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Abstract: This work introduces a novel numerical method designed to address three-dimensional
unsteady free surface flows incorporating integral viscoelastic constitutive equations, specifically the
K–BKZ–PSM (Kaye–Bernstein, Kearsley, Zapas–Papanastasiou, Scriven, Macosko) model. The new
proposed methodology employs a second-order finite difference approach along with the deformation
fields method to solve the integral constitutive equation and the marker particle method (known as
marker-and-cell) to accurately capture the evolution of the fluid’s free surface. The newly developed
numerical method has proven its effectiveness in handling complex fluid flow scenarios, including
confined flows and extrudate swell simulations of Boger fluids. Furthermore, a new semi-analytical
solution for velocity and stress fields is derived, considering fully developed flows of a K–BKZ–PSM
fluid in a pipe.

Keywords: K–BKZ; PSM; free surface; Boger fluids; finite difference

1. Introduction

Discovered and developed in the late twentieth century, viscoelastic materials have
been used in a number of different applications (polymer industry, biomedicine, automotive
industry, food, paints, etc.). Their use is often based on trial and error procedures, resulting
in wasting raw material and time before a good end product is achieved. To mitigate
this problem, numerical simulations are often used to predict the best material processing
conditions. Usually, the simulations are based on the finite element, finite volume and finite
difference methods, and the constitutive equations are, in most cases, defined by rheological
differential models, such as Oldroyd-B [1], UCM (Upper-convected Maxwell) [2,3], PTT
(Phan–Thien–Tanner) [4,5], FENE-P (Finite Extensible Nonlinear Elastic Peterlin) [6,7] and
Giesekus models [7]. Simulations of three-dimensional real-world applications require a
great deal of computational effort, making the convergence of the algorithms in a reasonable
amount of time a difficult task [4]. However, recent technological advances in scientific
computing and the development of faster computers have led researchers to perform
simulations in more complex geometries and use more sophisticated rheological models
(that use integral equations instead of partial differential equations).

It is known that integral constitutive equations can better model various viscoelastic
fluids, such as high-density polyethylene (HDPE) [8,9] and low-density polyethylene
(LDPE) [10] (used in the injection molding industry), and one of the most successful
integral models is the K–BKZ–PSM [11–13] (see also [14,15]). Therefore, there is significant
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interest among research groups worldwide in developing numerical methods to deal with
the K–BKZ model, particularly with an emphasis on its application to polymer flows. Many
studies have focused on simulating data and phenomena associated with polymer melt
flows in rheology and polymer processing; however, there is still a need for further efforts
to tackle numerical solutions of the K–BKZ–PSM for three-dimensional, time-dependent,
free surface flows.

The vast majority of problems studied in the literature (considering integral models) are
about confined flows, such as entry flows [9,16,17] and flows in abrupt contractions [18–22].
Regarding free surface flows, Mitsoulis and Malamataris [20] extended the implementation
of the free boundary condition (FBC) method to viscoelastic fluids governed by integral
constitutive equations. Specifically, they focused on the K–BKZ–PSM model. To validate
their numerical approach, they used the finite element method (FEM) to obtain results in
simple test cases, including planar flow at an angle and Poiseuille flow in a tube, where
analytical solutions are available for comparison. Furthermore, they have applied the
FBC method to the K–BKZ–PSM model using data from a benchmark polymer melt,
specifically the IUPAC-LDPE melt. Some other researchers have also considered flows with
free surfaces [8,14,23–27]. Ganvir et al. [25] developed a novel approach for simulating
extrudate swell using an Arbitrary Lagrangian Eulerian (ALE) technique in conjunction
with a finite element formulation. The constitutive behavior of the melt was modeled
using a differential exponential Phan–Thien–Tanner (PTT) viscoelastic model. With the
proposed method, they have conducted simulations of extrudate swell in both planar and
axisymmetric extrusion scenarios, which involve an abrupt contraction ahead of the die
exit. Regarding three-dimensional (3D) flows, Rasmussen [28] developed a Galerkin finite
element method for simulating three-dimensional transient viscoelastic flows. The method
used a Lagrangian kinematic description and integral constitutive models. The numerical
implementation was validated with the calculation of various transient and steady drag
correction factors for the motion of a sphere in a cylinder containing an upper convected
Maxwell fluid. Later, Marín and Rasmussen [29] extended the Galerkin finite element
method for simulating three-dimensional transient and non-isothermal flows of K–BKZ
type fluids. Tomé et al. [27] proposed a novel numerical approach to tackle the simulation
of 3D viscoelastic unsteady free surface flows governed by the Oldroyd-B differential
constitutive equation. The numerical method involves solving the governing equations
using a finite difference approach on a 3D-staggered grid. To validate the accuracy and
reliability of the proposed technique, an exact solution of the flow of an Oldroyd-B fluid
inside a 3D-pipe was employed. The results obtained through numerical simulations
included the analysis of transient extrudate swell and jet buckling.

