
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
https://doi.org/10.1090/proc/14498

Article electronically published on April 8, 2019
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(Communicated by Stephen Dilworth)

Abstract. We introduce the concept of Banach-Stone subsets of C0(K)
spaces. This allows us to unify and improve several extensions of the clas-
sical theorem due to Banach (1933) and Stone (1937). More precisely, we
prove that if K and S are locally compact Hausdorff spaces, A and B are
Banach-Stone subsets of C0(K) and C0(S), respectively, and there exists a
map T from A to B (not necessarily injective) with image θ-dense in B for
some θ > 0 such that

1

M
‖f − g‖ − L ≤ ‖T (f)− T (g)‖ ≤ M‖f − g‖+ L,

for every f, g ∈ A, then K and S are homeomorphic whenever L ≥ 0 and
M <

√
2. As an application of this more general theorem concerning the

quasi-isometries T on subsets of C0(K) spaces, we show that certain quasi-

isometries on C
(1)
0 (K) spaces also determine the locally compact subspaces K

of the real line R with no isolated points. In turn, this result enables us to
prove a unification and improvement of some theorems of Cambern, Pathak,
and Vasavada for the first time to the nonlinear case.

1. Introduction

If K is a locally compact Hausdorff space, we denote by C0(K) the Banach
space of real-valued continuous functions vanishing at infinity on K provided with
the supremum norm. For any locally compact K ⊂ R with no isolated points, we

denote by C
(1)
0 (K) the space of real-valued continuously differentiable functions

defined on K such that f and f ′ both vanish at infinity. This space may be
equipped with either the supremum norm ‖ · ‖∞ or one of the following classic
norms: ‖f‖C = sup{|f ′(k)| + |f(k)| : k ∈ K}, ‖f‖M = max{‖f ′‖∞, ‖f‖∞}, and
‖f‖Σ = ‖f ′‖∞ + ‖f‖∞ for every f ∈ C

(1)
0 (K).

The purpose of this paper is twofold: to study quasi-isometries on subsets of

C0(K) spaces and also on subsets of C
(1)
0 (K) spaces which determine K.

We recall that for any pair of metric spaces (E, dE) and (F, dF ), a map T : E → F
is said to be a coarse (M,L)-quasi-isometry, for some constants M ≥ 1 and L ≥ 0,
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or simply a quasi-isometry [4, 15], if the following inequalities hold:

1

M
dE(f, g)− L ≤ dF (T (f), T (g)) ≤ MdE(f, g) + L ∀f, g ∈ E,

and there exists θ > 0 such that for all u ∈ F there is u′ ∈ T (E) such that
dF (u, u

′) ≤ θ. In other words, T (E) is θ-dense in F .
This notion includes some important concepts used in the nonlinear classification

of Banach spaces [14, 15, 18, 19].
The well-known Banach-Stone theorem asserts that if there is an isometry T

from C0(K) onto C0(S), then K and S are homeomorphic [3, 22]. Amir [2] and
Cambern [5] independently generalized this theorem by showing that if there is a
linear isomorphism T from C0(K) onto C0(S) satisfying ‖T‖‖T−1‖ < 2, then K
and S are homeomorphic. In [6], Cambern showed that 2 is the best constant for
this theorem; see also [10]. In [8] Cengiz extended the Amir-Cambern theorem. He
said that a closed linear subspace A of C0(K) is extremely regular if for each k ∈ K
and each open neighborhood V of k and 0 < ε < 1 there exists f ∈ A such that

1 = ‖f‖ = f(k) > ε > |f(k′)| ∀ k′ /∈ V ;(1.1)

see [9], [17, p. 319], and [16, p. 882] for examples of such subspaces. So, he proved:

Theorem 1.1. Let K and S be locally compact Hausdorff spaces and let A and B
be extremely regular subspaces of C0(K) and C0(S), respectively. If there is an iso-
morphism T from A onto B with ‖T‖‖T−1‖ < 2, then K and S are homeomorphic.

On the other hand, Cambern and Pathak [7] obtained the following version of
the Amir-Cambern theorem for spaces of differentiable functions:

Theorem 1.2. Let K and S be locally compact subsets of R with no isolated points

and the spaces C
(1)
0 (K) and C

(1)
0 (S) endowed with the norm ‖ · ‖C . Suppose that

T is an isomorphism from C
(1)
0 (K) onto C

(1)
0 (S) with ‖T‖‖T−1‖ < 2 and T is an

isomorphism with respect to the sup norms. Then K and S are homeomorphic.

Moreover, Pathak and Vasavada [21] (see [13]) showed that the statement of

Theorem 1.2 is still valid when the spaces C
(1)
0 (K) and C

(1)
0 (S) are equipped with

the norm ‖ · ‖M . Although Theorems 1.1 and 1.2 are in different contexts, we
will see that they are closely connected. Indeed, we will provide a unification and
extension of them for quasi-isometries. In order to do this, it will be convenient to
introduce the notion of Banach-Stone subsets of C0(K) spaces.

Definition 1.3. Let A ⊂ C0(K) and ε, δ > 0. We say that A is an (ε, δ)-subset of
C0(K) if the following conditions are satisfied:

(1) For every open set U of K and v ∈ R, there exists Fv,U ∈ A such that
(a) |v| − ε ≤ ‖Fv,U‖ ≤ |v|+ ε;
(b) inf{|Fv,U (k)− αv| : α ∈ [0, 1]} ≤ ε for every k ∈ U ;
(c) |Fv,U (k)| ≤ ε for every k ∈ K \ U .

(2) For every k, k′ ∈ K and v, v′ ∈ R with k 	= k′ and ||v| − |v′|| < δ, there
exists G ∈ A such that

|G(k)− v| ≤ ε, |G(k′)− v′| ≤ ε, and ‖G‖ ≤ max{|v|, |v′|}+ ε.

