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1. Introduction

Recall that a topological space X is countably compact if every infinite subset of X has an accumulation point. Fuchs [6]
(see also [10] and [9]) showed that free Abelian groups do not admit a compact group topology. In 1990, Tkachenko [12]
constructed, under the Continuum Hypothesis, a countably compact group topology on the free Abelian group of cardinal-
ity c. His construction modifies the construction of Hájnal and Juhász [8] of a hereditarily finally dense (HFD) subgroup of
{0,1}c with the property that all small projections are full. As a consequence, the resulting group does not have non-trivial
convergent sequences. In 2007, Madariaga-Garcia and Tomita [11] showed that the free Abelian group of cardinality c admits
a countably compact group topology from the existence of c incomparable selective ultrafilters, but this group also does not
have any non-trivial convergent sequence. It is still unknown whether or not there exists such a topological group in ZFC.

The improvement of the technique of HFD’s to other Abelian groups led to the characterization of the small Abelian
groups that admit a countably compact group topology under Martin’s Axiom (see [5]) or using forcing (see [3]). Thus,
under some additional hypothesis, small Abelian groups that admit a countably compact group topology also admit a
countably compact group topology without non-trivial convergent sequences. The following question is due to Dikranjan
and Shakhmatov ([3, Questions 14.16 and 14.17] and [4, Question 24]):

Question 1.1. Let G be an infinite group admitting a countably compact (respectively, a pseudocompact) group topology.
Does G have a countably compact (respectively, pseudocompact) group topology that contains a non-trivial convergent
sequence?
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For pseudocompact Abelian groups, this question was solved positively by Galindo, Garcia-Ferreira and Tomita [7] who
also noted that it is easy to show in ZFC that a torsion Abelian group that admits a countably compact group topol-
ogy also admits a countably compact group topology with a non-trivial convergent sequence. Recently, it was shown by
Tkachenko [13] that every infinite Abelian group satisfying |G|ω = |G| and |G| = r0(G)1 admits a Hausdorff topological
group topology making it a pseudocompact Fréchet–Urysohn2 group, but a similar result cannot be obtained for countable
compactness and free Abelian groups. Indeed, Tomita [14, Theorem 7] showed that a countably compact free Abelian group
cannot be sequential.3

In this article, we show, assuming p = c, that the free Abelian group of cardinality c admits a countably compact group
topology with a non-trivial convergent sequence. This gives a partial answer to Question 1.1. This result can be also achieved
by using selective ultrafilters as we shall describe at the end of the paper.

2. The topology on ZZZ
(c)

We start this section with some basic notations and useful notions.
Let Λ be a set of ordinals. Given g ∈ Z

Λ , the support of g is the set supp g = {μ ∈ Λ: g(μ) �= 0}. Thus, the direct sum
Z

(Λ) is the set of all functions g : Λ → Z with finite support. Given g ∈ Z
(c) , define ‖g‖ = ∑ |g(μ)|. We denote by T the

unitary circle group identified with the metric group (R/Z,+, δ), where δ(x + Z, y + Z) = min{|x − y + a|: a ∈ Z}.4 In this
context, an open arc of T with center x and diameter r is the set {y ∈ T: δ(x, y) < r}. For a subset A of T, δ(A) will denote
the diameter of A according to the metric δ. In what follows, B will denote the set of all non-empty open arcs of T.

If (xn)n∈ω is a sequence in a topological space X , x ∈ X and A ∈ [ω]ω , then we write xn →n∈A x provided every open
neighborhood of x contains all but finitely many elements of the set {xn: n ∈ A}.

A pseudointersection of a family G of infinite sets is an infinite set X such that X ⊆∗ G for every G ∈ G . We say that a
family G of infinite sets has the strong finite intersection property (SFIP, for short) if every finite subfamily of G has infinite
intersection. The pseudointersection number p is the smallest cardinality of G ∈ [ω]ω with SFIP but with no pseudointersec-
tion.

