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1. Introduction

Recall that a topological space X is countably compact if every infinite subset of X has an accumulation point. Fuchs [6]
(see also [10] and [9]) showed that free Abelian groups do not admit a compact group topology. In 1990, Tkachenko [12]
constructed, under the Continuum Hypothesis, a countably compact group topology on the free Abelian group of cardinal-
ity c. His construction modifies the construction of Hajnal and Juhasz [8] of a hereditarily finally dense (HFD) subgroup of
{0, 1}¢ with the property that all small projections are full. As a consequence, the resulting group does not have non-trivial
convergent sequences. In 2007, Madariaga-Garcia and Tomita [11] showed that the free Abelian group of cardinality ¢ admits
a countably compact group topology from the existence of ¢ incomparable selective ultrafilters, but this group also does not
have any non-trivial convergent sequence. It is still unknown whether or not there exists such a topological group in ZFC.

The improvement of the technique of HFD’s to other Abelian groups led to the characterization of the small Abelian
groups that admit a countably compact group topology under Martin’s Axiom (see [5]) or using forcing (see [3]). Thus,
under some additional hypothesis, small Abelian groups that admit a countably compact group topology also admit a
countably compact group topology without non-trivial convergent sequences. The following question is due to Dikranjan
and Shakhmatov ([3, Questions 14.16 and 14.17] and [4, Question 24]):

Question 1.1. Let G be an infinite group admitting a countably compact (respectively, a pseudocompact) group topology.
Does G have a countably compact (respectively, pseudocompact) group topology that contains a non-trivial convergent
sequence?
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For pseudocompact Abelian groups, this question was solved positively by Galindo, Garcia-Ferreira and Tomita [7] who
also noted that it is easy to show in ZFC that a torsion Abelian group that admits a countably compact group topol-
ogy also admits a countably compact group topology with a non-trivial convergent sequence. Recently, it was shown by
Tkachenko [13] that every infinite Abelian group satisfying |G| = |G| and |G| = ro(G)! admits a Hausdorff topological
group topology making it a pseudocompact Fréchet-Urysohn? group, but a similar result cannot be obtained for countable
compactness and free Abelian groups. Indeed, Tomita [14, Theorem 7] showed that a countably compact free Abelian group
cannot be sequential.?

In this article, we show, assuming p = ¢, that the free Abelian group of cardinality ¢ admits a countably compact group
topology with a non-trivial convergent sequence. This gives a partial answer to Question 1.1. This result can be also achieved
by using selective ultrafilters as we shall describe at the end of the paper.

2. The topology on Z©)

We start this section with some basic notations and useful notions.

Let A be a set of ordinals. Given g € Z4, the support of g is the set suppg = {0 € A: g(u) # 0}. Thus, the direct sum
Z™ is the set of all functions g: A — Z with finite support. Given g € Z(9, define ||g|| = 3" |g(i1)|. We denote by T the
unitary circle group identified with the metric group (R/Z, +, 8), where §(x + Z, y + Z) = min{|x — y + a|: a € Z}.* In this
context, an open arc of T with center x and diameter r is the set {y € T: 8(x, y) <r}. For a subset A of T, §(A) will denote
the diameter of A according to the metric §. In what follows, B will denote the set of all non-empty open arcs of T.

If (Xn)new i a sequence in a topological space X, x € X and A € [w]®, then we write X, —nc4 X provided every open
neighborhood of x contains all but finitely many elements of the set {x;: n € A}.

A pseudointersection of a family G of infinite sets is an infinite set X such that X C* G for every G € G. We say that a
family G of infinite sets has the strong finite intersection property (SFIP, for short) if every finite subfamily of G has infinite
intersection. The pseudointersection number p is the smallest cardinality of G € [w]® with SFIP but with no pseudointersec-
tion.

It is known that if {¢; : G — (H, t;): i € I} is a family of homomorphisms from a group G to a topological group (H, t;),
then the initial® topology T on G is a topological group topology (see, for instance, Proposition 3.1 of [2]). Following this
idea, we shall define for each g € Z(®) \ {0}, a suitable homomorphism ¢g : Z(© — T and equip Z(® with the initial topology
induced by the family {¢;: g € Z(9\ {0}}. By the properties of homomorphisms ¢g, this topology will be countably compact
and will contain a non-trivial convergent sequence.

