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ABSTRACT. We introduce the concept of Banach-Stone subsets of Cp(K)
spaces. This allows us to unify and improve several extensions of the clas-
sical theorem due to Banach (1933) and Stone (1937). More precisely, we
prove that if K and S are locally compact Hausdorff spaces, A and B are
Banach-Stone subsets of Cy(K) and Co(S), respectively, and there exists a
map T from A to B (not necessarily injective) with image 6-dense in B for
some 6 > 0 such that

1
oy ol = L <IT(f) =TIl < MIIf — gll + L,

for every f,g € A, then K and S are homeomorphic whenever L > 0 and
M < /2. As an application of this more general theorem concerning the
quasi-isometries T on subsets of Co(K) spaces, we show that certain quasi-

isometries on Cél) (K) spaces also determine the locally compact subspaces K
of the real line R with no isolated points. In turn, this result enables us to
prove a unification and improvement of some theorems of Cambern, Pathak,
and Vasavada for the first time to the nonlinear case.

1. INTRODUCTION

If K is a locally compact Hausdorfl space, we denote by Cy(K) the Banach
space of real-valued continuous functions vanishing at infinity on K provided with
the supremum norm. For any locally compact K C R with no isolated points, we
denote by Cél)(K ) the space of real-valued continuously differentiable functions
defined on K such that f and f’ both vanish at infinity. This space may be
equipped with either the supremum norm || - ||« or one of the following classic
norms: | flle = sup{|f" (k)| + [f(F)| : k € K}, [|fllar = max{|[f]loc, [|flloc}, and
£l = 1£/llse + 11 o for every f € G5V (K).

The purpose of this paper is twofold: to study quasi-isometries on subsets of
Co(K) spaces and also on subsets of Cél)(K ) spaces which determine K.

We recall that for any pair of metric spaces (E,dg) and (F,dp),amapT : E — F
is said to be a coarse (M, L)-quasi-isometry, for some constants M > 1 and L > 0,
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or simply a quasi-isometry [4[15], if the following inequalities hold:

rdi(f,9) — L < de(T(f), T(9)) < Mdi(f,0) + L Vf.g€F,

and there exists § > 0 such that for all u € F there is v/ € T(FE) such that
dr(u,u’) < 6. In other words, T(F) is 0-dense in F.

This notion includes some important concepts used in the nonlinear classification
of Banach spaces [14,[I5[I8,19].

The well-known Banach-Stone theorem asserts that if there is an isometry T
from Cy(K) onto Cy(S), then K and S are homeomorphic [3/22]. Amir [2] and
Cambern [5] independently generalized this theorem by showing that if there is a
linear isomorphism 7' from Co(K) onto Cy(S) satisfying || T[T < 2, then K
and S are homeomorphic. In [6], Cambern showed that 2 is the best constant for
this theorem; see also [10]. In [§] Cengiz extended the Amir-Cambern theorem. He
said that a closed linear subspace A of Cy(K) is extremely regular if for each k € K
and each open neighborhood V of k and 0 < € < 1 there exists f € A such that

(1.1) L=|fll = f(k) >e>|f(K)] YK ¢&V;
see [9], [I7, p. 319], and [I6] p. 882] for examples of such subspaces. So, he proved:

Theorem 1.1. Let K and S be locally compact Hausdorff spaces and let A and B
be extremely reqular subspaces of Co(K) and Cy(S), respectively. If there is an iso-
morphism T from A onto B with | T|||T7|| < 2, then K and S are homeomorphic.

On the other hand, Cambern and Pathak [7] obtained the following version of
the Amir-Cambern theorem for spaces of differentiable functions:

Theorem 1.2. Let K and S be locally compact subsets of R with no isolated points
and the spaces C(()l)(K) and C(()l)(S) endowed with the norm || - ||c. Suppose that
T is an isomorphism from C((,l)(K) onto C’(()l)(S) with |T||| T~ < 2 and T is an
isomorphism with respect to the sup norms. Then K and S are homeomorphic.

Moreover, Pathak and Vasavada [21] (see [I3]) showed that the statement of
Theorem is still valid when the spaces C’(()l)(K ) and C’él)(S) are equipped with
the norm || - ||as. Although Theorems [[1] and are in different contexts, we
will see that they are closely connected. Indeed, we will provide a unification and
extension of them for quasi-isometries. In order to do this, it will be convenient to
introduce the notion of Banach-Stone subsets of Co(K) spaces.

Definition 1.3. Let A C Cy(K) and €, > 0. We say that A is an (¢, d)-subset of
Co(K) if the following conditions are satisfied:

(1) For every open set U of K and v € R, there exists Fy, iy € A such that
(a) V| =2 < |Fopll < vl +e;
(b) inf{|Fy y(k) —av|:a € [0,1]} < ¢ for every k € U;
(¢) |Fyu(k)] <eforevery ke K\U.
(2) For every k, k' € K and v,v' € R with k # k" and ||v| — |v/|| < §, there
exists G € A such that

|G(k) —v| <e, |G(K)—vV|<e, and |G| <max{|v|,|V'|} +e.