Summarizing, previous studies in the field of free surface flows have predominantly
centered around two-dimensional (2D) scenarios and used the finite element method. These
investigations primarily revolve around the extrudate swell problem, considering both
steady and unsteady flows; however, it is worth noting that these studies relied on differen-
tial viscoelastic constitutive equations. Therefore, this work introduces a novel numerical
method specifically designed to address 3D unsteady free surface flows incorporating
integral viscoelastic constitutive equations, specifically, the K–BKZ–PSM model. The key
innovation lies in the development of a robust numerical method for integral models using
the finite difference method on a staggered grid, which enables accurate predictions of
extrudate swell phenomena. We also derive a new semi-analytical solution for the fully
developed flow of a K–BKZ–PSM viscoelastic fluid, which can serve for other authors to
verify their own numerical implementations of the K–BKZ–PSM integral viscoelastic model.

It is worth noting that the FEM prominently features in the limited body of work
concerning this subject. Nevertheless, both FEM and FDM stand as extensively used
numerical approaches for tackling partial differential equations (PDEs). When properly
employed within suitable conditions, both techniques exhibit stability. Within our re-
search group, a longstanding tradition exists regarding leveraging the finite difference
method [2,4,27,30–32], resulting in a profound mastery of its implementation. Furthermore,
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the group has made innovative strides in enhancing the fundamental finite difference
methodology. This progression equips us to adeptly handle different grid structures and
a range of discretization choices. Consequently, this method takes precedence in our
current work.

The paper is structured as follows. In Section 2, we introduce the governing equations
for isothermal and incompressible viscoelastic flows modelled by the K–BKZ–PSM con-
stitutive equation. Section 3 is devoted to the numerical method, where the variant of the
marker particle method that employs the finite difference method on a staggered grid is
described for 3D flows using the K–BKZ–PSM viscoelastic integral model. In Section 4,
we derive a new semi-analytical solution for the fully developed flow of a K–BKZ–PSM
viscoelastic fluid. For validation of the newly developed numerical method, two case
studies are analyzed in Section 5, the confined pipe flow and the extrudate swell free
surface flow of a Boger fluid. The paper ends with the conclusions in Section 6.

2. Governing Equations

The isothermal and incompressible fluid flow considered in this work is governed by
the dimensionless continuity and linear momentum equations [27],

∇ · v = 0 , (1)
∂v
∂t

+∇ · (vv) = −∇p +
1

Re
∇2v +∇ ·Φ +

1
Fr2 g, (2)

together with a constitutive equation for the stress. Φ is a stress tensor given by

Φ = τ − 1
Re

γ̇ , with γ̇ = ∇v + (∇v)T, (3)

where τ is a non-Newtonian stress tensor, v(u, v, w) is the velocity field, p is the kine-
matic pressure, g is the gravity acceleration vector and t is the time. In these equations,
Fr = U/

√
Lg is the Froude number, Re = ρ0UL/η0 is the Reynolds number, η0 is the

zero-shear-rate viscosity, ρ0 is the fluid density, g the magnitude of the gravity acceleration
vector and U and L are the characteristic velocity and length scales, respectively. Note that
all variables are dimensionless, with: x = x/L, v = v/U, t = t U/L, p = p/(ρU2) and
Φ = Φ/(ρU2).

The constitutive equation for the non-Newtonian stress tensor is given by the
K–BKZ–PSM model [11],

τ(t) =
∫ t

−∞
M(t− t′)H(I1, I2)Bt′(t)dt′ , (4)

where

M(t− t′) =
m1

∑
k=1

ak
λkWi

e
− t−t′

λkWi , (5)

is the memory function, λk is the relaxation time of the fluid, ak is a model parameter
and m1 is the number of modes. H(I1, I2) is the Papanastasiou–Scriven–Macosko decay
function, being given by

H(I1, I2) =
α

α− 3 + βI1 + (1− β)I2
. (6)

Bt′(t) is the Finger tensor, and I1 = tr[Bt′(t)], I2 = 1
2
(
(I1)

2 − tr[B2
t′(t)]

)
are the first and

second invariants of Bt′(t), respectively. The parameters ak, λk, α and β are obtained from
a fit to rheological data. Wi = λre f U/L is the Weissenberg number, the viscosity is given

by η0 = ∑m1
k=1 akλk and λre f = ∑m1

k=1
akλ2

k
akλk

is the mean relaxation time [14].

In this work, the method of deformation fields [33] is used to update the Finger tensor
as the fluid flows. In this methodology, (N + 1)-deformation instants (t′) are defined in the
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interval [0, t] where the history of deformation is stored. This deformation is updated by
solving the transport equation for Bt′(t),

∂

∂t
Bt′(x, t) + v(x, t) · ∇Bt′(x, t) =[∇v(x, t)]T · Bt′(x, t) + Bt′(x, t) · ∇v(x, t) . (7)

The governing equations are solved in a Cartesian 3D system (x, y, z, t) where

p = p(x, y, z, t),

v = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))T ,

τ(x, y, z, t) =

 τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 and Bt′(t)(x, y, z, t) =

 Bxx Bxy Bxz

Bxy Byy Byz

Bxz Byz Bzz

.