For each ordinal £ < ¢, the function x¢ : ¢ — Z is defined by x¢(§) =1 and xz () =0, for each pec\{§}. If ACcisa
set of ordinals, then it is clear that {xs: £ € A} is an independent set that generates Z“Y, By using these generators we can
define a homomorphism ¢ : Z4) — T by the formula

9@ =¢(D 810 xu) =Y 810 Hx),

for each g € Z“Y. So, in order to construct a certain homomorphism ¢ : Z(1) — T, it is enough to define ¢ (xs) for each
e A
Consider

Fi={fe (Z(‘))w: vnew (| fm] >n)}

and

Fr= {fe (Z(C))w: Vnew [suppf(n)ﬂa):(()/\suppf(n)\ U suppf(m);é(()“.

m<n

Put F = F; UF, and enumerate F as {f:: w <& <} so that [ J,,, supp f:(n) C &, for each infinite & <.

Lemma 2.1. Let g € Z() \ {0} and E € [c]® be such that suppg U w C E and Unew SUpp fe(m) C E, for all & € E \ w. For each
& e E\w, fix Re € [w]®. Let {0;: n € w} be an enumeration of E \ w so that |{n € w: 0 = 0,}| = w, for every 0 € E \ w. Then, for each
m € w, there exist a function Yy, : E — B, a finite set Gy C E, byy—1 € Rg,,_, (if m > 0) and ry, > 0 such that:

(1) 0¢> g(&) - vo(é);
(2) b > b1, ifm > 0;

1
2
3
4
5

For any Abelian group G, ro(G) denotes the torsion-free rank of G.

A space X is called Fréchet-Urysohn if for every x € clx(A), there exists a sequence (@p)nee in A such that a; — x.

A space X is called sequential if whenever A C X is not closed, there exists a sequence (ap)ne in A converging to a point outside of A.
In what follows, an element x + Z of T will be denoted simply by x.

That is, the coarsest topology on G that makes each homomorphism continuous.
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(3) Gm =Gm—1U {6} Usupp fo,_, (bm-1), if m > 0;

(4) rm = W,i)‘m>0;

(5) Yym() C Ym—1(&), foreach & € E and m > 0;

(6) If& € G, then §(Yym(§)) =rm and if & € E\ G, then Y (§) =T,

(7) Ym—10m-1) N fon_y bm—1) (W) - ¥m(0)) # B, if m > 0;

8) fm>0and & € (G \ Gm—1) N, then §(x, 0) < rm—1, for each x € Yy (&).

Proof. Set b_1 =0, rp = m and Go = supp g U {6p}. For each & € Gy, choose y: € R such that

1
> 8@ ye=15

and define (&) as the open arc of T centered at y; with diameter ro. If & € E \ Gy, then let ¥o(§) = T. Then (6) holds
and

5(32® vo®) < gl -ro = }1

Since % €Y g(&)-y¥o(&), (1) must hold. Now, we start the successor stage. Fix m € w and suppose we have already defined
Ym:E— B, Gn € [E]=®, bn—1 € Rg,,_, (if m > 0) and ry, > 0. Define G141 and 41 according to (3) and (4), respectively.
If £ € (Gmy1 \ Gm) N, then let ¥, (&) be the open arc of T centered at 0 with diameter ry; if £ € (Giy1 \ Gm) \ @, then
let ¥ (&) be any open arc of T with diameter ry; finally, if £ € G, then let ¥ (&) = Y (£).
In order to define by, € Rg,, and v¥;41, we shall consider two cases:

Casel. fg, € F1.

