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Abstract
Compound-nuclear processes play an important role for nuclear physics
applications and are crucial for our understanding of the nuclear many-body
problem. Despite intensive interest in this area, some of the available theoretical
developments have not yet been fully tested and implemented. We revisit the
general theory of compound-nuclear reactions, discuss descriptions of pre-
equilibrium reactions, and consider extensions that are needed in order to get
cross section information from indirect measurements.

Keywords: compound-nuclear reactions, pre-equilibrium reactions, surrogate
reactions

(Some figures may appear in colour only in the online journal)

1. Introduction

Compound-nuclear reactions play an important role in basic and applied nuclear physics. They
provide a prime example of chaotic behavior of a quantum-mechanical many-body system
[63, 76] and their cross sections are required for nuclear astrophysics, national security, and
nuclear-energy applications. The theoretical formalisms used to describe compound reactions
are typically considered well-established. R-matrix treatments [29, 61] are employed for
reactions proceeding through isolated resonances and a combination of Hauser–Feshbach

0954-3899/14/094003+21$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0954-3899/41/9/094003
mailto:escher1@llnl.gov


J. Phys. G: Nucl. Part. Phys. 41 (2014) 094003 B V Carlson et al

theory [49] and pre-equilibrium descriptions is used for reactions involving strongly-
overlapping resonances. Computational tools are readily available and extensively used in the
nuclear science community for calculating a wide range of cross sections. Recommendations
for input models and parameters have been formulated [25] and evaluations using these tools
have been published.

Hauser–Feshbach calculations require inputs that are typically obtained from
complementary measurements (low-lying nuclear levels, separation energies, etc) and nuclear-
structure models. In the last decade or so, there have been increased efforts to move
from phenomenological models (for level densities, γ -ray strength functions, etc) to more
microscopic structure descriptions. While the microscopic descriptions may not be as
successful in reproducing measured cross sections as their phenomenological counterparts at
this time, they are crucial for developing a more predictive treatment of compound reactions.

Equally important in this context is a reconsideration of the reaction models that are
implemented in the codes and of the underlying assumptions and approximations. Much less
attention has been paid to this aspect, but modern computational capabilities and also the
improved structure models that are now available should make it possible to develop better
treatments of the reaction mechanisms involved in compound reactions. This is particularly
relevant if one wants to calculate cross sections involving isotopes more than a few units away
from the valley of stability. Here, some of the assumptions underlying current descriptions
may no longer be valid and extensions of the reaction models may become necessary.

For instance, as one moves away from the valley of stability, the nuclei under consideration
(which may serve as targets in neutron-rich astrophysical environments) become weakly-
bound. The associated low level densities make it relevant to question the statistical
assumptions underlying the standard Hauser–Feshbach formalism and revisit the issue of
energy averaging in compound nuclei. Intermediate structure may become important, thus
requiring an explicit treatment of doorway states. Also, experimental restrictions in radioactive-
beam experiments may not allow for an experimental separation of direct and compound
contributions to measured cross sections. A formalism that can treat both on the same footing
would be desirable [26, 45, 46].

Not all cross sections of interest can be measured directly. Radioactive-beam experiments
can probe reactions in inverse kinematics, but such experiments typically provide information
on transfer reactions (such as (d,p)) or inelastic scattering, which have to be related to the
reaction of interest (e.g. a neutron-induced reaction). Theory is needed to describe the formation
of a compound nucleus (CN) (or lack thereof) in such transfer or inelastic scattering reactions
and to extract the desired cross section from the indirect measurement [37].

Recent studies have begun to address some of these issues. Here we give a brief summary
of existing theories for compound-nuclear, pre-equilibrium, and hybrid reactions. In the next
section, section 2, we focus on the theory of the CN from a projection-operator perspective.
Section 3 covers the current status of pre-equilibrium theories. Section 4 discusses hybrid
reactions—indirect methods for determining cross sections of interest. In section 5, we collect
some of the open questions and challenges that remain to be addressed. Concluding remarks
are offered in section 6.

2. Theory of the compound nucleus

The idea of a fully equilibrated ‘compound’ nuclear system, whose decay is independent of its
formation, was introduced in 1937 by Niels Bohr [18]. The equilibrium concept was used by
Weisskopf and Ewing [77] for a calculation of particle emission from a CN, and a quantum-
mechanical treatment was provided by Hauser and Feshbach [49]. Hauser–Feshbach theory
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is widely used today, although refinements are needed to account for various experimental
findings. For instance, Kawai, Kerman and McVoy [54] generalized the theory to cases where
direct reactions are present. The profound statistical concepts underlying compound reactions
were recognized [63, 76] and led to the consideration of observables other than average cross
sections, most notably correlation functions, first discussed by Ericson [33, 34]. Many of
the ideas developed since the introduction of the CN concept found their way into other
branches of physics, such as condensed-matter physics and quantum chromodynamics. Here
we focus on the theory of the CN from a projection-operator perspective and summarize
relevant developments.

2.1. Bohr’s hypothesis and the Hauser–Feshbach cross section

The Bohr independence hypothesis states that formation and decay of the CN are independent
of each other. Consequently, the cross section takes a product form (we omit the kinematic
factor and consider a fixed the angular momentum value):

σcc′ = ξc · ξc′ . (1)

Unitarity requires that the sum over the final channels give the probability of the formation of
the CN in channel c. This probability is just the transmission coefficient, Tc,

Tc =
∑

c′
σcc′ = ξc

∑
c′

ξc′ or ξc = Tc∑
c′ ξc′

. (2)

Summing the above equation over c gives
∑

c Tc = (∑
c ξc

)2
, which leads to ξc =

Tc/
√∑

c′′ Tc′′ . Thus we obtain the Hauser–Feshbach form of the CN cross section:

σcc′ = TcTc′∑
c′′ Tc′′

. (3)

This expression was obtained by using the Bohr hypothesis and unitarity. In the present form,
it neglects correlations between the different channels, which are known to be important, in
particular at low energies. In practical applications, these correlations can be accounted for by
introducing a ‘width fluctuation correction factor,’ Wcc′ , in the expression for the cross section:

σcc′ = Wcc′
TcTc′∑

c′′ Tc′′
, (4)

where

Wcc′ ≡
〈

TcTc′∑
c′′ Tc′′

〉/
〈Tc〉〈Tc′ 〉∑

c′′ 〈Tc′′ 〉 . (5)

and the brackets denote averaging over a suitable energy interval I. For the case of elastic
scattering (c = c′), these correlations cause an enhancement of the cross section, 2 � Wcc � 3,
as we show in section 2.3 below.

2.2. Feshbach’s theory of compound-nuclear reactions

Feshbach [40, 41] introduced a formal theory of nuclear reactions based on projection operators
that serve to isolate the reaction mechanisms of interest. In this approach, the complicated
(closed) channels are eliminated from explicit consideration via projection and subsequent
energy averaging. The formalism covers both direct and compound processes and is applicable
to elastic scattering as well as more complex reaction mechanisms. Here we summarize the
salient features for the elastic case.

