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Abstract

Several perturbations in the number of peripheral blood leukocytes, such as

neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID‐

19) severity, point to systemic molecular cell cycle alterations during severe acute

respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) infection. However, the land-

scape of cell cycle alterations in COVID‐19 remains primarily unexplored. Here, we

performed an integrative systems immunology analysis of publicly available

proteome and transcriptome data to characterize global changes in the cell cycle

signature of COVID‐19 patients. We found significantly enriched cell cycle‐

associated gene co‐expression modules and an interconnected network of cell

cycle‐associated differentially expressed proteins (DEPs) and genes (DEGs) by

integrating the molecular data of 1469 individuals (981 SARS‐CoV‐2 infected

patients and 488 controls [either healthy controls or individuals with other

respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division

cycles, cyclin‐dependent kinases, and mini‐chromosome maintenance proteins.

COVID‐19 patients partially shared the expression pattern of some cell cycle‐

associated genes with other respiratory illnesses but exhibited some specific

differential features. Notably, the cell cycle signature predominated in the patients'

blood leukocytes (B, T, and natural killer cells) and was associated with COVID‐19

severity and disease trajectories. These results provide a unique global under-

standing of distinct alterations in cell cycle‐associated molecules in COVID‐19

patients, suggesting new putative pathways for therapeutic intervention.

K E YWORD S

cell cycle associated molecules, COVID‐19 severity, proteomics, SARS‐CoV‐2, systems
immunology, transcriptomics

1 | INTRODUCTION

Although more than 12.8 billion vaccine doses have been administered

worldwide (as of October 10, 2022, WHO Coronavirus disease 2019

[COVID‐19] dashboard), resulting in a substantial reduction of case

fatality rates,1–3 new escape variants of severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) continue to represent a significant

challenge to global health. Indeed, recent reports estimate that

approximately 2000 daily deaths worldwide can be attributed to

COVID‐19.4 This threat to human health presents a continued medical

need to understand better the specific host immunological mechanisms

underlying SARS‐CoV‐2 infection and identify new therapeutic targets.5,6

Patients with severe COVID‐19 have a systemically altered innate

and adaptive immune response, characterized by hyperactivation of both

myeloid and lymphoid cells7–11 and the production of high circulating

autoantibody levels.12,13 Moreover, the altered composition of

granulocyte (sub)‐populations (neutrophilia and a marked decrease of

eosinophils and basophils), the emergence of immature neutrophils in

peripheral blood,14 as well as a profound lymphopenia (CD4+ and CD8+ T

cells, B cells, and natural killer [NK] cells) have been linked to more severe

illness. These observations suggest alterations in the molecular mecha-

nisms that orchestrate cell production and proliferation, including cell

cycle‐associated events that remain poorly characterized. For instance,

distinct phosphoproteomics perturbations of cell cycle‐associated mole-

cules in SARS‐CoV‐2‐infected cells point to cell cycle inhibitors as a

potential therapy for COVID‐19 patients.15 Thus, demanding a compre-

hensive understanding of the molecular alterations during SARS‐CoV‐2

infection in humans.

Viruses utilize diverse strategies and molecular targets to create

favorable conditions for replication,16,17 for example, by interfering

with the host cell cycle processes.18,19 Viruses such as influenza,

herpes, and coronaviruses (SARS‐CoV‐2 and murine coronavirus/
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F IGURE 1 (See caption on next page)
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mouse hepatitis virus) intervene at different cell cycle checkpoints

either by promoting or arresting cell cycle progression, or by

disrupting protein synthesis (G0/G1 transition), DNA duplication

(G1/S phase), or cell division (G2/M phase).20–22 Based on these

observations, we hypothesized that SARS‐CoV‐2 infection induces

systemic changes in cell cycle‐associated molecules during COVID‐

19 infection that associate with disease outcome, a hypothesis we

investigated in detail using a systems biology approach.

2 | MATERIALS AND METHODS

2.1 | Transcriptomic data curation and differential
gene expression analysis

For human transcriptome data, we searched in the Gene Expression

Omnibus public genomics data repository (GEO; https://www.ncbi.nlm.

nih.gov/geo/) from patients with COVID‐19, published between Decem-

ber 2019 and January 2021 (Supporting Information: Table Si). Study

selection was performed as described earlier,23 following meta‐analysis

guidelines to achieve integrative analyses.24,25 This search resulted in a

total of five data sets, including two transcriptome data sets derived from

peripheral blood mononuclear cells (PBMCs) (GSE152418 and

GSE161731), one from whole peripheral blood leukocytes (PBLs)

(GSE157103), and two from nasopharyngeal swabs (GSE152075 and

GSE156063). In total, transcriptome data from 717 COVID‐19 samples

and 359 non‐COVID‐19 samples (including healthy controls [HCs] and

patients with other infectious diseases) were included in this analysis

(Supporting Information: Figure 1b; first square). Read counts were

transformed in log2 counts per million, and differentially expressed genes

(DEGs) between groups were identified using the DESeq. 2 pipeline26

through the NetworkAnalyst 3.0 bioinformatics platform. References for

all R packages and bioinformatic tools used in this study are listed in

Supporting Information: Table Sii. The DEGs of each data set were

determined by applying the statistical cutoffs of log2 fold‐change >1

(upregulated), Log2 fold change <−1 (downregulated), and adjusted p‐

value <0.05. Shared DEGs across different data sets were displayed using

Upset plot and Circos plot online web tools.