This results in the following system of equations that need to be solved for the pressure,
velocity and stress:

continuity equation:
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0. (8)

linear momentum equations:

∂u
∂t

+
∂(uu)

∂x
+

∂(vu)
∂y

+
∂(wu)

∂z
=− ∂p

∂x
+

1
Re

[
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

]
+

∂Φxx

∂x
+

∂Φxy

∂y
+

∂Φxz

∂z
+

1
Fr2 gx,

∂v
∂t

+
∂(uv)

∂x
+

∂(vv)
∂y

+
∂(wv)

∂z
=− ∂p

∂y
+

1
Re

[
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

]
+

∂Φxy

∂x
+

∂Φyy

∂y
+

∂Φyz

∂z
+

1
Fr2 gy,

∂w
∂t

+
∂(uw)

∂x
+

∂(vw)

∂y
+

∂(ww)

∂z
=− ∂p

∂z
+

1
Re

[
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

]
+

∂Φxz

∂x
+

∂Φyz

∂y
+

∂Φzz

∂z
+

1
Fr2 gz,

(9)

where gx, gy, gz are the Cartesian components of the gravity vector.

stress tensor Φ:
Φxx = τxx − 2

Re
∂u
∂x

,

Φxy = τxy − 1
Re

[
∂u
∂y

+
∂v
∂x

]
,

Φxz = τxz − 1
Re

[
∂u
∂z

+
∂w
∂x

]
,

Φyy = τyy − 2
Re

∂v
∂y

,

Φyz = τyz − 1
Re

[
∂v
∂z

+
∂w
∂y

]
,

Φzz = τzz − 2
Re

∂w
∂z

.

(10)
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stress tensor τ:

τxx(t) =
∫ t

−∞

m1

∑
k=1

ak
Wiλk

e
− (t−t′)

Wiλk
α

α− 3 + βI1 + (1− β)I2
Bxx

t′ (t)dt′,

τxy(t) =
∫ t

−∞

m1

∑
k=1

ak
Wiλk

e
− (t−t′)

Wiλk
α

α− 3 + βI1 + (1− β)I2
Bxy

t′ (t)dt′,

τxz(t) =
∫ t

−∞

m1

∑
k=1

ak
Wiλk

e
− (t−t′)

Wiλk
α

α− 3 + βI1 + (1− β)I2
Bxz

t′ (t)dt′,

τyy(t) =
∫ t

−∞

m1

∑
k=1

ak
Wiλk

e
− (t−t′)

Wiλk
α

α− 3 + βI1 + (1− β)I2
Byy

t′ (t)dt′,

τyz(t) =
∫ t

−∞

m1

∑
k=1

ak
Wiλk

e
− (t−t′)

Wiλk
α

α− 3 + βI1 + (1− β)I2
Byz

t′ (t)dt′,

τzz(t) =
∫ t

−∞

m1

∑
k=1

ak
Wiλk

e
− (t−t′)

Wiλk
α

α− 3 + βI1 + (1− β)I2
Bzz

t′ (t)dt′.

(11)

Finger tensor B:

∂Bxx

∂t
+

∂(uBxx)

∂x
+

∂(vBxx)

∂y
+

∂(wBxx)

∂z
=2
[

∂u
∂x

Bxx +
∂u
∂y

Bxy +
∂u
∂z

Bxz
]

,

∂Bxy

∂t
+

∂(uBxy)

∂x
+

∂(vBxy)

∂y
+

∂(wBxy)

∂z
=

∂v
∂x

Bxx +

[
∂u
∂x

+
∂v
∂y

]
Bxy

+
∂v
∂z

Bxz +
∂u
∂y

Byy +
∂u
∂z

Byz,

∂Bxz

∂t
+

∂(uBxz)

∂x
+

∂(vBxz)

∂y
+

∂(wBxz)

∂z
=

∂w
∂x

Bxx +
∂w
∂y

Bxy +

[
∂u
∂x

+
∂w
∂z

]
Bxz

+
∂u
∂y

Byz +
∂u
∂z

Bzz,

∂Byy

∂t
+

∂(uByy)

∂x
+

∂(vByy)

∂y
+

∂(wByy)

∂z
=2
[

∂v
∂x

Bxy +
∂v
∂y

Byy +
∂v
∂z

Byz
]

,

∂Byz

∂t
+

∂(uByz)

∂x
+

∂(vByz)

∂y
+

∂(wByz)

∂z
=

∂w
∂x

Bxy +
∂v
∂x

Bxz +
∂w
∂y

Byy

+

[
∂v
∂y

+
∂w
∂z

]
Byz +

∂v
∂z

Bzz,

∂Bzz

∂t
+

∂(uBzz)

∂x
+

∂(vBzz)

∂y
+

∂(wBzz)

∂z
=2
[

∂w
∂x

Bxz +
∂w
∂y

Byz +
∂w
∂z

Bzz
]

.

(12)

3. Numerical Method

The governing equations are solved by a variant of the marker particle method [4,27],
which employs the finite difference method on a staggered grid. This methodology
is implemented in the FREEFLOW-3D code developed by researchers from the Insti-
tute of Mathematical and Computing Sciences (ICMC) at the University of São Paulo
(USP) in Brazil. Code details can be found in [4,27,30,31] considering 2D, 3D and ra-
dial symmetry flows. The precision of the numerical technique and its validation for
three-dimensional viscoelastic flows with a free surface is presented in the works of
Tomé et al. [27,30] (which only uses differential constitutive equations). The use of in-
tegral models in three-dimensional flows (considering free surface problems) has not yet
been tested on this system (see Tomé et al. [4,27,30,31]). The novelty of this work is to
incorporate equations for viscoelastic fluids using integral models (more complex than the
differential type models) in the FREEFLOW-3D system.
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In this methodology, the velocity field is approximated in the face of the cells, and the
other variables, denoted by ζ, are evaluated in the center of the computational cells (see
Figure 1a). The technique adopted here is presented by Tomé et al. [30,31] for differential
models, where the free surface is defined by marker particles that move with the local fluid
velocity. In addition, the computational cells are defined as (see also Figure 1b):

� Fluid entrance: Inflow — I,
� Fluid exit: Outflow — O,
� Rigid boundaries: Boundary — B,
� Empty cells: Empty — E,
� Free surface cells: Surface — S,
� Full cells: Full — F.

