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Abstract The exact expressions for the characteristics of
synchrotron radiation of charged particles in the first excited
state are obtained in analytical form using quantum theory
methods. We performed a detailed analysis of the angular
distribution structure of radiation power and its polarization
for particles with spin 0 and 1/2. It is shown that the exact
quantum calculations lead to results that differ substantially
from the predictions of classical theory.

1 Introduction

The theory of synchrotron radiation (SR) is now a very well
developed section of theoretical physics and is widely repre-
sented in numerous scientific articles, reviews [1–4], mono-
graphs [5–15] and textbooks [16].

In particular, in the classical theory of SR it is possible to
find answers to basic questions in clear and analytical form
and to propose algorithms for numerical simulation of the
physical properties of SR: spectral–angular, spectral, angu-
lar distributions and polarization properties.

The quantum theory of SR has also provided a number of
significant achievements which have allowed the scope of
classical theory to be clearly specified. Moreover, with the
use of the quantum approach it has been possible to predict
the effects of radiation induced self-polarization of electron
beams and the quantum excitation of synchrotron oscilla-
tions. Both these phenomena where later confirmed experi-
mentally.

However, up to now we know of very few theoretical re-
sults describing the variation of the angular distributions of
SR in regions where the quantum corrections can no longer
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be regarded as small. For example, in [17, 18] quantum the-
ory is used to study the SR of non-relativistic particles at
low energy levels. It was shown that in the non-relativistic
region the influence of quantum corrections is more notice-
able the smaller the initial energy level of the particles. Arti-
cles [19–21] also indicate areas of possible substantial man-
ifestation of the quantum corrections for ultra-relativistic
particles. The small number of papers on the theory of SR
in regions where quantum corrections become significant is
even more surprising, given that the spectral–angular dis-
tribution of SR in these areas is theoretically described by
exact analytical expressions.

The urgency to fill this theoretical gap rises from the fact
that the parameters of modern accelerators are very close
to the region where quantum corrections should be taken
into account. The main quantum parameter ξ = γH/H0 in
SR theory for modern electron accelerators is ∼10−4, and
for the planned accelerators will approach to ∼10−2–10−1,
which already requires one to consider quantum corrections.
In astrophysics, SR is currently one of the main experimen-
tal sources of our knowledge about the physical processes in
outer space and, without a doubt, the conditions of space SR
can be properly understood only through the use of quantum
theory. For example, in a magnetar the intensity of the mag-
netic field is ∼1011 T and electrons in the first excited states
are already relativistic (γ ∼ 10).

Here we investigate the main characteristics of the SR
for particles in the first excited state, using exact analytical
methods of quantum theory. In particular, comparative anal-
ysis of classical and quantum theory results is performed for
angular distributions and radiation polarization.

2 Radiated frequencies

The energy E = m0c
2γ (where m0 is the rest mass, c is the

speed of light, and γ is the relativistic factor) of a spinless
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particle (boson) subjected to an external constant and uni-
form magnetic field with intensity H > 0 in the absence of
motion along the field is given by [1, 4, 7, 13]

γ 2 = 1 + (2n + 1)B, B = H

H0
,H0 = m2

0c
3

|e|� . (1)

For a particle with spin 1/2 (electron) we have

γ 2 = 1 + 2nB, (2)

where n = 0,1,2,3, . . . corresponds to different energy lev-
els, e is the algebraic value of the particle charge, � is
Planck’s constant. In what follows, only negatively charged
(e < 0) particles will be considered.

We will conduct a comparative analysis of the radiation
characteristics for an electron and a boson that have equal
energy (the same relativistic factor γ ) and the same energy
level number n, which according to (1) and (2), involves var-
ious intensities H for the electron and the boson.

It is known [1–16] that the spectrum of synchrotron radi-
ation is discrete, and for bosons and electrons with relativis-
tic factor γ and with the energy level number n, the possible
frequencies of emitted photons ωb,ωe are determined by the
expression

�ωe,b

m0c2
= ν

n

γβ2

1 +
√

1 − ν
n
β2 sin2 θ

,

β2 = 1 − 1

γ 2
, n =

{
n, for electron,

n + 1
2 , for boson,

(3)

where ν = 1,2,3, . . . , n is the number of the radiated har-
monic, and θ is the angle between the external magnetic
field and the direction of photon emission. It is not difficult
to establish the inequality ωe > ωb. When we consider ωe,b

as functions of θ , then other fixed parameters of these func-
tions are maximized at θ = π/2 (photon moves perpendic-
ular to the magnetic field vector and parallel to the particle
orbit plane) and minimized at θ = 0 (photon moves parallel
to the magnetic field).