We say that A is a Banach-Stone subset of Cy(K) (in short, BS-subset) if A is an
(e, 0)-subset of Cp(K) for some e and .
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As we shall see in section [2 there is a natural way to construct BS-subsets of
Co(K): every f-dense subset of an extremely regular subspace is a BS-subset of
Co(K). Thus, Theorem [[Tis an immediate consequence of our main theorem:

Theorem 1.4. Let K and S be locally compact Hausdorff spaces and let A and B be
BS-subsets of Co(K) and Co(S), respectively. If there is an (M, L)-quasi-isometry
T from A to B with M < /2, then K and S are homeomorphic.

Note that by the above-mentioned results of [6l[I0], v/2 is the best number for the
formulation of Theorem [[L4l Moreover, Theorem [[.4] in the particular case where
A= Cy(K), B=Cy(5), and T is bijective is [I1l Theorem 1.2(a)].

The more general statement of Theorem [[.4] by using BS-subsets instead of ex-
tremely regular subspace of Cy(K) spaces will allow us to get in section [I0 the
following improvement of Theorem Our result is valid not only when the

C’él)(K) spaces are equipped with one of the norms ||-||¢, || - ||a, or || - ||, but with
any norm || - || satisfying the following inequalities for every f in C(gl)(K ):
(1.2) 1 oo < A< NIl

Denote by D the map f +— f’ in both the spaces C(gl)(K) and C’él)(S).

Theorem 1.5. Let K and S be locally compact subsets of R with no isolated points
and assume that the norms of all f in C’él)(K) orin Cél)(S) satisfy (L2). Suppose
that there is an (M, L)-quasi-isometry T from A C Cél)(K) to B C C’él)(S), where
A and B are || - ||so-bounded and D(A) and D(B) are BS-subsets of Co(K) and
Co(S), respectively. If M < /2, then K and S are homeomorphic.

To show that Theorem is in fact an improvement of Theorem [[L2] we will
prove in section [[I]that it implies the following nonlinear extension of Theorem

Corollary 1.6. Suppose that K and S are locally compact subsets of R with no
isolated points and the norms of all f in C’él) (K) orin C’él) (S) satisfy (L2). If there
is a bijective (M, L)-quasi-isometry T : C’él)(K) — Cél)(S) with M < /2 and T is
a quasi-isometry with respect to the sup norms, then K and S are homeomorphic.

The proof method of Theorem [[4] is a very close adaptation of the method
developed in [I1]. The difference comes from the fact that the quasi-isometry 7" in
[11] is between the spaces Co(K) and Cy(S) and in this work the quasi-isometry T’
is between certain specified subsets A C Co(K) and B C Cy(S), that is, BS-subsets
which have a density type property; see Definition Therefore, in the present
case, the proofs of auxiliary results analogous to those of [11] will be more technical.
New definitions and small adjustments will be needed in the proofs. For the sake
of clarity and completeness, we give the arguments in detail adapted to this more
general setting.

The proof will be done in the next eight sections. In section [2] we state some
basic properties of BS-subsets of Cy(K) spaces. In section Bl we observe that we
may assume that T satisfies some good properties, such as being bijective. Next,
the proof goes through a path similar to the techniques in [I1]. In order to obtain
a homeomorphism ¢ : K — S, we define in section [f] a new class of special sets
Ay, (k,v) C S depending on the BS-subset A C Cy(K') and show that, under certain
conditions, these sets are non-empty (Proposition[B.]). Further, the intuition is that
for each k € K the elements of the sets Ay, (k, v) are candidates to be p(k). Later, in
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Proposition [I.]] we state that, under certain conditions, for each k € K there exists
a unique s € S such that s € Ay (k,v). Thus, for each k € K we define ¢(k) to be
the element s given by Proposition [l Since T is bijective, using the symmetry on
the definition of quasi-isometry, we will be able to define ¢ : S — K with respect
to T~! in an analogous way to the definition of ¢. Finally, in Proposition 1], we
prove that ¢ = ¢! and that both ¢ and ¢ are continuous.

2. ON BANACH-STONE SUBSETS OF C((K) SPACES

In this section we provide some examples and properties of BS-subsets of Cy(K)
spaces; see also Proposition 1.2l We shall use the following lemma proved in
[20, Proof of Theorem 1]; cf. [I, Lemma 2.4].

Lemma 2.1. Let A be an extremely regular subspaces of Co(K), let U be a non-
empty open subset of K, and let 0 < & < 1. Then there are kg € U and f € A such
that

(1) flko)=1<|IfIl < 1+e;
(2) —e < f(k) <1+4e¢ for every k € U;
(3) |f(k)| <e for every ke K\U.

Proposition 2.2. If A is an extremely regular subspace of Co(K), then A is an
(,9)-subset of Co(K) for any € and §.

