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Abstract. Cosmological simulations play an increasingly important role in analysing the ob-
served large-scale structure of the Universe. Recently, they have been particularly important
in building hybrid models that combine a perturbative bias expansion with displacement
fields extracted from N-body simulations to describe the clustering of biased tracers. Here,
we show that simulations that employ a technique referred to as “Fixing-and-pairing” (F&P)
can dramatically improve the statistical precision of such hybrid models. Specifically, by
numerical and analytical means, we show that F&P simulations provide unbiased estimates
for all statistics employed by hybrid models while reducing, by up to two orders of magni-
tude, their uncertainty on large scales. This roughly implies that an EUCLID-like survey
could be analysed using simulations of 2 Gpc a side — a 20% of the survey volume. Our
work establishes the robustness of F&P for current hybrid theoretical models for galaxy clus-
tering, an important step towards achieving an optimal exploitation of large-scale structure
measurements.
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power spectrum
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1 Introduction

Numerical simulations of the large-scale structure are fundamental tools in modern cosmol-
ogy [1]. They can be used for a variety of purposes such as generating mock observations of
the universe, testing the underlying physics of the cosmos and assessing the observability of
novel effects, or even to generate large training sets for machine-learning based models that
seek to describe complex phenomena. Finally, they are the only tools capable of accurately
describing the nonlinear regime of structure formation.



However, many of the aforementioned applications suffer from a limitation — these
numerical simulations poorly sample modes comparable with the fundamental mode of the
simulated volume. This issue is related to the observational effect known as cosmic variance,
and causes a lack of precision in statistical quantities on large scales. It is possible to increase
this precision by running simulations with larger volumes or many realizations of them, but
of course there are limits imposed by the capabilities of even the largest supercomputers
available. No simulation run up to now is capable of matching the combination of volume
and resolution required for the interpretation of data from Stage IV galaxy surveys such as
EUCLID or Rubin-DESC [1].

One way to suppress the cosmic variance in these simulations was introduced by [2], and
is commonly referred to as “Fixing and Pairing” (hereafter F&P). The procedure consists of
two steps; the first is to generate initial conditions with amplitudes fixed to their ensemble-
average values, so that the matter power spectrum of one realization will be exactly equal
to the ensemble mean. Secondly, one combines two such simulations with the same initial
seed, but shifting the phases of one of them by 7, or equivalently, generating it with opposite
initial linear overdensities; the deviations of their two-point functions with respect to the
ensemble average will be roughly the same, only with opposite sign, so that averaging the
two is expected to make this statistic converge to the ensemble average much faster than it
would by simply averaging two realizations with random seeds. A wide range of statistics
derived from the matter density field in F&P simulations have been investigated, finding that
they are unbiased and that some feature a very significant reduction in their variances [2—4].

Reducing the variance in matter statistics is a great advancement, but interpreting ob-
servations requires models for biased tracers, and thus one must test whether their statistics
also remain unbiased and quantify the variance suppression. This has been done by [3] us-
ing halos in N-Body simulations, or directly hydrodynamic simulations, seeing that these
statistics are unbiased and display some variance suppression, albeit smaller than for matter.
Alternatively, one can model these tracers by combining several properties of the dark-matter
density field with a set of bias parameters [5]. It has not been checked whether this can be
done using the results of F&P simulations without introducing biases, nor how much the
statistical improvements are retained in the final spectrum. This is particularly relevant for
current developments of theoretical models of galaxy clustering based on combining numer-
ical simulations and the bias expansion, as F&P is a valuable tool in making them more
precise [6-10].

Theoretical models are never a perfect description of reality, and one must have good
estimates of the error being made so that it can be included in the data analyses, avoiding
distorted interpretations of the measurements [11, 12]. In the case of models based on nu-
merical simulations, these errors may come from cosmology rescaling methods [13], emulators
of statistical quantities, and from the undersampling of large-scale modes in the simulation
itself. The latter can in principle be reduced using F&P, which helps make the model more
precise, but hinders our capacity of predicting its error [14] — one knows only that the
variance is smaller, but not its value.