When a particle is in the first excited state n = 1, only the
first harmonic ν = 1 may be emitted and from (1)–(3) we
find for the electron

�ωe

m0c2
= γβ2

1 +
√

1 − β2 sin2 θ

,

γ 2 = 1 + 2B,β2 = 2B

1 + 2B
, (4)

and for the boson

�ωb

m0c2
= 2

3

γβ2

1 +
√

1 − 2
3β2 sin2 θ

,

γ 2 = 1 + 3B,β2 = 3B

1 + 3B
. (5)

In what follows, a detailed study of the main characteris-
tics of SR for particles in the first excited state n = ν = 1 is
performed. In this case, all particle radiation properties are
determined by its angular distribution and polarization.

Polarization components of the SR will be labeled by
the index s and we choose a standard [1, 11, 13] labeling
method: s = g = ±1, where g = 1 is the right and g = −1 is
the left circular polarization component; s = 2,3 is used for
σ - and π -components of linear polarization, respectively;
s = 0 denotes the total radiated power (equal to the sum
of the two linear or the two circular polarization compo-
nents).

3 Analytical expressions for the physical characteristics
of the radiated power

In quantum theory, general analytical expressions for the
spectral–angular distribution of the SR are known (the ex-
act analytical expressions for matrix elements of transitions
in SR can be found, for example, in [1, (7.1) and (7.2) on
p. 102]; analogue expressions are given in [11, 13]) and ex-
pressed in terms of Laguerre functions, with complex de-
pendence on n, ν,β, θ . In the special case of n = ν = 1 the
general formulas are considerably simplified and the rela-
tively simple expressions which can be obtained are given
below.

3.1 Spinless particle (boson)

We introduce an intermediate parameter x0 and an interme-
diate variable x by

x0 = x0(β) =
√

3 − √
3 − 2β2

√
3 + √

3 − 2β2
;

x = x(β, θ) =
√

3 −
√

3 − 2β2 sin2 θ

√
3 +

√
3 − 2β2 sin2 θ

; (6)

0 � x0(β) � 2 − √
3 ≈ 0,26794919;0 � x(β, θ) � x0(β).
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With this notation the boson angular distribution of radiated
power Wb

s can be written as

dWb
s (β; θ)

dΩ
= Q0A(β)

54
(1 + x)3e−xϕb

s (β; θ);

Q0 = e2m2
0c

3

�2
, A(β) = β6

1 − β2
= (γ 2 − 1)3

γ 4
;

ϕb
g(β; θ) = 1

2
ϕb

0 (β; θ) + g(1 + x) cos θ,

ϕb
2 (β; θ) = 1 − x,

ϕb
3 (β; θ) = (1 + x)2 cos2 θ

1 − x
,

ϕb
0 (β; θ) = ϕb

2 (β; θ) + ϕb
3 (β; θ)

= ϕb
−1(β; θ) + ϕb

1 (β; θ);
dΩ = sin θ dθ, g = ±1.

(7)

From (7), taking into account (6) and integrating with re-
spect to θ (0 � θ � π) one obtains the following expression
for the total power Wb

0 (β) radiated by a boson:

Wb
0 (β) = 4Q0A(β)

81
f b(β),

f b(β) = 3(1 + x0)
2

8
f b

0 (x0), (8)

f b
0 (x) = f b

2 (x) + f b
3 (x).

From (7) and (6), it also follows that the power of the po-
larization components W

b(+)
s (β) radiated in the upper half-

plane 0 � θ � π/2 can be represented as

Wb(+)
s (β) = 1

2
Wb

0 (β)qb
s (β),

qb
2 (β) + qb

3 (β) = qb−g(β) + qb
g (β) = 1 (g = ±1),

(9)

where the following notation is used:

qb
g (β) = 1

2
+ g

f b
1 (x0)

f b
0 (x0)

, qb
2 (β) = f b

2 (x0)

f b
0 (x0)

,

qb
0 (β) = 1.

(10)

Functions f b
k (x) (k = 1,2,3), introduced in (8)–(10), can

be represented as integrals of elementary functions, depend-
ing on a parameter (the function f b

1 (x) is elementary itself,
however, the functions f b

2 (x), f b
3 (x) cannot be expressed in

terms of elementary functions)

f b
1 (x) =

∫ 1

0

(
1 − x2y2)e−xy dy = (1 + x)2e−x − 1

x
,

f b
2 (x) =

∫ 1

0

(1 + xy)(1 − xy)2
√

(1 − y)(1 − x2y)
e−xy dy,

f b
3 (x) =

∫ 1

0
(1 + xy)

√
(1 − y)

(
1 − x2y

)
e−xy dy,

f b
1 (0) = 1, f b

2 (0) = 2, f b
3 (0) = 2

3
,

qb
2 (0) = 3

4
, qb

g (0) = 4 + 3g

8
.