3



J. Phys. G: Nucl. Part. Phys. 41 (2014) 094003 B V Carlson et al

We assume one open channel (elastic) and many closed channels (the compound-nuclear
states) and denote the total wave function of the system by |�〉. The open channel is projected
from the wave function by using the projection operator P, while the closed channels are
projected out with the projection operator Q. The Schrödinger equation of the system,
(E − H)|� >= 0, becomes a set of coupled equations:

(E − PHP)P|�〉 = PHQQ|�〉 (6)

(E − QHQ)Q|�〉 = QHPP|�〉. (7)

The effective equation for P|�〉 is obtained by eliminating the Q|�〉 component,(
E − PHP − PHQ

1

E − QHQ
QHP

)
P|�〉

= (E − PHP − PHQGQQHP)P|�〉 = 0 , (8)

where we have introduced the Q-space Green’s function:

GQ = 1

E − QHQ
. (9)

Equation (8) is very complicated to solve. It contains a strongly energy-dependent
effective potential through the term PHQGQQHP. There is no absorption, as the effective
P-Hamiltonian, PHP + PHQGQQHP, is Hermitian. The standard procedure for simplifying
the theory is to introduce an energy-averaged Q-space Green’s function, 〈GQ〉. This energy
average can be calculated using a Lorentzian weight function of the form ρ(E, E ′) =
(I/2π)[(E ′ − E )2 + (I/2)2], with an averaging width I that is much larger than the width of
a typical CN resonance, I � �. Using contour integration we obtain

〈GQ〉 = 1

E − QHQ + iI/2
. (10)

When 〈GQ〉 is used instead of GQ in equation (8), one speaks of the optical model equation. The
effective potential now has a slow energy dependence, but is intrinsically complex. The loss of
flux from the elastic channel described by the complex part of optical potential PHQ〈GQ〉QHP
owes its origin to the underlying CN coupling. This flux is not lost, as it reappears through the
fluctuation cross section, as we describe below. Equation (8) has the following formal solution:

P|�〉 = |φ〉 + G(+)
P PHQ

1

E − QHQ
QHP|�〉. (11)

Here G(+)
P is the ‘free’ P-space Green’s function, given by G(+)

P = 1/(E − PHP + iε), and the
wave function |φ〉 is the solution of the uncoupled P-equation, (E − PHP)|φ〉 = 0.

The S matrix can then be written as

S = S(0) − 2π iPHQ
1

E − QHQ − QHPG(+)
P PHQ

QHP. (12)

The first term is a unitary background term, while the second term contains a sum over
resonances. These resonances are the CN resonances. To make connection with the complex
optical potential, one resorts to energy averaging over these resonances. The average cross
section is found to contain three terms: the potential scattering term, the CN term and the
interference term. This last term makes the analysis of reaction data rather cumbersome and
complicates attempts to separate the cross sections into direct and compound contributions.
Kawai, Kerman, and McVoy (KKM) [54] offered a solution, which we describe next.
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2.3. The Kawai–Kerman-and-McVoy (KKM) theory

In [54], Kawai, Kerman, and McVoy (KKM) derive a new representation of the full S matrix
which eliminates the compound-direct interference term. They introduce the optical potential
at the outset when dealing with the effective equation for the P|�〉 wave function. This
procedure results in an average cross section containing the optical (or coupled-channels) term
and the CN, or ‘fluctuation,’ term; the interference term averages to zero.

More specifically, Kawai, Kerman, and McVoy start with Equation (8) and add and subtract
the energy-averaged Q-space Green’s function, equation (10), to obtain:

(E − PHP − PHQ〈GQ〉QHP)P|�〉 = PV QGQQV PP|�〉 (13)

where PV Q = PHQ
√

iI/2
E−QHQ+iI/2 . A similar form is found for QV P =

√
iI/2

E−QHQ+iI/2 QHP.
Imposing strict time-reversal invariance, the scattering S-matrix for a reaction c → c′

which proceeds through CN states, |q >, can be written as

Scc′ = Sopt
cc′ − i

∑
q

gqcgqc′

E − εq
= Sopt

cc′ + S f l
cc′ (14)

where the resonance decay amplitude gqc is given by,

gqc =
√

2π〈φq|V |ψ(+)
c 〉, (15)

and εq = Eq − i�q/2 is the complex energy of the CN resonance. The energy-averaged piece of
the S-matrix is denoted by Sopt, such that Sopt

cc′ = 〈Scc′ 〉, and accordingly we have the constraint

〈
S f l

cc′
〉 = −i

〈∑
q

gqcgqc′

E − Eq

〉
= 0. (16)

This constraint makes it possible to write the energy-averaged cross section as an incoherent
sum of two terms, namely,

σcc′ = σ
opt
cc′ + σ̂

f l
cc′ . (17)

The average partial fluctuation cross section cross section, for a given orbital angular
momentum value L, is σ̂

f l
cc′ = σ

f l
cc′ π(2L + 1)/k2

c , where

σ
f l

cc′ = 〈∣∣S f l
cc′

∣∣2〉 =
〈∑

qq′

gqcgqc′g

q′cg


q′c′

(E − Eq + i�q/2)(E − Eq′ − i�q′/2

〉
. (18)

To perform the energy average, one first collapses the double sum over q and q′ into a single
sum, and uses box averaging:

σ
f l

cc′ =
∑

q

(1/I)
∫ E+I/2

E−I/2
dE ′ gqcgqc′g


qcg

qc′

(E − Eq)2 + (�q/2)2
. (19)

Since the averaging interval I is much larger than the average CN width, we may assume
I/2 � E − Eq, without loss of generality. Allowing the integration limits to go to ∞, the
integral over E can be performed by contour integration, giving σ

f l
cc′ = 2π

I

∑
q[ 1

�q
gqcgqc′g


qcg

qc′ ].

This sum can be related to an average over q, by recognizing
∑

q[ 1
�q

gqcgqc′g

qcg


qc′ ] =
(I/D)〈[ 1

�q
gqcgqc′g


qcg

qc′ ]〉q, where D is the average spacing between CN resonances, and the

ratio, I/D is the number of resonances within the averaging interval. Removing the inverse of
the width from inside the q average, and replacing 1/�q by 1/�q ≡ 1/�, we finally get

σ
f l

cc′ = 2π

D�
〈gqcgqc′g


qcg

qc′ 〉q. (20)
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We use the Gaussian distribution of the form factors g to reduce the above average
as 〈gqcgqc′g


qcg

qc′ 〉 = 〈gqcg


qc〉q〈gqc′g

qc′ 〉q + 〈gqcg


qc′ 〉q〈gqc′g

qc〉q + 〈gqcgqc′ 〉q〈g


qcg

qc′ 〉q. This

decomposition suggests the following form for the fluctuation cross section:

σ
f l

cc′ = 〈∣∣S f l
cc′

∣∣2〉 = XccXc′c′ + Xcc′Xc′c +
(

2D

π�

)
|Ycc′ |2, (21)

where the X and Y matrices are defined as follows:

Xcc′ =
√

2π

�D
〈gqcg†

qc′ 〉 (22)

Ycc′ = π

D
〈gqcgqc′ 〉. (23)