We say that A is a Banach-Stone subset of C0(K) (in short, BS-subset) if A is an
(ε, δ)-subset of C0(K) for some ε and δ.
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As we shall see in section 2, there is a natural way to construct BS-subsets of
C0(K): every θ-dense subset of an extremely regular subspace is a BS-subset of
C0(K). Thus, Theorem 1.1 is an immediate consequence of our main theorem:

Theorem 1.4. Let K and S be locally compact Hausdorff spaces and let A and B be
BS-subsets of C0(K) and C0(S), respectively. If there is an (M,L)-quasi-isometry

T from A to B with M <
√
2, then K and S are homeomorphic.

Note that by the above-mentioned results of [6,10],
√
2 is the best number for the

formulation of Theorem 1.4. Moreover, Theorem 1.4 in the particular case where
A = C0(K), B = C0(S), and T is bijective is [11, Theorem 1.2(a)].

The more general statement of Theorem 1.4 by using BS-subsets instead of ex-
tremely regular subspace of C0(K) spaces will allow us to get in section 10 the
following improvement of Theorem 1.2. Our result is valid not only when the

C
(1)
0 (K) spaces are equipped with one of the norms ‖ · ‖C , ‖ · ‖M , or ‖ · ‖Σ, but with

any norm ‖ · ‖ satisfying the following inequalities for every f in C
(1)
0 (K):

‖f ′‖∞ ≤ ‖f‖ ≤ ‖f‖Σ.(1.2)

Denote by D the map f �→ f ′ in both the spaces C
(1)
0 (K) and C

(1)
0 (S).

Theorem 1.5. Let K and S be locally compact subsets of R with no isolated points

and assume that the norms of all f in C
(1)
0 (K) or in C

(1)
0 (S) satisfy (1.2). Suppose

that there is an (M,L)-quasi-isometry T from A ⊂ C
(1)
0 (K) to B ⊂ C

(1)
0 (S), where

A and B are ‖ · ‖∞-bounded and D(A) and D(B) are BS-subsets of C0(K) and

C0(S), respectively. If M <
√
2, then K and S are homeomorphic.

To show that Theorem 1.5 is in fact an improvement of Theorem 1.2, we will
prove in section 11 that it implies the following nonlinear extension of Theorem 1.2.

Corollary 1.6. Suppose that K and S are locally compact subsets of R with no

isolated points and the norms of all f in C
(1)
0 (K) or in C

(1)
0 (S) satisfy (1.2). If there

is a bijective (M,L)-quasi-isometry T : C
(1)
0 (K) → C

(1)
0 (S) with M <

√
2 and T is

a quasi-isometry with respect to the sup norms, then K and S are homeomorphic.

The proof method of Theorem 1.4 is a very close adaptation of the method
developed in [11]. The difference comes from the fact that the quasi-isometry T in
[11] is between the spaces C0(K) and C0(S) and in this work the quasi-isometry T
is between certain specified subsets A ⊂ C0(K) and B ⊂ C0(S), that is, BS-subsets
which have a density type property; see Definition 1.3. Therefore, in the present
case, the proofs of auxiliary results analogous to those of [11] will be more technical.
New definitions and small adjustments will be needed in the proofs. For the sake
of clarity and completeness, we give the arguments in detail adapted to this more
general setting.

The proof will be done in the next eight sections. In section 2 we state some
basic properties of BS-subsets of C0(K) spaces. In section 3, we observe that we
may assume that T satisfies some good properties, such as being bijective. Next,
the proof goes through a path similar to the techniques in [11]. In order to obtain
a homeomorphism ϕ : K → S, we define in section 5 a new class of special sets
Aw(k, v) ⊂ S depending on the BS-subset A ⊂ C0(K) and show that, under certain
conditions, these sets are non-empty (Proposition 5.1). Further, the intuition is that
for each k ∈ K the elements of the sets Aw(k, v) are candidates to be ϕ(k). Later, in
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Proposition 7.1, we state that, under certain conditions, for each k ∈ K there exists
a unique s ∈ S such that s ∈ Aw(k, v). Thus, for each k ∈ K we define ϕ(k) to be
the element s given by Proposition 7.1. Since T is bijective, using the symmetry on
the definition of quasi-isometry, we will be able to define ψ : S → K with respect
to T−1 in an analogous way to the definition of ϕ. Finally, in Proposition 9.1, we
prove that ψ = ϕ−1 and that both ϕ and ψ are continuous.

2. On Banach-Stone subsets of C0(K) spaces

In this section we provide some examples and properties of BS-subsets of C0(K)
spaces; see also Proposition 11.2. We shall use the following lemma proved in
[20, Proof of Theorem 1]; cf. [1, Lemma 2.4].

Lemma 2.1. Let A be an extremely regular subspaces of C0(K), let U be a non-
empty open subset of K, and let 0 < ε < 1. Then there are k0 ∈ U and f ∈ A such
that

(1) f(k0) = 1 ≤ ‖f‖ ≤ 1 + ε;
(2) −ε ≤ f(k) ≤ 1 + ε for every k ∈ U ;
(3) |f(k)| ≤ ε for every k ∈ K \ U .

Proposition 2.2. If A is an extremely regular subspace of C0(K), then A is an
(ε, δ)-subset of C0(K) for any ε and δ.

Proof. Fix ε, δ > 0. Then,
(1) Put θ = min{1/2, ε/|v|}. By Lemma 2.1, there is fU ∈ A satisfying:

(i) 1 ≤ ‖fU‖ ≤ 1 + θ;
(ii) −θ ≤ fU (k) ≤ 1 + θ for every k ∈ U ;
(iii) |fU (k)| ≤ θ for every k ∈ K \ U .

Define Fv,U = v·fU . Then, it is easy to see that (i), (ii), and (iii) imply, respectively,
properties (1a), (1b), and (1c) in the definition of BS-subset.

(2) Let k 	= k′ and v, v′ ∈ R. Since K is Hausdorff we fix U and U ′ disjoint open
neighborhoods of k and k′, respectively. By (1.1), we fix f ∈ A such that

1 = ‖f‖ = f(k) > ε/|v| ≥ |f(m)| ∀m ∈ K \ U
and f ′ ∈ A such that

1 = ‖f ′‖ = f ′(k′) > ε/|v′| ≥ |f ′(m)| ∀m ∈ K \ U ′.