(11)

Quantities qb
s (β) determine the contribution of the σ -

component of polarization to the total radiation in the upper
half-plane, which determines the degree of polarization in
the upper half-plane. For the power of polarization compo-
nents W

b(−)
s (β) (s = −1,1,2,3) emitted in the lower half-

plane π/2 � θ � π , we obtain

W
b(−)
2 (β) = W

b(+)
2 (β), W

b(−)
3 (β) = W

b(+)
3 (β),

Wb(−)
g (β) = W

b(+)
−g (β).

(12)

Using expression (8), the angular distribution of radiated
power (7) can be represented as

dWb
s (β; θ)

dΩ
= Wb

0 (β)pb
s (β; θ),

pb
s (β; θ) = (1 + x)3e−xϕb

s (β; θ)

(1 + x0)2f b
0 (x0)

. (13)

Functions pb
s (β; θ) have the properties

pb
s (β; θ) = pb

s (β;π − θ) (s = 0,2,3);
pb

g(β; θ) = pb−g(β;π − θ).

Here the quantities pb
s (β; θ) dΩ determine the contribution

to the total radiated power of the s-polarization component
emitted within a small solid angle dΩ around the direction
defined by angle θ , which means that pb

s (β; θ) are distribu-
tion functions of θ .

The following relation is obvious:

qb
s (β) = 2

∫ π
2

0
pb

s (β; θ) dΩ. (14)

Let us introduce the functions

qb
s (β; θ) = pb

s (β; θ)

pb
0(β; θ)

= ϕb
s (β; θ)

ϕb
0 (β; θ)

. (15)
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These functions have the properties

qb
2 (β; θ) + qb

3 (β; θ) = qb
g (β; θ) + qb−g(β; θ)

= qb
0 (β; θ) = 1;

qb
s (β; θ) = qb

s (β;π − θ) (s = 2,3);
qb
g (β; θ) = qb−g(β;π − θ),

which implies that it is sufficient to study the behavior of
qb

1 (β; θ) and qb
2 (β; θ) only. The functions qb

s (β; θ) deter-
mine the contribution of the s-polarization component to the
angular distribution of radiation in the direction given by θ ,
and determine the degree of polarization for each fixed β

and θ .
We put some particular values of the functions pb

s (β; θ)

and qb
s (β; θ) in Appendix B.

Note that for functions f b(β), qb
s (β; θ),pb

s (β; θ),
qb
s (β; θ) point β = 1 is not singular, and at this point there

exist continuous derivatives with respect to β for all these
functions.

3.2 Spinor particle (electron)

We introduce an intermediate parameter x0 and an interme-
diate variable x,

x0 = x0(β) = 1 − √
1 − β2

1 + √
1 − β2

= γ − 1

γ + 1
;

x = x(β, θ) = 1 −
√

1 − β2 sin2 θ

1 +
√

1 − β2 sin2 θ

;

0 � x0(β) � 1;0 � x(β, θ) � x0(β). (16)

For an electron, the SR characteristics depend also on spin
orientation. We will consider the transverse [1, 7, 8, 11,
13, 16] orientation of electron spin, defining it with the spin
quantum number ζ = ±1. Let ζ = 1 correspond to the orien-
tation of electron spin in the initial state along the direction
of the magnetic field and ζ = −1 correspond to the orienta-
tion of electron spin in the initial state opposite to the direc-
tion of the magnetic field. It is known [1, 11, 13] that, in the
case under consideration, in the final state (for which n′ = 0)
the electron spin can be aligned only against the direction of
the magnetic field, ζ ′ = −1. Thus, for ζ = −1 the transition
to the ground state occurs without spin flip, and for ζ = 1 the
transition is necessarily accompanied by spin flip. With this
in mind, the electron angular distribution of radiated power

We
s can be written as

dWe
s (ζ ;β; θ)

dΩ

= d(ζ ;β)
Q0A(β)

16(1 + x0)

(1 + x)3e−x

1 − x
ϕe

s (ζ ;β; θ);

ϕe
2(−1;β; θ) = ϕe

3(1;β; θ) = 1 − x0x,

ϕe
2(1;β; θ) = ϕe

3(−1;β; θ) = (1 + x)2 cos2 θ

1 − x0x
,

ϕe
0(ζ ;β; θ) = ϕe

0(β; θ) = ϕe
2(−1;β; θ) + ϕe

3(−1;β; θ)

= ϕe
2(1;β; θ) + ϕe

3(1;β; θ),

ϕe
g(ζ ;β; θ) = ϕe

g(β; θ) = ϕe
0(β; θ)

2
+ g(1 + x) cos θ,

g = ±1.

(17)

Here, we introduce the function

d(ζ ;β) = 1 − ζ + x0(1 + ζ )

2
=

{
x0, when ζ = 1;
1, when ζ = −1.