It is known that if {φi : G → (H, τi): i ∈ I} is a family of homomorphisms from a group G to a topological group (H, τi),
then the initial5 topology τ on G is a topological group topology (see, for instance, Proposition 3.1 of [2]). Following this
idea, we shall define for each g ∈ Z

(c) \ {0}, a suitable homomorphism φg : Z
(c) → T and equip Z

(c) with the initial topology
induced by the family {φg : g ∈ Z

(c) \ {0}}. By the properties of homomorphisms φg , this topology will be countably compact
and will contain a non-trivial convergent sequence.

For each ordinal ξ < c, the function xξ : c → Z is defined by xξ (ξ) = 1 and xξ (μ) = 0, for each μ ∈ c \ {ξ}. If Λ ⊂ c is a
set of ordinals, then it is clear that {xξ : ξ ∈ Λ} is an independent set that generates Z

(Λ) . By using these generators we can
define a homomorphism φ : Z

(Λ) → T by the formula

φ(g) = φ
(∑

g(μ) · xμ

)
=

∑
g(μ) · φ(xμ),

for each g ∈ Z
(Λ) . So, in order to construct a certain homomorphism φ : Z

(Λ) → T, it is enough to define φ(xξ ) for each
ξ ∈ Λ.

Consider

F1 = {
f ∈ (

Z
(c)

)ω
: ∀n ∈ ω

(∥∥ f (n)
∥∥ > n

)}
and

F2 =
{

f ∈ (
Z

(c)
)ω

: ∀n ∈ ω

[
supp f (n) ∩ ω = ∅ ∧ supp f (n) \

⋃
m<n

supp f (m) �= ∅
]}

.

Put F = F1 ∪ F2 and enumerate F as { fξ : ω � ξ < c} so that
⋃

n∈ω supp fξ (n) ⊂ ξ , for each infinite ξ < c.

Lemma 2.1. Let g ∈ Z
(c) \ {0} and E ∈ [c]ω be such that supp g ∪ ω ⊂ E and

⋃
n∈ω supp fξ (n) ⊂ E, for all ξ ∈ E \ ω. For each

ξ ∈ E \ω, fix Rξ ∈ [ω]ω . Let {θn: n ∈ ω} be an enumeration of E \ω so that |{n ∈ ω: θ = θn}| = ω, for every θ ∈ E \ω. Then, for each
m ∈ ω, there exist a function ψm : E → B, a finite set Gm ⊂ E, bm−1 ∈ Rθm−1 (if m > 0) and rm > 0 such that:

(1) 0 /∈ ∑
g(ξ) · ψ0(ξ);

(2) bm > bm−1 , if m > 0;

1 For any Abelian group G , r0(G) denotes the torsion-free rank of G .
2 A space X is called Fréchet–Urysohn if for every x ∈ clX (A), there exists a sequence (an)n∈ω in A such that an → x.
3 A space X is called sequential if whenever A ⊂ X is not closed, there exists a sequence (an)n∈ω in A converging to a point outside of A.
4 In what follows, an element x + Z of T will be denoted simply by x.
5 That is, the coarsest topology on G that makes each homomorphism continuous.
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(3) Gm = Gm−1 ∪ {θm} ∪ supp fθm−1 (bm−1), if m > 0;
(4) rm = rm−1

2·‖ fθm−1 (bm−1)‖ , if m > 0;

(5) ψm(ξ) ⊂ ψm−1(ξ), for each ξ ∈ E and m > 0;
(6) If ξ ∈ Gm, then δ(ψm(ξ)) = rm and if ξ ∈ E \ Gm, then ψm(ξ) = T;
(7) ψm−1(θm−1) ∩ (

∑
fθm−1 (bm−1)(μ) · ψm(μ)) �= ∅, if m > 0;

(8) If m > 0 and ξ ∈ (Gm \ Gm−1) ∩ ω, then δ(x,0) < rm−1 , for each x ∈ ψm(ξ).

Proof. Set b−1 = 0, r0 = 1
4·‖g‖ and G0 = supp g ∪ {θ0}. For each ξ ∈ G0, choose yξ ∈ R such that

∑
g(ξ) · yξ = 1

2

and define ψ0(ξ) as the open arc of T centered at yξ with diameter r0. If ξ ∈ E \ G0, then let ψ0(ξ) = T. Then (6) holds
and

δ
(∑

g(ξ) · ψ0(ξ)
)

� ‖g‖ · r0 = 1

4
.