The cross section is usually expressed in terms of the transmission or penetration matrix
whose cc′ element is defined by:

Pcc′ = δcc′ −
∑

c′′
Sopt

cc′′
(
Sopt

c′′c′
)∗ =

∑
c′′

〈
S f l

cc′′
(
S f l

c′′c′
)∗〉

=
∑

c′′

〈∑
qq′

gqcgqc′′g∗
q′c′′g∗

q′c′

(E − Eq)(E − E∗
q′ )

〉
. (24)

This can be reduced to the following expression for the matrix:

P = XTr (X ) + X2 +
(

2D

π�

)
YY †. (25)

In the region of overlapping resonances the last term, which contains the matrix Y , is very
small and can be neglected in both P and in the expression for σ

f l
cc′ . If we further ignore the

X2 term in the equation for the transmission coefficient above, we can then solve for X (P), as
X = P/

√
Tr P, and thus obtain the Hauser–Feshbach cross section in the presence of direct

reactions,

σ
f l

cc′ = PccPc′c′ + Pcc′Pc′c

Tr P
. (26)

For the case of elastic scattering, c = c′, we obtain the cross section σ
f l

cc = 2 (Pcc )
2

Tr P ,which
clearly exhibits the elastic enhancement factor of 2. This factor was verified experimentally
by Kretschmer et al [60]. In the opposite limit of isolated resonances, where we have
weak absorption, the g′s are real and the matrices 〈gqcgqc′ 〉 = 〈gqcg†

qc′ 〉; thus the matrix

Y = √
2D/π�X and the fluctuation cross section for elastic scattering becomes σ

f l
cc = 3 (Pcc )

2

Tr P ,
i.e. it carries an elastic enhancement factor of 3. In this same weak absorption limit, the
cross section for a given transition is simplified significantly, as the transmission coefficients
can be related to the partial width �c and density of states (1/D) as Pcc = 2π�c/D (for
neutrons). The leading term of the CN cross section becomes D�c�c′/�, clearly exhibiting
the dependence on the CN density of states. To get a full picture of this dependence, the other
terms in the cross section must also be calculated [54].

2.4. Intermediate structure and Doorway resonances

It was recognized in the early 1960s that the average cross section exhibits modulations with a
width that is much larger than the average CN resonance width. The concept of intermediated
structure was introduced [57], and an interpretation in terms of a ‘Doorway’ state was advanced
[17] (see also [19]). The structure of a doorway state is considered to be much simpler than that
of a CN resonance. To account for intermediate structure in reactions, one introduces a third
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projection operator, D, in addition to the projection operators P and Q, such that P+Q+D = 1
with PQ = PD = QD = 0 and PP = P, QQ = Q, and DD = D. The doorway state’s width
is composed of two terms, the escape width, which measures the degree of the coupling to the
open channels, and the spreading width, which measures the strength of the coupling to the
more complicated CN states.

The system of coupled equations previously considered is now replaced by a system
consisting of three coupled equations:

(E − PHP)P|�〉 = PHQQ|�〉 + PHDD|�〉 (27)

(E − QHQ)Q|�〉 = QHPP|�〉 + QHDD|�〉 (28)

(E − DHD)D|�〉 = DHPP|�〉 + DHQQ|�〉. (29)

The formal solution of the above set of equations follows basically the same steps as before.
It is, however, more complicated, because of the additional couplings that can occur. One may
resort to the extreme doorway model in which direct coupling between the P and Q spaces is
absent and can only proceed through the doorway. This implies PHQ = 0 and QHP = 0. The
three equations then become

(E − PHP)P|�〉 = PHDD|�〉 (30)

(E − QHQ)Q|�〉 = QHDD|�〉 (31)

(E − DHD)D|�〉 = DHPP|�〉 + DHQQ|�〉. (32)

The next step in the reduction is to average over the Q resonances. We first eliminate the Q-
component of the wave function, recognizing that P|�〉 = |φ〉+ GPPHDD|�〉, where |φ〉 is a
solution of (E −PHP)|φ〉 = 0 and Q|�〉 = GQQHDD|�〉. We introduce the energy-averaged
Q Green’s function 〈GQ〉 = 〈 1

E−QHQ 〉 = 1
E−QHQ+i(I/2)

. The width of the averaging interval I
is much larger than the width of a typical CN resonance, but smaller than the width of the
doorway, �q � I < �D. Using 〈GQ〉 in the third equation, which is now an equation for the
Q-space averaged doorway wave function, we obtain

(E − DHD − DHQ〈GQ〉QHD − DHPGPPHD)D|�〉 = DHP|φ〉. (33)

Inserting this solution back in the first equation for P|�〉 results in an equation for the open
channel’s wave function. The Q-space averaged S-matrix is now directly obtained. Note that
the doorway width is composed of an escape width, �

↑
D, and a spreading (damping) widths,

�
↓
D, i.e. �D = �

↑
D + �

↓
D. In the simple case of purely elastic scattering, the S-matrix becomes

S00 = S(0)

00

[
1 − i

�
↑
D

E − ED + i(�↑
D + �

↓
D)/2

]

= S(0)

00

[
E − ED − i(�↑

D − �
↓
D)/2

E − ED + i(�↑
D + �

↓
D)/2

]
, (34)

which is manifestly non-unitary owing to the presence of the spreading width. The transmission
coefficient can be calculated as P00 = 1 − |S00|2 and we find

P00 = �
↑
D�

↓
D

(E − ED)2 + (�D/2)2
. (35)

This expression is symmetric around the doorway energy ED. The symmetry is removed when
the couplings PHQ and QHP are included, which is necessary, e.g., for the case of isobaric
analogue resonances [40, 41].
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The concept of doorway states has been of great value in the description of nuclear
reactions involving resonances. Doorway states can be as simple as a two particle-one hole
state or a collective giant resonance, which is a coherent excitation of one particle-one hole
states. Both are damped due to their couplings to the more complex CN states. The doorway
idea is also used in other branches of physics, such as in the description of metal clusters.
Furthermore, the concept of doorway states with increasing complexity is the basic ingredient
in pre-equilibrium theories, such as the one developed by Feshbach, Kerman, and Koonin [42].
This topic will be discussed in section 3.