(18)

By integrating expressions (17) with respect to θ (0 � θ �
π) and taking (16) into account we obtain the following ex-
pression for total radiated power of an electron:

We
0 (ζ ;β) = d(ζ ;β)

Q0A(β)

6
f e(β),

f e(β) = 3(1 + x0)

8
f e

0 (x0), (19)

f e
0 (x) = f e

2 (x) + f e
3 (x).

The power of the polarization components W
e(+)
s (ζ ;β)

emitted by an electron in the upper half-plane 0 � θ � π/2
can be represented similarly to (9) and (10),

We(+)
s (ζ ;β) = 1

2
We

0 (ζ ;β)qe
s (ζ ;β),

qe
g(ζ ;β) ≡ qe

g(β), qe
2(ζ ;β) = qe

3(−ζ ;β), (20)

qe
2(ζ ;β) + qe

3(ζ ;β) = qe−g(β) + qe
g(β) = qe

0(ζ ;β) = 1,

where we have the following relations:

qe
1(β) = 1

2
+ f e

1 (x0)

f e
0 (x0)

, qe
2(ζ ;β) = 1 + ζ − 2ζqe

2(β)

2
,

qe
2(β) = f e

2 (x0)

f e
0 (x0)

.

(21)

The functions f e
2 (x)f e

3 (x), introduced in (18)–(21), are ex-
pressed as integrals depending on a parameter (but cannot
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be expressed through elementary functions), but the func-
tion f e

1 (x) is elementary. We have

f e
1 (x) = 2 − (2 + x) exp(−x)

x
; 0 � x � 1;

f e
2 (x) =

∫ 1

0
(1 + xy) exp(−xy)

√
1 − x2y

1 − y
dy; (22)

f e
3 (x) =

∫ 1

0
(1 + xy) exp(−xy)

√
1 − y

1 − x2y
dy.

The approximations of above functions in the vicinity of the
boundary points x = 0;1 are given in Appendix A.

For the power of the polarization components
W

e(−)
s (ζ ;β) emitted in the lower half-plane π/2 � θ � π ,

the relations (12) are valid.
By analogy with (13), for an electron one can also in-

troduce pe
s (ζ ;β; θ)—the distribution of radiated power as a

function of the angle θ . Then expression (17) for radiated
power We

s for an electron takes the following form:

dWe
s (ζ ;β; θ)

dΩ
= We

0 (ζ ;β)pe
s (ζ ;β; θ),

pe
s (ζ ;β; θ) = (1 + x)3e−xϕe

s (ζ ;β; θ)

(1 − x)(1 + x0)2f e
0 (x0)

;

pe
2(ζ ;β; θ) = pe

3(−ζ ;β; θ),

pe
0(ζ ;β; θ) ≡ pe

0(β; θ), pe
g(ζ ;β; θ) ≡ pe

g(β; θ);
pe

2(−1;β; θ) = pe
3(1;β; θ) = pe

2(β; θ),

pe
3(−1;β; θ) = pe

2(1;β; θ) = pe
3(β; θ);

pe
s (ζ ;β; θ) = pe

s (ζ ;β;π − θ) (s = 0,2,3),

pe
g(β; θ) = pe−g(β;π − θ).

(23)

For an electron, one can also introduce (by analogy with
(15)) the functions qe

s (ζ ;β; θ), which determine the contri-
bution of the s-polarization component to the angular distri-
bution of radiation in the direction given by θ , and a degree
of radiation polarization for each fixed ζ,β, θ . Taking into
account (17) and (23) we find

qe
s (ζ ;β; θ) = pe

s (ζ ;β; θ)

pe
0(ζ ;β; θ)

= ϕe
s (ζ ;β; θ)

ϕe
0(β; θ)

;

qe
g(ζ ;β; θ) ≡ qe

g(β; θ), qe
2(−1;β; θ) = qe

2(β; θ),

qe
2(ζ ;β; θ) = qe

3(−ζ ;β; θ),

qe
2(ζ ;β; θ) + qe

3(ζ ;β; θ)

= qe
g(β; θ) + qe−g(β; θ) = qe

0(ζ ;β; θ) = 1,

qe
s (ζ ;β; θ) = qe

s (ζ ;β;π − θ) (s = 2,3),

qe
g(β; θ) = qe−g(β;π − θ).

(24)

Particular values of the functions pe
s (β; θ) and qe

s (β; θ)

could be found in Appendix B.

4 The main features of the physical characteristics
of the radiated power

We will analyze the main features of the various physical
characteristics of the SR for our case, based on the above
theoretical expressions.