(a)
(b)

Figure 1. (a) Typical three-dimensional staggered cell and (b) illustration of cell type classifica-
tion used.

To solve Equations (1) and (2), one must specify boundary conditions for the velocity
field. A velocity field (Vin f ) is prescribed in the fluid inlet cells (inflows), and a fully
developed flow is assumed in the outflow (a homogeneous Neumann boundary condition
∂v/∂n = 0 is assumed, where n is the normal direction to the contour). In the fluid inlet
cells (inflows), we assume that ∂p

∂n = 0 and the Finger tensor Bt′ is the identity matrix. In

outflow regions, we assume Neumann conditions for Finger tensor
(

∂B
∂n = 0

)
, and we

assume p = 0. We also take v = 0 in rigid boundaries. Details of the boundary conditions
adopted in this work can be found in Tomé et al. [30] or Castelo et al. [31].

The solutions v(x, tn+1), p(x, tn+1) and τ(x, tn+1) at time step tn+1 = t + ∆t are ob-
tained in the following way: first, using the values of τ(x, tn), the velocity and pressure
fields at time tn+1 are calculated. Then, v(x, tn+1) is used to calculate the tensor τ(x, tn+1)
by the method of deformation fields, and, lastly, the free surface is updated. Specifically,
the following steps are performed:

Step 1 — Calculation of v(x, tn+1) and p(x, tn+1)

It is assumed that, at time t, the variables v(x, t) = v(n), p(x, t) = p(n), τ(x, t) = τ(n)

and the marker’s positions x(t) = x(n) are known. Then, v(x, tn+1) and p(x, tn+1) are
obtained as follows:

1. Calculate γ̇(n) =

[
∇v(n) +

(
∇v(n)

)T
]

, and, from the EVSS [34] transformation,

obtain Φ = τ(n) − 1
Re γ̇(n);

2. Calculate an intermediate velocity field ṽ(n+1) using the ideas of the projection
method [30,31] to uncouple the conservation of mass and momentum equations. An inter-
mediate velocity field ṽ(n+1) is obtained from Equation (2) using explicit Euler Methods,
where p(n) is an approximation to p(n+1). The boundary conditions for ṽ(n+1) are the
same as those for the final velocity v(n+1). Details of boundary conditions for full cells (F),
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outflow cells (O) and free surface cells (S) are provided in detail in Tomé et al. [4,30] and
will not be presented here for the sake of conciseness. It can be shown that ṽ(n+1) possesses
the correct vorticity at time tn+1, but it does not conserve mass in general. Therefore, there
is a potential function ψ(n+1) so that,

v(n+1) = ṽ(n+1) −∇ψ(n+1). (13)

3. Solve the Poisson equation for the potential function ψ for every F-cell in the domain,

∇2ψ(n+1) = ∇ · ṽ(n+1). (14)

The boundary conditions required for solving this Poisson equation are the homogeneous
Neumann conditions for rigid walls and inflows, while homogeneous Dirichlet conditions
are used at outflows.

4. Compute the final velocity field from Equation (13);
5. Compute the final pressure field (see [4]) by

p(n+1) = p(n) +
ψ(n+1)

∆t
. (15)

Details of the discretization of the equations (temporal and spatial) considering all types of
cells (see Figure 1b) are given in [4,27,30].

Step 2 — Calculation of the extra stress tensor τ(x, tn+1) and free surface update

To calculate the extra stress tensor τ(x, tn+1), initially, the Finger tensor is updated
at tn+1 for every full cell (F) and surface cell (S) for every intermediate time t′ using
Equation (7). Details of the calculation of the Finger B tensor (in two dimensions) can be
found in [32] and will not be presented here because the extension to three dimensions is
straightforward. Note that, for each computational cell (F and S), Equation (7) is solved
N times (for each t′), considering each of the components of the Finger tensor. Thus,
considering three-dimensional flows, the computational cost to obtain the deformation
history in each cell is high, demanding a great deal of memory and simulation time (since,
for each cell, it is necessary to calculate the Finger tensor N times for each component of
the deformation matrix). For inflow cells (I), boundary cells (B) and empty cells (E), the
Finger tensor is the identity tensor. In the outflow, the Neumann condition is assumed.