In this work, we set out to understand the statistical properties of models of biased
tracers built from F&P simulations, answering several of the questions raised in the preceding
paragraphs. We will assess whether F&P introduces biases to the basis spectra entering the
bias expansion, and quantify the variance suppression for each of them. Furthermore, we will
provide qualitative explanations for their different behaviours and quantitative predictions
capable of describing their variances. We also propose and test a method to further reduce



the variances in certain spectra that are unaffected by F&P, and finally apply the developed
tools to understand what the minimum simulation size is such that the error in a theoretical
model built from it satisfies EUCLID requirements.

The text of this manuscript is organized as follows. Section 2 is devoted to establish-
ing our notation, and to reviewing the fixing and pairing methods. Section 3 gives a very
brief account of the bias expansion, and explains the way in which it has been applied in
this work. In section 4 we describe the set of simulations utilized throughout this work and
employ them to demonstrate that the basis spectra entering the bias expansion are unbiased
in F&P simulations, and to quantify the reduction in their variances. In section 5 we use
Lagrangian Perturbation-Theory (hereafter LPT) to understand why certain spectra feature
noise reduction in F&P simulations, while others do not, and to obtain, for the first time,
simple analytical expressions for the variances of these spectra in F&P simulations. In sec-
tion 6 we show how to further reduce the variance in the basis spectra. Finally, section 7 is
devoted to applying these results to understand the simulation sizes required to build a model
precise enough for the analysis of Euclid data, and in section 8 we conclude and present final
remarks.

2 Fixed and paired fields

In this section we give a brief overview to contextualize F&P fields, and to settle on the
notation to be used throughout this work.
Let us say p(x) is the density of dark matter, then we can define the matter overdensity

field as 0(x) = @ — 1. It is customary to work with its Fourier transform, defined by
5(k) = / Brs(@)e*e. 2.1)

This field will be complex, and therefore can be decomposed into an amplitude and a phase,
5(k) = |6(k)|e?; due to d(x) being real, these fields must satistfy §*(k) = 6(—k) and
consequently 6_j = —0. One can in general define the power spectrum of this field through
the expression

(6(k)3(K')) = (2m)*0p (k — k') P(k), (2.2)

in which we express the power spectrum directly as depending only on the modulus of the
wave vector due to the assumption of isotropy in the density field. In the case of a numerical
simulation with finite volume L3, the power spectrum can be defined as

1

Plk) = =

5(k)O(~k), (2.3)
and isotropy is only valid in the limit of L3 — oo, so in order to obtain P as a function

of the modulus of the wave-vector, one must average over a spherical shell of radius k; and
width Ak,

1 &k
P(k;) = P(k), 2.4
0 = 5 . P ) 24)
in which Vi(k;) = 4mk?Ak = 47k} A(In k), depending on whether one uses linear or logarith-
mic binning of the wave modes, and fkl is an integral over V;(k;), the Fourier shell of radius
k; and width Ak.



Observations of the cosmic microwave background [15] have shown that perturbations
in the early universe were, to a very good approximation, Gaussianly distributed. This can
be expressed equivalently by saying that the absolute values of the Fourier modes follow
a Rayleigh distribution, and the phases are uniformly distributed in the interval [0, 27],
resulting in a combined distribution given by

o _
PSR, ) = —1 /1 (25)

Therefore, the standard procedure for generating initial conditions for cosmological simula-
tions is to sample this distribution for amplitudes and phases, using the linear power spectrum
at high redshift in place of P. To generate fixed simulations, in contrast, one substitutes this
probability density function by a Dirac delta centered at /L3 P(k), that is,