Proof. Fix ¢,§ > 0. Then,
(1) Put @ = min{1/2,¢/|v|}. By Lemma 21l there is fy € A satisfying:
(i) 1< |full <1+8;
(ii) =0 < fu(k) <1+ 0 for every k € U,
(ili) |fu (k)] < @ for every k € K\ U.
Define Fy, iy = v- fy. Then, it is easy to see that (i), (ii), and (iii) imply, respectively,
properties (1a), (1b), and (1c) in the definition of BS-subset.
(2) Let k # &k’ and v, v’ € R. Since K is Hausdorff we fix U and U’ disjoint open
neighborhoods of k and k', respectively. By ([LT]), we fix f € A such that

L= [lfll = f(k) > ¢/lv[ = [f(m)] Vme K\U

and f’ € A such that

L=|fll=f(&)>e/V=|f'(m)| ¥VmeK\U"
Define G=v- f+v' - f' € A. Then, since k € K \ U’,

G (k) = v| = [Vf(k) +V'f'(k) = v| = V' ['(k)] < e
Similarly, we see that |G(k') — v'| < e. Finally, notice that

IGm)| < VI[f(m)| + V(If'(m)[ e+ V'] Vm e K\U
and similarly that
|G(m)| <e+|v] Vme K\U".
Then since (K \ U) U (K \U’) = K, it follows that
1G]l < max{[v], |V'[} + .

Since v, Vv’ are arbitrary, such a G exists in the particular case ||v| — |v'|| < §, so
item (2) in the definition of BS-subset holds. O

The next result follows directly from Definition [[33] and will be useful later.
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Proposition 2.3. Let A be an (g, )-subset of Co(K). Then:
(1) for each a >0, aA is an (ae, ad)-subset of Co(K);

(2) for each fo € Co(K), fo+ A is an (e + || fol,0)-subset of Co(K);
(3) if A" is 6-dense in A, then A’ is a (6 + ¢, 6)-subset of Co(K).

3. FIXING SUITABLE (M, L)-QUASI-ISOMETRY T' AND BS-SUBSETS A AND B

From now on we will fix K, S, T, A, B, M, and L as in the hypothesis of Theo-
rem [[L4l Our task until section [@ will be to prove that K and S are homeomorphic.

In the present section it will be observed that we may assume that T is bijective,
0e€ A T0)=0,T and T~ are both bijective (M, 1/2)-quasi-isometries, and A
and B are (1/(2M), #)-subsets for some 6 > 0.

Remark 3.1. We may assume that 7' is bijective. Indeed, fix 6 > ML and pick a
maximal d-separated subset A’ C A (that is, for any distinct f,g € A’, || f—g|| > 9).
Then, for any distinct f,g € A" we obtain

1 1
Tf—Tg||>—|f—9gl|l—-L>-—6—L >0.
ITS =Tyl > IS gl ~L> 26— L>

Hence, T is injective in A’ and defining 7' : A’ — T(A’) to be the restriction of T,
we have that 7" is a bijective (M, L)-quasi-isometry. We have only to observe that
A’ and T'(A’) are BS-subsets of Cy(K) and Cy(.9), respectively. The maximality of
A’ implies that A’ is d-dense in A. So, by Proposition [Z3[(3), A’ is a BS-subset of
Co(K). Moreover, the fact that A’ is 6-dense in A also implies that

(3.1) T(A") is (M§+ L)-dense in T'(A).

On the other hand, by the definition of quasi-isometries, T'(A) is #-dense in B for
some 6 > 0. Thus according to Proposition [2.3(3),

(3.2) T(A) is a BS-subset of Cy(S).

Therefore, again by Proposition 2:3[(3), we conclude by (B1) and (32) that T(A")
is a BS-subset of Cy(5) and we are done.

Remark 3.2. We may suppose that 0 € A and that T(0) = 0. Indeed, fix fy € A
and define Ay = — fo+ A and By = —T fo+ B. By Proposition[Z3](2), we know that
Ap and By are BS-subsets of Cy(K) and Cy(.S), respectively. Define T : Ay — By
by T(f) = T(f + fo) — T'fo. It is easy to see that T : Ay — By is a bijective
(M, L)-quasi-isometry and 7'(0) = 0.

Remark 3.3. We may assume that T and T~ ! are bijective (M, 1/2)-quasi-isometries
and that A and B are (1/(2M),0)-subsets of Co(K) and Cy(S), respectively, for
some 6 > 0. Indeed, if A is an (€4, d4)-subset of Co(K) and B is an (¢g, dp)-subset
of Cy(S), then by putting e = max{es,ep} and 6 = min{d4,dp}, it follows that A
and B are (g, 6)-subsets of Co(K) and Cy(5), respectively.

On the other hand, it is easy to see that for each o > 0 the map T:aA - oB
defined by T'(f) = oT'(f/a) is a bijective (M, aL)-quasi-isometry between (ae, a)-
subsets of Cyp(K) and Cy(S), respectively. Hence, by picking o > 0 such that oL <
1/(2M) and ae < 1/(2M), we conclude that 7" and T~ are bijective (M,1/2)-
quasi-isometries between (1/(2M), ad)-subsets of Co(K) and Co(S), respectively.
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6 ELOI MEDINA GALEGO AND ANDRE LUIS PORTO DA SILVA

4. THE NUMBERS w(k, f,v) AND THE BS-SUBSETS OF Cy(K) SPACES

Following [I1l p. 2170], for any locally compact Hausdorff space H, k € H,
f €Cuy(H), and v € R we define

w(k, f,v) = max{|[ ]|, |f (k) — v|}.

In this section we prove the following lemma, which is a generalization of [11]
Lemma 2.1] for the BS-subset A.