Choose a, € w so that | fg, ()| - rm > 2, for each n > ap. Then fix by € Rg,, such that by > ap and by > by—1 (so,
condition (2) holds). Consider the function v, : supp fo,,(bm) — B which assigns to each point © € supp fg,, (b)) the open

arc &m(u) of T centered at the middle point of 1/7m(/1,) with diameter r, /4. For each & € E \ Gmy1, define ¥n1(8) =T. If
& € Gm1 \ supp fy,, (bm), then let Y11 (§) be the open arc of T centered at the middle point of v, (£) with diameter ryp41.
Next, we shall define v,11(§) for each & € supp fg,,(bm). Since || fg,,(bm)|l - rm > 2, we must have that

> Fon ) (1) - V() =T

Hence, for each w € supp fy,, (bm), there exists xﬂ € &m(,u) such that

D fonbm) (1) - X € Y Om).
We define 41 () as the open arc of T centered at xf} with diameter rp41. Thus, conditions (5)-(7) are verified. If

& € (Gm+1 \ Gm) Nw, then 1/:/,”(5) is the open arc of T centered at 0 with diameter r, /4. Since xg’ € l;m@) and rm4q <1 /2,
it follows that §(x, 0) < ry, for every x € Y41 (£). So, condition (8) holds.

Casell. fy, € F>.

Choose a;, € w so that supp fg,, (1) \ G # ¥, for each n > ay. Then fix by € Rg, such that by > an and by > by—q
(so, condition (2) holds). For each & € E \ Gp41, define yimy1(§) =T. If & € Gug1 \ supp fo, (bm), then let ¥my1(€) be
the open arc of T centered at the middle point of v, (£) with diameter ry41. Since fo, € F2, then (Gt \ Gm) N is
contained in Gp41 \ supp fg, (bm). So, condition (8) is verified. Finally, we shall define ¥,1(€) for & € supp fg,, (bm). Fix
o € supp fg, (bm) \ Gm. For each & € supp fg,, (bm) \ {«}, denote by z: the middle point of Ym(€). Since Ym(a) =T, we can
find zy € ¥ () for which

> Fom Bm) (1) - 21 + fo (b) (@) - 2y € Y (Om).
esupp for, (bm)\{or}

Hence, for each & € supp fg,, (bm), we define ¥my1(§) as the open arc of T centered at z; with diameter ry4q. Thus,
conditions (5)-(7) are verified. O

Lemma 2.2. Let g € Z(® \ {0} and E € [¢c] be such that suppg U w C E and Unew SUPP fe(n) C E, for all & € E \ w. For each
& € E\ , fix R¢ € [w]®. Then there exists a homomorphism ¢: ZE) — T such that:
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(1) ¢(8) #0;
(2) foreach & € E \ w, there exists Sg € [R¢]“ such that ¢ (fg (1)) —nes, ¢ (x¢); and

(3) ¢ (%) — 0.

Proof. Let {{y: m e w}, {Gm: m e w}, {by: me w} and {ry: m € w} be as in Lemma 2.1. Since T is a compact metric space
and the sequence (ry;)new converges to 0, it follows that the set (1),c,, ¥n(§) = \1ee ¥n(€) is a singleton, for every £ € E.
For each & € E, let ¢(xz) be the unique element of the intersection (7),., ¥n(§). Since {xs: & € E} is an independent set
that generates the group ZE), we extend ¢ to a homomorphism from Z® into T by defining

o)=Y h(w) $(x,.)

for each h € Z®), By construction, we have that ¢(h) € 3" h(u) - Yo(u), for each h € Z®). Also, by the first condition of
Lemma 2.1, we have that ¢(g) #0.

For each § € E\ w, define I ={m e w: £ =6p} and Sg = {by: m € I¢}. It is evident that S¢ € [R¢]®. Furthermore, if
m,n € lg and m <n, then by < by. We claim that ¢ (fg (bm)) —mer, ¢ (x¢). Indeed, we know that

¢ (Fombm)) =D fon Bm) (1) - (xu) € D Fo () (10) - Y1 (1)
and ¢ (xg,,) € ¥m(6m). On the other hand, we have that

8(9 (fan (b)) 9 (x6) < 8( D Fon (Bi) 40 - Yins1 (1)) + 8 (Yin(6))

< ”f@m(bm)H 2 Tmy1 +Tm <2-Tm.
Since rym — 0, it follows that ¢ (fg(bm)) —>mel; ¢ (Xg). In other words, ¢ (f5(n)) —>nes, ¢ (Xg).

It remains to show that the sequence (¢ (X;))new converges to 0. In fact, this follows directly from condition (8) of
Lemma 2.1 which guarantees that the set {n € w: §(¢(x;),0) > rp} is finite forall me w. O

Our next aim is to extend the homomorphism obtained in Lemma 2.2 to Z in such a way that condition (2) holds for
every element of F.