2.2 | Proteomic data collection and analysis

Proteomic data from plasma, serum, PBMCs, and swab samples from

COVID‐19 and non‐COVID‐19 individuals were selected from

previously reported studies (Supporting Information: Table Si).

These data are available at Proteome X change (http://www.

proteomexchange.org/; identifier: PXD020601, PXD022889) or

iProX (integrated Proteome resources; identifier: IPX0002285000)

or from the supplementary data of Akgun et al.27 Our proteome

analysis included 191 COVID‐19 samples and 71 non‐COVID‐19

samples (Supporting Information: Table Si and Figure 1b; second

square). The raw protein abundance values were quantified, normal-

ized and log2 transformed. Differences in protein expression

between COVID‐19 patients and non‐COVID‐19 individuals were

calculated using Fisher's method28 using the Perseus computational

platform for comprehensive proteomics data analysis. We considered

a cut‐off of p‐value <0.05 and Log2 fold change of >0.5 and <−0.5 for

differentially expressed proteins (DEPs).

2.3 | Interactome analysis

For comprehensive network and interactome analyses, we used

Integrated Interactions Database IID (version 2021‐05) and NAViGa-

TOR software (version 3.0.16) to build a network visualizing physical

protein‐protein interactions between the cell cycle‐associated genes

and proteins obtained from our omics analysis. The cell cycle‐

associated molecules (Supporting Information: Table S1) were used as

input into the Integrated Interactions Database (IID ver. 2021‐05;

http://ophid.utoronto.ca/iid) to identify direct physical protein

interactions. The resulting network was annotated, analyzed, and

visualized using the NAViGaTOR ver. 3.0.16. The final network was

combined with legends using Adobe Illustrator ver. 26.5.

2.4 | Functional enrichment and analysis and
identification of gene co‐expression modules

To perform enrichment analysis for different sets of DEGs, we used

the ClusterProfiler R package in R studio Version 1.4.1106 (RStudio;

https://www.rstudio.com) and enrichr online tool. The enrichment

analysis of significant proteins was performed using the ShinyGO

tool. Sets of cell cycle‐associated DEGs and DEPs were visualized in

bubble‐based heatmaps applying a minus cosine similarity using the

Morpheus web tool. Circular heatmaps representing each cell cycle

phase were generated using the circlize R package in R studio. In

addition, gene co‐expression modules were analyzed through the

CEMiTool R package using default parameters.

F IGURE 1 Interactive network of multi‐omics data integration of cell cycle‐associated molecules. (A) Upset plot showing the intersection of
transcriptomic (swab and blood) and proteomic data obtained from all studies included in this work. (B) Network of cell cycle‐associated
molecules from proteome and transcriptome data sets from COVID‐19 patients. The color of the nodes represents gene ontology (GO) biological
processes according to the figure legend. The genes labeled in red represent the differentially expressed genes (DEGs) from blood transcriptome
data sets. DEGs from swab transcriptomes are denoted in the dark blue, and differentially expressed genes (DEPs) from the proteome data sets
are labeled in purple. Molecules overlapping in the transcriptomics and proteomics data sets are exhibited in black. Triangles pointing up
represent upregulated molecules, triangles pointing down indicate downregulated molecules, and the diamond shape shows DEGs and DEPs
upregulated or downregulated across different data sets. The whole network comprises 429 proteins and 10 516 direct physical interactions.
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F IGURE 2 Systems‐level view of proteome changes related to the cell cycle. (A) Schematic overview showing the number and classification of
patient and control cohorts of each data set used for the proteomic data analysis. (B and C) Network of cell cycle‐associated proteins (gray nodes)
obtained across the study cohorts and biological processes (BPs; blue nodes) enriched by (B) upregulated or (C) downregulated differentially expressed
genes (DEPs). Gray edges reflect the association between DEPs and BPs. The interaction network was visualized using NAViGaTOR. More prominent
nodes represent larger gene sets. The size of the squares increases according to the number of proteins enriching each BP.
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F IGURE 3 Cell cycle‐associated gene co‐expression modules present in blood transcriptomes of COVID‐19 patients. (A) Schematic figure
showing the number of samples of the peripheral blood leukocyte (PBL) transcriptome data set (GSE157103) and (D) the peripheral blood
mononuclear cells (PBMCs) transcriptome data set (GSE152418). Bubble heatmap showing the results of gene set enrichment analysis, indicating the
module (M) activity in (B) COVID‐19 patients versus non‐COVID‐19 (patients with other respiratory illnesses) and (E) COVID‐19 patients compared
with healthy controls. Circle size and color reflect the normalized enrichment score (NES), as determined by CEMiTool. (C) Interaction plot for M3
(GSE157103) and (F) M1 (GSE152418), which contains genes enriching different cell cycle‐associated pathways, exhibited by the bar plot at the right
side of figure (C) and (F). The most connected genes (hubs) are highlighted inside rectangles. The node size is proportional to its degree of interactivity.
The bar plot indicates the top 10 enriched pathways from the over‐representation analysis of module M3 (C) and M1 (F).
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F IGURE 4 (See caption on next page)
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2.5 | Meta‐analysis of gene expression data sets

Using default parameters, a comprehensive meta‐analysis of gene

expression data sets was carried out through NetworkAnalyst 3.0.