The definition of the points t′ for the calculation of the components of the Finger tensor
and the tensor τ are given as follows. Let t′j, j = 0, 1, · · · , N, be (N + 1)-points in the
interval [0, tn+1]. Then, the constitutive equation can be written in the form

τ(tn+1) =
∫ 0

−∞
M
(
tn+1 − t′

)
H(I1, I2)Bt′(tn+1)dt′

+

N−2
2

∑
j=0

∫ t′2j+2

t′2j

M
(
tn+1 − t′

)
H(I1, I2)Bt′(tn+1)dt′,

(16)

where an even N is assumed. For t′ < 0, Bt′(tn+1) = B0(tn+1), and, therefore, the first
integral becomes∫ 0

−∞
M(tn+1)H(I1(B0(tn+1)), I2(B0(tn+1)))B0(tn+1)dt′, (17)

and can be solved exactly.
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Each integral under the summation operator
∫ t′2j+2

t′2j
M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′

is approximated by the 3-points quadrature formula

I3 =A0 × H
(

I1

(
Bt′2j

(tn+1)
)

, I2

(
Bt′2j

(tn+1)
))

Bt′2j
(tn+1)

+ A1 × H
(

I1

(
Bt′2j+1

(tn+1)
)

, I2

(
Bt′2j+1

(tn+1)
))

Bt′2j+1
(tn+1)

+ A2 × H
(

I1

(
Bt′2j+2

(tn+1)
)

, I2

(
Bt′2j+2

(tn+1)
))

Bt′2j+2
(tn+1).

(18)

The coefficients A0, A1, A2 are obtained by solving the (3× 3) linear system

A0 + A1 + A2 = b0 =
∫ t′2j+2

t′2j

M
(
tn+1 − t′

)
dt′,

A0 × t′2j + A1 × t′2j+1 + A2 × t′2j+2 = b1 =
∫ t′2j+2

t′2j

M
(
tn+1 − t′

)
t′dt′,

A0 ×
(

t′2j

)2
+ A1 ×

(
t′2j+1

)2
+ A2 ×

(
t′2j+2

)2
= b2 =

∫ t′2j+2

t′2j

M
(
tn+1 − t′

)(
t′
)2dt′,

(19)

and are found to be

A2 =
t′2j+1t′2jb0 + b2 − t′2jb1 − t′2j+1b1(

t′2j+2

)2
− t′2j+1t′2j+2 + t′2j+1t′2j − t′2jt

′
2j+2

,

A1 =
−t′2jb1 + t′2jb0t′2j+2 + b2 − t′2j+2b1(

t′2j+1 − t′2j

)(
t′2j+1 − t′2j+2

) ,

A0 = −
−t′2j+1b1 + t′2j+1b0t′2j+2 + b2 − t′2j+2b1(

−t′2j+2 + t′2j

)(
t′2j+1 − t′2j

) .

(20)

One of the key issues of the deformation fields method is how the integration nodes
0 = t′0 < t′1 < · · · < t′N = tn+1 are distributed over the interval [0, tn+1] because such
distribution can affect the accuracy of the results when solving complex flows. In this
work, we used an ad hoc methodology for the discretization of the interval [0, tn+1], where
a geometric progression is employed to calculate the integration nodes. Note that we
consider time-dependent flows, and, therefore, the integration nodes are calculated at time
tn+1 as follows:

(a) Set t′0 = 0 and t′N = tn+1;
(b) t′N−j = t′N − qj, j = 1, 2, · · · , N − 1, where q = (tn+1/∆t)1/N .

The last step in the calculation is to update the position of the moving free surface (the
S-cell in Figure 1b). The fluid surface is represented by a piecewise linear surface composed
of triangles and quadrilaterals having marker particles on their vertices (see [30]). The
particle coordinates, stored at each time step, are updated, solving the equation

dx
dt

= v, (21)

by Euler’s method. With the new coordinates of each marker particle, a reclassification of
the free surface cells is performed. A free surface cell can become an empty cell (E-cell in
Figure 1b) or a full cell (F-cell in Figure 1b) or remain an S-type cell. Details on the marker
particles that define the free surface and the steps for inserting and removing particles will
not be shown here, but the reader can consult Tomé et al. [30] or Castelo et al. [31].
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4. Semi-Analytical Solution

We will now derive a semi-analytical solution for a fully developed three-dimensional
tube flow of a K–BKZ–PSM fluid to validate the numerical implementation. Due to the
complexity of the integral model, some simplifications need to be assumed to develop
the analytical solution, which is only possible for some types of domains. We consider
cylindrical coordinates (see Figure 2) for simplicity and assume pure shear flow. After
finding the semi-analytical solution, we present the change in variables to obtain the
solution in Cartesian coordinates.

Figure 2. Representation of the pipe and a section in the rz plane.

We assume that r ∈ [0, 1], u = 0, win = w(r), γ̇ =
∂w
∂r

, and

B(r, θ, z) =

 1 0 γ̇(t− t′)
0 1 0

γ̇(t− t′) 0 1 + γ̇2(t− t′)2

. (22)

The invariants I1 and I2 that are required in the Papanastasiou function H(I1, I2) take
the form

I1 = I2 = 3 + γ̇2(t− t′)2, (23)

and the tensor components are given by

τrr = τθθ =
a1α

Wi

∫ t

−∞

e−(t−t′)/Wi

α + γ̇2(t− t′)2 dt′ ,

τrz =
a1α

Wi

∫ t

−∞

γ̇(t− t′)e−(t−t′)/Wi

α + γ̇2(t− t′)2 dt′ ,

τzz =
a1α

Wi

∫ t

−∞

[
1 + γ̇2(t− t′)2]e−(t−t′)/Wi

α + γ̇2(t− t′)2 dt′ .