(1) It is important to note that the angular distribution
functions pb

s (β; θ) and pe
s (ζ ;β; θ) are finite for all values

of β and θ (including the point β = 1, which is not the
case in classical theory). For a boson it clearly follows from
(13) and for an electron from (23) that for all the functions
pe

s (β; θ) there is a finite limit pe
s (β → 1; θ)|θ �= π

2
= pe

s(θ).
The functions pe

s(θ) have the form

pe
2(θ) = pe

3(θ) = 1

2
pe

0(θ) = Θ(θ)

2e − 3
,

pe
g(θ) = Θ(θ)

2e − 3

(
1 + g

cos θ

|cos θ |
)

,

(25)

where we use the notation

Θ(θ) = 1

(1 + |cos θ |)3
exp

(
2| cos θ |

1 + |cos θ |
)

. (26)

The function Θ(θ) is continuous at any θ and its deriva-
tive has a finite gap at θ = π

2 . In particular, we have

pe
2

(
π

2

)
= pe

3

(
π

2

)
= 1

2
pe

0

(
π

2

)
= 1

2e − 3
, (27)

whereas from parts A and B of the Appendix it follows that

pe
2

(
β → 1; π

2

)
= pe

0

(
β → 1; π

2

)
= 2

2e − 3
,

pe
3

(
β → 1; π

2

)
= 0,

(28)

which indicates the ambiguity of the double limit β →
1, θ → π/2.

(2) First we should note the following remarkable feature.
As follows from the second and third rows of the formulas
(17) and (21), the function of angular distribution of the σ -
component of polarization of SR for an electron with spin
ζ = −1 coincides exactly with the function of the angular
distribution of the π -linear polarization component of SR
for an electron with spin ζ = 1. Accordingly, the function
of the angular distribution of the π -component of linear po-
larization for SR of an electron with spin ζ = −1 coincides
exactly with the function of the angular distribution of the
σ -linear polarization component for SR of an electron with
spin ζ = 1.
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We can say that the angular distributions of linear polar-
ization for an electron with spin ζ = −1 and an electron with
spin ζ = 1 “switch places”. It is possible that this feature of
the angular distributions for electron SR takes place not only
for the initial state n = 1.

This angular distribution feature of the linear polariza-
tion component of electron SR provides a physical expla-
nation for the following known fact. In classical SR theory
and quantum SR theory for spinless particles, the emission
of the π -linear polarization component is absent in the orbit
plane (θ = π

2 ) (according to these theories the radiation in
this direction is completely linearly polarized and only the
σ -component of linear polarization is emitted). This is not
the case for electrons and quantum SR theory tells us that
for spinor particles the emission of the π -linear polarization
component is not equal to zero at θ = π

2 .
This result was first obtained (but has not been specifi-

cally emphasized) in [22, 23], and in [24] this discrepancy
with classical theory was first noted, but no physical anal-
ysis of this fact was carried out. Only in [25] was such an
analysis conducted. In particular, it was found that non-zero
emission of the π -linear polarization component in the orbit
plane is due solely to an electron transition with transverse
spin. This fact can be used as a possible indicator of spin
orientation. However, in [25] the possibility for the angu-
lar distributions between the linear polarization components
to “switch places” depending on the orientation of electron
spin was not found.

We established here that the linear polarization compo-
nents of SR “switch places”, depending on the orientation
of the transverse electron spin. This fact reveals a physical
cause for the presence of the π -linear polarization compo-
nent of electron SR in the orbit plane.

(3) The presence of a factor d(ζ ;β), defined by (18), in
the expressions for the power of electron SR, (17) and (19),
indicates that an electron with spin ζ = 1 (in this case, the ra-
diation is accompanied by a spin flip) always radiates x0(β)

times less than an electron with spin ζ = −1 (radiation with-
out a spin flip). Thus, spin-flip transitions are always x0(β)

times less probable than transitions without spin flip. Since

x0(β) ≈ 1

4
β2 	 1, when β 	 1;

x0(β) ≈ 1, when 1 − β2 	 1,

(29)

then in the non-relativistic approximation only electrons
with spin ζ = −1 emit, whereas electrons with spin ζ = 1
in practice do not emit (remain in a quasi-stable state). In
the relativistic case γ 
 1, the dependence of SR power on
the spin orientation disappears; transitions with and with-
out spin flip are equiprobable (however, exchange of places
between σ - and π -components of SR linear polarization,
which depends on the initial spin state, is preserved at all
energies).