Since 1
2 ∈ ∑

g(ξ) · ψ0(ξ), (1) must hold. Now, we start the successor stage. Fix m ∈ ω and suppose we have already defined
ψm : E → B, Gm ∈ [E]<ω , bm−1 ∈ Rθm−1 (if m > 0) and rm > 0. Define Gm+1 and rm+1 according to (3) and (4), respectively.

If ξ ∈ (Gm+1 \ Gm)∩ω, then let ψ̃m(ξ) be the open arc of T centered at 0 with diameter rm; if ξ ∈ (Gm+1 \ Gm) \ω, then
let ψ̃m(ξ) be any open arc of T with diameter rm; finally, if ξ ∈ Gm , then let ψ̃m(ξ) = ψm(ξ).

In order to define bm ∈ Rθm and ψm+1, we shall consider two cases:

Case I. fθm ∈ F1.

Choose am ∈ ω so that ‖ fθm (n)‖ · rm > 2, for each n > am . Then fix bm ∈ Rθm such that bm > am and bm > bm−1 (so,

condition (2) holds). Consider the function ˜̃
ψm : supp fθm (bm) → B which assigns to each point μ ∈ supp fθm (bm) the open

arc ˜̃
ψm(μ) of T centered at the middle point of ψ̃m(μ) with diameter rm/4. For each ξ ∈ E \ Gm+1, define ψm+1(ξ) = T. If

ξ ∈ Gm+1 \ supp fθm (bm), then let ψm+1(ξ) be the open arc of T centered at the middle point of ψ̃m(ξ) with diameter rm+1.
Next, we shall define ψm+1(ξ) for each ξ ∈ supp fθm (bm). Since ‖ fθm (bm)‖ · rm > 2, we must have that

∑
fθm (bm)(μ) · ˜̃

ψm(μ) = T.

Hence, for each μ ∈ supp fθm (bm), there exists xm
μ ∈ ˜̃

ψm(μ) such that

∑
fθm (bm)(μ) · xm

μ ∈ ψm(θm).

We define ψm+1(μ) as the open arc of T centered at xm
μ with diameter rm+1. Thus, conditions (5)–(7) are verified. If

ξ ∈ (Gm+1 \ Gm)∩ω, then ˜̃
ψm(ξ) is the open arc of T centered at 0 with diameter rm/4. Since xm

ξ ∈ ˜̃
ψm(ξ) and rm+1 � rm/2,

it follows that δ(x,0) < rm , for every x ∈ ψm+1(ξ). So, condition (8) holds.

Case II. fθm ∈ F2.

Choose am ∈ ω so that supp fθm (n) \ Gm �= ∅, for each n > am . Then fix bm ∈ Rθm such that bm > am and bm > bm−1
(so, condition (2) holds). For each ξ ∈ E \ Gm+1, define ψm+1(ξ) = T. If ξ ∈ Gm+1 \ supp fθm (bm), then let ψm+1(ξ) be
the open arc of T centered at the middle point of ψ̃m(ξ) with diameter rm+1. Since fθm ∈ F2, then (Gm+1 \ Gm) ∩ ω is
contained in Gm+1 \ supp fθm (bm). So, condition (8) is verified. Finally, we shall define ψm+1(ξ) for ξ ∈ supp fθm (bm). Fix
α ∈ supp fθm (bm) \ Gm . For each ξ ∈ supp fθm (bm) \ {α}, denote by zξ the middle point of ψ̃m(ξ). Since ψm(α) = T, we can
find zα ∈ ψm(α) for which

∑
μ∈supp fθm (bm)\{α}

fθm (bm)(μ) · zμ + fθm (bm)(α) · zα ∈ ψm(θm).

