



A countably compact free Abelian group of size continuum that admits a non-trivial convergent sequence[☆]

A.C. Boero^a, S. Garcia-Ferreira^{b,*}, A.H. Tomita^a

^a Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, CEP 05508-090, São Paulo, Brazil

^b Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3, Santa María, 58089, Morelia, Michoacán, Mexico

ARTICLE INFO

MSC:
primary 54H11, 54A35, 54G20
secondary 03E75

Keywords:
Countably compact group
Free Abelian group
Non-trivial convergent sequence

ABSTRACT

We show that it is consistent with ZFC that the free Abelian group of cardinality \mathfrak{c} admits a topological group topology that makes it countably compact with a non-trivial convergent sequence.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recall that a topological space X is *countably compact* if every infinite subset of X has an accumulation point. Fuchs [6] (see also [10] and [9]) showed that free Abelian groups do not admit a compact group topology. In 1990, Tkachenko [12] constructed, under the Continuum Hypothesis, a countably compact group topology on the free Abelian group of cardinality \mathfrak{c} . His construction modifies the construction of Hájnal and Juhász [8] of a hereditarily finally dense (HFD) subgroup of $\{0, 1\}^{\mathfrak{c}}$ with the property that all small projections are full. As a consequence, the resulting group does not have non-trivial convergent sequences. In 2007, Madariaga-Garcia and Tomita [11] showed that the free Abelian group of cardinality \mathfrak{c} admits a countably compact group topology from the existence of \mathfrak{c} incomparable selective ultrafilters, but this group also does not have any non-trivial convergent sequence. It is still unknown whether or not there exists such a topological group in ZFC.

The improvement of the technique of HFD's to other Abelian groups led to the characterization of the small Abelian groups that admit a countably compact group topology under Martin's Axiom (see [5]) or using forcing (see [3]). Thus, under some additional hypothesis, small Abelian groups that admit a countably compact group topology also admit a countably compact group topology without non-trivial convergent sequences. The following question is due to Dikranjan and Shakhmatov ([3, Questions 14.16 and 14.17] and [4, Question 24]):

Question 1.1. Let G be an infinite group admitting a countably compact (respectively, a pseudocompact) group topology. Does G have a countably compact (respectively, pseudocompact) group topology that contains a non-trivial convergent sequence?

[☆] Research of the first listed author has support from CAPES and CNPq (Brazil) as a doctoral student. The second listed author was supported by CONACYT grant No. 81368-F and PAPIIT grant No. IN-101508. The third author thanks the financial support and the hospitality received during his visit to Morelia. The third author has support from CNPq (Brazil) – “Bolsa de Produtividade em Pesquisa, processo 308467/2007-8. Projeto: Grupos topológicos, seleções e topologias de hiperespacos”.

* Corresponding author.

E-mail addresses: carol@ime.usp.br (A.C. Boero), sgarcia@matmor.unam.mx (S. Garcia-Ferreira), tomita@ime.usp.br (A.H. Tomita).

For pseudocompact Abelian groups, this question was solved positively by Galindo, Garcia-Ferreira and Tomita [7] who also noted that it is easy to show in ZFC that a torsion Abelian group that admits a countably compact group topology also admits a countably compact group topology with a non-trivial convergent sequence. Recently, it was shown by Tkachenko [13] that every infinite Abelian group satisfying $|G|^\omega = |G|$ and $|G| = r_0(G)$ ¹ admits a Hausdorff topological group topology making it a pseudocompact Fréchet–Urysohn² group, but a similar result cannot be obtained for countable compactness and free Abelian groups. Indeed, Tomita [14, Theorem 7] showed that a countably compact free Abelian group cannot be sequential.³

In this article, we show, assuming $\mathfrak{p} = \mathfrak{c}$, that the free Abelian group of cardinality \mathfrak{c} admits a countably compact group topology with a non-trivial convergent sequence. This gives a partial answer to Question 1.1. This result can be also achieved by using selective ultrafilters as we shall describe at the end of the paper.

2. The topology on $\mathbb{Z}^{(\mathfrak{c})}$

We start this section with some basic notations and useful notions.

Let Λ be a set of ordinals. Given $g \in \mathbb{Z}^\Lambda$, the support of g is the set $\text{supp } g = \{\mu \in \Lambda : g(\mu) \neq 0\}$. Thus, the direct sum $\mathbb{Z}^{(\Lambda)}$ is the set of all functions $g : \Lambda \rightarrow \mathbb{Z}$ with finite support. Given $g \in \mathbb{Z}^{(\mathfrak{c})}$, define $\|g\| = \sum |g(\mu)|$. We denote by \mathbb{T} the unitary circle group identified with the metric group $(\mathbb{R}/\mathbb{Z}, +, \delta)$, where $\delta(x + \mathbb{Z}, y + \mathbb{Z}) = \min\{|x - y + a| : a \in \mathbb{Z}\}$.⁴ In this context, an *open arc* of \mathbb{T} with center x and diameter r is the set $\{y \in \mathbb{T} : \delta(x, y) < r\}$. For a subset A of \mathbb{T} , $\delta(A)$ will denote the diameter of A according to the metric δ . In what follows, \mathcal{B} will denote the set of all non-empty open arcs of \mathbb{T} .

If $(x_n)_{n \in \omega}$ is a sequence in a topological space X , $x \in X$ and $A \in [\omega]^\omega$, then we write $x_n \rightarrow_{n \in A} x$ provided every open neighborhood of x contains all but finitely many elements of the set $\{x_n : n \in A\}$.

A *pseudointersection* of a family \mathcal{G} of infinite sets is an infinite set X such that $X \subseteq^* G$ for every $G \in \mathcal{G}$. We say that a family \mathcal{G} of infinite sets has the *strong finite intersection property* (SFIP, for short) if every finite subfamily of \mathcal{G} has infinite intersection. The *pseudointersection number* \mathfrak{p} is the smallest cardinality of $\mathcal{G} \in [\omega]^\omega$ with SFIP but with no pseudointersection.