Define G = v · f + v′ · f ′ ∈ A. Then, since k ∈ K \ U ′,

|G(k)− v| = |vf(k) + v′f ′(k)− v| = |v′f ′(k)| ≤ ε.

Similarly, we see that |G(k′)− v′| ≤ ε. Finally, notice that

|G(m)| ≤ |v||f(m)|+ |v′||f ′(m)| ≤ ε+ |v′| ∀m ∈ K \ U
and similarly that

|G(m)| ≤ ε+ |v| ∀m ∈ K \ U ′.

Then since (K \ U) ∪ (K \ U ′) = K, it follows that

‖G‖ ≤ max{|v|, |v′|}+ ε.

Since v, v′ are arbitrary, such a G exists in the particular case ||v| − |v′|| < δ, so
item (2) in the definition of BS-subset holds. �

The next result follows directly from Definition 1.3 and will be useful later.
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Proposition 2.3. Let A be an (ε, δ)-subset of C0(K). Then:

(1) for each α > 0, αA is an (αε, αδ)-subset of C0(K);
(2) for each f0 ∈ C0(K), f0 +A is an (ε+ ‖f0‖, δ)-subset of C0(K);
(3) if A′ is θ-dense in A, then A′ is a (θ + ε, δ)-subset of C0(K).

3. Fixing suitable (M,L)-quasi-isometry T and BS-subsets A and B

From now on we will fix K, S, T , A, B, M , and L as in the hypothesis of Theo-
rem 1.4. Our task until section 9 will be to prove that K and S are homeomorphic.

In the present section it will be observed that we may assume that T is bijective,
0 ∈ A, T (0) = 0, T and T−1 are both bijective (M, 1/2)-quasi-isometries, and A
and B are (1/(2M), θ)-subsets for some θ > 0.

Remark 3.1. We may assume that T is bijective. Indeed, fix δ > ML and pick a
maximal δ-separated subset A′ ⊂ A (that is, for any distinct f, g ∈ A′, ‖f−g‖ ≥ δ).
Then, for any distinct f, g ∈ A′ we obtain

‖Tf − Tg‖ ≥ 1

M
‖f − g‖ − L ≥ 1

M
δ − L > 0.

Hence, T is injective in A′ and defining T̂ : A′ → T (A′) to be the restriction of T ,

we have that T̂ is a bijective (M,L)-quasi-isometry. We have only to observe that
A′ and T (A′) are BS-subsets of C0(K) and C0(S), respectively. The maximality of
A′ implies that A′ is δ-dense in A. So, by Proposition 2.3(3), A′ is a BS-subset of
C0(K). Moreover, the fact that A′ is δ-dense in A also implies that

T (A′) is (Mδ + L)-dense in T (A).(3.1)

On the other hand, by the definition of quasi-isometries, T (A) is θ-dense in B for
some θ > 0. Thus according to Proposition 2.3(3),

T (A) is a BS-subset of C0(S).(3.2)

Therefore, again by Proposition 2.3(3), we conclude by (3.1) and (3.2) that T (A′)
is a BS-subset of C0(S) and we are done.

Remark 3.2. We may suppose that 0 ∈ A and that T (0) = 0. Indeed, fix f0 ∈ A
and define A0 = −f0+A and B0 = −Tf0+B. By Proposition 2.3(2), we know that

A0 and B0 are BS-subsets of C0(K) and C0(S), respectively. Define T̂ : A0 → B0

by T̂ (f) = T (f + f0) − Tf0. It is easy to see that T̂ : A0 → B0 is a bijective

(M,L)-quasi-isometry and T̂ (0) = 0.

Remark 3.3. Wemay assume that T and T−1 are bijective (M, 1/2)-quasi-isometries
and that A and B are (1/(2M), θ)-subsets of C0(K) and C0(S), respectively, for
some θ > 0. Indeed, if A is an (εA, δA)-subset of C0(K) and B is an (εB, δB)-subset
of C0(S), then by putting ε = max{εA, εB} and δ = min{δA, δB}, it follows that A
and B are (ε, δ)-subsets of C0(K) and C0(S), respectively.

On the other hand, it is easy to see that for each α > 0 the map T̂ : αA → αB
defined by T̂ (f) = αT (f/α) is a bijective (M,αL)-quasi-isometry between (αε, αδ)-
subsets of C0(K) and C0(S), respectively. Hence, by picking α > 0 such that αL ≤
1/(2M) and αε ≤ 1/(2M), we conclude that T̂ and T̂−1 are bijective (M, 1/2)-
quasi-isometries between (1/(2M), αδ)-subsets of C0(K) and C0(S), respectively.

Licensed to Univ of Louisiana at Lafayette. Prepared on Tue Apr 23 13:14:07 EDT 2019 for download from IP 130.70.8.131.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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4. The numbers ω(k, f, v) and the BS-subsets of C0(K) spaces

Following [11, p. 2170], for any locally compact Hausdorff space H, k ∈ H,
f ∈ C0(H), and v ∈ R we define

ω(k, f, v) = max{‖f‖, |f(k)− v|}.

In this section we prove the following lemma, which is a generalization of [11,
Lemma 2.1] for the BS-subset A.

Lemma 4.1. Let k ∈ K and v ∈ R. Then, there is a net (Fi)i∈I ⊂ A such that

|v| − 1

2M
≤ ‖Fi‖ ≤ |v|+ 1

2M
∀i ∈ I,(4.1)

and for every f ∈ C0(K),

lim sup
i∈I

‖f − Fi‖ ≤ ω(k, f, v) +
1

2M
.(4.2)

Proof. Let Vk denote the set of open neighborhoods of k. Since A is a (1/(2M), θ)-
subset, for each U ∈ Vk we fix Fv,U ∈ A satisfying:

(i) |v| − 1/(2M) ≤ ‖Fv,U‖ ≤ |v|+ 1/(2M);
(ii) inf{|Fv,U (k)− αv| : α ∈ [0, 1]} ≤ 1/(2M) for every k ∈ U ;
(iii) |Fv,U (k)| ≤ 1/(2M) for every k ∈ K \ U .