Briefly, the GSE157103 and GSE152418 data sets were adjusted for

batch effect, and meta‐DEGs were visualized by principal component

analysis (PCA) and density plots. We used Fisher's method to obtain

combined p‐values for information integration. We used a volcano

plot and Ridgeline chart to display the meta‐DEGs and visualized

their fold‐change distribution across enriched pathways, respectively.

Gene expression distribution was based on average Log2 fold change.

A hierarchical clustering heatmap visualized the gene expression

patterns associated with the cell cycle process.

2.6 | Single‐cell RNA‐Seq

COVID‐19 single‐cell data sets were downloaded from the GEO database

(GSE149689, GSE174072, GSE171555, GSE163668, GSE169346,

GSE161918) and broad institute (SCP1289) and analyzed separately

using the Seurat package (v.4.0.4) in R software (v 4.1.1). These studies

contain 159 COVID‐19 patients and 70 controls (Supporting Information:

Figure 1b; third square). Cells with >200 expressed genes were selected

for further analyses. Features expressed in fewer than three cells were

removed in the analysis. Cells with <15% unique molecular identifiers

derived from the mitochondrial genome were removed. After quality

filtration, gene expression matrices were processed through the standard

processing pipeline of Seurat. The cutoff for significant DEGs has an

adjusted p‐value <0.05.

2.7 | The cell cycle‐associated meta‐DEGs
association with disease severity

We used ImpulseDE2, a model of intraindividual variation of DEGs

over time29 as previously described30 to characterize cell cycle‐

associated DEGs significantly expressed along COVID‐19 disease

trajectory using bulk RNAseq data of cohort 1 from the data set

GSE161777 (Supporting Information: Figure 1b; fourth square). We

performed a PCA to measure the stratification power of cell cycle‐

associated DEGs in distinguishing COVID‐19 severity in PBMCs,

PBLs, and nasopharyngeal swabs using the R functions prcomp and

princomp via the factoextra package (PCA in R: prcomp vs. princomp).

Moreover, we employed random forest, a machine learning algo-

rithm, to rank the importance of cell cycle‐associated DEGs for

discriminating COVID‐19 patients according to disease severity

(COVID‐19_ICU vs. COVID‐19_nonICU) and from other severe

respiratory illnesses (COVID‐19_ICU vs. nonCOVID‐19_ICU) as

previously described.12 We trained the random forest model using

the functionalities of the R package randomForest (version 4.6.14).

Five thousand trees were used, and three variables were resampled.

Follow‐up analysis was conducted with the Gini decrease, number of

nodes, and mean minimum depth as criteria to determine variable

importance. The adequacy of the random forest model as a classifier

was assessed through the out‐of‐bags (OOBs) error rate and the

receiver operating characteristic (ROC) curve. For cross‐validation,

we split the data set into training and testing sets, using 75% of the

observations for training and 25% for testing.

2.8 | Correlation analysis

We used the GSE157103 and GSE152418 data sets to perform

correlation analysis between the cell cycle‐associated genes, that is,

the top 10 meta‐DEGs with the highest score predicting COVID‐19

severity as obtained in the two random forest analyses. Correlograms

were generated with the web tool Intervene (https://intervene.