Table 1 Calculated values

β f b(β) f e(β) k(−1;β) k(1;β)

0.0 1.00000 1.00000 3.37500 0.00000

0.1 1.00167 1.00002 3.37783 0.00849

0.2 1.00673 1.01016 3.38651 0.03456

0.3 1.01532 1.02333 3.40164 0.08019

0.4 1.02769 1.04272 3.42438 0.14917

0.5 1.04423 1.06948 3.45661 0.24817

0.6 1.06550 1.10543 3.50147 0.38905

0.7 1.09533 1.15920 3.56422 0.59438

0.8 1.12581 1.21899 3.65435 0.91359

0.9 1.16774 1.31125 3.78977 1.48887

1.0 1.22085 1.34454 3.71695 3.71695

(4) Using (8) and (19) we find the ratio of the total ra-
diated power of electron SR to the total radiated power of
boson SR, when an electron and a boson in the initial state
are at energy level n = 1 and have the same energy,

k(ζ ;β) = We
0 (ζ ;β)

Wb
0 (β)

; k(−1;β) = 27

8

f e(β)

f b(β)
,

k(1;β) = x0k(−1;β) � k(−1;β).

(30)

Numerical calculation, for which the results are summa-
rized in Table 1, shows that 3.375 � k(−1;β) < 3.717. For
the function k(1;β) we have k(1;β) < 1 when β < β0 ≈
0.8199913 (γ < γ0 ≈ 1.7471034) and k(1;β) > 1 when
β > β0 (γ > γ0).

Thus, an electron with spin antiparallel to the field emits
at all energies almost four times more than a boson, and an
electron with spin along the field begins to emit more than
a boson only in the relativistic domain. The radiated power
for electrons significantly depends on spin in the weakly rel-
ativistic region, but with increasing particle energy, this de-
pendence disappears.

(5) Consider the energy dependence of the functions
qb
s (β), qe

s (β) (s = 1,2), which determine the polarization
of the total radiation. Graphs of these functions are shown
in Fig. 1.

A quite unusual feature of the case under consideration
is that for the ultra-relativistic electron (β → 1), according
to the precise limits given in Appendix A, just the right-
handed polarized radiation remains in the upper half-plane
(in the ultra-relativistic limit, the left-handed polarized ra-
diation in the upper half-plane is vanishingly small com-
pared with the right-handed polarized radiation). In contrast,
in the lower half-plane the right-handed polarized radiation
is vanishingly small, and only the left-handed polarization
is emitted. The preferential linear polarization is completely
absent. For bosons (also in classical theory), there is no such
phenomenon.
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Fig. 1 Functions qb
s (β), qe

s (β) (s = 1,2)

Fig. 2 Functions pb
2(β; θ). Curve numbers corre-

spond to increasing values of β in the following order:
{0.0,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}

Fig. 3 Functions pe
2(β; θ). Curve numbers corre-

spond to increasing values of β in the following order:
{0.0,0.3,0.5,0.6,0.8,0.9,0.99999,1}

In the entire field of finite energy, the degree of right-
handed circular polarization in the upper half-plane in-
creases with energy for both the electron and for the bo-
son (whereas in classical theory it decreases). The degree of

Fig. 4 Functions pb
3(β; θ). Curve numbers correspond to increasing

values of β in the following order: {0.0,0.6,0.8,0.9,1}

Fig. 5 Functions pe
3(β; θ). Curve numbers corre-

spond to increasing values of β in the following order:
{0.0,0.4,0.7,

√
3/2,0.96,0.99,0.999,1}

Fig. 6 Functions pb
1(β; θ). Curve numbers correspond to increasing

values of β in the following order: {0.0,0.7,0.9,1}

linear polarization of the electron and boson decreases with
increasing energy (in classical theory it increases).

(6) The structure of the angular distribution functions
pb

s (β; θ) and pe
s (β; θ) is illustrated in Figs. 2–9, which

demonstrate the evolution of these functions with particle
energy.



Page 8 of 12 Eur. Phys. J. C (2012) 72:1871

Fig. 7 Functions pe
1(β; θ). Curve numbers corre-

spond to increasing values of β in the following order:
{0.0,0.6,0.1,1/

√
2,0.8,0.9,0.96,0.99,1}

Fig. 8 Functions pb
0(β; θ). Curve numbers correspond to increasing

values of β in the following order: {0.0,0.7,0.9,1}

Fig. 9 Functions pe
0(β; θ). Curve numbers corre-

spond to increasing values of β in the following order:
{0.0,0.4,0.6,1/

√
2,0.8,0.9,0.96,0.99,1}

The dependence of functions pb
2(β; θ) and pe

2(β; θ) on β

has the simplest form (see Figs. 2 and 3). Moreover, both
these functions are monotonically increasing functions of
θ in the region of 0 � θ � π

2 (qualitatively this behavior

Fig. 10 Functions θmax
s (β) (s = 0,1,3)

Fig. 11 Functions p
e(max)
s (β) (s = 0,1,2,3)

is consistent with classical theory). Function pb
2(β; θ) is a

monotonically decreasing function of β for each fixed θ ,
whereas in classical theory there is no such monotony. For
function pe

2(β; θ) there is no monotonous behavior on β ,
and though this shows the influence of particle spin, the be-
havior of the electronic functions is closer to classical theory
than that of the bosonic functions.