2.5. Eriscon’s fluctuations

In the region of overlapping resonances, the peaks in the cross section do not correspond to
individual resonances. The peaks in the cross section are just ‘noise’ arising from the complex
underlying CN fluctuations and information about the CN, such as life time, density of states,
etc, cannot be simply obtained. In the early 1960s T Ericson suggested measuring the cross
section correlation function in order to extract this information. The correlation function is
defined by

Ccc′ (ε) = 〈σcc′ (E )σcc′ (E + ε)〉. (36)

The calculation of Ccc′ (ε) is closely related to the calculation of the so-called S-matrix
correlation function. As a matter of fact, from the definition of the cross section in terms of
the S-matrix, we have,

〈σcc′ (E )σcc′ (E + ε)〉 = 〈Scc′ (E )S†
cc′ (E )Scc′ (E + ε)S†

cc′ (E + ε)〉. (37)

Assuming that the S matrix is a Gaussian-distributed random function, we can decompose
the four-point correlation function 〈Scc′ (E )S†

cc′ (E )Scc′ (E + ε)S†
cc′ (E + ε)〉 into two terms:

〈Scc′ (E )S†
cc′ (E )Scc′ (E + ε)S†

cc′ (E + ε)〉 = 〈Scc′ (E )S†
cc′ (E )〉〈Scc′ (E + ε)S†

cc′ (E + ε)〉
+〈Scc′ (E )S†

cc′ (E + ε)〉〈S†
cc′ (E )Scc′ (E + ε)〉. (38)

The first term on the right-hand side is just the product of the average cross sections and the
second term can be written as |〈Scc′ (E )S†

cc′ (E + ε)〉|2. Thus, we have to calculate the S-matrix
correlation function

CS
cc′ = 〈Scc′ (E )S†

cc′ (E + ε)〉. (39)

The calculation of the S-matrix correlation function follows exactly the same steps as that
of the average cross section. The energy average involved is of the form

CS
cc′ = 〈σcc′ (E )〉

〈
1

1 − iε/�q

〉
q

= 〈σcc′ (E )〉 1

1 − iε/�corr
, (40)

where �corr is called the correlation width. It is NOT equal to the average CN width �, but
can be related to the sum of the transmission coefficients, 2π�corr

D = ∑
c Pcc. No such simple

relation exists for the average width.
The cross section correlation function can now be evaluated. Since 〈σcc′ (E )〉 = 〈σcc′ (E +

ε)〉, we have

Ccc′ (ε) = (〈σcc′ 〉)2

1 + ( ε
�corr

)2
, (41)

where the average cross section is given by the Hauser–Feshbach expression, σ CN
cc′ . In the

presence of direct reactions the above Lorentzian form is maintained, but the numerator
changes to 2σ dir

cc′ σ
CN
cc′ + (σ CN

cc′ )2.
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An Ericson analysis of cross section data supplies the correlation width �corr. It has been
verified experimentally that the experimental Ccc′ (ε), for small enough ε, is a Lorentzian. This
gave this method acceptance not only in nuclear physics research but also in other branches
of physics.

3. Pre-equilibrium reactions

The recognition that the spectra of particles in a given nuclear reaction invariably show
deviations from pure CN emission or a fast direct process, led J Griffin [47] to propose the
exciton model of pre-equilibrium emission. These reactions have attracted the attention of
physicists ever since and a number of other semiclassical and quantum-mechanical models of
this emission process have been developed. Here we briefly describe the principal theoretical
descriptions of pre-equilibrium emission and discuss challenges and new ideas in the area.

3.1. Semiclassical models

Griffin proposed the exciton model of pre-equilibrium emission [47] to explain an excess of
high energy neutrons relative to those from the CN observed in (p,n) reactions [22, 52, 80].
In a proton-induced reaction, a collision of the proton with the nucleus leads to a 2p-1h
state, in which the incident particle has excited a target particles, creating a particle–hole pair.
At energies below about 200 MeV, the wavelength of a nucleon is still greater than about
2 fm, so that the projectile nucleon–target nucleus interaction actually does not excite an
individual particle–hole state, but some linear combination of these. Further interaction of any
of the particles or holes could create, scatter or destroy particle–hole pairs. The exciton model
classifies the states in terms of the number of particles p and number of holes h and assumes
that all states with the same number of particles and holes are equally populated. Since the
total number of particles is conserved, the difference between the two, p−h, remains constant
throughout a collision. The quantity n = p+ h, is called the exciton number. Particles emitted
from configurations with low exciton number tend to be more energetic and more focussed in
the forward direction than those emitted from the CN.

The competition between transitions to configurations of different exciton number and
emission is essential to the exciton model. Cline and Blann cast the model in the form of a
time-dependent master equation [28], in which energy is conserved but angular momentum is
not. The equation governing the time development of the fraction of the cross section P(n) in
the n exciton configuration is written as
dP(n)

dt
= λ−(n + 2) P(n + 2) + λ0(n) P(n) + λ+(n − 2) P(n − 2) − λ(n) P(n) (42)

where λ(n) is the total rate of transitions out of the n exciton configuration,

λ(n) = λ−(n) + λ0(n) + λ+(n) + λe(n),

with λe(n) being the total rate of particle emission from the n exciton configuration. The
quantities λ−(n), λ0(n), and λ+(n) are the average rates for internal transitions from the n
exciton configuration with a change of exciton number by −2, 0, or +2. The average rate of
transitions that do not change the number of excitons, λ0(n), cancels here.

Using Fermi’s golden rule, the internal transition rates can, in principal, be calculated by
summing over all squared residual interaction matrix elements leading from the initial to the
final configuration. In practice, this sum is written as the product of the average squared matrix
element of the residual interaction |M|2 with the density of available states. For the exciton-
number-changing transitions, the density of available states counts the average number of ways
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an exciton of the initial particle–hole configuration can be converted to three excitons (or vice
versa), assuming the energy-conserving transition between any of the single exciton states
and any of the three-exciton states to occur with equal likelihood. Similarly, the density of
available states for transitions that do not change the exciton number counts the average number
of ways any two excitons may scatter from one another, again assuming equal likelihood for
all energy-conserving transitions. Expressions for the density of available states were given
by Williams [78] and later corrected for the Pauli principle by Cline [27]. The transition rate
λ+(n) can also be expressed in terms of the imaginary part of the optical potential [44] or
in terms of the in-medium nucleon-nucleon scattering cross section or mean free path [10].
The particle-emission rate is written in terms of the Weisskopf–Ewing emission rate using the
appropriate pre-equilibrium densities of states [79].

The exciton model uses integrated transition and emission rates to determine the
competition between scattering and emission. The hybrid model [10–12] uses exciton model
densities to determine the probability that a particle or hole has a given energy, but then uses
transition and emission rates for that energy to determine the competition between escape and
scattering. Results similar to those of the exciton model can be obtained by slightly modifying
the overall magnitude of the transition rate.

Fundamental to both the exciton and the hybrid model is the assumption of equal
occupation of the states in each n-exciton configuration. Blann and Vonach demonstrated
that this assumption is fairly well satisfied by the initial transitions to the 2p-1h exciton
configuration excited in a nucleon-induced reaction [16]. Bisplinghoff showed, however, that
this is not the case for the transitions to more complex configurations [9]. The assumption
would still be reasonable if the transition rate among states of the same configuration, λ0(n),
were much larger than the configuration changing transition rates, λ±(n), so that equilibration
could occur before a subsequent transition. This is almost never the case, with

λ+(n) > λ0(n) > λ−(n) (43)

for small n for almost all excitation energies. This is due to the fact that the density of states
of the n exciton configuration is relatively small compared to that of the n + 2 configuration
when n is small.