Hence, for each ξ ∈ supp fθm (bm), we define ψm+1(ξ) as the open arc of T centered at zξ with diameter rm+1. Thus,
conditions (5)–(7) are verified. �
Lemma 2.2. Let g ∈ Z

(c) \ {0} and E ∈ [c]ω be such that supp g ∪ ω ⊂ E and
⋃

n∈ω supp fξ (n) ⊂ E, for all ξ ∈ E \ ω. For each
ξ ∈ E \ ω, fix Rξ ∈ [ω]ω . Then there exists a homomorphism φ: Z

(E) → T such that:
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(1) φ(g) �= 0;
(2) for each ξ ∈ E \ ω, there exists Sξ ∈ [Rξ ]ω such that φ( fξ (n)) →n∈Sξ φ(xξ ); and
(3) φ(xn) → 0.

Proof. Let {ψm: m ∈ ω}, {Gm: m ∈ ω}, {bm: m ∈ ω} and {rm: m ∈ ω} be as in Lemma 2.1. Since T is a compact metric space
and the sequence (rn)n∈ω converges to 0, it follows that the set

⋂
n∈ω ψn(ξ) = ⋂

n∈ω ψn(ξ) is a singleton, for every ξ ∈ E .
For each ξ ∈ E , let φ(xξ ) be the unique element of the intersection

⋂
n∈ω ψn(ξ). Since {xξ : ξ ∈ E} is an independent set

that generates the group Z
(E) , we extend φ to a homomorphism from Z

(E) into T by defining

φ(h) =
∑

h(μ) · φ(xμ)

for each h ∈ Z
(E) . By construction, we have that φ(h) ∈ ∑

h(μ) · ψ0(μ), for each h ∈ Z
(E) . Also, by the first condition of

Lemma 2.1, we have that φ(g) �= 0.
For each ξ ∈ E \ ω, define Iξ = {m ∈ ω: ξ = θm} and Sξ = {bm: m ∈ Iξ }. It is evident that Sξ ∈ [Rξ ]ω . Furthermore, if

m,n ∈ Iξ and m < n, then bm < bn . We claim that φ( fξ (bm)) →m∈Iξ φ(xξ ). Indeed, we know that

φ
(

fθm (bm)
) =

∑
fθm (bm)(μ) · φ(xμ) ∈

∑
fθm (bm)(μ) · ψm+1(μ)

and φ(xθm ) ∈ ψm(θm). On the other hand, we have that

δ
(
φ
(

fθm (bm)
)
, φ(xθm )

)
� δ

(∑
fθm (bm)(μ) · ψm+1(μ)

)
+ δ

(
ψm(θm)

)
�

∥∥ fθm(bm)
∥∥ · 2 · rm+1 + rm < 2 · rm.

Since rm → 0, it follows that φ( fξ (bm)) →m∈Iξ φ(xξ ). In other words, φ( fξ (n)) →n∈Sξ φ(xξ ).
It remains to show that the sequence (φ(xn))n∈ω converges to 0. In fact, this follows directly from condition (8) of

Lemma 2.1 which guarantees that the set {n ∈ ω: δ(φ(xn),0) � rm} is finite for all m ∈ ω. �
Our next aim is to extend the homomorphism obtained in Lemma 2.2 to Z

(c) in such a way that condition (2) holds for
every element of F .

Lemma 2.3. Let g be an element of Z
(c) \ {0} and {Rξ : ξ ∈ c \ω} ⊂ [ω]ω . Then there exists a homomorphism φ : Z

(c) → T such that:

(1) φ(g) �= 0;
(2) for each ξ ∈ c \ ω, there exists Sξ ∈ [Rξ ]ω such that φ( fξ (n)) →n∈Sξ φ(xξ ); and
(3) φ(xn) → 0.

Proof. Given g ∈ Z
(c) \ {0}, fix E ∈ [c]ω such that supp g ∪ ω ⊂ E and

⋃
n∈ω supp fξ (n) ⊂ E , whenever ξ ∈ E \ ω.6 Let

φ : Z
(E) → T be a homomorphism satisfying the conclusion of Lemma 2.2.

Let {αξ : ξ < c} be a strictly increasing enumeration of c \ E . Since T is sequentially compact, there exists Sα0 ∈ [Rα0 ]ω
so that the sequence φ( fα0(n))n∈Sα0

is convergent. Define φ(xα0) as the limit point of this sequence and extend φ to a

homomorphism from Z
(E∪{α0}) into T.