readthedocs.io/en/latest/index.html) using Spearman's rank correla-

tion coefficient. Box plots of correlation coefficient distribution were

generated using the R packages ggpubr, lemon, and ggplot2 in R

studio. Significance was determined using two‐sided Wilcoxon rank‐

sum tests and is indicated by asterisks (*p ≤ 0.05, **p ≤ 0.01,

***p ≤ 0.001, and ****p ≤ 0.0001). The correlation index for each

gene was obtained as follows: correlation Index = {(positive correla-

tion value) − (negative correlation value)}/number of genes and

results obtained visualized by a hierarchical clustering heatmap using

the ComplexHeatmap R package as previously reported.12

3 | RESULTS

3.1 | Cross‐study identification of cell
cycle‐associated molecules in COVID‐19

We performed a cross‐study analysis of 9 publicly available data sets,

including 1212 individuals. Of those, 808 were SARS‐CoV‐2 positive,

F IGURE 4 Integrative meta‐analysis revealed the predominance of cell cycle enriched pathways in blood leukocytes of COVID‐19 patients. This
analysis integrated the studies of peripheral blood leukocyte (PBL) (GSE157103) and peripheral blood mononuclear cells (PBMCs) (GSE152418).
(A) Principal component analysis (PCA) and (B) density plots show the batch effect adjustment for GSE157103+GSE152418 through empirical Bayes
regression (using ComBat). (C) Meta‐analysis results displayed by the volcano plot, which was based on average Log2 fold change (FC) and combined
p‐value obtained using the Fisher's method. Small blue and red circles denote up‐ and downregulated genes, respectively. Black circles show meta‐
significant genes associated with the cell cycle process, indicating that they are predominantly upregulated. (D) Ridgeline chart denoting the fold‐change
distribution of top 20 enriched pathways by the meta‐significant genes, suggesting the predominance of cell cycle enriched pathways across the studies.
Gene (small gray circles) expression distribution is based on average Log2 FC across the enriched biological process. (E) Interactive heatmap exhibits the
expression pattern of significant genes associated with the cell cycle process obtained by the meta‐analysis.
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F IGURE 5 (See caption on next page)
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and 404 were SARS‐CoV‐2 negative controls, either healthy or

individuals with other respiratory illnesses (Supporting Information:

Figure 1b; first and second square box). DEPs were obtained from

five proteomic data sets generated by mass spectrometry, each

obtained from plasma, serum, and PBMCs, while two used

nasopharyngeal swabs. DEGs were obtained from five data sets of

bulk‐RNA sequencing (RNAseq), one from PBLs, two from PBMCs,

and two from nasopharyngeal swabs.

We found 1647 upregulated and 1297 downregulated DEPs,

while 10 692 upregulated and 7894 downregulated DEGs across

these 9 data sets (Supporting Information: Figure 2a and Table S2).

To test our hypothesis, we searched for cell cycle‐associated DEPs

and DEGs. We found 179 DEPs (89 upregulated and 90 down-

regulated) and 689 DEGs (437 upregulated and 252 downregulated)

that are cell cycle‐associated molecules (Supporting Information:

Figure 2b and Table S3), including several overlapping upregulated

and downregulated DEPs and DEGs across the studies (Figure 1,

Supporting Information: Figure 2c and Table S1).

3.2 | SARS‐CoV‐2 infection systemically changes
the expression of cell cycle‐associated genes and
proteins

Next, we analyzed the proteomic data derived from plasma, serum,

PBMCs, and nasopharyngeal swabs obtained from six different

cohorts representing five data sets (Figure 2A). This approach

revealed that the total number of DEPs and the amount of cell

cycle‐associated DEPs varied considerably among the data sets

studied (Supporting Information: Figure 2 [proteomic data sets] and

Tables S2 and S3).

The total DEPs enrich several genetically associated processes

such as nucleotide‐binding, mRNA processing/splicing, mRNA meta-

bolic processes, and ribonucleoprotein complex (Supporting Informa-

tion: Figure 3a). The upregulated cell cycle‐associated DEPs enrich

signaling pathways involved in kinetochore structures, chromosome

segregation, mitotic nuclear division, mitotic cell cycle, and organelle

organization (Figure 2B and Supporting Information: Figure 3b).

Likewise, the downregulated cell cycle‐associated DEPs enrich

signaling pathways such as those related to the activity of the

proteasome, endopeptidases, ribosomes, and protein catabolic

processes (Figure 2C and Supporting Information: Figure 3c).

Twenty‐four cell cycle‐associated DEPs are shared between at least

two of the six cohorts (Supporting Information: Figure 3d). While a

large amount of cell cycle‐associated DEPs is present in PBMC data

sets, just a few (less than 10 by data set) are identified in plasma and

serum samples of COVID‐19 patients, either adults or children

(Supporting Information: Table S4).

These results above suggest a systemic change in cell cycle‐

associated proteins and pathways. We also confirmed this finding at

the transcriptional level when carrying out comprehensive modular

co‐expression analyses to search for sets of co‐expressed genes and

enriched pathways that are possibly associated with the cell cycle

across the blood transcriptome data sets provided by Overmyer et al.

(GSE157103) and Arunachalam et al. (GSE152418).31,32 Both data

sets revealed modules of co‐expressed genes that either work

together or are similarly (co)‐regulated during the immune response

to SARS‐CoV‐2. Among them, modules M3 (Figure 3A–C) and M1

(Figure 3D–F) were significantly upregulated in both PBL

(GSE157103) and PBMC (GSE152418) data sets, respectively.

Over‐representation analysis of these two modules revealed a

variety of commonly enriched pathways, including those related to

checkpoints such as the mitotic spindle checkpoint and the G2/M

checkpoint, as well as other cell cycle‐related pathways such as the

mitotic G1‐G1/S and M phases, and RHO GTPase proteins. These

enriched modules contain hubs (most connected genes), also

identified among cell cycle‐associated DEGs, such as CDK1, CDC20,

CCNB1, TK1, PLK1, UBE2C, E2F1, RRM2, CENPA, and BUB1B. These

findings indicate substantial molecular alterations in the cell cycle

during the immune response to SARS‐CoV‐2.