Consider the net (Fv,U )U∈Vk
. Then (4.1) follows immediately by (i), and we only

need to prove (4.2). Fix f ∈ C0(K). Given ε > 0, take Uε ∈ Vk such that

|f(u)− f(k)| < ε ∀u ∈ Uε.

Now, pick U ∈ Vk such that U ⊂ Uε. We shall evaluate ‖f − Fv,U‖. If u ∈ U , then

|f(u)− Fv,U (u)| ≤ |f(k)− Fv,U (u)|+ ε.(4.3)

Since (ii) holds, pick u′ ∈ {αv : α ∈ [0, 1]} such that

|Fv,U (u)− u′| ≤ 1

2M
+ ε.

Consequently

|f(k)− Fv,U (u)| ≤ |f(k)− u′|+ 1

2M
+ ε ≤ max{|f(k)|, |f(k)− v|}+ 1

2M
+ ε,

and therefore by (4.3)

|f(u)− Fv,U (u)| ≤ max{|f(k)|, |f(k)− v|}+ 1

2M
+ 2ε ∀u ∈ U.(4.4)

On the other hand, it follows by (iii) that

|f(u)− Fv,U (u)| ≤ |f(u)|+ 1

2M
≤ ‖f‖+ 1

2M
∀u ∈ K \ U.(4.5)

According to (4.4) and (4.5) we conclude that

‖f − Fv,U‖ ≤ max{‖f‖, |f(k)− v|}+ 1

2M
+ 2ε,

and we are done. �
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5. Special sets associated to (M,L)-quasi-isometries
between BS-subsets

Let v,w ∈ R with |v| ≥ M and |w| = |v|/M − 1. Inspired by the definitions of
the special sets Γw(k, v) and Γv(s,w) given in [11, Definition 3.1], we will introduce
two new sets Aw(k, v) and Bz(s,w) that in the context of this paper will depend
on BS-subsets A ⊂ C0(K) and B ⊂ C0(S), respectively. So, we set

Aw(k, v) = {s ∈ S : |Tf(s)− w| ≤ Mω(k, f, v) + 1 ∀f ∈ A} .
Similarly, for s ∈ S, w, z ∈ R with |w| ≥ M and |z| = |w|/M − 1, we also set

Bz(s,w) =
{
k ∈ K : |T−1g(k)− z| ≤ Mω(s, g,w) + 1 ∀g ∈ B

}
.

The objective of this section is to prove that under certain conditions the sets
Aw(k, v) and Bz(s,w) are not empty (Proposition 5.1). First of all, notice that
since it is assumed in the definition of Aw(k, v) that |v| ≥ M and |w| = |v|/M − 1,
these restrictions over |v| and |w| will be implicit in every statement involving the
sets Aw(k, v). Also, the restrictions |w| ≥ M and |z| = |w|/M − 1 will be implicit
in any statement involving the sets Bz(s,w).

Notice that since both T and T−1 are bijective (M, 1/2)-quasi-isometries between
(1/(2M), θ)-subsets, any result involving the sets Aw(k, v) will also hold for the sets
Bz(s,w). We shall refer to these results in either case in what follows.

The following proposition is a weak version of [11, Proposition 3.2]. In [11]
we were able to use Urysohn’s Lemma to fix functions f0 ∈ C0(K) such that
‖f0‖ = |v|/2 and f0(k) = v/2 for any v ∈ R and k ∈ K. In our current context,
the hypothesis on the set A only guarantees the existence of f0 ∈ A such that
‖f0‖ ≤ |v|/2 + 1/2M and |f0(k)− v/2| ≤ 1/2M . So we had to take care of several
details and thought it wise to write them down.

Proposition 5.1. There exists r0 ≥ M , depending only on M , such that, for all
k ∈ K and v ∈ R with |v| ≥ r0, there exists w ∈ R such that Aw(k, v) 	= ∅.

Proof. Fix (Fi)i∈I satisfying Lemma 4.1 for k and v. Then, for each i ∈ I, we
fix si ∈ S such that |T (Fi)(si)| = ‖T (Fi)‖. Since T is an (M, 1/2)-quasi-isometry,
T (0) = 0, and (4.1) holds, we conclude that

|v|
M

− 1

2M2
− 1

2
≤ lim inf

i∈I
|T (Fi)(si)| ≤ lim sup

i∈I
|T (Fi)(si)| ≤ |v|M + 1.

Then, the net (T (Fi)(si))i∈I admits a convergent subnet, and we may assume that
T (Fi)(si) → w0 for some w0 ∈ R satisfying

|w0| ≥
|v|
M

− 1

2M2
− 1

2
≥ |v|

M
− 1.(5.1)

Now, let us see that (si)i∈I admits a convergent subnet. By (4.2) we see that

lim sup
i∈I

|Tf(si)− T (Fi)(si)| ≤ lim sup
i∈I

‖Tf − TFi‖

≤ M lim sup
i∈I

‖f − Fi‖+ 1/2

≤ Mω(k, f, v) + 1 ∀f ∈ A.(5.2)

Since A is a (1/(2M), θ)-subset, by Definition 1.3(2), we may fix f0 ∈ A such that

|f0(k)− v/2| ≤ 1

2M
and ‖f0‖ ≤ |v|

2
+

1

2M
.
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Then

ω(k, f0, v) ≤
|v|
2

+
1

2M
,

and by (5.1) and (5.2) we have

lim inf
i∈I

|Tf0(si)| ≥ lim inf
i∈I

|T (Fi)(si)| − lim sup
i∈I

|Tf0(si)− T (Fi)(si)|

≥ |w0| − (Mω(k, f0, v) + 1)

≥ |v|/M − 1− (M |v|/2 + 3/2)

= |v|(1/M −M/2)− 5/2.

Since M <
√
2, we see that 1/M −M/2 > 0. Then, fixing r0 ≥ M such that

(5.3) r0(1/M −M/2)− 5/2 ≥ 0,

r0 depends only on M , and for every |v| > r0 we have

lim inf
i∈I

|Tf0(si)| > 0.