Lemma 4.1. Let k € K and v € R. Then, there is a net (F;);er C A such that
1 1

4.1 —— < ||F < — e 1

and for every f € Cy(K),

4.2 li e S —.
(4.2 imsup |f - £l < w(k fv) + 537
Proof. Let Vi, denote the set of open neighborhoods of k. Since A is a (1/(2M), 9)-
subset, for each U € V;, we fix F| yy € A satisfying:
(i) |v| = 1/(2M) < |[|[Fyull < [v|]+1/(2M);
(ii) inf{|Fy v (k) —av|:a€0,1]} <1/(2M) for every k € U;
(iii) |Fvu(k)| <1/(2M) for every k € K\ U.

Consider the net (Fy y)yey,. Then ([I) follows immediately by (i), and we only
need to prove [@2)). Fix f € Cy(K). Given € > 0, take U, € Vj, such that

lf(u) = f(k)] <e Yuel..
Now, pick U € Vi, such that U C U,. We shall evaluate ||f — F, y|. If uw € U, then
(4.3) [f(u) = Fou(u)| < [f(k) — Fru(u) +e.
Since (ii) holds, pick v’ € {av : a € [0,1]} such that

1
F, | < — te.
Fe(w) = /| € 5z +2

Consequently
1 1
_ < — _ < _ _
FR) = Fear ()] < 1FR) ~ | + 5+ < max{[F(R)] 1K) —vI} + 537+,
and therefore by (€3]
1
(4.4) |f(u) — Fyu(uw)| <max{|f(k)|,|f(k) — v} + ot 2 Yuel.
On the other hand, it follows by (iii) that
1 1
. — Fy < — < — .
(W5)  1fw) ~ Fou()| < 1) + g < [fl + 517 Vue K\
According to (@4 and (E3) we conclude that
1
_ < _ _
I = Pl < max{l Il [£(06) = v]} + o +2=.
and we are done. O
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5. SPECIAL SETS ASSOCIATED TO (M, L)-QUASI-ISOMETRIES
BETWEEN BS-SUBSETS

Let v,w € R with |v| > M and |w| = |v|/M — 1. Inspired by the definitions of
the special sets I'y, (k, v) and I'y (s, w) given in [IT] Definition 3.1], we will introduce
two new sets Ay (k,v) and B,(s,w) that in the context of this paper will depend
on BS-subsets A C Cp(K) and B C Cy(S5), respectively. So, we set

Ak, v)={se S : |Tf(s)—w| < Mw(k, f,v)+1 VfeA}.
Similarly, for s € S, w,z € R with |w| > M and |z| = |w|/M — 1, we also set
B,(s,w)={keK : [T 'g(k) —z| < Mw(s,g,w)+1 Vg€ B}.

The objective of this section is to prove that under certain conditions the sets
Ay (k,v) and B,(s,w) are not empty (Proposition BI). First of all, notice that
since it is assumed in the definition of Ay, (k,v) that [v| > M and |w| = |v|/M —1,
these restrictions over |v| and |w| will be implicit in every statement involving the
sets Ay (k,v). Also, the restrictions |w| > M and |z| = |w|/M — 1 will be implicit
in any statement involving the sets B, (s, w).

Notice that since both T"and T~ ! are bijective (M, 1/2)-quasi-isometries between
(1/(2M), 0)-subsets, any result involving the sets Ay, (k, v) will also hold for the sets
B,(s,w). We shall refer to these results in either case in what follows.

The following proposition is a weak version of [II, Proposition 3.2]. In [II]
we were able to use Urysohn’s Lemma to fix functions fo € Co(K) such that
lfoll = |v]/2 and fo(k) = v/2 for any v € R and k € K. In our current context,
the hypothesis on the set A only guarantees the existence of f; € A such that
lfoll < |v|/2+1/2M and |fo(k) —v/2| < 1/2M. So we had to take care of several
details and thought it wise to write them down.

Proposition 5.1. There exists rg > M, depending only on M, such that, for all
k € K and v € R with |v| > 1o, there exists w € R such that Ay (k,v) # 0.

Proof. Fix (F;);cr satisfying Lemma [Tl for k¥ and v. Then, for each i € I, we

fix s; € S such that |T'(F;)(s;)| = ||T(F;)||- Since T is an (M, 1/2)-quasi-isometry,
T(0) =0, and (@I holds, we conclude that
1 1
|AV4—| ~ 52 3 < 1irl_n€ilnf |T(F;)(s:)] < 1ir?€slup |T(F;)(s:)] < [v|M + 1.

Then, the net (T(F;)(s;))ier admits a convergent subnet, and we may assume that
T(F;)(s;) = wo for some wy € R satisfying

v 1 1 A\
(5.1) ‘WO‘Z%_———>M—
Now, let us see that (s;);e; admits a convergent subnet. By (£2]) we see that

limsup |Tf(s;) — T'(F5)(si)| < limsup | Tf — TF|
iel iel

< Mlimsup ||f — F|| +1/2
i€l

(5.2) < Mw(k, f,v)+1Vf e A
Since A is a (1/(2M), 0)-subset, by Definition [[3(2), we may fix fy € A such that
1 [v] 1
_ < < — —_—
k) —v/2l < g and gl < 04 L
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8 ELOI MEDINA GALEGO AND ANDRE LUIS PORTO DA SILVA

Then
w(k, fo,v) <
and by (5I) and (52) we have
Hrf.lei[nf IT fo(s:)| > Hrf.lei[nf |T(F;)(s:)| — linilesjup IT fo(s:) — T(F;)(s:)]
> [wo| = (Mw(k, fo,v) +1)
> |v[/M =1 - (M|v|/2+3/2)
= |v|(1/M — M/2) —5/2.
Since M < v/2, we see that 1/M — M/2 > 0. Then, fixing ro > M such that
(5.3) ro(1/M — M/2) —5/2 >0,
ro depends only on M, and for every |v| > ry we have
lirzneilnf [T fo(s;)| > 0.