3.3 | The expression of cell cycle‐associated genes
predominates in peripheral blood leukocytes of
COVID‐19 patients

Next, we investigated the transcriptional intersection between DEGs

of peripheral blood leukocytes from COVID‐19 patients. After

adjusting for batch effect (Figure 4A,B), we performed a meta‐

analysis for the integration of the GSE157103 (PBLs) and

F IGURE 5 Alterations of cell cycle signatures in the blood are not present in transcriptomes from nasopharyngeal swabs of COVID‐19
patients. (A) Meta‐analysis results displayed by the volcano plot, which is based on average Log2 fold change (FC) and p‐value from the meta‐
analysis performed to obtain combine p‐values from swab transcriptomes (GSE152075 and GSE156063 data sets) using the Fisher's method.
Small blue and red circles denote up‐ and downregulated genes, respectively. Black circles show significant genes that are associated with the
cell cycle, indicating that these genes are primarily downregulated in swab transcriptomes. (B) Ridgeline chart denoting the fold‐change
distribution of the top 20 enriched pathways by the meta‐significant genes, indicating the predominance of the inflammatory response, immune
and defense activation, while no cell cycle enriched pathways across the swab studies. Gene (small gray circles) expression distribution is based
on average Log2 FC across the enriched pathways. (C) Circular heatmaps of a set of genes involved in each phase of the cell cycle in swab and
blood (peripheral blood leukocytes [PBLs] and peripheral blood mononuclear cells [PBMCs]) transcriptomes. Color scale refers to up‐ (red) and
downregulated (blue) genes. Gray fields indicate genes not differentially expressed in the data sets (list of all genes described in Supporting
Information: Table S9). (D) The number of upregulated cell‐cycle associated DEGs across different leukocyte subpopulations from single‐cell
RNAseq data sets (Supporting Information: Table S11). Each data set's GSE number and cell subpopulations are shown below the bar plot.
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GSE152418 (PBMCs) data sets resulting in 1630 meta‐DEGs

(Figure 4C and Supporting Information: Table S5). Despite the

presence of granulocytes (primarily neutrophils) in PBLs but not in

PBMCs, enrichment analysis of the meta‐DEGs between these

leukocyte populations unraveled mostly cell cycle processes among

the top 20 enriched biological processes (BPs) (Figure 4D; the

complete list of all enriched terms in Supporting Information:

Table S6), mainly enriched by upregulated meta‐DEGs (Figure 4D).

Among others, the significantly enriched BPs include cell cycle

processes, cell division, interphase, S and M phases, G1/S transition

of the mitotic cell cycle, cell cycle phase, and cell cycle checkpoints.

Figure 4E displays the expression pattern of 126 meta DEGs

enriching the cell cycle processes and stages across the

GSE157103 and GSE152418 data sets. For instance, among the cell

cycle‐associated meta‐DEGs are those that encode proteins such as

cyclin A1 (CCNA1), B1 (CCNB1), B2 (CCNB2), E1 (CCNE1), and E2

(CCNE2). These molecules are essential regulators of mitosis and cell

division, forming complexes with their respective cyclin‐dependent

kinases (CDK1, CDK2, CDK3)33 and thus regulating and controlling

the cell cycle machinery and progression from one to another

phase.34,35 In addition, cell division cycle (CDC) molecules (CDC25A

and CDC25C) and CDK1 were also present as meta‐DEGs, which are

central actors in cell division interacting with various proteins at

various points in the cell cycle.36

3.4 | Compartmentalization of cell cycle signatures
in COVID‐19 patients

Next, we asked whether the cell cycle signature was specific for

peripheral blood leukocytes compared to that in swabs of the upper

respiratory tract. To address this issue, we performed a meta‐analysis

for the integration of transcriptome data from nasopharyngeal swabs

obtained from COVID‐19 patients versus HCs using the data set

GSE152075 and from COVID‐19 patients compared with patients

who had other viral acute respiratory illnesses (OV‐ARIs) or other

nonviral ARIs (OnV‐ARIs) using the data set GSE156063.

Despite the presence of significant cell cycle‐associated DEGs

(most of them downregulated) among these studies (Figure 5A, list of

all meta‐DEGs in Supporting Information: Table S7), this approach

revealed no significantly enriched cell cycle‐associated pathways

(Figure 5B and Supporting Information: Table S8). The top 20

pathways enriched by the swab meta‐DEGs include cell migration,

inflammatory response, T cell activation, defense response, and

cytokine‐mediated signaling pathways. Like the proteomic results,

which also show a higher number of cell cycle‐associated DEPs in

PBMC samples from COVID‐19 patients compared to naso-

pharyngeal swabs (Supporting Information: Figure 2), the bulk

RNAseq results indicate the uniqueness of the blood cell‐cycle

signature. This is further illustrated by the specific upregulation of

several checkpoint‐ and phase transition‐related DEGs in the blood

but not in the nasopharyngeal swab samples of COVID‐19 patients

compared to HCs (Figure 5C and Supporting Information: Table S9).

Following the bulk RNAseq results, the analysis of scRNAseq data

revealed the same phenomena when we searched for the meta‐

significant cell cycle‐associated DEGs in the scRNAseq data sets.