The evolution of functions pb
3(β; θ) and pe

3(β; θ) is rep-
resented in Figs. 4 and 5, respectively. Function pb

3(β; θ) is
monotonically decreasing with θ in the 0 � θ � π

2 interval
for each fixed β , whereas function pe

3(β; θ) is monotoni-
cally decreasing only for β2 � 3/4 (γ � 2). For β2 > 3/4,
(γ > 2), the functions are not monotonous any more, and
an internal maximum point appears for these functions at
θ

(max)
3 (β). For this case, the behavior of the electron distri-

bution functions is closer to classical theory compared to the
boson ones.

Figures 6 and 7 show the evolution of the functions
pb

1(β; θ) and pe
1(β; θ) in the 0 � θ � π interval. From

Fig. 6 it is clear that pb
1(β; θ) are monotonically decreas-

ing functions of θ , whereas the functions pe
1(β; θ) for β2 >

1/2 (γ 2 > 2) lose their monotony and an internal maximum
point θ

(max)
1 (β) appears for these functions, which also qual-

itatively corresponds to classical theory. For β → 1 the elec-
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Fig. 12 Energy dependence of
the effective angles
Δb

s (β),Δe
s (β) (s = 0,1,2,3)

tron function approaches 0 in the π
2 � θ � π interval, which

corresponds to the disappearance of the right-handed polar-
ization in the lower half-plane.

Lastly, the distribution functions of total radiation
pb

0(β; θ) and pe
0(β; θ) are shown on Figs. 8 and 9, from

which it follows that the bosonic function is a monotoni-
cally decreasing function of θ in the 0 � θ � π

2 interval
(qualitatively the behavior is contrary to classical theory).
The behavior of electron functions is qualitatively closer to
classical theory and for small β these functions are mono-
tonically decreasing. Still for β2 > 1/2, (γ 2 > 2) they lose
monotony and there is an internal point of maximum for
these functions at θ

(max)
0 (β).

Figure 10 presents graphs of the functions θ
(max)
s (β) (s =

0,1,3). For β → 1 (γ → ∞) all the angles θ
(max)
s (β) → π

2
depend on β in the following way:

θmax
0 (β) ≈ π

2
− 2

γ 2
, θmax

1 (β) ≈ π

2
− (

2γ 2)−1/3
,

θmax
3 (β) ≈ π

2
− 1√

γ
.

(31)

Figure 11 shows graphs of the maximum value for
p

b(max)
s (β),p

e(max)
s (β).

Classical theory predicts the phenomenon of SR concen-
tration at a narrow angle in the vicinity of the orbital plane
for an ultra-relativistic particle. A necessary (but not suf-
ficient) condition for this concentration is the tendency of
angles θ

(max)
s (β) to approach π

2 for β → 1 (γ → ∞). Al-
though for an electron (and σ -components of the boson radi-
ation) this condition is satisfied, it is clear from the behavior
of the functions pb

s (β; θ) and pe
s (β; θ), shown in Figs. 2–9,

that there is not a significant concentration of radiated power
in the orbital plane (in the vicinity of θ = π

2 ) in this case,
which contradicts classical theory.

(7) Lack of emission concentration in the vicinity of
θ = π

2 is also confirmed by the dependence of the effec-
tive angles Δb

s (β),Δe
s(β) on energy (the notion of an ef-

fective angle for SR was introduced in [26–29]). Figure 12
shows graphs of these functions, from which it follows that

Fig. 13 Functions qb
1 (β; θ). Curve numbers correspond to increasing

values of β in the following order: {0.0,0.7,0.9,1}

Fig. 14 Functions qe
1(β; θ). Curve numbers correspond to increasing

values of β in the following order: {0.0,0.8,0.95,0.99,0.999,1}

for s = 0,1,2, these functions are weakly decreasing, tend-
ing to a finite value at β → 1. In the relativistic case, an
arbitrarily large concentration of radiation in the orbit plane
does not occur, in contrast to the conclusions of classical
theory. The functions Δb

3(β),Δe
3(β) are increasing with β ,

which means that the π -component of emission is diverging.
(8) The most qualitative agreement with the results of

classical theory is observed in the evolution of functions
qb
s (β; θ), qe

s (β; θ) (s = 1,2), which determine the polariza-
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Fig. 15 Functions qb
2 (β; θ). Curve numbers correspond to increasing

values of β in the following order: {0.0,0.7,0.9,1}

Fig. 16 Functions qe
2(β; θ). Curve numbers corre-

spond to increasing values of β in the following order:
{0.0,0.8,0.95,0.99,0.999,0.9999,0.999999,1}

tion of radiation for each fixed β at an angle θ . Graphs of
these functions are shown in Figs. 13, 14, 15, 16. From these
graphs it follows that in the field direction (θ = 0), the radi-
ation has completely right-handed polarization and prefer-
ential linear polarization in this direction is missing. In the
orbital plane (θ = π

2 ) there is a complete linear polarization,
and the preferential circular one is absent, which coincides
with the conclusions of classical theory. Quantitative differ-
ences between qb

s (β; θ) and qe
s (β; θ) (s = 1,2) become no-

ticeable only for β → 1.