Since T'fy vanishes at infinity, it follows that (s;);e; admits a convergent subnet,
so we may assume that s; — s for some s € S. By (5.2)), we infer that

(5.4) [Tf(s) —wo| < Mw(k, f,v)+1 VfeA.
Put ag = (|v|/M — 1)/|wo| and w = agwo. So |w| = |[v|/M — 1, and by (EI)),
(7)) S 1.

We will conclude the proof by showing that (54) is also satisfied for w instead
of wg. Given f € A, notice that

() < ITfIF < MIfI+1/2 < Mw(k, f,v) + 1.

Then by (&4)
T f(s) = w| < ao|Tf(s) = wol + (1 = ao)[Tf(s)| < Mw(k, f,v) + L.
O

Henceforth we consider rg given by Proposition 5.1l to be fixed. Since ry depends
only on M, this same constant works for sets B,(s, w).

6. THE SPECIAL SETS Ay (k,v) WHEN M2 < 2

This section is devoted to proving Corollary It concerns the special sets
Ay (k,v) associated to the (M,1/2)-quasi-isometry T. This result is a mid-step
in the proof of Proposition [ZI] and will allow us to define a function ¢ : K — S
which as we shall see in section [0 will be a homeomorphism between K and S.
The proposition and the corollary below are versions of [12, Proposition 4.1] and
[12, Corollary 4.2], respectively, for the sets Ay (k, V).

Proposition 6.1. There exists r1 > rg, depending only on M and 0, such that, for
alk e K,veR, andv' € R with [v|,|v'| > 11, and |v +v'| < M0, if s € Ay (k,V)
and s' € Ay (k,v') for some w,w' € R, then s = ¢'.

Proof. Suppose that s # s’. We may assume that |v
[w’| = max{|w|, |w'[}. Note that

| = max{|v|,|[v/|}. Then

1 1
Wl =Wl = 37V = VIl < 37V + v < 6.
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Then, since B is a (1/(2M), 8)-subset, by Definition [[3)(2), take g € B such that

1 1 1
61) o)+l < gir lol) 4w < g and gl < W5
By applying the definitions of the sets Ay (k,v) and Ay (k,v') to T~ lg, we get
respectively the following inequalities:

1
(6.2) 2lw| = oor < lwHw|—g(s) +w| < IT(T™ g)(s) —w| < Mw(k, T g,v) +1
and
1 1

(6.3) 2lw|— Wi <2lw'| — oY <|T(T tg)(s") —w'| < Mw(k, T g,v') + 1.
Since |w| = |v|/M — 1, by (62) and (63, we obtain that

2|v| 4 1
. MY —
(6.4) T w(k, T g,v)+3+2M
and
2|V| —1 / 1
. — < —_—
(6.5) % < Mw(k,T g,v)+3+2M

Since |v + v/| < M6, we have that
w(k, T~ g,v") = max{|[T g, [T~ (k) = v'|}
< max{[|T~g|l, |T " g(k) + v[} + v + V|
<w(k, T lg,—v) + M6.
Therefore, according to (@A) we deduce that

2lv| -1 2 1
. — < — —.
(6.6) A < Mw(k, T g, V)+3—|—M9+2M
1
Thus, putting A = 3 + M?0 + YR it follows from (€4) and (6.0 that
2
% < M min {w(k,T_lg,v)7w(k,T_1g, -v)} + A,

That is, 2|v|/M is less than or equal to
M min {max{||T~"gl, T~ g(k) = v[}, max{||T ™" g|l,|T~ g(k) + v} } + A
Then, by using the following identity of real numbers a, b, and c,

min{max{a, b}, max{a, c}} = max{a, min{b, c}},

with
a= Tl b=[T"g(k) —vl, and c=[T"g(k) + ),
we have
2
2 < e {7 i min [T () + ], [T g(k) — vI}} + A
67 = Mmax {IT gl |7 g(k)] - [v]]} + A.

Having in mind (61]), note that
T (k)] < IT7 gl < Mgl +1/2 < V| = M +1 < |v[+2,

SO
max { [T~ g|l, [T~ g(k)| = |v]I} < [v] +2,
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10 ELOI MEDINA GALEGO AND ANDRE LUIS PORTO DA SILVA

and then, by (6.17), we infer that
2
— — M) <2M + A.
¥l (5~ 1) <20+

Since M < /2 it follows that 2/M — M > 0. Then, there exists r, > 7, depending
only on M and 6, such that this is a contradiction if |v| > r;. O

We consider r; given by the Proposition to be fixed. Since it depends only
on M and 6, this same constant works for the sets B,(s, w).

Corollary 6.2. For all k € K, s,s' € S, and v,v' € R, with |v|,|v/| > r1 and
[v—v/| < M0, if s € Ay (k,v) and s' € Ay (k,v') for some w,w’ € R, then s = ¢'.