Almost none of these meta‐DEGs were present as differentially

expressed in nasopharyngeal swabs from COVID‐19 patients

(Supporting Information: Table S10). In contrast, blood lymphocyte

subpopulations (B, T, and NK cells) showed the highest number of

meta‐DEGs associated with the cell cycle signature (Figure 5D and

Supporting Information: Table S11).

Nonetheless, we also found a variety of cell‐cycle associated

DEGs (both upregulated and downregulated) in lung tissue tran-

scriptomes (GSE1822917 and GSE183533) of COVID‐19 patients

(Supporting Information: Table S12). When comparing lung with

blood transcriptomes, we found that they mostly shared upregulated

DEGs. In turn, comparing lung tissue with swab transcriptomes

revealed common downregulated DEGs (Supporting Information:

Figure 4) and also common DEGs that are upregulated in the lung but

downregulated in swabs. Thus, future studies are required to

investigate further the compartmentalization of the cell cycle

signature in COVID‐19 patients across different cell types and

tissues.

3.5 | The expression of cell cycle‐associated
meta‐DEGs associates with COVID‐19 trajectory
and disease severity

Considering the relevance of temporal analyses on the dynamics of

circulating immune cells in COVID‐19 to define predictors of

F IGURE 6 Expression of cell cycle‐associated genes upregulates during severe COVID‐19 disease phases and normalizes with disease
recovery. (A) Heatmap showing the average expression of 126 cell cycle‐associated genes (list of genes [see Supporting Information: Table S13]
obtained by meta‐analysis of peripheral blood leukocyte [PBL]: GSE157103 and peripheral blood mononuclear cells [PBMCs]: GSE152418 data
sets) in different disease stages of COVID‐19 patients (pseudotimes 0–7 according to figure legend) using the previously published gene
expression data from Bernardes et al.30 Row‐wise z‐scores of the scaled mean expression per pseudotime are plotted and hierarchically
clustered in the heatmap. Differentially expressed genes (DEGs) in the longitudinal analysis are denoted with an asterisk (*), and DEGs resulting
from the comparison of COVID‐19 versus healthy controls are denoted by the + sign according to the adjusted p‐value (*/+p ≤ 0.05, **/++p ≤ 0.
01, ***/+++p ≤ 0.001). (B) Box plots illustrate normalized counts distribution across pseudotimes (0–7) for seven significant genes (significance
level shown in (A)). Each box plot shows the median with the first and third interquartile range (IQR), whiskers representing minimum and
maximum values within IQR, and individual data points.
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disease outcomes,30,37,38 we performed a longitudinal study of the

cell‐cycle associated meta‐DEGs across the COVID‐19 disease

trajectory. We investigated if the meta‐DEGs from peripheral blood

leukocytes related to the cell cycle process represent markers of

severe COVID‐19. We first used ImpulseDE2, a model of

intraindividual variation of DEGs over time29 using the data set

GSE1617777, as previously described.30 We used this approach to

find several cell cycle‐associated genes significantly differentially

expressed in PBLs from COVID‐19 patients along the COVID‐19

disease trajectory (Figure 6 and Supporting Information: Table S13).

These genes are highly expressed during severe COVID‐19 phases

(disease pseudotimes as characterized by Bernardes et al.30),

reducing their expression during disease recovery. For instance,

among them, there are several longitudinally cell cycle‐associated

DEGs such as those previously characterized as potential therapeu-

tic targets (budding uninhibited by benzimidazoles 1 or BUB1; Cyclin

B1 or CCNB1),33 biomarkers of immune infiltrates (cyclin‐dependent

kinase inhibitor 1C or CDKN1C34; cell division cycle 6 or CDC635;

Ribonucleoside‐diphosphate reductase subunit or RRM236). We also

analyzed whether the cell‐cycle associated meta‐DEGs stratify

COVID‐19 patients by disease severity groups and individuals with

other respiratory illnesses using the PBL‐derived COVID‐19 data

set (GSE157103). We first performed PCA using a spectral

decomposition approach. We found that these meta‐DEGs stratified

COVID‐19 patients that were either admitted or not admitted to the

intensive care unit (COVID‐19_ICU and COVID‐19_nonICU). How-

ever, these meta‐DEGs did not stratify individuals with other

respiratory infections admitted to the ICU and non‐ICU (Figure 7A

and Supporting Information: Table S14). The severity of illness at

ICU admission was defined based on APACHE II and SOFA scores39

according to Overmyer et al.31 (Supporting Information: Figure 5).

However, although these results indicate that the cell cycle

signature of COVID‐19 patients is strikingly different from other

respiratory illnesses, it also presents a partial overlap with other

respiratory illnesses. We identified 28 shared cell cycle‐associated

DEGs in PBMCs from COVID‐19 patients (data set GSE161731)

when compared with PBMCs from individuals with bacterial

pneumonia, influenza virus, and seasonal coronavirus other than

SARS‐CoV‐2 (sCoV) (Supporting Information: Figure 6). The 28

shared cell cycle‐associated DEGs we identified present a similar

expression pattern of upregulation and downregulation across all

disease groups compared to HCs.

