
the temperature T and the energy parameters. For
noninteracting mesogens in system B, this model may
be used to describe the experimentally observed en-
hancement of the nematic ordering produced by ferro-
electric nanoparticles suspended in a liquid-crystalline
host.
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