Since Tf0 vanishes at infinity, it follows that (si)i∈I admits a convergent subnet,
so we may assume that si → s for some s ∈ S. By (5.2), we infer that

|Tf(s)− w0| ≤ Mω(k, f, v) + 1 ∀f ∈ A.(5.4)

Put α0 = (|v|/M − 1)/|w0| and w = α0w0. So |w| = |v|/M − 1, and by (5.1),
α0 ≤ 1.

We will conclude the proof by showing that (5.4) is also satisfied for w instead
of w0. Given f ∈ A, notice that

|Tf(s)| ≤ ‖Tf‖ ≤ M‖f‖+ 1/2 ≤ Mω(k, f, v) + 1.

Then by (5.4)

|Tf(s)− w| ≤ α0|Tf(s)− w0|+ (1− α0)|Tf(s)| ≤ Mω(k, f, v) + 1.

�

Henceforth we consider r0 given by Proposition 5.1 to be fixed. Since r0 depends
only on M , this same constant works for sets Bz(s,w).

6. The special sets Aw(k, v) when M2 < 2

This section is devoted to proving Corollary 6.2. It concerns the special sets
Aw(k, v) associated to the (M, 1/2)-quasi-isometry T . This result is a mid-step
in the proof of Proposition 7.1 and will allow us to define a function ϕ : K → S
which as we shall see in section 9 will be a homeomorphism between K and S.
The proposition and the corollary below are versions of [12, Proposition 4.1] and
[12, Corollary 4.2], respectively, for the sets Aw(k, v).

Proposition 6.1. There exists r1 ≥ r0, depending only on M and θ, such that, for
all k ∈ K, v ∈ R, and v′ ∈ R with |v|, |v′| > r1, and |v + v′| ≤ Mθ, if s ∈ Aw(k, v)
and s′ ∈ Aw′(k, v′) for some w,w′ ∈ R, then s = s′.

Proof. Suppose that s 	= s′. We may assume that |v′| = max{|v|, |v′|}. Then
|w′| = max{|w|, |w′|}. Note that

||w| − |w′|| = 1

M
||v| − |v′|| ≤ 1

M
|v + v′| ≤ θ.
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Then, since B is a (1/(2M), θ)-subset, by Definition 1.3(2), take g ∈ B such that

(6.1) |g(s) + w| ≤ 1

2M
, |g(s′) + w′| ≤ 1

2M
, and ‖g‖ ≤ |w′|+ 1

2M
.

By applying the definitions of the sets Aw(k, v) and Aw′(k, v′) to T−1g, we get
respectively the following inequalities:

(6.2) 2|w| − 1

2M
≤ |w+w| − |g(s)+w| ≤ |T (T−1g)(s)−w| ≤ Mω(k, T−1g, v)+1

and

(6.3) 2|w| − 1

2M
≤ 2|w′| − 1

2M
≤ |T (T−1g)(s′)− w′| ≤ Mω(k, T−1g, v′) + 1.

Since |w| = |v|/M − 1, by (6.2) and (6.3), we obtain that

(6.4)
2|v|
M

≤ Mω(k, T−1g, v) + 3 +
1

2M

and

(6.5)
2|v|
M

≤ Mω(k, T−1g, v′) + 3 +
1

2M
.

Since |v + v′| ≤ Mθ, we have that

ω(k, T−1g, v′) = max{‖T−1g‖, |T−1g(k)− v′|}
≤ max{‖T−1g‖, |T−1g(k) + v|}+ |v + v′|
≤ ω(k, T−1g,−v) +Mθ.

Therefore, according to (6.5) we deduce that

(6.6)
2|v|
M

≤ Mω(k, T−1g,−v) + 3 +M2θ +
1

2M
.

Thus, putting Δ = 3 +M2θ +
1

2M
, it follows from (6.4) and (6.6) that

2|v|
M

≤ M min
{
ω(k, T−1g, v), ω(k, T−1g,−v)

}
+Δ.

That is, 2|v|/M is less than or equal to

M min
{
max{‖T−1g‖, |T−1g(k)− v|},max{‖T−1g‖, |T−1g(k) + v|}

}
+Δ.

Then, by using the following identity of real numbers a, b, and c,

min{max{a, b},max{a, c}} = max{a,min{b, c}},
with

a = ‖T−1g‖, b = |T−1g(k)− v|, and c = |T−1g(k) + v|,
we have

2|v|
M

≤ M max
{
‖T−1g‖,min{|T−1g(k) + v|, |T−1g(k)− v|}

}
+Δ

= M max
{
‖T−1g‖, ||T−1g(k)| − |v||

}
+Δ.(6.7)

Having in mind (6.1), note that

|T−1g(k)| ≤ ‖T−1g‖ ≤ M‖g‖+ 1/2 ≤ |v′| −M + 1 ≤ |v|+ 2,

so
max

{
‖T−1g‖, ||T−1g(k)| − |v||

}
≤ |v|+ 2,
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and then, by (6.7), we infer that

|v|
(

2

M
−M

)
≤ 2M +Δ.

Since M <
√
2 it follows that 2/M −M > 0. Then, there exists r1 ≥ r0, depending

only on M and θ, such that this is a contradiction if |v| > r1. �
We consider r1 given by the Proposition 6.1 to be fixed. Since it depends only

on M and θ, this same constant works for the sets Bz(s,w).

Corollary 6.2. For all k ∈ K, s, s′ ∈ S, and v, v′ ∈ R, with |v|, |v′| > r1 and
|v− v′| < Mθ, if s ∈ Aw(k, v) and s′ ∈ Aw′(k, v′) for some w,w′ ∈ R, then s = s′.

Proof. Since | − v| > r1 ≥ r0, by Proposition 5.1 there exists w′′ ∈ R such that
Aw′′(k,−v) 	= ∅. Take s′′ ∈ Aw′′(k,−v).

Now observe that since s′′ ∈ Aw′′(k,−v) and s ∈ Aw(k, v), it follows by Propo-
sition 6.1 that s′′ = s. Moreover, since s′′ ∈ Aw′′(k,−v) and s′ ∈ Aw′(k, v′), again
by Proposition 6.1 we infer that s′′ = s′. Hence s = s′. �

7. The functions ϕ : K → S and ψ : S → K

In this section, we will begin to construct a homeomorphism between K and S
via the following proposition. The following proposition and its proof is similar to
[12, Proposition 5.1].