Lemma 2.3. Let g be an element of Z‘©) \ {0} and {Re: & e ¢\ w} C [w]®. Then there exists a homomorphism ¢ : Z© — T such that:

(1) ¢(g) #0;
(2) foreach & e ¢\ w, there exists Sg € [R¢]® such that ¢ (fe(n)) —>nes, ¢ (x¢); and

(3) ¢(xn) — 0.

Proof. Given g € Z(® \ {0}, fix E € [c]* such that suppg Uw C E and Unee SUPP fe(n) C E, whenever & € E \ w8 Let
¢ :Z®) — T be a homomorphism satisfying the conclusion of Lemma 2.2.

Let {ag: € < ¢} be a strictly increasing enumeration of ¢\ E. Since T is sequentially compact, there exists Sy, € [Re,1?
so that the sequence ¢ (fy, (M)nesq, is convergent. Define ¢(xy,) as the limit point of this sequence and extend ¢ to a
homomorphism from ZEVY®) into T.

Let £ < ¢ be an ordinal and suppose that ¢ was extended to a homomorphism (which we will also denote by ¢) from
Z(EVte <8 into T. Since oz =minc\ (EU{ay: 1 <&}) and Upe,, SUPP fo, (n) C g, then ¢(fg, () is defined for every
n € w. From the sequential compactness of T, it follows that there exists Sy, € [Ra,]* such that the sequence ¢ (fq, (n))nesaE
is convergent. Define ¢(xy,) as the limit point of this sequence and extend ¢ to a homomorphism from Z®EV(@u: #<E+1)
into T. By induction, we extend ¢ to a homomorphism from Z( into T satisfying (1)-(3). O

Lemma 2.4. [p = c] Let {go: « < c} be an enumeration of Z®) \ {0}. Then, for each & < ¢, there exist a family {S¢.o: & € ¢\ @} of
infinite subsets of w and a homomorphism ¢, : Z(© — T such that:

(1) Sg.p C* Se,o Whenevera < B <cand& e ¢\ w;
(2) ¢a(ga) #0;

(3) ¢u (fg (n)) > neSe.q o (Xg); and

(4) bo(xn) — 0.

Proof. For each £ € ¢\ w, set Rg o = w. Applying Lemma 2.3 to g = go and Rg¢ = Rz o, we obtain a homomorphism
$0:Z® — T and S¢ o € [Re,0]® for each & € ¢\ w, such that:

6 The existence of such an E is guaranteed by Lemma 3.5 of [11].
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(1) ¢o(go) #0;
(2) ¢o(f&(n)) —nes, o Po(xe); and
(3) ¢o(xn) — 0.

Fix B < ¢ and suppose that, for each @ < 8, we have constructed a family {S¢ o: & € ¢\ w} of infinite subsets of @ and a
homomorphism ¢ : Z(9 — T satisfying conditions (1)-(4) of Lemma 2.4, with ¢ replaced by 8.

If B=a+1, then we set Rg g = S¢ o for each & € ¢\ w and apply Lemma 2.3 to g = gg and Rg = Rg g. If B is a limit
ordinal, then for each £ € ¢\ w, consider the family {S¢ o: o < B}. By inductive hypothesis, this family has the SFIP and,
from p = ¢, such family has a pseudointersection R¢ g. Apply Lemma 2.3 to g =gg and Rg =R¢ 5. O

Theorem 2.5. [p = c] The free Abelian group of cardinality ¢ admits a topological group topology that makes it countably compact
with a non-trivial convergent sequence.

Proof. Fix an enumeration {gq: o < ¢} of Z( \ {0}. For each o <, let {Se,w: &€ € ¢\ w} be a family of infinite subsets of
 and let ¢y : Z(© — T be a homomorphism satisfying conditions (1)-(4) of Lemma 2.4. We equip Z® with the initial
topology 7 induced by the family of homomorphisms {¢y: a < c}. We know that (Z(®, 7) is a topological group and that
{Naer ¢;1(V): F € [c]=® AV is a neighborhood of 0} is a local basis at 0 (see Proposition 3.1 of [2]). Since ¢y (x;) — O for
each o < ¢, we must have that x, — 0. Thus, (Z(9, 7) has a non-trivial convergent sequence. It is evident that the second
condition of Lemma 2.4 guarantees that the topology t is Hausdorff.