Let ξ < c be an ordinal and suppose that φ was extended to a homomorphism (which we will also denote by φ) from
Z

(E∪{αμ: μ<ξ}) into T. Since αξ = min c \ (E ∪ {αμ: μ < ξ}) and
⋃

n∈ω supp fαξ (n) ⊂ αξ , then φ( fαξ (n)) is defined for every
n ∈ ω. From the sequential compactness of T, it follows that there exists Sαξ ∈ [Rαξ ]ω such that the sequence φ( fαξ (n))n∈Sαξ

is convergent. Define φ(xαξ ) as the limit point of this sequence and extend φ to a homomorphism from Z
(E∪{αμ: μ<ξ+1})

into T. By induction, we extend φ to a homomorphism from Z
(c) into T satisfying (1)–(3). �

Lemma 2.4. [p = c] Let {gα: α < c} be an enumeration of Z
(c) \ {0}. Then, for each α < c, there exist a family {Sξ,α: ξ ∈ c \ ω} of

infinite subsets of ω and a homomorphism φα : Z
(c) → T such that:

(1) Sξ,β ⊂∗ Sξ,α whenever α < β < c and ξ ∈ c \ ω;
(2) φα(gα) �= 0;
(3) φα( fξ (n)) →n∈Sξ,α φα(xξ ); and
(4) φα(xn) → 0.

Proof. For each ξ ∈ c \ ω, set Rξ,0 = ω. Applying Lemma 2.3 to g = g0 and Rξ = Rξ,0, we obtain a homomorphism
φ0 : Z

(c) → T and Sξ,0 ∈ [Rξ,0]ω for each ξ ∈ c \ ω, such that:

6 The existence of such an E is guaranteed by Lemma 3.5 of [11].
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(1) φ0(g0) �= 0;
(2) φ0( fξ (n)) →n∈Sξ,0 φ0(xξ ); and
(3) φ0(xn) → 0.

Fix β < c and suppose that, for each α < β , we have constructed a family {Sξ,α: ξ ∈ c \ ω} of infinite subsets of ω and a
homomorphism φα : Z

(c) → T satisfying conditions (1)–(4) of Lemma 2.4, with c replaced by β .
If β = α + 1, then we set Rξ,β = Sξ,α for each ξ ∈ c \ ω and apply Lemma 2.3 to g = gβ and Rξ = Rξ,β . If β is a limit

ordinal, then for each ξ ∈ c \ ω, consider the family {Sξ,α: α < β}. By inductive hypothesis, this family has the SFIP and,
from p = c, such family has a pseudointersection Rξ,β . Apply Lemma 2.3 to g = gβ and Rξ = Rξ,β . �
Theorem 2.5. [p = c] The free Abelian group of cardinality c admits a topological group topology that makes it countably compact
with a non-trivial convergent sequence.

Proof. Fix an enumeration {gα: α < c} of Z
(c) \ {0}. For each α < c, let {Sξ,α: ξ ∈ c \ ω} be a family of infinite subsets of

ω and let φα : Z
(c) → T be a homomorphism satisfying conditions (1)–(4) of Lemma 2.4. We equip Z

(c) with the initial
topology τ induced by the family of homomorphisms {φα: α < c}. We know that (Z(c), τ ) is a topological group and that
{⋂α∈F φ−1

α (V ): F ∈ [c]<ω ∧ V is a neighborhood of 0} is a local basis at 0 (see Proposition 3.1 of [2]). Since φα(xn) → 0 for
each α < c, we must have that xn → 0. Thus, (Z(c), τ ) has a non-trivial convergent sequence. It is evident that the second
condition of Lemma 2.4 guarantees that the topology τ is Hausdorff.

Claim. For every ξ ∈ c \ ω, xξ is an accumulation point of the sequence ( fξ (n))n∈ω .