Proof. Since | — v| > 11 > 1o, by Proposition [B.1] there exists w” € R such that
Ay (ky—v) # (. Take s” € Ay (k,—v).

Now observe that since s” € Ay (k,—v) and s € Ay (k, V), it follows by Propo-
sition [6.1] that s” = s. Moreover, since s” € Ay (k, —v) and s’ € Ay (k, V'), again
by Proposition [6.]]l we infer that s” = s’. Hence s = s’. O

7. THE FUNCTIONS ¢ : K — S AND ¢ : S — K

In this section, we will begin to construct a homeomorphism between K and S
via the following proposition. The following proposition and its proof is similar to
[12, Proposition 5.1].

Proposition 7.1. For all k € K there exists s € S such that for all v € R with
[v| > r1 and w € R either Ay (k,v) = {s} or Ay(k,v) = 0.

Proof. Take k € K and put D = (—o0, —r1) U (r1, +00). It suffices to show that for
any v,v' € D, if s € Ay (k,v) and s’ € Ay (k,v') for some w,w’ € R, then s = 5.
Suppose thus that s € Ay (k,v) and s’ € Ay (k,v') for some w,w’ € R. Fix w”
such that Ay (k,—v) # 0. Then, by Proposition we have

Ay (b, —v) = Ay (k,v) = {s}.

Consequently, in order to prove that s = s’, we may suppose that either v,v’ €
(=00, —r1) or v,v € (r1,+00). In both these cases, we may find points uy, ...,
u,, in D such that up = v/, u, = v, and |u; —u;_1| < M6 for all 1 < j < n. Put
sg = s’ and s,, = s. Moreover, according to Proposition 5.1l for each 1 < j <n—1,
there exist s; € S and w; € R such that s; € Ay, (k,u;).

For each 1 < j < n, since |u; —u;_1| < M6, Corollary E.2limplies that s; = s;_1.
By using this fact repeatedly, we conclude that s’ =s1 =---=s,_1 = s. O

Thus, we are able to define the function ¢ : K — S where (k) is the element s
given by Proposition [[Jl By symmetry, we may also define a function ¢ : S — K
such that ¢(s) is the element k given by the symmetric version of Proposition [Z1]

We will show that ¢ is a homeomorphism by proving that ¢ and ¢ are continuous
and 1 = ¢~ 1. First we will prove another property of the sets Ay (k, V).

8. A FUNDAMENTAL PROPERTY OF THE SETS Ay (k,v) WHEN M? < 2

The next proposition is a version of [I1, Proposition 3.3] for the sets Ay (k,v)
and will help us prove that the functions ¢ and v defined in the previous section are
homeomorphisms provided that we change r; in the statement of Proposition [Tl
by a convenient number greater than it. See Proposition
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Proposition 8.1. There exists ro > r1, depending only on M and 6, such that, for
allk € K and v € R with [v] > ra, if s € Ay (k, V) for some w € R and B,(s,w) # ()
for some z € R, then B,(s,w) = {k}.

Proof. Pick k' € B,(s,w), and we must show that k¥’ = k. Suppose the contrary
and fix fy € A such that

1 [v] 1
- = k' M — d L
)| =g < g [hE) o < g a1l < 5+ o
Thus,
v, 1
k My -
w( af07 )— 2 +2M
Applying the definition of Ay (k,v) to fo, we see that
M
|Tf0($) _W| < M(JJ(k,fo,V) +1< 7|V| +3/2
Moreover, since
M
ITfoll < Mlifoll +1/2 < - vl +1,
it follows that
M
w(s, T fo,w) < 7|V| +3/2.
So, by applying the definition of B,(s,w) to T fy, we have
M? 3M
(8.2) |fo(k') —z| = |T YT fo)(k') — 2| < Mw(s,Tfo,w)+1< —|V| + > + 1.

On the other hand, since |w| = |v|/M — 1 and |z| = |w|/M — 1 we obtain that

M 1 v 1
= 1) ——1=t - —
2l = ( M M2 M

Furthermore, according to (81]),

H M L\ B\
8.3 k) —z| > - = - = 22 .
. ,  3M 3
Therefore, putting A’ = -5 +2 —|— by [B2) and (B3]) we conclude that
(8.4) S N
. 5t 1 5 | V< AL

Since M? < 2, it can be easily seen that

L + ! M >0

2 M? 2 ’
So, there exists ro > r; depending only on M and € such that the inequality (84)
fails to be true for v € R with |v| > ro, and the proposition is proved. 0

As we did to rg and 71, we may fix ro given by the Proposition Bl and it is
clear that this constant also works for the sets B, (s, w).
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12 ELOI MEDINA GALEGO AND ANDRE LUIS PORTO DA SILVA

9. THE HOMEOMORPHISM BETWEEN K AND S

Observe that the statements of Proposition [5.I] Corollary [6.2] Proposition [T.1]
and Proposition Bl remain true if we change ryp and r1 to ro. Thus consider ¢ and
1) as defined at the end of section[7l To complete the proof of Theorem[.4] we prove
Proposition Its proof is essentially the same as the reasoning in [I1], Section 4].