Claim. For every & € ¢\ , X¢ is an accumulation point of the sequence (fz (n))neew-

Proof of the claim. Fix £ € ¢\ w. According to Lemma 2.3, we know that

oM (f§ (”)) —>neSgu o (Xg)

for every a <. Let V = (e ¢(;1(Va), where F € [¢]=” and V, is a neighborhood of ¢y (x¢), for each ¢ € F. If y =
max F, then S¢, C* S¢ o for each o € F. Choose m € w so that ¢u(fs(n)) € Vo for each n € S¢ o with n > m. In other
words, fz(n) € Nyep #a (Vo) =V for each n € S¢ o with n > m. Therefore, X is an accumulation point of the sequence

(fE (Mnew. O

Next we shall prove that (Z(9, 1) is countably compact. To do that consider an arbitrary function f:w — Z©. If
{Ilf(m]: n e w} is unbounded, then there exists a strictly increasing function j:w — w such that f o j € F;. Thus, f = f,
for some £ € ¢\ w. Then, by the claim, x is an accumulation point of the sequence (f(n))new. Assume that {|| f(n)[|: n € w}
is bounded. Define fi, f>:w — Z(© by

A= fm)E) x and frm= Y fM)E) - x

tew tec\w

for every n € w. Observe that the set {||fi(n)||: n € w} is also bounded. Then it is possible to find a strictly increasing
function j : @ — w such that the sequence (|| f10j(n)|)new is constant and either f,o0j € F, or fyoj is constant. Notice that,
in both cases, the sequence (f2(j(1)))new has an accumulation point and observe that the sequence (f1(j(n)))nee converges
to some xr where F C w is finite. Suppose that f, o j = f¢ for some £ € ¢\ w. Then x + xf is an accumulation point of
the sequence (f1(j(n)) + fe(M))new- As f = f1 + f2, we deduce that the sequence (f(1))new also has an accumulation point
in Z(). Therefore, Z(® is countably compact. O

3. An example from selective ultrafilters

The set of all free ultrafilters over w will be denoted by w™*. Bernstein [1] defined the following concept, which is an
important tool for the study of countable compactness.

Definition 3.1. Let p € w* and {x,: n € w} be a sequence in a topological space X. We say that x € X is a p-limit point
of {x;: n € w} if, for every neighborhood U of x, the set {n € w: x, € U} is an element of p. In this case, we write
x=p-lim{x;: n € w}.

It is not difficult to prove that a topological space X is countably compact iff each sequence in X has a p-limit point, for
some p € w*.

Definition 3.2. We say that p € w™* is selective if, for each partition {A;: n € w} of w into non-empty sets, either A, € p, for
some n € w or, for each n € w, there exists a, € A, such that {a;: n € w} € p.
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Two selective ultrafilters p and g are said to be incomparable if there exists no bijection f :w — w such that 8f(p) =q,
where Bf is the Stone-Cech extension of f.

It is possible to modify the previous example by using a construction via selective ultrafilters and some results and
ideas from the papers [11] and [15]. The frame of the construction is as before: we choose adequate sequences in Z(® to
work with (namely, the ones in F), construct ¢ many homomorphisms from Z into T satisfying suitable conditions and
consider the initial topology on Z® given by these homomorphisms.

The next lemma is proved in [11, Lemma 3.2] and it will be used to carry on the construction of the homomorphisms.

Lemma 3.3. Let g € Z(® \ {0} and E € [c]® be such that v C E, suppg C E and | J,,,, Supp f&(n) C E, whenever & € E \ w. Also,
let {pg: & € E \ w} be a family of incomparable selective ultrafilters. There exist a family {Ey: k € w} of finite subsets of E, a strictly
increasing sequence {by: k € w} of natural numbers, a sequence {ry: k € w} of positive real numbers and a functioni:w — E\ o
such that:

) supp g C Ep;

) E= Uke(u Eg;

) Ex+1 D Ex U UJ{supp figny(bm): m <k}, foreach k € w;
) i(k) € Ey, for each k € w;

) {bk: kei '({&)) € pe, foreach & € E\ w;

) If figo € F1, then || figoy(bi) || - 7 > 2, for each k € w;

) If fiqey € F2, then supp fiw) (br) \ Ex # ¥, for each k € w;
) 1

)

The careful choice of the sequence {by: k € w} allows us to obtain the following result, whose proof is quite similar to
the proof of Lemma 2.2.