It is known that if $\{\phi_i : G \rightarrow (H, \tau_i) : i \in I\}$ is a family of homomorphisms from a group G to a topological group (H, τ_i) , then the initial⁵ topology τ on G is a topological group topology (see, for instance, Proposition 3.1 of [2]). Following this idea, we shall define for each $g \in \mathbb{Z}^{(\mathfrak{c})} \setminus \{0\}$, a suitable homomorphism $\phi_g : \mathbb{Z}^{(\mathfrak{c})} \rightarrow \mathbb{T}$ and equip $\mathbb{Z}^{(\mathfrak{c})}$ with the initial topology induced by the family $\{\phi_g : g \in \mathbb{Z}^{(\mathfrak{c})} \setminus \{0\}\}$. By the properties of homomorphisms ϕ_g , this topology will be countably compact and will contain a non-trivial convergent sequence.

For each ordinal $\xi < \mathfrak{c}$, the function $x_\xi : \mathfrak{c} \rightarrow \mathbb{Z}$ is defined by $x_\xi(\xi) = 1$ and $x_\xi(\mu) = 0$, for each $\mu \in \mathfrak{c} \setminus \{\xi\}$. If $\Lambda \subset \mathfrak{c}$ is a set of ordinals, then it is clear that $\{x_\xi : \xi \in \Lambda\}$ is an independent set that generates $\mathbb{Z}^{(\Lambda)}$. By using these generators we can define a homomorphism $\phi : \mathbb{Z}^{(\Lambda)} \rightarrow \mathbb{T}$ by the formula

$$\phi(g) = \phi\left(\sum g(\mu) \cdot x_\mu\right) = \sum g(\mu) \cdot \phi(x_\mu),$$

for each $g \in \mathbb{Z}^{(\Lambda)}$. So, in order to construct a certain homomorphism $\phi : \mathbb{Z}^{(\mathfrak{c})} \rightarrow \mathbb{T}$, it is enough to define $\phi(x_\xi)$ for each $\xi \in \Lambda$.

Consider

$$\mathcal{F}_1 = \{f \in (\mathbb{Z}^{(\mathfrak{c})})^\omega : \forall n \in \omega (\|f(n)\| > n)\}$$

and

$$\mathcal{F}_2 = \left\{ f \in (\mathbb{Z}^{(\mathfrak{c})})^\omega : \forall n \in \omega \left[\text{supp } f(n) \cap \omega = \emptyset \wedge \text{supp } f(n) \setminus \bigcup_{m < n} \text{supp } f(m) \neq \emptyset \right] \right\}.$$

Put $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ and enumerate \mathcal{F} as $\{f_\xi : \omega \leq \xi < \mathfrak{c}\}$ so that $\bigcup_{n \in \omega} \text{supp } f_\xi(n) \subset \xi$, for each infinite $\xi < \mathfrak{c}$.

Lemma 2.1. *Let $g \in \mathbb{Z}^{(\mathfrak{c})} \setminus \{0\}$ and $E \in [\mathfrak{c}]^\omega$ be such that $\text{supp } g \cup \omega \subset E$ and $\bigcup_{n \in \omega} \text{supp } f_\xi(n) \subset E$, for all $\xi \in E \setminus \omega$. For each $\xi \in E \setminus \omega$, fix $R_\xi \in [\omega]^\omega$. Let $\{\theta_n : n \in \omega\}$ be an enumeration of $E \setminus \omega$ so that $|\{n \in \omega : \theta = \theta_n\}| = \omega$, for every $\theta \in E \setminus \omega$. Then, for each $m \in \omega$, there exist a function $\psi_m : E \rightarrow \mathcal{B}$, a finite set $G_m \subset E$, $b_{m-1} \in R_{\theta_{m-1}}$ (if $m > 0$) and $r_m > 0$ such that:*

- (1) $0 \notin \sum g(\xi) \cdot \psi_0(\xi)$;
- (2) $b_m > b_{m-1}$, if $m > 0$;

¹ For any Abelian group G , $r_0(G)$ denotes the torsion-free rank of G .

² A space X is called *Fréchet–Urysohn* if for every $x \in \text{cl}_X(A)$, there exists a sequence $(a_n)_{n \in \omega}$ in A such that $a_n \rightarrow x$.

³ A space X is called *sequential* if whenever $A \subset X$ is not closed, there exists a sequence $(a_n)_{n \in \omega}$ in A converging to a point outside of A .

⁴ In what follows, an element $x + \mathbb{Z}$ of \mathbb{T} will be denoted simply by x .

⁵ That is, the coarsest topology on G that makes each homomorphism continuous.

- (3) $G_m = G_{m-1} \cup \{\theta_m\} \cup \text{supp } f_{\theta_{m-1}}(b_{m-1})$, if $m > 0$;
- (4) $r_m = \frac{r_{m-1}}{2 \cdot \|f_{\theta_{m-1}}(b_{m-1})\|}$, if $m > 0$;
- (5) $\overline{\psi_m(\xi)} \subset \psi_{m-1}(\xi)$, for each $\xi \in E$ and $m > 0$;
- (6) If $\xi \in G_m$, then $\delta(\psi_m(\xi)) = r_m$ and if $\xi \in E \setminus G_m$, then $\psi_m(\xi) = \mathbb{T}$;
- (7) $\psi_{m-1}(\theta_{m-1}) \cap (\sum f_{\theta_{m-1}}(b_{m-1})(\mu) \cdot \psi_m(\mu)) \neq \emptyset$, if $m > 0$;
- (8) If $m > 0$ and $\xi \in (G_m \setminus G_{m-1}) \cap \omega$, then $\delta(x, 0) < r_{m-1}$, for each $x \in \psi_m(\xi)$.

Proof. Set $b_{-1} = 0$, $r_0 = \frac{1}{4 \cdot \|g\|}$ and $G_0 = \text{supp } g \cup \{\theta_0\}$. For each $\xi \in G_0$, choose $y_\xi \in \mathbb{R}$ such that

$$\sum g(\xi) \cdot y_\xi = \frac{1}{2}$$

and define $\psi_0(\xi)$ as the open arc of \mathbb{T} centered at y_ξ with diameter r_0 . If $\xi \in E \setminus G_0$, then let $\psi_0(\xi) = \mathbb{T}$. Then (6) holds and

$$\delta\left(\sum g(\xi) \cdot \psi_0(\xi)\right) \leq \|g\| \cdot r_0 = \frac{1}{4}.$$

Since $\frac{1}{2} \in \sum g(\xi) \cdot \psi_0(\xi)$, (1) must hold. Now, we start the successor stage. Fix $m \in \omega$ and suppose we have already defined $\psi_m : E \rightarrow \mathcal{B}$, $G_m \in [E]^{<\omega}$, $b_{m-1} \in R_{\theta_{m-1}}$ (if $m > 0$) and $r_m > 0$. Define G_{m+1} and r_{m+1} according to (3) and (4), respectively.