Proposition 9.1. The functions ¢ : K — S and ¢ : S — K are continuous and
Y=
Proof. First we will show that ¢ = ¢~!. Fix k € K. By the definition of ¢(k) there
are v,w € R with |v| > (r2 + 1)M such that p(k) € Ay (k, v). Thus, |w| > ra, and
by Proposition B0l there exists z € R satisfying B,(¢(k), w) # 0. Then, according
to Proposition Bl we know that B,(¢(k), w) = {k}. Therefore, it follows by the
definition of ¢ that ¥(¢(k)) = k. Hence ¢ o ¢ = Idx. Analogously we deduce that
pop=Idg.

We now pass to proving that ¢ is continuous. The proof that v is continuous
is analogous. Observe that it suffices to prove that for each net (k;);cs of K
converging to k € K, the net (p(k;));es admits a subnet converging to (k).

Assume then that (k;);jcs is a net of K converging to k. For all j € J take v,
and w; such that |v;| = ¢, for some ¢ > 75, and

(9.1) o(kj) € Aw, (kj, vj).

Since the nets (v;)jes and (w;);ecs are limited, we may assume that there are
v,w € R such that v; = v and w; — w. For each f € A we have

(92) W(kj,f,Vj) _>w(k7f7V%
and according to (@),

Fix fy € A satisfying
1 1
< — - <.
ol < MI/2+ 53 and 1fo(k) —v/2] < o1
Then (@3] implies that
T fo(p(ki))| = |wil =T foe(ks)) = wj| =

for every j € J. Notice that

c
M - Mw(k‘j, fo,Vj) -2
(k forv) S /2 + 51 = /2 + 5
WK, Jo,V) S |V M =C 2M
So, by ([@.2) we have
- 1 M
i [T (k)| > (37 3 ) o= 572
and since ¢ > ry > 19, observing (53)), we obtain
liminf T fo(¢(k;))| > 0.
j€J
Since T'fy vanishes at infinity, this implies that (¢(k;));cs admits a subnet con-
verging to some s € S, so we assume that ¢(k;) — s. Hence, by (@2) and (@3],
Tf(s)—w| < Mw(k, f,v)+1 VfeA,
which means that s € Ay (k,v) = {©(k)}. Consequently s = ¢(k). O
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10. ON QUASI-ISOMETRIES ON SUBSETS OF Cél)(K) SPACES

The purpose of this section is to present the proof of Theorem It follows
immediately from Theorem [[.4] and the following proposition.

Proposition 10.1. Let K and S be locally compact subsets of R with no isolated
points and assume that the inequalities (L2) hold for all f in C(gl)(K) orin C(gl)(S).
Suppose that there exists an (M, L)-quasi-isometry T from A C Cél)(K) to B C
C’(()l)(S), where A and B are || - ||oo-bounded and D(A) and D(B) are BS-subsets
of Co(K) and Cy(S), respectively. Then there exists an (M, L’)-quasi-isometry
T:D — E, where D and E are BS-subsets of Co(K) and Co(S), respectively.

Proof. Since A and B are || - |[-bounded, fix ¢ > 0 such that [|h||. < ¢ for all
h € A or h € B. Now, notice that since T is a quasi-isometry, T(A) is 6-dense in
B for some € > 0. Then, by (2], for every f € B there is g € T(A) such that
I = d'llec < IIf —9gll < 6. Thus, D(T(A)) is O-dense in D(B). Therefore, since
D(B) is a BS-subset of Cy(.9), it follows by Proposition 2:3(3) that

(10.1) D(T(A)) is a BS-subset of Cy(9).
Next, according to ([2), for every f,g € A we have
(Tf) = (Tg) e <ITf =Tyl < M| f—gll+L
<M =g'lloc + M| f = gllc + L
< MIf — o +2Me+ L

and
|(TF) = (TgY |l = |TF — Tyl - T ~ Tyl = |1 — gll — L — 2
> I = gl — L~ 2.
Hence putting L' = 2Mc + L, it follows that
(102) If = g'lle — I < (T = (Tg)low < MIF' e+ L' ¥fg€ A
Since (I0.1) and (I02) hold, if we could define 7' : D(A) — D(T(A)) by
(10.3) T(f") = (T1),

then 7" would be an (M, L')-quasi-isometry between BS-subsets, as we wished.
However, since D is not necessarily injective, we cannot guarantee that the T given
by (I0.3)) is well defined. To fix this, we pick a set of representatives C' C A of the
equivalence relation f ~ g if and only if /' = ¢’ Vf,g € A.

Then surely D is injective in C' and moreover the 7" given by (I0.3) is well defined
if we put 7' : D(C) = D(T(C)). We know that D(C) = D(A); thus D(C) is a BS-
subset of Co(K). Furthermore, by ([I02) the map 7' is an (M, L')-quasi-isometry.
We have only to show that D(T'(C)) is a BS-subset of Cy(S). Notice by (I0.2) that
if f,ge Aand f ~ g, then |[(Tf) — (T9)|lco <L’

Consequently D(T'(C)) is L'-dense in D(T(A)). Hence by ([I0I) and Proposi-
tion 2Z3K(3) D(T(C)) is a BS-subset of Cy(.5), and the proof is finished. d
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14 ELOI MEDINA GALEGO AND ANDRE LUIS PORTO DA SILVA

11. A NONLINEAR EXTENSION OF CAMBERN, PATHAK,
AND VASAVADA THEOREMS

In this last section we will show that in fact Corollary is a consequence of
Theorem First we need to prove Lemma [[1.J] and Proposition I1.2]

Lemma 11.1. Let K be a locally compact subspace of R with no isolated points.
Let U C K be an open set with k € U. Then for any 0 < € < 1 there exists

f € C§ () such that f(K\U) = f(K\U) = {0}, | floe <&, f'(k) = [f'llo = 1,
and f'(u) > —e Yu € U.