In figure 1, we show the exciton number of the configuration defining complete
equilibration, neq, for which

λ+(neq) = λ−(neq), (44)

as well as the minimum exciton number for equilibration within a configuration, n0, which we
define by

λ+(n0) = λ0(n0), (45)

as a function of the product of the single-particle density of states, g ≈ A/13 MeV−1 and the
exciton energy E. We have assumed that the average matrix element inducing configuration
changing transitions is equal to that among states of the same configuration. For reference, we
also show the exciton number for equilibration within a configuration when the average
squared matrix element for transitions among the states of a configuration is ten times
that of the transitions between configurations, n10. This can be the case at low excitation
energy [71], where hole–hole transitions dominate the λ0(n) transition rate. However, as the
excitation energy increases, the particle–hole and particle–particle matrix elements rapidly
gain dominance in the transition rate, resulting in average matrix elements that are nearly
equal.

Returning now to the question of equilibration among the states of a given configuration,
from figure 1 we see that this is plausible for the 3p-2h exciton configuration at values of gE
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Figure 1. Average exciton number at equilibrium, neq, and minimum exciton number
for equilibrium within a configuration, n0, as a function of gE, the product of the single
particle state density and the excitation energy. The additional curve, labeled n10, is
explained in the text.

below about 50, corresponding to an excitation energy of about 17 MeV in 40Ca and of about
3 MeV in 208Pb. The minimum hole number increases as n0 ≈ √

0.4gE while the equilibrium
hole number increases as neq ≈ √

gE. Thus, although the exciton and hybrid model do provide
a reasonably good description of pre-equilibrium spectra, one of their basic tenets is not
satisfied. In part, the good agreement is due to the fact that at lower excitation energies, most
emission occurs from the initial 2p-1h configuration. As the excitation energy increases and
more complex configurations contribute to emission rates, discrepancies would be expected.

To avoid this problem, Blann proposed the hybrid Monte Carlo simulation model [13],
which he later extended, in collaboration with Chadwick, to a model of double differential
pre-equilibrium spectra [14]. Like the hybrid model, it calculates transition rates using the
energy of each particle or hole. However, it only uses the transition rates to 2p-1h and 1p-2h
configurations corresponding to the individual particles and holes and determines the energy
of each particle and hole after each collision, using Monte Carlo selection from the 2p-1h and
1p-1h distributions. In a sense, the model proposes an intranuclear cascade that is performed
in energy-angle space rather than configuration space. The model is more consistent than the
exciton and hybrid models and can describe pre-equilibrium spectra and double differential
data at least as well as these. However, like these, it generally does not describe well the high
energy component of spectra, where collective effects are important, nor scattering at back
angles, where quantum coherence effects play a role.

3.2. Quantum models

A fundamental difference between semiclassical and quantum models of pre-equilibrium
reactions is that semiclassical models do not distinguish between bound and continuum states,
while quantum models must do so. The exciton picture is still useful here, as a means to
refine the Feshbach decomposition of the space of states into a continuum component P and
a bound-state component Q. Maintaining our emphasis on nucleon-induced reactions, we can
write
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P = P1 + P3 + P5 + P7 + · · · ,
Q = Q3 + Q5 + Q7 + · · · . (46)

The decomposition of the direct-reaction space P contains the elastic component P1 and a
series of components with increasing exciton number in which it is assumed that one (and
only one) of the nucleons is in the continuum. Progression along the stages of the P chain
is usually assumed to result from additional interactions of the continuum nucleon with the
target, although it could also occur due to interactions within the target. The decomposition
of the CN space begins with the three-exciton configuration Q3, since the incident nucleon
must collide with at least one nucleon, forming a two-particle, one-hole configuration, to be
captured into a quasi-bound state. Transitions between the chains may also occur at any stage.
However, it is assumed that all transitions change the exciton number by at most two.

Reactions that occur in the direct-reaction space P are known as multistep direct reactions.
Those that occur in the compound-nuclear space Q are known as multistep compound reactions.
The first multistep direct models were developed by Feshbach, Kerman and Koonin [42] and by
Tamura, Udagawa and Lenske [73] and later by Nishioka, Weidenmüller, and Yoshida [66]. The
first multistep compound model was developed by Agassi, Weidenmüller and Mantzouranis
[1] and rederived using more rigorous methods in [65]. Similar models were also proposed in
[42, 43, 62].

3.2.1. The multistep compound model. The multistep compound model includes in its state
or level densities only those states in which all of the single-particle states are bound. At first
glance, it would thus appear to be an exciton model in which the transitions are limited to
only bound single-particle states [67, 72]. In distinction from the exciton model, the multistep
compound one requires an interaction to occur for a nucleon to be emitted from the composite
system. Absorption occurs much as in the exciton model, although the transition must lower the
initially unbound nucleon to a bound configuration. In the case of emission, the transition must
raise one of the nucleons to an unbound, continuum state so that it can leave the system. Like
the internal transition factors, λ±(n) and λ0(n), the factors describing emission can change the
exciton number by two, Yc±(n) or leave it unchanged Yc0(n) (taking into account the particle in
the continuum). However, one-particle to two-particle, one-hole transitions cannot contribute
to the emission rate, due to the restriction to bound initial one-particle configurations.

The absorption factors describe the inverse process to emission and may be obtained by
reinterpreting the emission factors. In particular, the absorption factor for creating the initial
2p-1h configuration is Yc−(3). This form of the multistep compound emission/absorption
factors was first derived in [42]. Explicit expressions for these and a general discussion of
multistep compound processes can be found in [20].

A nucleon that undergoes a transition to the continuum can return to a bound-state
configuration due to another transition before escaping the nucleus. This introduces a
component proportional to the product of an emission and an absorption factor, called the
external mixing component. It permits transitions (through the continuum) that change the
exciton number by up to 4. It is derived and discussed in [1], but, to our knowledge, has not
been included in multistep compound calculations.

Because the multistep compound model requires that all particles be in bound states, a
multistep compound reaction is initiated from a multistep direct stage at all but the lowest
energies. Depending on the initial energy, the multistep compound process can be fed by
early, intermediate or late stages of the multistep direct chain. As such transitions initiate a
multistep compound chain at a higher exciton number than those that enter it directly from
the nuclear ground state, they tend to decrease multistep compound pre-equilibrium emission
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rather than increase it. Most pre-equilibrium multistep compound emissions come from the
first few stages in the chain. A composite system formed with a higher exciton number has
a greater chance of evolving to equilibrium before decaying than one formed with a smaller
exciton number.

At low to medium excitation energy, the multistep compound transition rates of low
exciton number retain the same proportionality as those of the exciton model [67, 72]. The
multistep compound model thus suffers from the same conceptual difficulty as the exciton and
hybrid models: the assumption of equal occupation of states in configurations with more than
three excitons cannot be justified. This difficulty does not necessarily diminish as the energy
increases and a multistep direct stage becomes necessary, since the minimum exciton number
for equilibration between transitions also increases with energy.