If $\xi \in (G_{m+1} \setminus G_m) \cap \omega$, then let $\tilde{\psi}_m(\xi)$ be the open arc of \mathbb{T} centered at 0 with diameter r_m ; if $\xi \in (G_{m+1} \setminus G_m) \setminus \omega$, then let $\tilde{\psi}_m(\xi)$ be any open arc of \mathbb{T} with diameter r_m ; finally, if $\xi \in G_m$, then let $\tilde{\psi}_m(\xi) = \psi_m(\xi)$.

In order to define $b_m \in R_{\theta_m}$ and ψ_{m+1} , we shall consider two cases:

Case I. $f_{\theta_m} \in \mathcal{F}_1$.

Choose $a_m \in \omega$ so that $\|f_{\theta_m}(n)\| \cdot r_m > 2$, for each $n > a_m$. Then fix $b_m \in R_{\theta_m}$ such that $b_m > a_m$ and $b_m > b_{m-1}$ (so, condition (2) holds). Consider the function $\tilde{\psi}_m : \text{supp } f_{\theta_m}(b_m) \rightarrow \mathcal{B}$ which assigns to each point $\mu \in \text{supp } f_{\theta_m}(b_m)$ the open arc $\tilde{\psi}_m(\mu)$ of \mathbb{T} centered at the middle point of $\tilde{\psi}_m(\mu)$ with diameter $r_m/4$. For each $\xi \in E \setminus G_{m+1}$, define $\psi_{m+1}(\xi) = \mathbb{T}$. If $\xi \in G_{m+1} \setminus \text{supp } f_{\theta_m}(b_m)$, then let $\psi_{m+1}(\xi)$ be the open arc of \mathbb{T} centered at the middle point of $\tilde{\psi}_m(\xi)$ with diameter r_{m+1} . Next, we shall define $\psi_{m+1}(\xi)$ for each $\xi \in \text{supp } f_{\theta_m}(b_m)$. Since $\|f_{\theta_m}(b_m)\| \cdot r_m > 2$, we must have that

$$\sum f_{\theta_m}(b_m)(\mu) \cdot \tilde{\psi}_m(\mu) = \mathbb{T}.$$

Hence, for each $\mu \in \text{supp } f_{\theta_m}(b_m)$, there exists $x_\mu^m \in \tilde{\psi}_m(\mu)$ such that

$$\sum f_{\theta_m}(b_m)(\mu) \cdot x_\mu^m \in \psi_m(\theta_m).$$

We define $\psi_{m+1}(\mu)$ as the open arc of \mathbb{T} centered at x_μ^m with diameter r_{m+1} . Thus, conditions (5)–(7) are verified. If $\xi \in (G_{m+1} \setminus G_m) \cap \omega$, then $\tilde{\psi}_m(\xi)$ is the open arc of \mathbb{T} centered at 0 with diameter $r_m/4$. Since $x_\xi^m \in \tilde{\psi}_m(\xi)$ and $r_{m+1} \leq r_m/2$, it follows that $\delta(x, 0) < r_m$, for every $x \in \psi_{m+1}(\xi)$. So, condition (8) holds.

Case II. $f_{\theta_m} \in \mathcal{F}_2$.

Choose $a_m \in \omega$ so that $\text{supp } f_{\theta_m}(n) \setminus G_m \neq \emptyset$, for each $n > a_m$. Then fix $b_m \in R_{\theta_m}$ such that $b_m > a_m$ and $b_m > b_{m-1}$ (so, condition (2) holds). For each $\xi \in E \setminus G_{m+1}$, define $\psi_{m+1}(\xi) = \mathbb{T}$. If $\xi \in G_{m+1} \setminus \text{supp } f_{\theta_m}(b_m)$, then let $\psi_{m+1}(\xi)$ be the open arc of \mathbb{T} centered at the middle point of $\tilde{\psi}_m(\xi)$ with diameter r_{m+1} . Since $f_{\theta_m} \in \mathcal{F}_2$, then $(G_{m+1} \setminus G_m) \cap \omega$ is contained in $G_{m+1} \setminus \text{supp } f_{\theta_m}(b_m)$. So, condition (8) is verified. Finally, we shall define $\psi_{m+1}(\xi)$ for $\xi \in \text{supp } f_{\theta_m}(b_m)$. Fix $\alpha \in \text{supp } f_{\theta_m}(b_m) \setminus G_m$. For each $\xi \in \text{supp } f_{\theta_m}(b_m) \setminus \{\alpha\}$, denote by z_ξ the middle point of $\tilde{\psi}_m(\xi)$. Since $\psi_m(\alpha) = \mathbb{T}$, we can find $z_\alpha \in \psi_m(\alpha)$ for which

$$\sum_{\mu \in \text{supp } f_{\theta_m}(b_m) \setminus \{\alpha\}} f_{\theta_m}(b_m)(\mu) \cdot z_\mu + f_{\theta_m}(b_m)(\alpha) \cdot z_\alpha \in \psi_m(\theta_m).$$

Hence, for each $\xi \in \text{supp } f_{\theta_m}(b_m)$, we define $\psi_{m+1}(\xi)$ as the open arc of \mathbb{T} centered at z_ξ with diameter r_{m+1} . Thus, conditions (5)–(7) are verified. \square

Lemma 2.2. Let $g \in \mathbb{Z}^{(\mathbb{C})} \setminus \{0\}$ and $E \in [\mathbb{C}]^\omega$ be such that $\text{supp } g \cup \omega \subset E$ and $\bigcup_{n \in \omega} \text{supp } f_\xi(n) \subset E$, for all $\xi \in E \setminus \omega$. For each $\xi \in E \setminus \omega$, fix $R_\xi \in [\omega]^\omega$. Then there exists a homomorphism $\phi : \mathbb{Z}^{(E)} \rightarrow \mathbb{T}$ such that:

- (1) $\phi(g) \neq 0$;
- (2) for each $\xi \in E \setminus \omega$, there exists $S_\xi \in [R_\xi]^\omega$ such that $\phi(f_\xi(n)) \rightarrow_{n \in S_\xi} \phi(x_\xi)$; and
- (3) $\phi(x_n) \rightarrow 0$.