Proposition 7.1. For all k ∈ K there exists s ∈ S such that for all v ∈ R with
|v| > r1 and w ∈ R either Aw(k, v) = {s} or Aw(k, v) = ∅.
Proof. Take k ∈ K and put D = (−∞,−r1)∪ (r1,+∞). It suffices to show that for
any v, v′ ∈ D, if s ∈ Aw(k, v) and s′ ∈ Aw′(k, v′) for some w,w′ ∈ R, then s = s′.
Suppose thus that s ∈ Aw(k, v) and s′ ∈ Aw′(k, v′) for some w,w′ ∈ R. Fix w′′

such that Aw′′(k,−v) 	= ∅. Then, by Proposition 6.1 we have

Aw′′(k,−v) = Aw(k, v) = {s}.
Consequently, in order to prove that s = s′, we may suppose that either v, v′ ∈
(−∞,−r1) or v, v′ ∈ (r1,+∞). In both these cases, we may find points u0, . . . ,
un in D such that u0 = v′, un = v, and |uj − uj−1| ≤ Mθ for all 1 ≤ j ≤ n. Put
s0 = s′ and sn = s. Moreover, according to Proposition 5.1, for each 1 ≤ j ≤ n−1,
there exist sj ∈ S and wj ∈ R such that sj ∈ Awj

(k, uj).
For each 1 ≤ j ≤ n, since |uj−uj−1| ≤ Mθ, Corollary 6.2 implies that sj = sj−1.

By using this fact repeatedly, we conclude that s′ = s1 = · · · = sn−1 = s. �
Thus, we are able to define the function ϕ : K → S where ϕ(k) is the element s

given by Proposition 7.1. By symmetry, we may also define a function ψ : S → K
such that ψ(s) is the element k given by the symmetric version of Proposition 7.1.

We will show that ϕ is a homeomorphism by proving that ϕ and ψ are continuous
and ψ = ϕ−1. First we will prove another property of the sets Aw(k, v).

8. A fundamental property of the sets Aw(k, v) when M2 < 2

The next proposition is a version of [11, Proposition 3.3] for the sets Aw(k, v)
and will help us prove that the functions ϕ and ψ defined in the previous section are
homeomorphisms provided that we change r1 in the statement of Proposition 7.1
by a convenient number greater than it. See Proposition 9.1.
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Proposition 8.1. There exists r2 ≥ r1, depending only on M and θ, such that, for
all k ∈ K and v ∈ R with |v| > r2, if s ∈ Aw(k, v) for some w ∈ R and Bz(s,w) 	= ∅
for some z ∈ R, then Bz(s,w) = {k}.

Proof. Pick k′ ∈ Bz(s,w), and we must show that k′ = k. Suppose the contrary
and fix f0 ∈ A such that

(8.1)
∣∣∣f0(k)− v

2

∣∣∣ ≤ 1

2M
,

∣∣∣∣f0(k′) + |v|
2|z|z

∣∣∣∣ ≤ 1

2M
, and ‖f0‖ ≤ |v|

2
+

1

2M
.

Thus,

ω(k, f0, v) ≤
|v|
2

+
1

2M
.

Applying the definition of Aw(k, v) to f0, we see that

|Tf0(s)− w| ≤ Mω(k, f0, v) + 1 ≤ M

2
|v|+ 3/2.

Moreover, since

‖Tf0‖ ≤ M‖f0‖+ 1/2 ≤ M

2
|v|+ 1,

it follows that

ω(s, Tf0,w) ≤
M

2
|v|+ 3/2.

So, by applying the definition of Bz(s,w) to Tf0, we have

(8.2) |f0(k′)− z| = |T−1(Tf0)(k
′)− z| ≤ Mω(s, Tf0,w) + 1 ≤ M2

2
|v|+ 3M

2
+ 1.

On the other hand, since |w| = |v|/M − 1 and |z| = |w|/M − 1 we obtain that

|z| =
(
|v|
M

− 1

)
1

M
− 1 =

|v|
M2

− 1

M
− 1.

Furthermore, according to (8.1),

(8.3) |f0(k′)− z| ≥
∣∣∣∣ |v|2|z|z + z

∣∣∣∣ − 1

2M
=

|v|
2

+ |z| − 1

2M
=

|v|
2

+
|v|
M2

− 3

2M
− 1.

Therefore, putting Δ′ =
3M

2
+ 2 +

3

2M
, by (8.2) and (8.3) we conclude that

(8.4)

(
1

2
+

1

M2
− M2

2

)
|v| ≤ Δ′.

Since M2 < 2, it can be easily seen that

1

2
+

1

M2
− M2

2
> 0.

So, there exists r2 ≥ r1 depending only on M and θ such that the inequality (8.4)
fails to be true for v ∈ R with |v| > r2, and the proposition is proved. �

As we did to r0 and r1, we may fix r2 given by the Proposition 8.1, and it is
clear that this constant also works for the sets Bz(s,w).
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9. The homeomorphism between K and S

Observe that the statements of Proposition 5.1, Corollary 6.2, Proposition 7.1,
and Proposition 8.1 remain true if we change r0 and r1 to r2. Thus consider ϕ and
ψ as defined at the end of section 7. To complete the proof of Theorem 1.4, we prove
Proposition 9.1. Its proof is essentially the same as the reasoning in [11, Section 4].

Proposition 9.1. The functions ϕ : K → S and ψ : S → K are continuous and
ψ = ϕ−1.

Proof. First we will show that ψ = ϕ−1. Fix k ∈ K. By the definition of ϕ(k) there
are v,w ∈ R with |v| > (r2 + 1)M such that ϕ(k) ∈ Aw(k, v). Thus, |w| > r2, and
by Proposition 5.1 there exists z ∈ R satisfying Bz(ϕ(k),w) 	= ∅. Then, according
to Proposition 8.1 we know that Bz(ϕ(k),w) = {k}. Therefore, it follows by the
definition of ψ that ψ(ϕ(k)) = k. Hence ψ ◦ ϕ = IdK . Analogously we deduce that
ϕ ◦ ψ = IdS .