Lemma 3.4. Let g € Z() \ {0} and E € [c]® be such that w C E, supp g C E and Unew SUPP fe(n) C E, whenever & € E \ w. Also, let
{pe: & € E\ w} be a family of incomparable selective ultrafilters. There exists a homomorphism ¢ : ZE) — T such that:

(i) ¢g(g) #0;
(ii) ¢g(xe) = pe-lim{pg(f:(n)): n € w}, foreach& € E\ w;
(iii) ¢pg(xa) = O.

Proof. Let {Ey: k € w}, {by: ke w}, {ry: ke w}and i:w— E\ w be as in Lemma 3.3.
For each & € Eo, let y¢ € R be such that

1
> 8@ ye=15

and define (&) as the open arc centered at yg with diameter ro. It follows that

5(32® - vo®) <D _[g®)] - 3(vo(©) = ligl -ro = %

Since

1
S €28 Yo®

we must have that

0¢Y g Yol).

Finally, if & € E \ Eg, then let yo(§) =T.
Fix m € w and suppose that we have already defined v, : E — B. We shall construct ¥/;4+1 : E — B with the following
properties:

(1) ¥m41(8) CYm(&), for every & € E;

(2) If & € E\ Emyq, then Yy (§) =T, If & € Epyq, then §(¥m41(6)) =rmt1s
(3) YmEm) N Y fimy (bm) () - Ymi1 (W) # G5

(4) If £ € (Em+1 \ Em) N, then 8(x, 0) < rpy, for every x € Y1 (§).
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If & € (Em+1\ Em) N, then let Ym(€) be the open arc of T centered at 0 with diameter ry; if £ € (Emy1 \ Em) \ @, then
let ¥ (&) be any open arc of T with diameter ry,; finally, if £ € E, then let ¥ () = ¥m (&).

If £ € E\ Epy1, then let ¥y q1(8) =T. If £ € Epyq \ supp figny(bm), then let ¥y;41(£) be the open arc of T centered at
the middle point of ¥, (€) with diameter my1. It is evident that (1), (2) and (4) are satisfied for & € Ep1 \ supp figm)(bm)-
Let us now define Ym1(§) for & € supp figm) (bm).

Casel. fim € F1.

We have that
> Fim®Gm) (W) - Ym(w) =T

where &m(u) is the open arc of T centered at the middle point of &m(u) with diameter rp,/4. Therefore, for each u €
supp fign)(bm), there exists x;’} € ¥m() such that

> fiam () (W) - X} € Ym (iGm)).

Define vm+1(1) as the open arc of T centered at x}’} with diameter ry;41. Thus, conditions (1)-(4) are verified.
Casell. fig) € Fo.

Fix o € supp figm)(bm) \ Em. For each & € supp fim)(bm) \ {«}, denote by z: the middle point of Ym(£). Since Ym(a) =T
there exists z4 € Y, («) such that

> Ficm) (bm) (1) - 2t + fim) (bn)(@) - 2o € Ym (i(M)).

esupp figm) (bm)\{a}

For each & e supp fign)(bm), define v, 11(£) as the open arc of T centered at z; with diameter ;1. The conditions (1)-(4)
are verified, since supp fim)(bm) Nw =4¥.

Since T is a complete metric space and (ry)kee i @ sequence of positive real numbers that converges to 0, we conclude
that if & € E, then (e, Yk () = keo Yk (€) is a singleton. We shall denote by ¢ (x;) the unique element of the intersection
Mkew VK (). Since {xz: & € E} is an independent set that generates Z® it is possible to extend ¢ to a homomorphism
¢g:Z® — T.