Proof of the claim. Fix ξ ∈ c \ ω. According to Lemma 2.3, we know that

φα

(
fξ (n)

) →n∈Sξ,α φα(xξ )

for every α < c. Let V = ⋂
α∈F φ−1

α (Vα), where F ∈ [c]<ω and Vα is a neighborhood of φα(xξ ), for each α ∈ F . If γ =
max F , then Sξ,γ ⊆∗ Sξ,α for each α ∈ F . Choose m ∈ ω so that φα( fξ (n)) ∈ Vα for each n ∈ Sξ,α with n � m. In other
words, fξ (n) ∈ ⋂

α∈F φ−1
α (Vα) = V for each n ∈ Sξ,α with n � m. Therefore, xξ is an accumulation point of the sequence

( fξ (n))n∈ω . �
Next we shall prove that (Z(c), τ ) is countably compact. To do that consider an arbitrary function f : ω → Z

(c) . If
{‖ f (n)‖: n ∈ ω} is unbounded, then there exists a strictly increasing function j : ω → ω such that f ◦ j ∈ F1. Thus, f = fξ ,
for some ξ ∈ c \ω. Then, by the claim, xξ is an accumulation point of the sequence ( f (n))n∈ω . Assume that {‖ f (n)‖: n ∈ ω}
is bounded. Define f1, f2 : ω → Z

(c) by

f1(n) =
∑
ξ∈ω

f (n)(ξ) · xξ and f2(n) =
∑

ξ∈c\ω
f (n)(ξ) · xξ

for every n ∈ ω. Observe that the set {‖ f1(n)‖: n ∈ ω} is also bounded. Then it is possible to find a strictly increasing
function j : ω → ω such that the sequence (‖ f1 ◦ j(n)‖)n∈ω is constant and either f2 ◦ j ∈ F2 or f2 ◦ j is constant. Notice that,
in both cases, the sequence ( f2( j(n)))n∈ω has an accumulation point and observe that the sequence ( f1( j(n)))n∈ω converges
to some χF where F ⊆ ω is finite. Suppose that f2 ◦ j = fξ for some ξ ∈ c \ ω. Then χ + χF is an accumulation point of
the sequence ( f1( j(n)) + fξ (n))n∈ω . As f = f1 + f2, we deduce that the sequence ( f (n))n∈ω also has an accumulation point
in Z

(c) . Therefore, Z
(c) is countably compact. �

3. An example from selective ultrafilters

The set of all free ultrafilters over ω will be denoted by ω∗ . Bernstein [1] defined the following concept, which is an
important tool for the study of countable compactness.

Definition 3.1. Let p ∈ ω∗ and {xn: n ∈ ω} be a sequence in a topological space X . We say that x ∈ X is a p-limit point
of {xn: n ∈ ω} if, for every neighborhood U of x, the set {n ∈ ω: xn ∈ U } is an element of p. In this case, we write
x = p- lim{xn: n ∈ ω}.

It is not difficult to prove that a topological space X is countably compact iff each sequence in X has a p-limit point, for
some p ∈ ω∗ .

Definition 3.2. We say that p ∈ ω∗ is selective if, for each partition {An: n ∈ ω} of ω into non-empty sets, either An ∈ p, for
some n ∈ ω or, for each n ∈ ω, there exists an ∈ An such that {an: n ∈ ω} ∈ p.
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Two selective ultrafilters p and q are said to be incomparable if there exists no bijection f : ω → ω such that β f (p) = q,
where β f is the Stone–Čech extension of f .

It is possible to modify the previous example by using a construction via selective ultrafilters and some results and
ideas from the papers [11] and [15]. The frame of the construction is as before: we choose adequate sequences in Z

(c) to
work with (namely, the ones in F ), construct c many homomorphisms from Z

(c) into T satisfying suitable conditions and
consider the initial topology on Z

(c) given by these homomorphisms.
The next lemma is proved in [11, Lemma 3.2] and it will be used to carry on the construction of the homomorphisms.