Proof. Let $\{\psi_m: m \in \omega\}$, $\{G_m: m \in \omega\}$, $\{b_m: m \in \omega\}$ and $\{r_m: m \in \omega\}$ be as in Lemma 2.1. Since \mathbb{T} is a compact metric space and the sequence $(r_n)_{n \in \omega}$ converges to 0, it follows that the set $\bigcap_{n \in \omega} \psi_n(\xi) = \bigcap_{n \in \omega} \overline{\psi_n(\xi)}$ is a singleton, for every $\xi \in E$. For each $\xi \in E$, let $\phi(x_\xi)$ be the unique element of the intersection $\bigcap_{n \in \omega} \psi_n(\xi)$. Since $\{x_\xi: \xi \in E\}$ is an independent set that generates the group $\mathbb{Z}^{(E)}$, we extend ϕ to a homomorphism from $\mathbb{Z}^{(E)}$ into \mathbb{T} by defining

$$\phi(h) = \sum h(\mu) \cdot \phi(x_\mu)$$

for each $h \in \mathbb{Z}^{(E)}$. By construction, we have that $\phi(h) \in \sum h(\mu) \cdot \psi_0(\mu)$, for each $h \in \mathbb{Z}^{(E)}$. Also, by the first condition of Lemma 2.1, we have that $\phi(g) \neq 0$.

For each $\xi \in E \setminus \omega$, define $I_\xi = \{m \in \omega: \xi = \theta_m\}$ and $S_\xi = \{b_m: m \in I_\xi\}$. It is evident that $S_\xi \in [R_\xi]^\omega$. Furthermore, if $m, n \in I_\xi$ and $m < n$, then $b_m < b_n$. We claim that $\phi(f_\xi(b_m)) \rightarrow_{m \in I_\xi} \phi(x_\xi)$. Indeed, we know that

$$\phi(f_{\theta_m}(b_m)) = \sum f_{\theta_m}(b_m)(\mu) \cdot \phi(x_\mu) \in \sum f_{\theta_m}(b_m)(\mu) \cdot \psi_{m+1}(\mu)$$

and $\phi(x_{\theta_m}) \in \psi_m(\theta_m)$. On the other hand, we have that

$$\begin{aligned} \delta(\phi(f_{\theta_m}(b_m)), \phi(x_{\theta_m})) &\leq \delta\left(\sum f_{\theta_m}(b_m)(\mu) \cdot \psi_{m+1}(\mu)\right) + \delta(\psi_m(\theta_m)) \\ &\leq \|f_{\theta_m}(b_m)\| \cdot 2 \cdot r_{m+1} + r_m < 2 \cdot r_m. \end{aligned}$$

Since $r_m \rightarrow 0$, it follows that $\phi(f_\xi(b_m)) \rightarrow_{m \in I_\xi} \phi(x_\xi)$. In other words, $\phi(f_\xi(n)) \rightarrow_{n \in S_\xi} \phi(x_\xi)$.

It remains to show that the sequence $(\phi(x_n))_{n \in \omega}$ converges to 0. In fact, this follows directly from condition (8) of Lemma 2.1 which guarantees that the set $\{n \in \omega: \delta(\phi(x_n), 0) \geq r_m\}$ is finite for all $m \in \omega$. \square

Our next aim is to extend the homomorphism obtained in Lemma 2.2 to $\mathbb{Z}^{(c)}$ in such a way that condition (2) holds for every element of \mathcal{F} .

Lemma 2.3. Let g be an element of $\mathbb{Z}^{(c)} \setminus \{0\}$ and $\{R_\xi: \xi \in c \setminus \omega\} \subset [\omega]^\omega$. Then there exists a homomorphism $\phi: \mathbb{Z}^{(c)} \rightarrow \mathbb{T}$ such that:

- (1) $\phi(g) \neq 0$;
- (2) for each $\xi \in c \setminus \omega$, there exists $S_\xi \in [R_\xi]^\omega$ such that $\phi(f_\xi(n)) \rightarrow_{n \in S_\xi} \phi(x_\xi)$; and
- (3) $\phi(x_n) \rightarrow 0$.

Proof. Given $g \in \mathbb{Z}^{(c)} \setminus \{0\}$, fix $E \in [c]^\omega$ such that $\text{supp } g \cup \omega \subset E$ and $\bigcup_{n \in \omega} \text{supp } f_\xi(n) \subset E$, whenever $\xi \in E \setminus \omega$.⁶ Let $\phi: \mathbb{Z}^{(E)} \rightarrow \mathbb{T}$ be a homomorphism satisfying the conclusion of Lemma 2.2.

Let $\{\alpha_\xi: \xi < c\}$ be a strictly increasing enumeration of $c \setminus E$. Since \mathbb{T} is sequentially compact, there exists $S_{\alpha_0} \in [R_{\alpha_0}]^\omega$ so that the sequence $\phi(f_{\alpha_0}(n))_{n \in S_{\alpha_0}}$ is convergent. Define $\phi(x_{\alpha_0})$ as the limit point of this sequence and extend ϕ to a homomorphism from $\mathbb{Z}^{(E \cup \{\alpha_0\})}$ into \mathbb{T} .