3.2.2. The multistep direct model. To obtain expressions for multistep direct reactions, one
analyzes the coupling along the chain of continuum configurations

P = P1 + P3 + P5 + P7 + · · · (47)

and, of course, their coupling to the CN states. One assumes that the Hamiltonian can be
written as

H = H0 + V (48)

where H0 consists of the projectile and target Hamiltonian, as well as a projectile-target optical
potential that does not induce transitions but accounts for the flux lost due to the interaction
V . All transitions are assumed to be the result of the interaction V . The excitations of the
multistep direct model are assumed to be individually weak, although large in number, so that
it is advantageous to rewrite the Schrödinger equation as a Lippmann–Schwinger equation,

(E − H0 − V )|ψ(+)〉 = 0 −→ |ψ(+)〉 = |φ(+)〉 + 1

E − H0
V |ψ(+)〉, (49)

where (E − H0)|φ(+)〉 = 0, and to approximate the wavefunction using a series expansion,

|ψ(+)〉 =
∑
n=0

(
1

E − H0
V

)n

|φ(+)〉 . (50)

The scattering amplitude can then be written as

Tμ0 = 〈φ(−)
μ |V |φ(+)

0 〉 + 〈φ(−)
μ |V 1

E − H0
V |φ(+)

0 〉 + 〈φ(−)
μ |V 1

E − H0
V

1

E − H0
V |φ(+)

0 〉 + · · ·
(51)

To reduce the cross section to a sum of terms, one observes that the first term projects onto
the 1p-1h component of the final states, the second onto the 2p-2h component, and so forth
(assuming of course that no transitions are induced by the target Hamiltonian in H0). One then
argues that averaging over a small interval in final excitation energy renders the contributions
from different configurations incoherent relative to one another, reducing the cross section to
a sum of terms,

d2σ

dEmd�
=

∣∣∣〈φ(−)
m

∣∣∣V
∣∣∣φ(+)

0 〉
∣∣∣2

+
∣∣∣〈φ(−)

m

∣∣∣V
1

E − H0
V

∣∣∣φ(+)

0 〉
∣∣∣2

+
∣∣∣〈φ(−)

m

∣∣∣V
1

E − H0
V

1

E − H0
V

∣∣∣φ(+)

0 〉
∣∣∣2

+ · · · (52)

Other statistical hypotheses are necessary to simplify the expression further.
Multistep compound models have been carried out to various orders and with varying

degrees of sophistication. In the model proposed by Feshbach, Kerman and Koonin, an average
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residual interaction is generally used with exciton configuration densities. The statistical
hypotheses are assumed to be sufficiently strong to reduce the n-step cross section to a
convolution of single step cross sections. A two-step cross section, for example, could then be
written as

d2σ

dEd�
(�k,�k0) =

∫
d3k′

(2π)3

d2σ

dEd�
(�k,�k′)

d2σ

dEd�
(�k′,�k0). (53)

The resulting expressions are intuitively pleasing and fairly easy to calculate. Because of this,
the model has been compared extensively to experimental data [21] and used to calculate
up to fourth order and charge-exchange reactions [59]. However, reduction of the n-step
cross sections to convolutions requires the substitution of an optical wave function with an
outgoing boundary condition by one with an incoming boundary condition, φ(+) → φ(−), in
the intermediate propagators. As these wavefunctions differ in magnitude by a factor of the
optical S matrix, the approximation has proven difficult to justify.

In an alternative approach, Tamura, Udagwa and Lenske [69, 73] developed the physical
structure of the excitations in more detail, but limited the reaction chain to two steps. To obtain
the one-step cross section, they calculated a 1p-1h response function by diagonalizing the
target nucleus Hamiltonian in the 1p-1h subspace. The advantage of such an approach is that
it can take into account both the collective and the single-particle response of the excitation.
Such single-step calculations have been performed with even more rigor in recent years and
show excellent agreement with experimental data [31, 32].

As the incident energy increases, further direct-reaction stages become necessary. Tamura,
Udagawa and Lenske extended their one-step response function to a two-step one by assuming
that the microscopic structure of the intermediate states in the two-step cross section is
incoherent on the average. They then convoluted the 1p-1h response with itself to obtain the
2p-2h response function, but retained the intermediate propagator form of the spatial structure
of the two-step cross section. Nishioka, Weidenmüller and Yoshida claim that the statistics is
insufficient even for averaging the microscopic structure and that the coherent 2p-2h response
function should be used in the two-step cross section. We build on arguments they put forth in
[66] to analyze the assumptions commonly used in multistep direct models.

We first analyze the approximations inherent in the ‘leading particle’ nature of the model,
that is, in the fact that only one nucleon is assumed to be in the continuum and is followed
through the reaction. In figure 2, the average energy of the fast (leading) and slow final
particles in a nucleon-nucleon collision in nuclear matter (assumed to be isotropic in the
center-of-mass) are displayed as a function of the incident particle energy [58]. Above about
50 MeV, the averages values of the two energies are well approximated by the straight lines in
the figure,

Ehigh = 3
4 (Ei − 〈Ehole〉) and Elow = 1

4 (Ei − 〈Ehole〉) (54)

where the average hole energy is 〈Ehole〉 = 2EF/7, EF being the Fermi energy of the
(nonrelativistic) Fermi gas. The widths of the energy distributions of the fast and slow particles
are both about Ei/7. Also shown in the figure is the incident energy dependence of the final
phase space volume for the collision, in arbitrary units, which we take as a relative measure
of the probability of a collision.

If we consider an incident particle of 60 MeV, we conclude that the energy of the leading
particle after the collision will be about 30 ± 9 MeV and that of the slow particle about 10 ±
9 MeV, so that both are probably unbound. If we compare the final phase space volumes
associated with the two, we find that a second collision is about 7 times more likely to be
induced by the 30 MeV particle than by the 10 MeV one. Collision of the 30 MeV particle
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Figure 2. Average energy of the fast (leading) and slow final particles in a nucleon-
nucleon collision in nuclear matter as a function of the incident particle energy. Also
shown is the dependence on initial energy of the final phase space volume for a collision,
in arbitrary units.

with another nucleon in the Fermi sea, would produce a leading particle of 12 ± 4 MeV, still
unbound, on the average.

This problem becomes more serious as the energy increases. If we consider a 150 MeV
incident nucleon, we find that the average energy of the fast particle after the collision will be
about 100 ± 20 MeV, while the average energy of the slow one will be about 35 ± 20 MeV.
In this case the probability of a second collision being induced by the fast particle is only
about three times greater than that of being induced by the slow particle. The leading particle
model of multistep direct reactions is thus limited to reactions at fairly low incident energies
for two reasons. First, at energies above about 30 MeV, the probability of the slower particle
in a collision being unbound becomes appreciable. Second, as the energy increases, so does
the probability that the slow particle interacts before the leading particle does so again.

However, even at low incident energies, the multistep direct model suffers from the same
problem as the exciton and multistep compound models: for low exciton number, the transition
rate increasing the exciton number is much larger than the transition rate mixing states with the
same exciton number. Here the lack of equilibration among the states of same exciton number
implies that they cannot be considered to contribute incoherently, as it is the interaction among
these states that would make their phases random. A correct description of the two-step process
would thus require the partially coherent 2p-2h response function. At higher energies, where
the three step process should be included, one would also need the complete 3p-3h response
function, since the limiting exciton number for equilibrium before transition, n0, increases
with energy as well.