(24)

Taking the change in variables s = t− t′, these equations are rewritten as

τrr = τθθ =
a1α

Wi

∫ ∞

0

1 e−s/Wi

α + γ̇2s2 ds ,

τrz =
a1α

Wi

∫ ∞

0

γ̇se−s/Wi

α + γ̇2s2 ds ,

τzz =
a1α

Wi

∫ ∞

0

[
1 + γ̇2s2]e−s/Wi

α + γ̇2s2 ds.

(25)

Thus, the equations of continuity and balance of momentum become

−∂p
∂r

+
1
r

∂

∂r
(rτrr)− τθθ

r
= 0 , (26)
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−∂p
∂z

+
1
r

∂

∂r
(rτrz) = 0. (27)

Integrating Equation (26), we obtain

p(r, z) =
∫ 1

r
∂

∂r
(rτrr)dr−

∫
τθθ

r
dr + F(z). (28)

Thus,

∂p
∂z

= F′(z), (29)

and Equation (27) is rewritten as

1
r

∂

∂r
(rτrz) = F′(z). (30)

The left hand side of Equation (30) is just a function of r, so F′ must be constant, let us say
C, and therefore C = dp/dz. In this way, it follows that

τrz(r) =
1
2

Cr +
h(z)

r
, (31)

where τrz(r = 0) should be finite and therefore h(z) = 0, leading to

τrz(r) =
1
2

Cr. (32)

The second equation in Equation (25) can then be rewritten as

1
2

Cr =
a1α

Wi

∫ ∞

0

γ̇se−s/Wi

α + γ̇2s2 ds. (33)

The inlet boundary condition allows one to determine the constant C. The inflow velocity
win(r) is given by

win(r) = 1− r2, where win(0) = 1 and win(1) = 0, (34)

thus, ∫ 1

0
rwindr =

∫ 1

0
r(1− r2)dr =

1
4

. (35)

By mass conservation, ∫ 1

0
r win(r)dr =

1
4

, (36)

and integrating by parts leads to∫ 1

0
r win(r)dr =

[1
2

r2win(r)
]1

0
− 1

2

∫ 1

0
r2γ̇dr, (37)

with ∫ 1

0
r2γ̇dr = −1

2
. (38)

Thus, to determine C, we must obtain γ̇(r) from Equation (33) and verify that

F(C) =
∫ 1

0
r2γ̇dr +

1
2
= 0 is satisfied. (39)

The steps to calculate semi-analytical solutions are as follows:

Step 1: Set an interval
[
C0, C1

]
such that F(C0)× F(C1) < 0.
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Step 2: Determine the zero for |F(C)| taking |F(C)| < ε, where ε is a small value (ε is the
tolerance for the error). We carefully selected the value of ε to ensure the attainment
of a semi-analytical solution accurate to six significant digits. Using Gauss–Laguerre
quadrature in Equation (33), obtain γ̇(r). Using Equation (39), obtain the value of
F(C) using Simpson 1/3 quadrature.

Step 3: Lastly, determine τrr(r), τzz(r) and τrz(r) using the first and third equations in
Equations (25) and (32), respectively.

The solution in three dimensions is obtained by making the change in coordinates
as follows:  τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 = XYXT

where X =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

, Y =

 τrr 0 τrz

0 τθθ 0
τrz 0 τzz

 and

τxx = [cos(θ)2 + sin(θ)2]τrr,

τxy = [cos(θ)sin(θ)]τrr − [cos(θ)sin(θ)]τrr,

τxz = cos(θ)τrz,

τyy = [cos(θ)2 + sin(θ)2]τrr,

τyz = sin(θ)τrz,

τzz = τzz.

(40)

Thus, in three-dimensional Cartesian coordinates, we have that

τxx = τrr,

τxy = 0,

τxz =
x√

x2 + y2
τrz,

τyy = τrr,

τyz =
y√

x2 + y2
τrz,

τzz = τzz.

(41)

5. Results

The numerical code will now be used to solve confined (see Section 5.1) and free
surface flows (see Section 5.2).

5.1. Confined Pipe Flows

In this confined pipe flow, the fluid is assumed to have only one relaxation mode.
Therefore, it is possible to compare the simulation results with the semi-analytical solution
presented before. The parameters used in this simulation are (see Tomé et al. [32] and
Quinzani et al. [35]):

• Diameter L = 0.01 m, U = 0.025 m.s−1, ρ = 801.5 Kg.m−3;
• λre f = 0.1396 s, a1 = 1.6648 Pa, η0 = 0.2324 Pa.s;
• Number of deformation fields N = 50;
• Re = ρLU

η0
= 0.8621, Wi = λre f

U
L = 0.349;

• Geometry: 0.01 m × 0.01 m × 0.05 m;
• Meshes (number of cells in the x, y and z directions): M1 = 12 × 12 × 60

(δx = δy = 0.01
12 ), M2 = 16 × 16 × 80 (δx = δy = 0.01

16 ), M3 = 20 × 20 × 100
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(δx = δy = 0.01
20 ), M4 = 24× 24× 120 (δx = δy = 0.01

24 ) and M5 = 28× 28× 140
(δx = δy = 0.01

28 ).

Figure 3a,b show the velocity profiles w and u, respectively, with corresponding
cross-section velocity distributions in the plane xz (obtained mesh M3). The velocity
profiles are fully developed at t = 20 s, suggesting that they have reached a steady-state
condition. The velocity profile w shows a parabolic shape in the cross-section represented in
Figure 3a, while the influence of the inflow can be observed in the cross-section depicted in
Figure 3b, but the solution for u exhibits the expected physical behavior outside this region.
Notice that, in all full cells, the initial velocity vector is defined as v = (u, v, w) = (0, 0, 0).