We now pass to proving that ϕ is continuous. The proof that ψ is continuous
is analogous. Observe that it suffices to prove that for each net (kj)j∈J of K
converging to k ∈ K, the net (ϕ(kj))j∈J admits a subnet converging to ϕ(k).

Assume then that (kj)j∈J is a net of K converging to k. For all j ∈ J take vj
and wj such that |vj | = c, for some c > r2, and

(9.1) ϕ(kj) ∈ Awj
(kj , vj).

Since the nets (vj)j∈J and (wj)j∈J are limited, we may assume that there are
v,w ∈ R such that vj → v and wj → w. For each f ∈ A we have

(9.2) ω(kj , f, vj) → ω(k, f, v),

and according to (9.1),

(9.3) |Tf(ϕ(kj))− wj | ≤ Mω(kj , f, vj) + 1 ∀j ∈ J.

Fix f0 ∈ A satisfying

‖f0‖ ≤ |v|/2 + 1

2M
and |f0(k)− v/2| ≤ 1

2M
.

Then (9.3) implies that

|Tf0(ϕ(kj))| ≥ |wj | − |Tf0(ϕ(kj))− wj | ≥
c

M
−Mω(kj , f0, vj)− 2

for every j ∈ J . Notice that

ω(k, f0, v) ≤ |v|/2 + 1

2M
= c/2 +

1

2M
.

So, by (9.2) we have

lim inf
j∈J

|Tf0(ϕ(kj))| ≥
(

1

M
− M

2

)
c− 5/2,

and since c > r2 ≥ r0, observing (5.3), we obtain

lim inf
j∈J

|Tf0(ϕ(kj))| > 0.

Since Tf0 vanishes at infinity, this implies that (ϕ(kj))j∈J admits a subnet con-
verging to some s ∈ S, so we assume that ϕ(kj) → s. Hence, by (9.2) and (9.3),

|Tf(s)− w| ≤ Mω(k, f, v) + 1 ∀f ∈ A,

which means that s ∈ Aw(k, v) = {ϕ(k)}. Consequently s = ϕ(k). �
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10. On quasi-isometries on subsets of C
(1)
0 (K) spaces

The purpose of this section is to present the proof of Theorem 1.5. It follows
immediately from Theorem 1.4 and the following proposition.

Proposition 10.1. Let K and S be locally compact subsets of R with no isolated

points and assume that the inequalities (1.2) hold for all f in C
(1)
0 (K) or in C

(1)
0 (S).

Suppose that there exists an (M,L)-quasi-isometry T from A ⊂ C
(1)
0 (K) to B ⊂

C
(1)
0 (S), where A and B are ‖ · ‖∞-bounded and D(A) and D(B) are BS-subsets

of C0(K) and C0(S), respectively. Then there exists an (M,L′)-quasi-isometry

T̂ : D → E, where D and E are BS-subsets of C0(K) and C0(S), respectively.

Proof. Since A and B are ‖ · ‖∞-bounded, fix c > 0 such that ‖h‖∞ ≤ c for all
h ∈ A or h ∈ B. Now, notice that since T is a quasi-isometry, T (A) is θ-dense in
B for some θ > 0. Then, by (1.2), for every f ∈ B there is g ∈ T (A) such that
‖f ′ − g′‖∞ ≤ ‖f − g‖ ≤ θ. Thus, D(T (A)) is θ-dense in D(B). Therefore, since
D(B) is a BS-subset of C0(S), it follows by Proposition 2.3(3) that

D(T (A)) is a BS-subset of C0(S).(10.1)

Next, according to (1.2), for every f, g ∈ A we have

‖(Tf)′ − (Tg)′‖∞ ≤ ‖Tf − Tg‖ ≤ M‖f − g‖+ L

≤ M‖f ′ − g′‖∞ +M‖f − g‖∞ + L

≤ M‖f ′ − g′‖∞ + 2Mc+ L

and

‖(Tf)′ − (Tg)′‖∞ ≥ ‖Tf − Tg‖ − ‖Tf − Tg‖∞ ≥ 1

M
‖f − g‖ − L− 2c

≥ 1

M
‖f ′ − g′‖∞ − L− 2c.

Hence putting L′ = 2Mc+ L, it follows that

1

M
‖f ′ − g′‖∞ − L′ ≤ ‖(Tf)′ − (Tg)′‖∞ ≤ M‖f ′ − g′‖∞ + L′ ∀f, g ∈ A.(10.2)

Since (10.1) and (10.2) hold, if we could define T̂ : D(A) → D(T (A)) by

T̂ (f ′) = (Tf)′,(10.3)

then T̂ would be an (M,L′)-quasi-isometry between BS-subsets, as we wished.

However, since D is not necessarily injective, we cannot guarantee that the T̂ given
by (10.3) is well defined. To fix this, we pick a set of representatives C ⊂ A of the
equivalence relation f ∼ g if and only if f ′ = g′ ∀f, g ∈ A.

Then surely D is injective in C and moreover the T̂ given by (10.3) is well defined

if we put T̂ : D(C) → D(T (C)). We know that D(C) = D(A); thus D(C) is a BS-

subset of C0(K). Furthermore, by (10.2) the map T̂ is an (M,L′)-quasi-isometry.
We have only to show that D(T (C)) is a BS-subset of C0(S). Notice by (10.2) that
if f, g ∈ A and f ∼ g, then ‖(Tf)′ − (Tg)′‖∞ ≤ L′.

Consequently D(T (C)) is L′-dense in D(T (A)). Hence by (10.1) and Proposi-
tion 2.3(3) D(T (C)) is a BS-subset of C0(S), and the proof is finished. �
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11. A nonlinear extension of Cambern, Pathak,

and Vasavada theorems

In this last section we will show that in fact Corollary 1.6 is a consequence of
Theorem 1.5. First we need to prove Lemma 11.1 and Proposition 11.2.