Let $\xi < c$ be an ordinal and suppose that ϕ was extended to a homomorphism (which we will also denote by ϕ) from $\mathbb{Z}^{(E \cup \{\alpha_\mu: \mu < \xi\})}$ into \mathbb{T} . Since $\alpha_\xi = \min c \setminus (E \cup \{\alpha_\mu: \mu < \xi\})$ and $\bigcup_{n \in \omega} \text{supp } f_{\alpha_\xi}(n) \subset \alpha_\xi$, then $\phi(f_{\alpha_\xi}(n))$ is defined for every $n \in \omega$. From the sequential compactness of \mathbb{T} , it follows that there exists $S_{\alpha_\xi} \in [R_{\alpha_\xi}]^\omega$ such that the sequence $\phi(f_{\alpha_\xi}(n))_{n \in S_{\alpha_\xi}}$ is convergent. Define $\phi(x_{\alpha_\xi})$ as the limit point of this sequence and extend ϕ to a homomorphism from $\mathbb{Z}^{(E \cup \{\alpha_\mu: \mu < \xi+1\})}$ into \mathbb{T} . By induction, we extend ϕ to a homomorphism from $\mathbb{Z}^{(c)}$ into \mathbb{T} satisfying (1)–(3). \square

Lemma 2.4. [p = c] Let $\{g_\alpha: \alpha < c\}$ be an enumeration of $\mathbb{Z}^{(c)} \setminus \{0\}$. Then, for each $\alpha < c$, there exist a family $\{S_{\xi, \alpha}: \xi \in c \setminus \omega\}$ of infinite subsets of ω and a homomorphism $\phi_\alpha: \mathbb{Z}^{(c)} \rightarrow \mathbb{T}$ such that:

- (1) $S_{\xi, \beta} \subset^* S_{\xi, \alpha}$ whenever $\alpha < \beta < c$ and $\xi \in c \setminus \omega$;
- (2) $\phi_\alpha(g_\alpha) \neq 0$;
- (3) $\phi_\alpha(f_\xi(n)) \rightarrow_{n \in S_{\xi, \alpha}} \phi_\alpha(x_\xi)$; and
- (4) $\phi_\alpha(x_n) \rightarrow 0$.

Proof. For each $\xi \in c \setminus \omega$, set $R_{\xi, 0} = \omega$. Applying Lemma 2.3 to $g = g_0$ and $R_\xi = R_{\xi, 0}$, we obtain a homomorphism $\phi_0: \mathbb{Z}^{(c)} \rightarrow \mathbb{T}$ and $S_{\xi, 0} \in [R_{\xi, 0}]^\omega$ for each $\xi \in c \setminus \omega$, such that:

⁶ The existence of such an E is guaranteed by Lemma 3.5 of [11].

- (1) $\phi_0(g_0) \neq 0$;
- (2) $\phi_0(f_\xi(n)) \rightarrow_{n \in S_{\xi,0}} \phi_0(x_\xi)$; and
- (3) $\phi_0(x_n) \rightarrow 0$.

Fix $\beta < \mathfrak{c}$ and suppose that, for each $\alpha < \beta$, we have constructed a family $\{S_{\xi,\alpha} : \xi \in \mathfrak{c} \setminus \omega\}$ of infinite subsets of ω and a homomorphism $\phi_\alpha : \mathbb{Z}^{(\mathfrak{c})} \rightarrow \mathbb{T}$ satisfying conditions (1)–(4) of Lemma 2.4, with \mathfrak{c} replaced by β .

If $\beta = \alpha + 1$, then we set $R_{\xi,\beta} = S_{\xi,\alpha}$ for each $\xi \in \mathfrak{c} \setminus \omega$ and apply Lemma 2.3 to $g = g_\beta$ and $R_\xi = R_{\xi,\beta}$. If β is a limit ordinal, then for each $\xi \in \mathfrak{c} \setminus \omega$, consider the family $\{S_{\xi,\alpha} : \alpha < \beta\}$. By inductive hypothesis, this family has the SFIP and, from $\mathfrak{p} = \mathfrak{c}$, such family has a pseudointersection $R_{\xi,\beta}$. Apply Lemma 2.3 to $g = g_\beta$ and $R_\xi = R_{\xi,\beta}$. \square

Theorem 2.5. $[\mathfrak{p} = \mathfrak{c}]$ The free Abelian group of cardinality \mathfrak{c} admits a topological group topology that makes it countably compact with a non-trivial convergent sequence.

Proof. Fix an enumeration $\{g_\alpha : \alpha < \mathfrak{c}\}$ of $\mathbb{Z}^{(\mathfrak{c})} \setminus \{0\}$. For each $\alpha < \mathfrak{c}$, let $\{S_{\xi,\alpha} : \xi \in \mathfrak{c} \setminus \omega\}$ be a family of infinite subsets of ω and let $\phi_\alpha : \mathbb{Z}^{(\mathfrak{c})} \rightarrow \mathbb{T}$ be a homomorphism satisfying conditions (1)–(4) of Lemma 2.4. We equip $\mathbb{Z}^{(\mathfrak{c})}$ with the initial topology τ induced by the family of homomorphisms $\{\phi_\alpha : \alpha < \mathfrak{c}\}$. We know that $(\mathbb{Z}^{(\mathfrak{c})}, \tau)$ is a topological group and that $\{\bigcap_{\alpha \in F} \phi_\alpha^{-1}(V) : F \in [\mathfrak{c}]^{<\omega} \wedge V \text{ is a neighborhood of } 0\}$ is a local basis at 0 (see Proposition 3.1 of [2]). Since $\phi_\alpha(x_n) \rightarrow 0$ for each $\alpha < \mathfrak{c}$, we must have that $x_n \rightarrow 0$. Thus, $(\mathbb{Z}^{(\mathfrak{c})}, \tau)$ has a non-trivial convergent sequence. It is evident that the second condition of Lemma 2.4 guarantees that the topology τ is Hausdorff.

Claim. For every $\xi \in \mathfrak{c} \setminus \omega$, x_ξ is an accumulation point of the sequence $(f_\xi(n))_{n \in \omega}$.

Proof of the claim. Fix $\xi \in \mathfrak{c} \setminus \omega$. According to Lemma 2.3, we know that

$$\phi_\alpha(f_\xi(n)) \rightarrow_{n \in S_{\xi,\alpha}} \phi_\alpha(x_\xi)$$

for every $\alpha < \mathfrak{c}$. Let $V = \bigcap_{\alpha \in F} \phi_\alpha^{-1}(V_\alpha)$, where $F \in [\mathfrak{c}]^{<\omega}$ and V_α is a neighborhood of $\phi_\alpha(x_\xi)$, for each $\alpha \in F$. If $\gamma = \max F$, then $S_{\xi,\gamma} \subseteq^* S_{\xi,\alpha}$ for each $\alpha \in F$. Choose $m \in \omega$ so that $\phi_\alpha(f_\xi(n)) \in V_\alpha$ for each $n \in S_{\xi,\alpha}$ with $n \geq m$. In other words, $f_\xi(n) \in \bigcap_{\alpha \in F} \phi_\alpha^{-1}(V_\alpha) = V$ for each $n \in S_{\xi,\alpha}$ with $n \geq m$. Therefore, x_ξ is an accumulation point of the sequence $(f_\xi(n))_{n \in \omega}$. \square