Furthermore, we performed random forest analysis to identify

the most relevant meta‐DEGs stratifying COVID‐19_ICU from

COVID‐19_nonICU and COVID‐19_ICU from nonCOVID‐19_ICU.

The random forest model ranked the 10 most crucial cell cycle‐

associated meta‐DEGs for these comparisons based on their ability to

discriminate between these disease groups. The analysis identified

that OSM, GPR132, SSNA1, PRKAR2B, FBXL15, SAC3D1, PSMB10, LIF,

PDE3A, and MCM10 discriminated COVID19_ICU from COVID‐

19_nonICU (Figure 7B), while BUB1B, BUB1, CDK1, TOP2A, MKI67,

CDC6, CIT, KNL1, GPR123, SKA1 discriminated COVID19_ICU from

nonCOVID19_ICU (Figure 7C and Supporting Information:

Table S15).

In this context, Figure 7D,E demonstrates the stable curves based

on the number of trees and OOB error rate. Figure 7F,G shows the

ROC curves exhibiting the relationship between true and false positive

classification rates. Of note, the correlation intensity of the top 10

gene rankers of COVID‐19 severity (as in Figure 7B,C) is stronger in

COVID‐19_ICU patients compared to COVID‐19_nonICU, nonCOVID‐

19_nonICU, and nonCOVID‐19_ICU groups. The analysis of correlo-

grams (Figure 8A), correlation coefficient distribution (Figure 8B), and

correlation index (Figure 8C) of each of these top‐ranked genes across

the study cohorts supports this assumption.

4 | DISCUSSION

This work provides a systems immunology view of the network of cell

cycle‐associated genes and proteins that are involved in the immune

response against SARS‐CoV‐2 infection. We identified multiple

distinct changes in the cell‐cycle signature of SARS‐CoV‐2 infected

patients, which were associated with COVID‐19 severity. The

integration of various cohorts revealed a specific network of cell

cycle‐associated DEPs and DEGs that provide a cell‐cycle signature in

peripheral blood leukocytes, but not in nasopharyngeal swabs, that

distinguishes SARS‐CoV‐2‐infected patients from HCs and patients

with other respiratory illnesses. Although we did not linearly

characterize mechanisms underlying a specific cell cycle‐associated

pathway, which represents an essential limitation of this study, our

F IGURE 7 Cell cycle‐associated genes stratify COVID‐19 from other respiratory illnesses. (A) Principal component analysis (PCA) of meta‐
significant cell cycle‐associated genes (list of genes [see Supporting Information: Table S14] obtained by meta‐analysis of peripheral blood
leukocyte [PBL]: GSE157103 and peripheral blood mononuclear cells [PBMCs]: GSE152418 data sets) showing the stratification of COVID‐19
from non‐COVID‐19 patients with other respiratory illness (patient cohorts from data set GSE157103 are described in Supporting Information:
Figure 4); both groups containing patients admitted to an intensive care unit (ICU) or not (non_ICU). Confidence ellipses are shown for each
group. Density plots associated with the PCA indicate the sample distribution across the PCA axes. (B and C) Variable importance score plot
obtained by random forest classification analysis. The importance score plot is based on the Gini decrease and number (no.) of nodes for each
variable (cell cycle‐associated meta‐DEGs). It indicates the top 10 variables predicting COVID‐19 severity when comparing (B) COVID‐19_ICU
versus COVID‐19_non_ICU and (C) COVID‐19_ICU versus non‐COVID‐19_ICU. Small blue circles show the top 10 gene rankers of COVID‐19
severity while the black circles represent those below (with less importance) the top 10. (D and E) Stable curve indicating the number of trees
and out‐of‐bag (OOB) error rate of the random forest analysis. (F and G) Receiver operating characteristic (ROC) curves with an area under the
curve (AUC) exhibiting the relationship between true and false positive classification rates.
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findings indicate that SARS‐CoV‐2 infection triggers multiple

systemic changes in the cell‐cycle signature of COVID‐19 patients.

Recently, an in vitro phosphoproteomic study15 using VeroE6 cells

showed that SARS‐CoV‐2 affects pro‐inflammatory cytokine production

and the activation of different kinases such as casein kinase II (CK2), CDK,

and mitogen‐activated protein kinase networks.15 These proteins play a

crucial role in the regulation and progression of cell division.22 These

considerations indicate that cell cycle alterations in the immunological

signatures of COVID‐19 patients are an immunopathological mechanism

triggered by the SARS‐CoV‐2 virus. Accordingly, the modular co‐

expression analysis we performed revealed modules of co‐expressed

genes that either work together or are similarly (co)‐regulated during the

immune response to SARS‐CoV‐2 across the blood transcriptome data

sets. Likewise, meta‐analysis for integrating the transcriptome data from

peripheral blood leukocyte studies confirmed the predominance of cell

cycle enriched pathways regulated during SARS‐CoV‐2 infection. Our

results and the global phosphorylation landscape of SARS‐CoV‐2

infection reported by Bouhaddou et al.15 suggest that SARS‐CoV‐2

systematically affects the cell‐cycle machinery, as the severe COVID‐19

patients have the highest level of systemic changes in the cell cycle

signature of blood cells. Several results presented in our work support this

observation. Cell cycle‐associated genes of PBLs from COVID‐19 patients

are highly expressed during severe COVID‐19 phases, returning to their

normal expression levels during disease recovery.