We conclude from the above analysis that, with the exception of reactions at very low
energies in which the compound or multistep CN is formed directly, the chain of pre-
equilibrium reactions that eventually lead to the compound nucleus are direct reactions and
are at least partially coherent over a wide range of exciton numbers. In addition, at energies
greater than about 30 MeV, these reactions will result in more than one continuum particle,
as well as particles in bound states, that can induce further transitions. Neither the effects
of coherence beyond that in 1p-1h excitations nor the contributions of transitions induced
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by particles other than the leading one have been included in multistep direct reactions. The
latter are contained in the semiclassical hybrid Monte Carlo simulation model proposed by
Blann and Chadwick [14]. However, its semiclassical nature inhibits inclusion of the collective
and diffractive effects of quantum scattering that are essential to a complete description of
pre-equilbrium reactions.

Before closing, we observe that pickup reactions leading to composite particles such
as the deuteron, tritium and alpha are also important in pre-equilibrium scattering and can
contribute up to 20% of the pre-equilibrium yield [8]. Pre-equilibrium emission occurs in
reactions induced by composite particles as well, which can produce both pickup and stripping
components. In all cases, composite particle emission can occur directly or from a mixture of
continuum and bound states [15, 48, 53, 70]. Although pre-equilibrium reactions have been
studied for many years now, we are still only beginning to learn how to describe them.

4. Hybrid reactions

Nuclear reaction cross sections are required input for models of stellar evolution and element
synthesis, simulations of the nuclear fuel cycle, and other applications. Of interest are reactions
of neutrons and light, charged particles with target nuclei across the isotopic chart, taking place
at energies from several keV to tens of MeV. Unfortunately, for a large number of reactions the
relevant data cannot be directly measured in the laboratory or easily determined by calculations.

Direct measurements may encounter a variety of obstacles. The energy regime relevant for
a particular application is often not accessible—cross sections for charged-particle reactions,
e.g., become vanishingly small as the relative energy of the colliding nuclei decreases.
Furthermore, many important reactions involve unstable nuclei which are too difficult to
produce with currently available techniques, too short-lived to serve as targets in present-day
set-ups, or highly radioactive. Producing all relevant isotopes will remain challenging even for
radioactive-beam facilities.

Cross section calculations require a thorough understanding of both direct and statistical
reaction mechanisms (as well as their interplay) and a detailed knowledge of the nuclear
structure involved. Nuclear-structure models can provide only limited information and very
little is known about important quantities such as optical-model potentials or spectroscopic
factors for nuclei outside the valley of stability.

In order to overcome these limitations, one has to resort to indirect methods, which
normally rely on a combination of theory and experiment for success. Approaches such as
the asymptotic normalization coefficient method [64, 81], Coulomb dissociation [6, 7], and
the Trojan-Horse method [74] have yielded valuable cross-section information for various
direct reactions. Here we focus on the surrogate nuclear reactions technique, which employs
a transfer or inelastic scattering reaction to determine a CN cross section indirectly.

4.1. The surrogate method

The surrogate nuclear reaction approach combines experiment with theory to obtain cross
sections for CN reactions, a + A → B∗ → c +C, involving difficult-to-produce targets, A [23,
24, 37–39]. Of particular interest are neutron-induced reactions on unstable nuclei, such as
neutron capture A(n, γ )B (e.g. 95Zr(n, γ )96Zr) and neutron-induced fission (e.g. 240Am(n, f )).
In the Hauser–Feshbach formalism [49], the cross section for this ‘desired’ reaction takes the
form:

σαχ (Ea) =
∑
J,π

σ CN
α (E, J, π ) GCN

χ (E, J, π ), (55)
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with α and χ denoting the relevant entrance and exit channels, a + A and c + C, respectively.
The excitation energy E of the CN, B∗, is related to the projectile energy Ea via the energy
needed for separating a from B: Ea = E − Sa(B). In many cases the formation cross sections
σ CN

α (E, J, π ), which is directly related to the transmission coefficient Tc in equation (3),
can be calculated to a reasonable accuracy by using optical potentials. On the other hand,
the theoretical decay probabilities GCN

χ (E, J, π ) for the different decay channels (which are
essentially the ratios Tc/

∑
c′′ Tc′′ in the same expression, equation 3) are often quite uncertain.

The latter are difficult to calculate accurately since they require knowledge of optical models,
level densities, and strength functions for the various possible exit channels. The objective of
the surrogate method is to determine or constrain these decay probabilities experimentally.

In a surrogate experiment, the CN B∗ is produced by means of an alternative (‘surrogate’)
reaction, d + D → b + B∗ that utilizes a target-projectile combination that is experimentally
more accessible. The surrogate reaction might involve inelastic scattering, such as (p, p′),
pickup, or stripping reactions, such as (d,p) in inverse-kinematics set-ups. In the experiment,
the desired decay channel χ(B∗ → c+C) is observed in coincidence with the outgoing particle
b. The coincidence measurement provides

Pδχ (E ) =
∑
J,π

FCN
δ (E, J, π ) GCN

χ (E, J, π ), (56)

the probability that the CN was formed in the surrogate reaction with spin-parity
distribution FCN

δ (E, J, π ) and subsequently decayed into the channel χ . The spin-parity
distributions FCN

δ (E, J, π ), which may be very different from the compound-nuclear spin-
parity populations following the absorption of the projectile a in the desired reaction, have to
be determined theoretically, so that the branching ratios GCN

χ (E, J, π ) can be extracted from the
measurements. In practice, the decay of the CN is modeled and the GCN

χ (E, J, π ) are obtained
by fitting the calculations to reproduce the measured decay probabilities. Subsequently,
the sought-after cross section can be obtained by combining the calculated cross section
σ CN

α (Eex, J, π ) for the formation of B∗ (from a + A) with the extracted decay probabilities
GCN

χ (Eex, J, π ) for this state (see equation (55)).
Predicting the spin-parity distribution for a CN produced in a surrogate reaction requires

a careful consideration of the reaction mechanisms that are involved in the formation of the
CN. In the absence of width fluctuation corrections, the challenge of describing the relevant
reaction mechanisms can be divided into two separate problems:

(1) the formation of a highly-excited nucleus in a direct reaction, and
(2) the damping of the excited states into the CN.

The separation of the surrogate reaction into two separate sub-processes is somewhat
artificial, but may be useful conceptually. The surrogate reaction is viewed as a mechanism
that produces initially a highly-excited intermediate system. The system might consist, for
instance, of a nucleon N (stripped from the projectile d in the reaction d + D → b + B∗) plus
the surrogate target nucleus D. For the surrogate approach to be valid, the D + N system must
subsequently fuse to produce the CN B∗, the decay of which one is interested in measuring.
Decay of the intermediate system (D+N in the example) by particle emission prior to reaching
the equilibrated stage would invalidate the surrogate approach, since the measured coincidence
probabilities would no longer be associated with the decay of the CN of interest, B∗. It is thus
important to understand how the configurations that are produced in the initial step evolve.
Specifically, one needs to determine the probability for forming the desired CN B∗.