Next we shall prove that $(\mathbb{Z}^{(\mathfrak{c})}, \tau)$ is countably compact. To do that consider an arbitrary function $f : \omega \rightarrow \mathbb{Z}^{(\mathfrak{c})}$. If $\{\|f(n)\| : n \in \omega\}$ is unbounded, then there exists a strictly increasing function $j : \omega \rightarrow \omega$ such that $f \circ j \in \mathcal{F}_1$. Thus, $f = f_\xi$, for some $\xi \in \mathfrak{c} \setminus \omega$. Then, by the claim, x_ξ is an accumulation point of the sequence $(f(n))_{n \in \omega}$. Assume that $\{\|f(n)\| : n \in \omega\}$ is bounded. Define $f_1, f_2 : \omega \rightarrow \mathbb{Z}^{(\mathfrak{c})}$ by

$$f_1(n) = \sum_{\xi \in \omega} f(n)(\xi) \cdot x_\xi \quad \text{and} \quad f_2(n) = \sum_{\xi \in \mathfrak{c} \setminus \omega} f(n)(\xi) \cdot x_\xi$$

for every $n \in \omega$. Observe that the set $\{\|f_1(n)\| : n \in \omega\}$ is also bounded. Then it is possible to find a strictly increasing function $j : \omega \rightarrow \omega$ such that the sequence $(\|f_1 \circ j(n)\|)_{n \in \omega}$ is constant and either $f_2 \circ j \in \mathcal{F}_2$ or $f_2 \circ j$ is constant. Notice that, in both cases, the sequence $(f_2(j(n)))_{n \in \omega}$ has an accumulation point and observe that the sequence $(f_1(j(n)))_{n \in \omega}$ converges to some χ_F where $F \subseteq \omega$ is finite. Suppose that $f_2 \circ j = f_\xi$ for some $\xi \in \mathfrak{c} \setminus \omega$. Then $\chi + \chi_F$ is an accumulation point of the sequence $(f_1(j(n)) + f_\xi(n))_{n \in \omega}$. As $f = f_1 + f_2$, we deduce that the sequence $(f(n))_{n \in \omega}$ also has an accumulation point in $\mathbb{Z}^{(\mathfrak{c})}$. Therefore, $\mathbb{Z}^{(\mathfrak{c})}$ is countably compact. \square

3. An example from selective ultrafilters

The set of all free ultrafilters over ω will be denoted by ω^* . Bernstein [1] defined the following concept, which is an important tool for the study of countable compactness.

Definition 3.1. Let $p \in \omega^*$ and $\{x_n : n \in \omega\}$ be a sequence in a topological space X . We say that $x \in X$ is a p -limit point of $\{x_n : n \in \omega\}$ if, for every neighborhood U of x , the set $\{n \in \omega : x_n \in U\}$ is an element of p . In this case, we write $x = p\text{-}\lim \{x_n : n \in \omega\}$.

It is not difficult to prove that a topological space X is countably compact iff each sequence in X has a p -limit point, for some $p \in \omega^*$.

Definition 3.2. We say that $p \in \omega^*$ is selective if, for each partition $\{A_n : n \in \omega\}$ of ω into non-empty sets, either $A_n \in p$, for some $n \in \omega$ or, for each $n \in \omega$, there exists $a_n \in A_n$ such that $\{a_n : n \in \omega\} \in p$.

Two selective ultrafilters p and q are said to be *incomparable* if there exists no bijection $f : \omega \rightarrow \omega$ such that $\beta f(p) = q$, where βf is the Stone–Čech extension of f .

It is possible to modify the previous example by using a construction via selective ultrafilters and some results and ideas from the papers [11] and [15]. The frame of the construction is as before: we choose adequate sequences in $\mathbb{Z}^{(c)}$ to work with (namely, the ones in \mathcal{F}), construct c many homomorphisms from $\mathbb{Z}^{(c)}$ into \mathbb{T} satisfying suitable conditions and consider the initial topology on $\mathbb{Z}^{(c)}$ given by these homomorphisms.

The next lemma is proved in [11, Lemma 3.2] and it will be used to carry on the construction of the homomorphisms.

Lemma 3.3. *Let $g \in \mathbb{Z}^{(c)} \setminus \{0\}$ and $E \in [c]^\omega$ be such that $\omega \subset E$, $\text{supp } g \subset E$ and $\bigcup_{n \in \omega} \text{supp } f_\xi(n) \subset E$, whenever $\xi \in E \setminus \omega$. Also, let $\{p_\xi : \xi \in E \setminus \omega\}$ be a family of incomparable selective ultrafilters. There exist a family $\{E_k : k \in \omega\}$ of finite subsets of E , a strictly increasing sequence $\{b_k : k \in \omega\}$ of natural numbers, a sequence $\{r_k : k \in \omega\}$ of positive real numbers and a function $i : \omega \rightarrow E \setminus \omega$ such that:*

- (1) $\text{supp } g \subset E_0$;
- (2) $E = \bigcup_{k \in \omega} E_k$;
- (3) $E_{k+1} \supset E_k \cup \bigcup \{\text{supp } f_{i(m)}(b_m) : m \leq k\}$, for each $k \in \omega$;
- (4) $i(k) \in E_k$, for each $k \in \omega$;
- (5) $\{b_k : k \in i^{-1}(\{\xi\})\} \in p_\xi$, for each $\xi \in E \setminus \omega$;
- (6) If $f_{i(k)} \in \mathcal{F}_1$, then $\|f_{i(k)}(b_k)\| \cdot r_k > 2$, for each $k \in \omega$;
- (7) If $f_{i(k)} \in \mathcal{F}_2$, then $\text{supp } f_{i(k)}(b_k) \setminus E_k \neq \emptyset$, for each $k \in \omega$;
- (8) $r_0 = \frac{1}{4 \cdot \|g\|}$;
- (9) $r_{k+1} = \frac{r_k}{2 \cdot \|f_{i(k)}(b_k)\|}$, for each $k \in \omega$.

The careful choice of the sequence $\{b_k : k \in \omega\}$ allows us to obtain the following result, whose proof is quite similar to the proof of Lemma 2.2.