Lemma 11.1. Let K be a locally compact subspace of R with no isolated points.
Let U ⊂ K be an open set with k ∈ U . Then for any 0 < ε ≤ 1 there exists

f ∈ C
(1)
0 (K) such that f(K \U) = f ′(K \U) = {0}, ‖f‖∞ ≤ ε, f ′(k) = ‖f ′‖∞ = 1,

and f ′(u) ≥ −ε ∀u ∈ U.

Proof. Since K is locally compact, take θ > 0 such that [k−θ, k+θ]∩K is compact
and contained in U . Now, let a, b ∈ R such that k ∈ (a, b) ⊂ (k − θ, k + θ). We fix
three continuous functions as follows. Take g1 : [k − θ, a] → R such that

(i) −ε ≤ g1(u) ≤ 0 ∀u ∈ [k − θ, a] and g1(k − θ) = g1(a) = 0;
(ii)

∫
g1(t)dt = −ε.

Then, take g2 : [a, b] → R such that

(iii) 0 ≤ g2(u) ≤ 1 ∀u ∈ [a, b], g2(a) = g2(b) = 0, and g2(k) = 1;

(iv)
∫ k

a
g2(t)dt =

∫ b

k
g2(t)dt = ε.

Finally, take g3 : [b, k + θ] → R such that

(v) −ε ≤ g3(u) ≤ 0 ∀u ∈ [b, k + θ] and g3(b) = g3(k + θ) = 0;
(vi)

∫
g3(t)dt = −ε.

Let g ∈ C0(R) vanish outside [k−θ, k+θ] and be identical to each of the functions
above at their domain. Next, define G : R → R by

G(x) =

∫ x

k−θ

g(t)dt.

Then G is continuous and it follows by (ii), (iv), and (vi) that ‖G‖∞ ≤ ε and
G vanishes outside [k − θ, k + θ]. Finally, define f = G|K . Then, of course,
f is differentiable and f ′ ≡ g|K . Moreover, since both G and g vanish outside
[k − θ, k + θ], we see that f and f ′ vanish in K \ [k − θ, k + θ]. Hence f(K \ U) =

f ′(K \U) = {0}. Since [k− θ, k+ θ]∩K is compact, we deduce that f ∈ C
(1)
0 (K).

Since ‖G‖∞ ≤ ε, we obtain that ‖f‖∞ ≤ ε and by (i), (iii), and (v), we conclude
that f ′(k) = ‖f ′‖∞ = 1 and f ′(u) ≥ −ε ∀u ∈ U. �

Next, it will be convenient to use the following notation with H = K or H = S:

B∞[f, r] = {g ∈ C
(1)
0 (H) : ‖f − g‖∞ ≤ r} ∀f ∈ C

(1)
0 (H) and r > 0.

Proposition 11.2. D (B∞[0, r]) is a BS-subset of C0(K) for all r > 0.

Proof. Since D(B∞[0, r]) = rD(B∞[0, 1]), by Proposition 2.3(1), it suffices to prove
that D(B∞[0, 1]) is a BS-subset of C0(K).

Given k ∈ K and v ∈ R, we fix, for each U ∈ Vk, fk,U ∈ C
(1)
0 (K) given by

Lemma 11.1 for U , k, and ε =
1

2|v| and define Fk,v,U = v · fk,U .
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It is easily seen that the following properties of the functions Fk,v,U are valid:

(a) F ′
k,v,U (K \ U) = {0}, F ′

k,v,U (k) = v, and ‖F ′
k,v,U‖∞ = |v|;

(b) inf{|F ′
k,v,U (t)− αv| : t ∈ K and α ∈ [0, 1]} ≤ 1

2
;

(c) ‖Fk,v,U‖∞ ≤ 1

2
.

Now, let W = {Fk,v,U : k ∈ K, v ∈ R, U ∈ Vk} and define Z = W +W . It is
easy to verify by (a), (b), and (c) that D(Z) = D(W ) +D(W ) is a (1/2, 1)-subset
of C0(K). Moreover, according to (c) we have

‖Fk,v,U + Fk′,v′,U ′‖∞ ≤ ‖Fk,v,U‖∞ + ‖Fk′,v′,U ′‖∞ ≤ 1.

Thus Z ⊂ B∞[0, 1], and hence D(B∞[0, 1]) ⊃ D(Z) is a BS-subset of C0(K). �

We are now ready to prove the main result of this section.

Proof of Corollary 1.6. Let K and S be locally compact subsets of R with no

isolated points and suppose that the inequalities (1.2) hold for every f ∈ C
(1)
0 (K)

or f ∈ C
(1)
0 (S). Assume there is a bijective (M,L)-quasi-isometry T : C

(1)
0 (K) →

C
(1)
0 (S) withM <

√
2 and that T is a quasi-isometry with respect to the sup norms.

Pick M ′ ≥ 1 and L′ ≥ 0 such that T : (C
(1)
0 (K), ‖ · ‖∞) → (C

(1)
0 (S), ‖ · ‖∞) is an

(M ′, L′)-quasi-isometry. Put r = M ′(L′ + 1) and A = B∞[0, r] in C
(1)
0 (K).

Now, consider T̂ : A → T (A) the restriction of T to A. It follows that T̂ is

an (M,L)-quasi-isometry with M <
√
2 and by Proposition 11.2 that D(A) is a

BS-subset of C0(K). Moreover, T (A) is ‖ · ‖∞-bounded because

‖T (f)− T (0)‖∞ ≤ M ′‖f‖∞ + L′ ≤ M ′r + L′ ∀f ∈ A.

Next, we will show that D(T (A)) is a BS-subset of C0(S). Observe that it suffices
to prove that B∞[T (0), 1] ⊂ T (A). Thus, let g ∈ B∞[T (0), 1]. Then

1

M ′ ‖T
−1(g)‖∞ − L′ ≤ ‖T (T−1(g))− T (0)‖∞ ≤ 1,

which implies that ‖T−1(g)‖∞ ≤ r, i.e., T−1(g) ∈ A or equivalently g ∈ T (A).

Therefore, T̂ : A → T (A) satisfies the hypothesis of Theorem 1.5, which implies
that K and S are homeomorphic. This completes the proof.
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