Addressing the first problem necessitates developing a quantitative description of the
direct-reaction process that allows for a prediction of the spin-parity distribution in the highly-
excited intermediate nucleus, immediately following the direct reaction. Such a description
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requires a framework for calculating cross sections of different reactions (stripping, pick-up,
charge exchange, and inelastic scattering) to continuum states, for a variety of projectiles (p,
d, t, α, etc) and targets (spherical, deformed, and transitional). First steps toward predicting the
spin-parity population following the initial step of a surrogate reaction were taken by Andersen
et al [2], Back et al [5], and Younes and Britt [82, 83]. These authors employed simple transfer
calculations to estimate CN spin-parity distributions following various stripping reactions on
actinide targets. They neglected the possibility that the intermediate nucleus might decay prior
to reaching equilibrium and took the resulting spin-parity distributions to be representative of
those present in the CN created in the surrogate reaction of interest. Modeling the decay of the
compound nuclei allowed them to extract (n,f) cross sections which showed good agreement
with directly measured cross sections, where those benchmarks existed.

The second problem to be addressed is associated with the evolution of the highly-
excited intermediate system that is created in the initial stage of the surrogate reaction. The
assumption that a compound (i.e. equilibrated) nucleus is formed is central to the surrogate
method. Rapid decay of the intermediate configuration before a CN can be formed needs to
be excluded experimentally, or accounted for theoretically. Recent studies of inelastic 3He
scattering on Zr and Y targets, for instance, indicate that there is a small but non-negligible
(5–20%) contribution from ‘non-equilibrium’ decay when excitation energies above 15 MeV
or higher are reached in the intermediate nucleus [36]. Discrepancies are visible between
measured γ -ray intensities from the decay of the intermediate nuclear system and predictions
from Hauser–Feshbach-type calculations that account for the surrogate spin-parity distribution
but assume a fully equilibrated system. Non-equilibrium decay is expected to play an even
larger role in stripping reactions with weakly-bound projectiles. Therefore, it will affect the
interpretation of inverse-kinematics (d, p) experiments with radioactive beams.

For obtaining a better understanding of the evolution of the intermediate, highly-excited,
system following a direct reaction, ideas from the KKM approach (section 2.3 and [54, 56])
can be employed. Some of these ideas have been investigated by F.S. Dietrich [30] and by
Parker et al [68] for an analogous case involving radiative neutron and proton capture.

5. Some challenges and open questions

The description of CN reactions requires that many detailed features of nuclear structure be
ignored and the reaction be treated in some average sense. In the theories discussed here, this
is accomplished by projecting out closed reaction channels and introducing energy averages.
The underlying assumptions are that the reaction excites a sufficient number of states in the
CN and that the direct-reaction contributions to the cross section do not vary significantly over
the energy range considered. These conditions are typically satisfied when the beam energy
spread is much larger than the CN level spacing and, at the same time, small compared to
the incident energy. It has long been known that these conditions are not always fulfilled, e.g.
for reactions on light nuclei, when the density of CN resonances becomes too small for a
statistical treatment, but the number of resonances remains too large to allow for an individual
treatment [51]. Similar difficulties can be expected for the application of reaction theories
to nuclei away from the valley of stability. Here the level densities decrease and inverse-
kinematics experiments at rare isotope accelerators will have a limited range of beam energies
(per nucleon) available.

Due to beam constraints, experiments at rare isotope facilities will encounter reactions
that contain contributions from both compound and direct reactions. To disentangle the
components, it becomes important to describe them in a coherent framework. The KKM
approach discussed in section 2.3 makes a step into that direction, by providing an extension
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of the Hauser–Feshbach formalism to the case where direct reactions are present. The KKM
theory is valid in the limit of strong absorption, defined by the condition that the CN resonance
widths are large compared to their spacings, �/D � 1. Compound-nuclear cross section for
the more general case, including weak absorption, �/D � 1, can in principle be calculated
in the framework of random matrix theory, under the assumption of a Gaussian orthogonal
ensemble (GOE) of real and symmetric Hamiltonian matrices [63]. This method uses ensemble
averages, which are considered equivalent to the energy averages considered in this paper. The
GOE approach has been very successful, both in the context of nuclear physics and for
the description of other chaotic systems. However, it requires a computationally expensive
calculation of a triple integral that enters the closed-form expression for the average cross
section [75].

While the GOE approach is often considered a reference to which other theories should
be compared, approximate methods are needed for practical applications. For instance,
correlations between the different reaction channels are known to play an important role
in certain circumstances (see sections 2.1 and 2.3). Generally, the corrections increase the
compound-elastic cross sections, while reducing the cross sections for the other channels. The
corrections are most important in the vicinity of thresholds and when few channels are open.
Modern reaction codes account for these correlations via a width fluctuation corrections factor
Wcc′ (equation (5)). In recent years, there has been renewed focus on testing various approximate
expressions for Wcc′ against the GOE approach [50] and to develop improvements [55]. Some
of the assumptions underlying the KKM theory discussed here have also been tested against
GOE predictions [3, 4]. In addition, new procedures for gaining insights into the correlations
within the random matrix approach are currently considered [35].

Pre-equilibrium processes give important contributions to many measured reaction cross
sections. The underlying reaction mechanism involves a series of relatively weak interactions
leading to an extremely large number of final states, so that the usual direct-reaction or coupled-
channel theory no longer applies. At the same time, a statistical CN type of description cannot
be used either, as equilibrium is not reached. Various models of pre-equilibrium reactions
have been developed. Modern reaction codes typically implement one or more of these. In
section 3, we discussed the most common approaches and outlined some of their short-
comings. We concluded there that the existing pre-equilibrium models still fall far short of
including the physics necessary for a general description of these reactions.

Understanding the interplay of direct and compound reaction mechanisms becomes very
important for extracting cross sections indirectly from surrogate measurements, as well as for
interpreting experiments with rare isotopes. In the context of surrogate reactions (see section 4),
what is typically thought of as a direct-reaction process is used to initiate the formation of a
CN. The outgoing direct-reaction particle is detected in coincidence with reaction products
that presumably result from the decay of the CN and conclusions are drawn about the decay
characteristics of a related reaction. The accuracy of the extracted cross section depends on
how well the CN formation process in the surrogate reaction is described. Similarly, separating
the compound and direct-reaction contributions in low-energy radioactive-beam experiments
is crucial for obtaining reliable nuclear-structure information.

6. Summary

Over the decades, there have been extensive theory developments aimed at properly describing
reactions involving compound nuclei. We have summarized here some important approaches
that focus on the reaction mechanisms (rather than on the structure models that provide
complementary input). Despite the wide use of the Hauser–Feshbach formalism in modern
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reaction codes, some of the available theoretical developments have not yet been implemented
and some of the underlying assumptions remain to be tested. Here we have revisited three
areas of interest: the general theory of compound-nuclear reactions, the role of pre-equilibrium
reactions, and extensions needed in order to get cross section information indirectly via hybrid
reactions. We find that various questions and challenges remain to be addressed in order
to gain a deeper understanding of the many-body processes involved and to obtain reliable,
comprehensive descriptions of this important class of nuclear reactions.
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