Lemma 3.3. Let g ∈ Z
(c) \ {0} and E ∈ [c]ω be such that ω ⊂ E, supp g ⊂ E and

⋃
n∈ω supp fξ (n) ⊂ E, whenever ξ ∈ E \ ω. Also,

let {pξ : ξ ∈ E \ ω} be a family of incomparable selective ultrafilters. There exist a family {Ek: k ∈ ω} of finite subsets of E, a strictly
increasing sequence {bk: k ∈ ω} of natural numbers, a sequence {rk: k ∈ ω} of positive real numbers and a function i : ω → E \ ω
such that:

(1) supp g ⊂ E0;
(2) E = ⋃

k∈ω Ek;
(3) Ek+1 ⊃ Ek ∪ ⋃{supp f i(m)(bm): m � k}, for each k ∈ ω;
(4) i(k) ∈ Ek, for each k ∈ ω;
(5) {bk: k ∈ i−1({ξ})} ∈ pξ , for each ξ ∈ E \ ω;
(6) If f i(k) ∈ F1 , then ‖ f i(k)(bk)‖ · rk > 2, for each k ∈ ω;
(7) If f i(k) ∈ F2 , then supp f i(k)(bk) \ Ek �= ∅, for each k ∈ ω;
(8) r0 = 1

4·‖g‖ ;

(9) rk+1 = rk
2·‖ f i(k)(bk)‖ , for each k ∈ ω.

The careful choice of the sequence {bk: k ∈ ω} allows us to obtain the following result, whose proof is quite similar to
the proof of Lemma 2.2.

Lemma 3.4. Let g ∈ Z
(c) \ {0} and E ∈ [c]ω be such that ω ⊂ E, supp g ⊂ E and

⋃
n∈ω supp fξ (n) ⊂ E, whenever ξ ∈ E \ ω. Also, let

{pξ : ξ ∈ E \ ω} be a family of incomparable selective ultrafilters. There exists a homomorphism φg : Z
(E) → T such that:

(i) φg(g) �= 0;
(ii) φg(xξ ) = pξ - lim{φg( fξ (n)): n ∈ ω}, for each ξ ∈ E \ ω;

(iii) φg(xn) → 0.

Proof. Let {Ek: k ∈ ω}, {bk: k ∈ ω}, {rk: k ∈ ω} and i : ω → E \ ω be as in Lemma 3.3.
For each ξ ∈ E0, let yξ ∈ R be such that

∑
g(ξ) · yξ = 1

2

and define ψ0(ξ) as the open arc centered at yξ with diameter r0. It follows that

δ
(∑

g(ξ) · ψ0(ξ)
)

�
∑∣∣g(ξ)

∣∣ · δ(ψ0(ξ)
) = ‖g‖ · r0 = 1

4
.

Since

1

2
∈

∑
g(ξ) · ψ0(ξ)

we must have that

0 /∈
∑

g(ξ) · ψ0(ξ).

Finally, if ξ ∈ E \ E0, then let ψ0(ξ) = T.
Fix m ∈ ω and suppose that we have already defined ψm : E → B. We shall construct ψm+1 : E → B with the following

properties:

(1) ψm+1(ξ) ⊂ ψm(ξ), for every ξ ∈ E;
(2) If ξ ∈ E \ Em+1, then ψm+1(ξ) = T; If ξ ∈ Em+1, then δ(ψm+1(ξ)) = rm+1;
(3) ψm(i(m)) ∩ ∑

f i(m)(bm)(μ) · ψm+1(μ) �= ∅;
(4) If ξ ∈ (Em+1 \ Em) ∩ ω, then δ(x,0) < rm , for every x ∈ ψm+1(ξ).
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If ξ ∈ (Em+1 \ Em) ∩ ω, then let ψ̃m(ξ) be the open arc of T centered at 0 with diameter rm; if ξ ∈ (Em+1 \ Em) \ ω, then
let ψ̃m(ξ) be any open arc of T with diameter rm; finally, if ξ ∈ Em , then let ψ̃m(ξ) = ψm(ξ).

If ξ ∈ E \ Em+1, then let ψm+1(ξ) = T. If ξ ∈ Em+1 \ supp f i(m)(bm), then let ψm+1(ξ) be the open arc of T centered at
the middle point of ψ̃m(ξ) with diameter rm+1. It is evident that (1), (2) and (4) are satisfied for ξ ∈ Em+1 \ supp f i(m)(bm).
Let us now define ψm+1(ξ) for ξ ∈ supp f i(m)(bm).