Of note, the alterations in the cell cycle signatures that occur

during the anti‐SARS‐CoV‐2 immune responses are partially not

exclusive of the anti‐SARS‐CoV‐2 immune response. Our work

suggests a certain degree of overlap with sCoV, influenza virus, and

certain bacteria causing pneumonia. This finding indicates that

future therapeutic approaches22,31 could target cell cycle‐

associated molecules to develop common potential drugs against

different pathogens causing respiratory infections, such as different

coronaviruses.40 However, although COVID‐19 patients share some

common cell cycle‐associated genes with patients with other

respiratory diseases, there is a stratification of patients with

SARS‐CoV‐2 infections based on their total cell cycle‐associated

signature. In addition, the correlation of the top 10 gene rankers of

COVID‐19 severity is stronger in COVID‐19_ICU patients compared

to COVID‐19_nonICU patients and those with other respiratory

illnesses. These findings indicate that the cell cycle signature might

have a more substantial prognostic value for patients with severe

SARS‐CoV‐2 infections. Although this possibility needs further

investigation, it could explain why the increased neutrophil‐to‐

lymphocyte ratio is a more robust prognostic marker for SARS‐CoV‐

2 infections with unfavorable outcomes than for other respiratory

illnesses such as influenza.40

In this context, the multiple molecular cell‐cycle alterations that

we identified suggest that SARS‐CoV‐2 mainly affects human

leukocytes, as indicated by our integrative analyses of proteomic,

bulk RNAseq, and scRNAseq data. Based on the scRNAseq data, it is

likely that the cell‐cycle alterations affect predominately B, T, and NK

cells, which is expected since proliferation is a fundamental response

characteristic for lymphocytes during antigenic stimulation.41 How-

ever, the pathologic effect of SARS‐CoV‐2 infection results in

multiple cellular alterations not only in lymphocytes but also

monocytes, eosinophils, and basophils, while neutrophil counts are

elevated,42 indicating that the changes of cell cycle‐associated genes

and proteins may not be limited to the peripheral blood. Wang et al.43

reported that bone marrow hematopoietic stem cells from severe

COVID‐19 patients were dysregulated, prone to apoptosis, and

tended to arrest in G1, resulting in diminished lymphocyte progeni-

tors while immature myeloid progenitors accumulated.

However, whether these systemic cell cycle changes represent a

hyperactive immune response (e.g., cytokine storm) or an adaptive

immune response to the SARS‐CoV‐2 virus requires future investiga-

tion. While the lymphopenia observed in patients with severe

COVID‐19 disease42,44 may counterbalance the effects of the

virus‐induced cytokine storm, immature myeloid‐derived suppressor

cells (MDSC) are generated. This heterogeneous group of cells with

low oxidative burst activity suppressesT and B lymphocyte responses

nonspecifically.45 Following the initial hyperactivation of neutrophils

in response to SARS‐CoV‐2 infection, when the severity of COVID‐

19 advances, the host immune system increases the granulocytic

MDSCs production while the number of circulating lymphocytes

decreases.46–48 MDSCs are a component of the healthy immune

system and play a protective role during immune homeostasis and

disease context. Specifically, MDSCs expand to reduce tissue damage

during autoimmune and inflammatory diseases,49 suggesting a

physiological role for the systemic cell cycle changes underlying the

neutrophilia associated with an increased number of MDSCs and

lymphopenia presented by COVID‐19 patients. However, future

studies are required to test this hypothesis. In conclusion, our

integrative systems immunology approach has provided unique

insights into the cell cycle alterations that occur during the

F IGURE 8 Cell cycle‐associated genes show a strong correlation in severe COVID‐19. (A) Correlation analysis of top cell cycle‐associated
rankers (obtained from random forest analysis: Figure 7B,C) according to COVID‐19 severity (COVID‐19 and non‐COVID‐19 [other respiratory
illness] cohorts in an intensive care unit [ICU] or not [non_ICU]: from data set GSE157103). The Spearman's rank correlation coefficient is shown
according to the color scale bar ranging from −1 to 1. (B) Box plots illustrating the distribution of absolute values (considering all correlation
coefficients despite the correlation direction [+ or − sign]) of Spearman correlation coefficients across study cohorts. Each box plot shows the
median with the first and third interquartile range (IQR), whiskers representing minimum and maximum values within IQR, and individual data
points. Significance was determined using two‐sided Wilcoxon rank‐sum test and is indicated by asterisks (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001, and
****p ≤ 0.0001). (C) Heatmap of correlation index. The bars aside from the heatmap represent the sum of correlation indexes. The color scale bar
represents the correlation index for each gene.
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anti‐SARS‐CoV‐2 immune responses. Specifically, this comprehen-

sive systems immunology study identified strong associations

between differentially expressed cell‐cycle molecules and the

severity of COVID‐19 that can be explored in therapeutic settings.
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