Similar to the velocity vector, initial conditions for pressure and tensors are set to
zero in full cells. As shown in Figure 4a,b, the pressure and τxz tensor profiles are in
agreement with the physically expected profiles, i.e., linear profiles across the longitudinal
direction (flow direction) and transverse direction (perpendicular to the flow), respectively.
In addition, the values obtained for τxz are comparable with the behavior of the analytical
solution (see Figure 5b). In the cross-section represented in Figure 4b, there is an influence
of the inflow (tensors are defined as zero in the inflow, and the Finger tensor is defined
as the identity matrix), but, outside this region, the expected linear profile is obtained as
previously stated (for further details, refer to Figure 5b).

cross section view

(a)

cross section view

(b)

Figure 3. Velocity components u and w of v(u, v, w) along the plane xz (y = 0) at t = 20 s. (a) Visual-
ization of the velocity profile w. (b) Visualization of the velocity profile u.

cross section view

(a)

cross section view

(b)
Figure 4. Pressure and τxz distribution along the xz plane (y = 0). (a) Visualization of the pressure p.
(b) Visualization of the τxz tensor component.
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(a) w velocity. (b) τxz tensor.

(c) τzz tensor.
Figure 5. Comparison between the analytical and numerical solutions for (a) w velocity component
and tensors components (b) τxz and (c) τzz.

Figure 5a–c show, respectively, the solution for the velocity w and stress components
τxz and τzz using meshes M1–M5. The profiles were obtained at y = 0 and were taken
in the center of the pipe, z = zmax/2 for t = 10 (or t = 25 s). The results were compared
with the semi-analytical solution, with good agreement between the numerical results
(M1–M5) and the semi-analytical results. The instant t = 10 (t = 25 s) was chosen because
the velocity and stresses already show a steady state behavior (the velocity residual is small
(see Equation (42)). The residual (for the velocities) is calculated as

Res =

√
∑Nc

i=1{(ut
i − ut−∆t

i )2 + (vt
i − vt−∆t

i )2 + (wt
i − wt−∆t

i )2}
Nc

, (42)

where t is the simulation time, ∆t is the time step and Nc is the number of computational
cells. The slight variances between the analytical and numerical solutions can be attributed
to approximations made in the numerical simulations, which differ from the precise analyt-
ical solution. Although the tube’s length appears adequate for the complete development
of velocity and shear stress profiles, this completeness is not reflected in the τzz tensor.
Consequently, these disparities remain minor. It is worth noting that, across all meshes, the
average relative error remains below 5%.

Figure 6 shows the calculation of the residuals Res in meshes M1–M5 up to time
t = 10 (or, equivalently, t = 25 s). It can be observed that the residuals in the five meshes
M1–M5 decrease and show convergence towards a steady-state solution, thus proving the
robustness of the numerical method. As expected, we also observe a smaller residual for
the most refined meshes.
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Figure 6. Total residual in meshes M1, M2, M3, M4 and M5 up to t = 10 (or t = 25 s).

5.2. Free Surface Flows

In this subsection, we test the numerical method’s robustness by simulating the
extrudate swell phenomenon of Boger fluids. Please note that our aim is not to conduct
an in-depth study of this type of flow in Boger fluids; instead, we focus on assessing the
reliability of the numerical approach.

The phenomenon known as extrudate swell is very present in various industrial
processes. In this phenomenon, the fluid flows over a pipe/die and swells outside the free
surface region (the cross-sectional area of the extrudate—the material being extruded—is
larger after exiting the die compared to the die orifice). This behavior is mainly due to the
elastic recovery of the polymer chains after being subjected to high pressures and shear
forces during the extrusion process. Figure 7a shows the domain used in the simulation, and
Figure 7b illustrates the phenomenon of extrudate swell (with the contour lines representing
the trajectory of the fluid’s free surface).

(a) (b)
Figure 7. Schematic of a free surface simulation in the FREEFLOW-3D software. (a) Schematic
representation of the domain; (b) illustration of the extrudate swell. The fluid exits the tube and starts
to swell.

It should be remarked that simulating extrudate swell can be challenging due to sev-
eral numerical difficulties, which are now outlined: the extrusion process involves highly
non-uniform and complex flow patterns, especially near the die exit. These flows expe-
rience rapid changes in pressure and velocity, making it difficult to model accurately;
simulating extrusion processes requires discretizing the computational domain into smaller
elements or cells, and the geometry of the die can be quite intricate. Moreover, the simu-
lation must maintain numerical stability, which can be problematic in high-pressure and
high-shear regions; simulating extrudate swell is computationally intensive, especially for
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large-scale industrial extrusion processes and using integral models; extrudate swell is a
time-dependent phenomenon as the material continuously deforms and recovers during
extrusion. Capturing this transient behavior accurately in numerical simulations requires
precise time-stepping algorithms and may increase computational complexity. To address
these challenges, researchers often resort to simplifications and assumptions to reduce com-
putational complexity. However, in the context of this work, we take a different approach
by considering the complete system of equations and accounting for the full 3D geometry.