P! (151(k)], 66) = 500 (18] ~ VIPP), (2.6)

which amounts to fixing all the amplitudes to the value |§(k)| = \/L3P(k) while allowing the
phases to be uniformly sampled between 0 and 27. From this initial density field, §; (k) =
|6(k)|e?, one can easily generate its corresponding pair simply by shifting the phases of
7, 62(k) = |0(k)|e %+ Fixing clearly reduces the level of randomness in the field while
destroying its Gaussianity. Nevertheless, works such as [2—4] have done extensive studies
of many statistical quantities derived from F&P simulations, finding that two and three-
point clustering statistics, as well as the mass function and probability density function are
unbiased; biases appear in the variance and covariance of two-point functions — as intended,
since the method has been designed to suppress these quantities.

3 Bias expansion

Biased tracers of the large-scale structure can be modeled in many ways, ranging from detailed
and expensive methods such as finding halos or galaxies in simulations, or doing subhalo
abundance matching to populate dark-matter simulations with galaxies, to simpler and less
detailed methods such as a perturbative bias expansion. In this work we will model galaxies
by applying a second-order Lagrangian bias expansion with an additional term to account
for nonlocal effects of galaxy formation,

1+ 0g(q) =1+ b75(q) + b55°(q) + bas®(q) + b&25Ved(q) + -, (3.1)

in which s%(q) = si;8;5 and s;; is the traceless part of the tidal tensor. This has the advantage
of being agnostic to the galaxy formation processes, and also very flexible, allowing one to
fit virtually any galaxy population merely by changing the values of the bias parameters [5].

Using equation (3.1) one can obtain an approximation for the galaxy density field in
Lagrangian space; however, to compare it to observations one must have it in Eulerian space.
To perform this transformation, we must move particles from their Lagrangian to Eulerian
positions,

11 6,(z) = / *qdP (z — q — p(9)(1 + 0,(q))
- Y [de’@-a-v@)F@ (32)
F(q)€[1,6,62,52,V24]

= > brir(z),



Qn 0.25
Qp 0.045
Qp 0.75
h 0.73
o8 0.90
Mg 0.96
L 1.5Gpc/h
Z; 9
Nsteps 10
Nsample 400
Ninesh 800

Table 1. Parameters used to run the ensemble of L-PICOLA simulations used in this work.

in which we have used the linearity of the bias expansion to reorganize the expression for
the galaxy overdensity in Eulerian space as a linear combination of advected Lagrangian
operators. From this, one can then obtain an expression for the galaxy power spectrum
expressed in terms of the bias coefficients and the auto and cross-spectra of the advected
dark-matter density fields,

ng

k= X

1,7€[1,6,62,52,V24]

bibj Pij (k). (3:3)

Notice that in this expression b; must be equal to 1, and is merely a bookkeeping parameter;
in the next sections we will refer to the bias parameter denoted here by bs as bf, that is, the
linear Lagrangian bias. Recent work [6-10, 16-18] has shown that one can use this modeling
and perform the advection using the nonlinear displacement field predicted by simulations to
obtain accurate predictions for the power spectra of biased tracers at highly nonlinear scales.
We call this general procedure “hybrid Lagrangian bias expansion”.

4 Numerical results

To perform our numerical analyses we have run an ensemble of 200 L-PICOLA simulations,
which were used for comparing Gaussian and F&P spectra, and for understanding up to
which scales our theoretical predictions are valid; this set of simulations was run with the
parameters resumed in table 1, for Gaussian and fixed initial conditions, and for phase
offsets ¢ = 0,w. The cosmological parameters correspond to those used in the Millennium
simulation [19]; the parameters ngteps, Nsample and Npart control, respectively, the time, force,
and mass resolutions of the simulation. The original L-PICOLA code developed by [20] did
not include an option for fixing or pairing, and therefore, minor modifications had to be
done to it.