Lemma 3.4. *Let $g \in \mathbb{Z}^{(c)} \setminus \{0\}$ and $E \in [c]^\omega$ be such that $\omega \subset E$, $\text{supp } g \subset E$ and $\bigcup_{n \in \omega} \text{supp } f_\xi(n) \subset E$, whenever $\xi \in E \setminus \omega$. Also, let $\{p_\xi : \xi \in E \setminus \omega\}$ be a family of incomparable selective ultrafilters. There exists a homomorphism $\phi_g : \mathbb{Z}^{(E)} \rightarrow \mathbb{T}$ such that:*

- (i) $\phi_g(g) \neq 0$;
- (ii) $\phi_g(x_\xi) = p_\xi\text{-}\lim \{\phi_g(f_\xi(n)) : n \in \omega\}$, for each $\xi \in E \setminus \omega$;
- (iii) $\phi_g(x_n) \rightarrow 0$.

Proof. Let $\{E_k : k \in \omega\}$, $\{b_k : k \in \omega\}$, $\{r_k : k \in \omega\}$ and $i : \omega \rightarrow E \setminus \omega$ be as in Lemma 3.3.

For each $\xi \in E_0$, let $y_\xi \in \mathbb{R}$ be such that

$$\sum g(\xi) \cdot y_\xi = \frac{1}{2}$$

and define $\psi_0(\xi)$ as the open arc centered at y_ξ with diameter r_0 . It follows that

$$\delta\left(\sum g(\xi) \cdot \psi_0(\xi)\right) \leq \sum |g(\xi)| \cdot \delta(\psi_0(\xi)) = \|g\| \cdot r_0 = \frac{1}{4}.$$

Since

$$\frac{1}{2} \in \sum g(\xi) \cdot \psi_0(\xi)$$

we must have that

$$0 \notin \sum g(\xi) \cdot \psi_0(\xi).$$

Finally, if $\xi \in E \setminus E_0$, then let $\psi_0(\xi) = \mathbb{T}$.

Fix $m \in \omega$ and suppose that we have already defined $\psi_m : E \rightarrow \mathcal{B}$. We shall construct $\psi_{m+1} : E \rightarrow \mathcal{B}$ with the following properties:

- (1) $\overline{\psi_{m+1}(\xi)} \subset \psi_m(\xi)$, for every $\xi \in E$;
- (2) If $\xi \in E \setminus E_{m+1}$, then $\psi_{m+1}(\xi) = \mathbb{T}$; If $\xi \in E_{m+1}$, then $\delta(\psi_{m+1}(\xi)) = r_{m+1}$;
- (3) $\psi_m(i(m)) \cap \sum f_{i(m)}(b_m)(\mu) \cdot \psi_{m+1}(\mu) \neq \emptyset$;
- (4) If $\xi \in (E_{m+1} \setminus E_m) \cap \omega$, then $\delta(x, 0) < r_m$, for every $x \in \psi_{m+1}(\xi)$.

If $\xi \in (E_{m+1} \setminus E_m) \cap \omega$, then let $\tilde{\psi}_m(\xi)$ be the open arc of \mathbb{T} centered at 0 with diameter r_m ; if $\xi \in (E_{m+1} \setminus E_m) \setminus \omega$, then let $\tilde{\psi}_m(\xi)$ be any open arc of \mathbb{T} with diameter r_m ; finally, if $\xi \in E_m$, then let $\tilde{\psi}_m(\xi) = \psi_m(\xi)$.

If $\xi \in E \setminus E_{m+1}$, then let $\psi_{m+1}(\xi) = \mathbb{T}$. If $\xi \in E_{m+1} \setminus \text{supp } f_{i(m)}(b_m)$, then let $\psi_{m+1}(\xi)$ be the open arc of \mathbb{T} centered at the middle point of $\tilde{\psi}_m(\xi)$ with diameter r_{m+1} . It is evident that (1), (2) and (4) are satisfied for $\xi \in E_{m+1} \setminus \text{supp } f_{i(m)}(b_m)$. Let us now define $\psi_{m+1}(\xi)$ for $\xi \in \text{supp } f_{i(m)}(b_m)$.

Case I. $f_{i(m)} \in \mathcal{F}_1$.

We have that

$$\sum f_{i(m)}(b_m)(\mu) \cdot \tilde{\psi}_m(\mu) = \mathbb{T}$$

where $\tilde{\psi}_m(\mu)$ is the open arc of \mathbb{T} centered at the middle point of $\tilde{\psi}_m(\mu)$ with diameter $r_m/4$. Therefore, for each $\mu \in \text{supp } f_{i(m)}(b_m)$, there exists $x_\mu^m \in \tilde{\psi}_m(\mu)$ such that

$$\sum f_{i(m)}(b_m)(\mu) \cdot x_\mu^m \in \psi_m(i(m)).$$

Define $\psi_{m+1}(\mu)$ as the open arc of \mathbb{T} centered at x_μ^m with diameter r_{m+1} . Thus, conditions (1)–(4) are verified.

Case II. $f_{i(m)} \in \mathcal{F}_2$.

Fix $\alpha \in \text{supp } f_{i(m)}(b_m) \setminus E_m$. For each $\xi \in \text{supp } f_{i(m)}(b_m) \setminus \{\alpha\}$, denote by z_ξ the middle point of $\tilde{\psi}_m(\xi)$. Since $\psi_m(\alpha) = \mathbb{T}$, there exists $z_\alpha \in \psi_m(\alpha)$ such that

$$\sum_{\mu \in \text{supp } f_{i(m)}(b_m) \setminus \{\alpha\}} f_{i(m)}(b_m)(\mu) \cdot z_\mu + f_{i(m)}(b_m)(\alpha) \cdot z_\alpha \in \psi_m(i(m)).$$

For each $\xi \in \text{supp } f_{i(m)}(b_m)$, define $\psi_{m+1}(\xi)$ as the open arc of \mathbb{T} centered at z_ξ with diameter r_{m+1} . The conditions (1)–(4) are verified, since $\text{supp } f_{i(m)}(b_m) \cap \omega = \emptyset$.