To test the robustness of the new numerical procedure, two different Weissenberg
numbers were considered (case C1 −Wi = 0.43 and case C2 −Wi = 0.64 ), both using non-
shear-thinning highly elastic polymer solutions (Boger fluids − see Table 1). Boger fluids
are a type of dilute polymer solution known for their remarkable elasticity, particularly at
low apparent shear rates, and this unique characteristic gives rise to a significant extrudate
swell during the extrusion process [14,36–38]. This makes Boger fluids ideal to test the
numerical implementation. Numerical simulation of extruded swelling in two dimensions
using the data used here (see Table 1) is presented in Mitsoulis [14].

Table 1. Parameters of the fluid used in the extrudate swell problem (see Mitsoulis [14]).

ρ0 = 868 kg/m3, α = 34,214

λre f = 0.081 s, β = 0.1, η0 = 2.4 Pa.s

k λk [s] ak [Pa] ηk [Pa.s]

1 0.4887× 10−3 s 3.1295× 103 Pa 1.5294 Pa.s

2 0.4464× 10−1 s 5.0917× 100 Pa 0.2273 Pa.s

3 2.8384× 10−1 s 2.2783× 100 Pa 0.6457 Pa.s

The following parameters were used in the simulations (see Mitsoulis [14] and
Tomé et al. [32]):

• Pipe dimension: 0.04 m× 0.04 m× 0.08 m; δx = δy = 0.04
16 (see Figure 7a);

• Pipe diameter 2L = 0.04 m;
• Number of deformation fields N = 50;
• C1 − U = 0.1067 m.s−1, Re = 0.7, Wi = 0.43;
• C2 − U = 0.1600 m.s−1, Re = 1.1, Wi = 0.64.

Figure 8 shows the flow development of a Boger fluid for two different Weissenberg
number values (cases C1 and C2). We conducted flow measurements at six different time
points to analyze the behavior of the fluid in the system. The first four time instants were
identical for both C1 and C2 cases, while the last two time points differed. Specifically,
for the lower inlet velocity case, we considered time points t̄ = 5 and 6 s, and, for the
other case, the time points were t̄ = 4 and 4.4 s. During the initial stages of both cases, the
fluid exhibited a smooth flow with a parabolic profile as it exited the tube. However, as
the process continued, swell occurred, causing the cross-sectional area of the extrudate to
increase after leaving the die. This swelling behavior significantly affects the flow dynamics
and needs to be carefully considered in the analysis. The simulation results show the
development of the fluid front as it reaches the wall. Notably, there are distinct differences
in swelling between two specific time instances: t̄ = 6 s (C1) and t̄ = 4.4 s (C2).

To characterize the extrudate swell phenomenon, an important parameter is the
dimensionless swelling rate χ = χmax/(2r), where χmax is the maximum swelling value
and r is the pipe radius. For case C1, the maximum swelling value is found to be χ = 1.78,
while, for case C2, the swelling rate increases to χ = 1.95. This was expected since the
Weissenberg number represents the ratio of the characteristic time scale of the elastic forces
acting on a fluid to the characteristic time scale of viscous forces, and, when a polymer melt
is subjected to shear flow (for example, in an extruder), the long polymer chains experience
deformation due to the flow-induced stretching and alignment. A higher Weissenberg
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number indicates a more elastic behavior of the polymer melt, leading to more significant
elastic recovery and increased extrudate swell.

Figure 8. Flow development of a Boger fluid for two different inlet velocities (cases C1 and C2).

We may therefore conclude that the numerical method employed in the simulations
demonstrates its capability to capture the transient physics of the extrudate swell problem
in detail, even for a small difference in the Weissenberg number (cases C1 and C2). It
accurately predicts the swelling behavior and allows for a better understanding of the
process dynamics. By accounting for the material properties and flow conditions, the
simulation provides valuable insights into the extrusion process and contributes to the
optimization of extrusion operations.

6. Conclusions

In this work, a novel numerical method was developed to address three-dimensional
unsteady free surface flows incorporating integral viscoelastic constitutive equations, specif-
ically the K–BKZ–PSM (Kaye–Bernstein, Kearsley, Zapas–Papanastasiou, Scriven, Macosko)
model. To implement this new approach, we integrated it into the FREEFLOW-3D code [27],
enhancing its capabilities for handling viscoelastic fluid behavior.

To validate the numerical methodology, we conducted simulations of K–BKZ–PSM fluids
in a pipe. The results were compared with a newly derived semi-analytical solution, and we
found that the simulations performed on five different meshes yielded excellent agreement
with the analytical solution. Furthermore, we applied our methodology to tackle flows with
free surfaces. One notable example was the simulation of the classic extrudate swell problem,
which involved a highly elastic polymeric solution known as the Boger fluid.

The significance of this work lies in the scarcity of literature concerning the simulation
of unsteady three-dimensional flows of K–BKZ–PSM fluids (and integral viscoelastic mod-
els in general) using finite differences, especially when considering problems with moving
free surfaces. Therefore, we hope that our contributions will inspire and encourage other
researchers to further develop and explore the numerical methods we have presented here.

In conclusion, our newly developed numerical method has proven its effectiveness
in handling complex fluid flow scenarios, including free surface flows such as extrudate
swell simulations. The successful validation against analytical solutions reinforces the
reliability of our approach and opens up opportunities for broader applications in the field
of viscoelastic fluid dynamics.
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