In order to measure the basis spectra entering equation (3.3) we took the following
procedure:

1. Generate initial conditions with the same seed and phase offset as the simulation to be
analysed;
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Figure 1. Basis spectra entering a second-order Lagrangian bias expansion, advected to Eulerian
space. Solid lines represent calculations using first-order LPT, and filled circles represent the mean
of these spectra measured from a set of 200 COLA simulations.

2. Use this generated field to compute §(q), 6%(q), s*(q) and Vg& (q) in Lagrangian space;

3. Compare the initial positions of the particles to their positions at the desired redshift,
thus obtaining their displacement ¥; = &;(zana1) — €i(Zinit);

4. Advect the quantities from Lagrangian to Eulerian space using the procedure outlined
in equation (5.3)

5. Compute their auto and cross-spectra using the fields obtained in Eulerian space. For
the paired spectra we then average over the two simulations run with the same seed,
but different phase offsets.

The mean of these spectra is shown in figure 1, along with theoretical predictions obtained
using 2LPT.

4.1 Bias and variance reduction

In this section, we use the previously mentioned COLA simulations to numerically assess by
how much fixing and/or pairing reduce the variance in the basis spectra, and whether these
spectra are unbiased compared to those obtained using Gaussian initial conditions.

Using the simulation results, we estimate the bias of F&P simulations with respect to
Gaussian ones by using the expression

(P*P)y — (PN
BYF = — , (4.1)
ON

in which (PFT)y is the average of N F&P simulations, and analogously for (P%)y; okF ¢ is

the expected error in their difference, defined by the expression

ofPG =\ [[o8] + [0§)%, (4:2)
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Figure 2. Differences between means of N = 20 fixed and/or paired spectra to Gaussian ones,
divided by their standard deviation, as estimated from an ensemble of 200 COLA simulations using
equation (4.3). These plots indicate clearly that there are no significant biases introduced by F&P,
since the measured differences generally remain inside the 1 or 2-o region (indicated by grey shaded
regions).

and the standard deviations UR,P and aﬁ are the estimated errors on the average of NV spectra,

defined by

o8] = LS (PP - ) (1.3

n—1:=

n being the number of independent sets of N spectra available. In figure 2 we show the
results for the computation of these biases from 10 sets of 20 simulations; it is not hard to
see that, for all of the 15 basis spectra, no significant bias can be detected, as most of the
points are located inside the 1 or 2 — o region, represented by gray-shaded areas in the figure.
This result was expected from analytical considerations made in [2], in which the authors
show that the procedure of fixing the amplitudes of the initial Fourier modes is expected to
change the power spectra only at a measure-zero set of their domain.

To quantify the statistical improvement derived from fixing we directly take the ratio
between the variances of Gaussian and fixed spectra, ‘;—? Quantifying the statistical im-
provement coming from pairing is slightly more delicate. Paired spectra are obtained from
the average of spectra from two simulations with same seed, but opposite initial conditions; if
these spectra were uncorrelated, then the variance of the average would be divided by 2. Of
course this would not be much of an improvement since we could just have run an additional
simulation, with a different seed, to get the same effect; the interesting case is when, due to
having opposed ICs, the spectra from these simulations are anticorrelated and their fluctua-
tions around the mean will cancel out making the averaged spectra converge to the ensemble
mean much faster. Therefore, we choose to multiply the variance of paired simulations by 2
before comparing them to the other ones, to avoid seeing the effects of simply averaging over
two simulations. A side effect to this is that, for some spectra, the measurements from the
two simulations are highly correlated so that the second simulation adds almost no informa-
tion, giving only a small reduction in variance from taking their average; multiplying it by 2,
can then make it artificially larger than the variance of the non-paired spectra, which does
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Figure 3. Ratio of the standard-deviation in standard spectra to the same quantity for fixed and/or
paired ones. One can see how some of these spectra profit from a large reduction in variance from
both fixing and pairing. Others profit only from pairing, while a third group remains unchanged by
either procedure. Also worth remarking is the behaviour of spectra containing V2§ which is somewhat
undefined.

not mean that pairing worsened the variance, but only that the second simulation added
almost no new information.