Since \mathbb{T} is a complete metric space and $(r_k)_{k \in \omega}$ is a sequence of positive real numbers that converges to 0, we conclude that if $\xi \in E$, then $\bigcap_{k \in \omega} \psi_k(\xi) = \bigcap_{k \in \omega} \psi_k(\xi)$ is a singleton. We shall denote by $\phi(x_\xi)$ the unique element of the intersection $\bigcap_{k \in \omega} \psi_k(\xi)$. Since $\{x_\xi : \xi \in E\}$ is an independent set that generates $\mathbb{Z}^{(E)}$, it is possible to extend ϕ to a homomorphism $\phi_g : \mathbb{Z}^{(E)} \rightarrow \mathbb{T}$.

We have that

$$\phi_g(g) = \sum g(\mu) \cdot \phi_g(x_\mu) \in \sum g(\mu) \cdot \psi_0(\mu)$$

and, therefore, $\phi_g(g) \neq 0$.

Fix $\xi \in E \setminus \omega$. For each $k \in i^{-1}(\{\xi\})$, we have that

$$\phi_g(f_{i(k)}(b_k)) = \sum f_{i(k)}(b_k)(\mu) \cdot \psi_{k+1}(\mu)$$

and

$$\phi_g(x_{i(k)}) \in \psi_k(i(k)).$$

Thus,

$$\begin{aligned} \delta(\phi_g(f_{i(k)}(b_k)), \phi_g(x_{i(k)})) &\leq \delta\left(\sum f_{i(k)}(b_k)(\mu) \cdot \psi_{k+1}(\mu)\right) + \delta(\psi_k(i(k))) \\ &< 2 \cdot r_k. \end{aligned}$$

Since $r_k \rightarrow 0$, the sequence $\{\phi_g(f_{i(k)}(b_k)) : k \in i^{-1}(\xi)\}$ converges to $\phi_g(x_\xi)$. Therefore,

$$\phi_g(x_\xi) = p_\xi\text{-}\lim \{\phi_g(f_\xi(n)) : n \in \omega\}.$$

It remains to show that the sequence $\{\phi_g(x_n) : n \in \omega\}$ converges to 0. It is sufficient to note that if $k \in \omega$ is fixed, then the set $\{n \in \omega : \delta(\phi_g(x_n), 0) \geq r_k\}$ is finite (since it is contained in E_k). Thus, (iii) is verified. \square

If $p \in \omega^*$, then every sequence in \mathbb{T} admits a p -limit point. So, minor modifications in the proof of Lemma 2.3 guarantee that it is possible to extend each homomorphism $\phi_g : \mathbb{Z}^{(E)} \rightarrow \mathbb{T}$ obtained from Lemma 3.4 to $\mathbb{Z}^{(c)}$ in the following sense:

Lemma 3.5. For each $g \in \mathbb{Z}^{(\mathfrak{c})} \setminus \{0\}$, there exists a homomorphism $\phi_g : \mathbb{Z}^{(\mathfrak{c})} \rightarrow \mathbb{T}$ such that:

- (i) $\phi_g(g) \neq 0$;
- (ii) $\phi_g(x_\xi) = p_\xi$ -lim $\{\phi_g(f_\xi(n)) : n \in \omega\}$, for every $\xi \in \mathfrak{c} \setminus \omega$;
- (iii) $\phi_g(x_n) \rightarrow 0$.

We are ready to state the main result of this section.

Theorem 3.6. Assuming the existence of \mathfrak{c} incomparable selective ultrafilters, the free Abelian group of cardinality \mathfrak{c} admits a countably compact group topology with a non-trivial convergent sequence.

The proof of Theorem 3.6 is analogous to the proof of Theorem 2.5.

We finish the paper with the following question.

Question 3.7. Is it consistent with ZFC that the additive group \mathbb{R} admits a sequentially compact group topology?

Acknowledgement

We are grateful to the referee for his/her very useful comments and suggestions to improve the paper.

References

- [1] A.R. Bernstein, A new kind of compactness for topological spaces, *Fund. Math.* 66 (1970) 185–193.
- [2] S. Dierolf, W. Roelcke, *Uniform Structures on Topological Groups and Quotients*, McGraw-Hill, 1981.
- [3] D. Dikranjan, D. Shakhmatov, Forcing hereditarily separable compact-like group topologies on Abelian groups, *Topology Appl.* 151 (2005) 2–54.
- [4] D. Dikranjan, D. Shakhmatov, Selected topics from the structure theory of topological groups, in: Elliott Pearl (Ed.), *Open Problems in Topology II*, Elsevier, 2007, pp. 389–406.
- [5] D. Dikranjan, M.G. Tkachenko, Algebraic structure of small countably compact Abelian groups, *Forum Math.* 15 (6) (2003) 811–837.
- [6] L. Fuchs, *Infinite Abelian Groups I*, Academic Press, 1970.
- [7] S. García-Ferreira, J. Galindo, A.H. Tomita, Pseudocompact group topologies with prescribed topological spaces, *Sci. Math. Japonica* 70 (3) (2009) 269–278.
- [8] A. Hajnal, I. Juhász, A separable normal topological group need not be Lindelöf, *General Topology Appl.* 6 (2) (1976) 199–205.
- [9] E. Hewitt, K.A. Ross, *Abstract Harmonic Analysis I*, Springer-Verlag, 1979.
- [10] K.H. Hofmann, S.A. Morris, *The Structure of Compact Groups*, de Gruyter Studies in Mathematics, vol. 25, 2006.
- [11] R.E. Madariaga-García, A.H. Tomita, Countably compact topological group topologies on free Abelian groups from selective ultrafilters, *Topology Appl.* 154 (2007) 1470–1480.
- [12] M.G. Tkachenko, Countably compact and pseudocompact topologies on free Abelian groups, *Soviet Math.* 34 (5) (1990) 79–86.
- [13] M.G. Tkachenko, Abelian groups admitting a Fréchet-Urysohn pseudocompact topological group topology, *J. Pure Appl. Algebra* 214 (2010) 1103–1109.
- [14] A.H. Tomita, The existence of initially ω_1 -compact groups topologies on free Abelian groups is independent of ZFC, *Comment. Math. Univ. Carolinae* 39 (2) (1998) 401–413.
- [15] A.H. Tomita, A solution to Comfort's question on the countable compactness of powers of a topological group, *Fund. Math.* 186 (1) (2005) 1–24.