Proof. Since K is locally compact, take 6 > 0 such that [k—0, k+6]N K is compact
and contained in U. Now, let a,b € R such that k € (a,b) C (k— 60,k +6). We fix
three continuous functions as follows. Take g1 : [k — 0, a] — R such that

(i) —e<g1(u) <O0Vu € [k—0,a] and g1(k — ) = g1(a) = 0;

(ii) [ g1(t)dt = —e.
Then, take go : [a,b] — R such that

(iii) 0 < ga(u) <1 Vu € [a,b], ga(a) = g2(b) =0, and g2 (k) = 1;

. k b

(iv) [, g2(t)dt = [} ga(t)dt = e.
Finally, take g3 : [b, k + 6] — R such that

(v) —e < g3(u) <0Vue [bk+0] and g3(b) = g3(k +6) =0;

(vi) [gs3(t)dt = —e.

Let g € Cp(R) vanish outside [k—6, k+6] and be identical to each of the functions
above at their domain. Next, define G : R — R by

G(z) = /: g(t)dt.

—0

Then G is continuous and it follows by (ii), (iv), and (vi) that ||G|le < € and
G vanishes outside [k — 6,k + 0]. Finally, define f = G|ix. Then, of course,
f is differentiable and f’ = g|x. Moreover, since both G and g vanish outside
[k — 6,k + 0], we see that f and f’ vanish in K \ [k — 0,k + 0]. Hence f(K \U) =
f/(K\U)=1{0}. Since [k — 6,k + 0] N K is compact, we deduce that f € Cél)(K).

Since |G|l < €, we obtain that || f||cc < e and by (i), (iii), and (v), we conclude
that f'(k) = ||f'lloc = 1 and f'(u) > —e Vu € U. O

Next, it will be convenient to use the following notation with H = K or H = S:
Boolfir]={g9€ CSV(H) : If = gllow <} VfeCS(H) and r>o0.
Proposition 11.2. D (B[0,r]) is a BS-subset of Co(K) for all r > 0.

Proof. Since D(Bwo[0,7]) = rD(Bx]0,1]), by Proposition 2:3(1), it suffices to prove
that D(B [0, 1]) is a BS-subset of Cy(K).
Given k € K and v € R, we fix, for each U € V4, fru € C(()l)(K) given by

1
Lemma [T Tl for U, k, and € = 3] and define Fi vv =v- fru.
v
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It is easily seen that the following properties of the functions Fj ¢y are valid:

(a) Fyyo(K\U) ={0}, Fy, y(k) = v, and [[F} | ;lleo = [V];
1
(b) inf{|F} , ;(t) —av]:t € K and a € [0,1]} < 2’
1

(c) HFk,v,U”oo < 2

15

Now, let W = {Fyvu :k€ K, veR, Ue€ V;}and define Z =W + W. It is
easy to verify by (a), (b), and (c) that D(Z) = D(W) + D(W) is a (1/2, 1)-subset

of Cy(K). Moreover, according to (c) we have

| Fx v, + Frr v v lloo < [Fkv,Ulloo + ([ Frr v 0 lloo < 1

Thus Z C B[0,1], and hence D(B[0,1]) D D(Z) is a BS-subset of Co(K

We are now ready to prove the main result of this section.

d

Proof of Corollary Let K and S be locally compact subsets of R with no
isolated points and suppose that the inequalities (I2]) hold for every f € C((,l)(K )
or f € Cél)(S). Assume there is a bijective (M, L)-quasi-isometry T : C(gl)(K) —
C’(()l) (S) with M < /2 and that T is a quasi-isometry with respect to the sup norms.

Pick M’ > 1 and L' > 0 such that T : (C(gl)(K)7 I lloo) — (C’él)(S’), I lloo) is an

(M’ L')-quasi-isometry. Put r = M'(L' 4+ 1) and A = By[0,7] in Cél)(K).

Now, consider 7' : A — T(A) the restriction of T to A. It follows that 7' is
an (M, L)-quasi-isometry with M < /2 and by Proposition that D(A) is a

BS-subset of Cy(K'). Moreover, T(A) is || - ||co-bounded because
IT(f) = TO)llse < M'|[flloc + L' < M'r + L" Vf € A.

Next, we will show that D(T'(A)) is a BS-subset of Cy(.S). Observe that it suffices

to prove that Boo[T(0),1] C T'(A). Thus, let g € B5[T(0),1]. Then

ST (@)l — L < [T (9) = T(O) o < 1,

which implies that ||T71(g)|l < 7, ie., T71(g) € A or equivalently g € T'(A).

Therefore, T : A — T(A) satisfies the hypothesis of Theorem [5], which implies

that K and S are homeomorphic. This completes the proof.
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