5 Conclusions

In this paper we conducted a detailed analysis of SR char-
acteristics in terms of quantum theory for weakly excited
particles. We demonstrated that the account of quantum cor-
rections strongly affects profiles of SR angular distributions.
It was shown that, in contrast to the corresponding classical
statement, the radiation from an ultra-relativistic particle is
not concentrated in the plane of trajectory. The evolution of

polarization degree also has a behavior that differs funda-
mentally from classical predictions.

Particular attention was paid to the influence of spin ef-
fects. For a spinor particle the exact proof of the presence
of π -linear polarization component in the orbit plane was
given. Comparing the amount of radiation emitted by a
scalar particle with the radiation from transversally polar-
ized electrons we established that the dependence on the di-
rection of spin is significant only in weakly relativistic re-
gion.
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Appendix A

For numerical calculations of the functions f b
2 (x), f b

3 (x) it
is convenient to perform the following substitution in the
integrals (11):

y = 1 − t2

1 − x2t2
, 0 � t � 1; dy = −2(1 − x2)t dt

(1 − x2t2)2
,

√
(1 − y)

(
1 − x2y

) = (1 − x2)t

1 − x2t2
,

after which we have

f b
2 (x) = 2(1 + x)(1 − x)2

×
∫ 1

0

(1 − xt2)(1 + xt2)2

(1 − x2t2)4
exp

[
−x(1 − t2)

1 − x2t2

]
dt,

f b
3 (x) = 2(1 + x)

(
1 − x2)2

×
∫ 1

0

(1 − xt2)t2

(1 − x2t2)4
exp

[
−x(1 − t2)

1 − x2t2

]
dt.

A similar substitution could be done for functions related to
the electron

f e
2 (x) = 2(1 + x)

(
1 − x2)

×
∫ 1

0

1 − xt2

(1 − x2t2)3
exp

[
−x(1 − t2)

1 − x2t2

]
dt;

f e
3 (x) = 2(1 + x)

(
1 − x2)

×
∫ 1

0

(1 − xt2)t2

(1 − x2t2)3
exp

[
−x(1 − t2)

1 − x2t2

]
dt.

When |x| < 1 the integrand in above expressions remains
finite for all values of the integration variable.
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The approximation of functions f e
s (x) in the boundary

points are

f e
1 (x) ≈ 1 − x2

6
, f e

2 (x) ≈ 2

(
1 − 13

15
x2

)
,

f e
3 (x) ≈ 2

3

(
1 + 11

35
x2

)
; x 	 1,

f e
1 (x) ≈ 2 − 3

e
+

(
2 − 5

e

)
(1 − x),

f e
2 (x) ≈ 2 − 3

e
− 4

e
(1 − x) ln(1 − x),

f e
3 (x) ≈ 2 − 3

e
+ 2

e
(1 − x) ln(1 − x); 0 < 1 − x 	 1,

qe
2(0) = 3

4
, qe

g(0) = 4 + 3g

8
;

qe
2(1) = 1

2
, qe

g(1) = 1 + g

2
.

Appendix B

We give some special values of the functions p
b,e
s (β; θ) and

q
b,e
s (β; θ)

pb
0(β;0) = pb

1(β;0) = 2pb
2(β;0) = 2pb

3(β;0)

= 2

(1 + x0)2f b
0 (x0)

,

pb
−1(β;0) = 0;

pb
0

(
β; π

2

)
= pb

2

(
β; π

2

)
= 2pb

g

(
β; π

2

)
= 1 − x2

0

ex0f b
0 (x0)

,

pb
3

(
β; π

2

)
= 0,

qb
2 (β;0) = 1

2
, qb

g (β;0) = 1 + g

2
,

qb
2

(
β; π

2

)
= 1, qb

g

(
β; π

2

)
= 1

2
,

pe
0(β;0) = pe

1(β;0) = 2pe
2(ζ ;β;0) = 2

(1 + x0)2f e
0 (x0)

,

pe
−1(β;0) = 0;

pe
0

(
β; π

2

)
= pe

2

(
β; π

2

)
= 2pe

g

(
β; π

2

)
= (1 + x0)

2

ex0f e
0 (x0)

,

pe
3

(
β; π

2

)
= 0,

qe
2(β;0) = 1

2
, qe

g(β;0) = 1 + g

2
;

qe
2

(
β; π

2

)
= 1, qe

g

(
β; π

2

)
= 1

2
.
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