We have that

$g(9) =Y g(1) - pg(x) € Y g(1) - Yo()

and, therefore, ¢4(g) # 0.
Fix &£ € E \ w. For each k € i~1({£}), we have that

g (fito 01)) € D Fido (i) (14) - Ve ()
and

bg(Xigo) € Yk(i(k)).
Thus,

8(0e (fito B0)): B (ki) < (D fico B0 - Vi1 (1)) + 8 (i)
<2-1%.
Since ri — 0, the sequence {¢g(fe(br)): ke i~1(&)} converges to ¢g(x). Therefore,

dg(xe) = pe-lim{gg(fz(m)): n € w}.

It remains to show that the sequence {¢¢(xn): n € w} converges to 0. It is sufficient to note that if k € w is fixed, then
the set {n € w: §(¢g(xn),0) > 1y} is finite (since it is contained in Ey). Thus, (iii) is verified. O

If p € w*, then every sequence in T admits a p-limit point. So, minor modifications in the proof of Lemma 2.3 guarantee
that it is possible to extend each homomorphism ¢y : ZE) — T obtained from Lemma 3.4 to Z(® in the following sense:



A.C. Boero et al. / Topology and its Applications 159 (2012) 1258-1265 1265

Lemma 3.5. For each g € Z'9 \ {0}, there exists a homomorphism og: 79 — T such that:

(i) ¢g(g) #0;
(i) ¢pg(Xe) = pe-lim{pg(fe(n)): n € w}, forevery & € ¢\ w;
(iii) ¢g(xn) — 0.

We are ready to state the main result of this section.

Theorem 3.6. Assuming the existence of ¢ incomparable selective ultrdfilters, the free Abelian group of cardinality ¢ admits a countably
compact group topology with a non-trivial convergent sequence.

The proof of Theorem 3.6 is analogous to the proof of Theorem 2.5.
We finish the paper with the following question.

Question 3.7. [s it consistent with ZFC that the additive group R admits a sequentially compact group topology?

Acknowledgement
We are grateful to the referee for his/her very useful comments and suggestions to improve the paper.

References

[1] A.R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970) 185-193.
[2] S. Dierolf, W. Roelcke, Uniform Structures on Topological Groups and Quotients, McGraw-Hill, 1981.
[3] D. Dikranjan, D. Shakhmatov, Forcing hereditarily separable compact-like group topologies on Abelian groups, Topology Appl. 151 (2005) 2-54.
[4] D. Dikranjan, D. Shakhmatov, Selected topics from the structure theory of topological groups, in: Elliott Pearl (Ed.), Open Problems in Topology II,
Elsevier, 2007, pp. 389-406.
[5] D. Dikranjan, M.G. Tkachenko, Algebraic structure of small countably compact Abelian groups, Forum Math. 15 (6) (2003) 811-837.
[6] L. Fuchs, Infinite Abelian Groups I, Academic Press, 1970.
[7] S. Garcia-Ferreira, J. Galindo, A.H. Tomita, Pseudocompact group topologies with prescribed topological spaces, Sci. Math. Japonica 70 (3) (2009) 269-
278.
[8] A. Hajnal, L. Juhdsz, A separable normal topological group need not be Lindelof, General Topology Appl. 6 (2) (1976) 199-205.
[9] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, 1979.
[10] K.H. Hofmann, S.A. Morris, The Structure of Compact Groups, de Gruyter Studies in Mathematics, vol. 25, 2006.
[11] R.E. Madariaga-Garcia, A.H. Tomita, Countably compact topological group topologies on free Abelian groups from selective ultrafilters, Topology
Appl. 154 (2007) 1470-1480.
[12] M.G. Tkachenko, Countably compact and pseudocompact topologies on free Abelian groups, Soviet Math. 34 (5) (1990) 79-86.
[13] M.G. Tkachenko, Abelian groups admitting a Fréchet-Urysohn pseudocompact topological group topology, J. Pure Appl. Algebra 214 (2010) 1103-1109.
[14] A.H. Tomita, The existence of initially w;-compact groups topologies on free Abelian groups is independent of ZFC, Comment. Math. Univ. Caroli-
nae 39 (2) (1998) 401-413.
[15] A.H. Tomita, A solution to Comfort’s question on the countable compactness of powers of a topological group, Fund. Math. 186 (1) (2005) 1-24.



	A countably compact free Abelian group of size continuum that admits a non-trivial convergent sequence
	1 Introduction
	2 The topology on Z(c)
	3 An example from selective ultraﬁlters
	Acknowledgement
	References