Case I. f i(m) ∈ F1.

We have that
∑

f i(m)(bm)(μ) · ˜̃
ψm(μ) = T

where ˜̃
ψm(μ) is the open arc of T centered at the middle point of ψ̃m(μ) with diameter rm/4. Therefore, for each μ ∈

supp f i(m)(bm), there exists xm
μ ∈ ˜̃

ψm(μ) such that

∑
f i(m)(bm)(μ) · xm

μ ∈ ψm
(
i(m)

)
.

Define ψm+1(μ) as the open arc of T centered at xm
μ with diameter rm+1. Thus, conditions (1)–(4) are verified.

Case II. f i(m) ∈ F2.

Fix α ∈ supp f i(m)(bm) \ Em . For each ξ ∈ supp f i(m)(bm) \ {α}, denote by zξ the middle point of ψ̃m(ξ). Since ψm(α) = T,
there exists zα ∈ ψm(α) such that

∑
μ∈supp f i(m)(bm)\{α}

f i(m)(bm)(μ) · zμ + f i(m)(bm)(α) · zα ∈ ψm
(
i(m)

)
.

For each ξ ∈ supp f i(m)(bm), define ψm+1(ξ) as the open arc of T centered at zξ with diameter rm+1. The conditions (1)–(4)
are verified, since supp f i(m)(bm) ∩ ω = ∅.

Since T is a complete metric space and (rk)k∈ω is a sequence of positive real numbers that converges to 0, we conclude
that if ξ ∈ E , then

⋂
k∈ω ψk(ξ) = ⋂

k∈ω ψk(ξ) is a singleton. We shall denote by φ(xξ ) the unique element of the intersection⋂
k∈ω ψk(ξ). Since {xξ : ξ ∈ E} is an independent set that generates Z

(E) , it is possible to extend φ to a homomorphism
φg : Z

(E) → T.
We have that

φg(g) =
∑

g(μ) · φg(xμ) ∈
∑

g(μ) · ψ0(μ)

and, therefore, φg(g) �= 0.
Fix ξ ∈ E \ ω. For each k ∈ i−1({ξ}), we have that

φg
(

f i(k)(bk)
) ∈

∑
f i(k)(bk)(μ) · ψk+1(μ)

and

φg(xi(k)) ∈ ψk
(
i(k)

)
.

Thus,

δ
(
φg

(
f i(k)(bk)

)
, φg

(
xi(k)

))
� δ

(∑
f i(k)(bk)(μ) · ψk+1(μ)

)
+ δ

(
ψk

(
i(k)

))
< 2 · rk.

Since rk → 0, the sequence {φg( fξ (bk)): k ∈ i−1(ξ)} converges to φg(xξ ). Therefore,

φg(xξ ) = pξ - lim
{
φg

(
fξ (n)

)
: n ∈ ω

}
.

It remains to show that the sequence {φg(xn): n ∈ ω} converges to 0. It is sufficient to note that if k ∈ ω is fixed, then
the set {n ∈ ω: δ(φg(xn),0) � rk} is finite (since it is contained in Ek). Thus, (iii) is verified. �

If p ∈ ω∗ , then every sequence in T admits a p-limit point. So, minor modifications in the proof of Lemma 2.3 guarantee
that it is possible to extend each homomorphism φg : Z

(E) → T obtained from Lemma 3.4 to Z
(c) in the following sense:
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Lemma 3.5. For each g ∈ Z
(c) \ {0}, there exists a homomorphism φg : Z

(c) → T such that:

(i) φg(g) �= 0;
(ii) φg(xξ ) = pξ - lim{φg( fξ (n)): n ∈ ω}, for every ξ ∈ c \ ω;

(iii) φg(xn) → 0.

We are ready to state the main result of this section.

Theorem 3.6. Assuming the existence of c incomparable selective ultrafilters, the free Abelian group of cardinality c admits a countably
compact group topology with a non-trivial convergent sequence.

The proof of Theorem 3.6 is analogous to the proof of Theorem 2.5.
We finish the paper with the following question.

Question 3.7. Is it consistent with ZFC that the additive group R admits a sequentially compact group topology?
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