Figure 3 shows the analysis assessing the variance reductions from F&P. It is useful to
divide these spectra into three categories to better understand the reduction in variance:

e Spectra involving two linear fields, Pi1, Ps, Pss. For scales k ~ 1072 [h/Mpc] fixing
gives a large reduction in o of a factor of around 10? at the largest scales, which then
reduces until no improvement is seen at scales k ~ 0.15 [h/Mpc]|; a small improvement
is seen for k£ 2 0.15 [h/Mpc], but is not very relevant both because of its much smaller
magnitude, and because the error in the spectra at these scales is already quite small.
At the largest scales pairing further reduces o by a factor of 10 and this reduction
diminishes as we go to larger k, until no improvement is seen beyond k ~ 0.15 [h/Mpc].

o Spectra involving one linear and one squared field, P52, Pg2, Pss2, Pse2. Fixing gives
no benefit for these spectra at scales & < 0.15, and for scales beyond this threshold
we see only a very small improvement for P52 and Pjss2. Pairing gives considerable
reduction in o of a factor of 10 at scales k ~ 10~2 [h/Mpc]|, which then falls down until
no improvement is seen for k 2 0.15 [h/Mpc].

e Spectra involving two squared fields Psa452, Ps2,2, Pi2,2. For these spectra we see no
improvement from fixing or pairing.

A comment is in order regarding the spectra involving the Laplacian field Pjg25, Psy2s,
Psagos, Pog2s, Po2gy2s. For these spectra we see a mild improvement from fixing and
pairing at scales 1072 < k/[hMpc~!] < 0.1, but we wish not to include it in any of the
categories above both because they present an irregular behaviour, with no clear tendency
as a function of scale, and because in any way it is not relevant to predict these variances
because the corresponding spectra are extremely suppressed with respect to the others. In



the next section we will provide simple explanations to these three classes of behaviours, and
compute their variances analytically.

5 Analytic exploration

In order to understand the results exposed above, we will use the LPT formalism [21-26] to
compute approximate expressions for the power spectra that go into equation (3.3) and their
variances; this will allow us to see the effects of fixing or pairing on the structure of these
quantities. Let us call F(q) a field in Lagrangian space such that

F(q) € [1,6,6%, 5% V?4). (5.1)

We are interested in these quantities in Eulerian space, and therefore we must advect them
using the displacement field, as previously described in equation (3.2),

e(@) = [ daF(@in(@ - q - (q). (52)

Taking the Fourier transform of both sides and expanding the displacement to first order in
perturbation theory, we obtain the following results.

or(k) m/d3q67ik'qF(q)67ik'¢(l)(q)
1)12 (5.3)
%/d3q€_ik'qF(Q) [1 ik - BT z§< )
in which going to the second line we Taylor expanded the exponential up to second order;
one can then plug in the Z’eldovich approximation ¢ (k) = ili%d (k) and the different fields
into this expression and perform the relevant calculations to obtain them in Eulerian space.
We notice that, although the results to be presented in sections 5.1-5.4 are obtained using
equation (5.3) to advect the fields, our qualitative conclusions are completely general and
rely only on the structure of perturbative calculations.
With the expressions of dp (k) at hand, we can obtain the auto and cross power spectra
of these fields through
Pu(k) = Re [5u()5,(~k)], (5.4)
in which u,v € [1,4,62, 5%, V2] and V = L3. Notice that to make this calculation fully
consistent up to 1-loop, we should have retained several terms in equation (5.3) which we
have discarded; this is justified simply because our purpose is not to obtain highly precise
expressions for these variances but to provide insight into the mechanism by which these
methods operate, and to validate our approach showing we can make reasonable quantitative
predictions. We attract the attention of the reader to the fact that we are not taking the
ensemble average of this combination of fields. This is done with the purpose of retaining
terms which would be zero in the ensemble average but are present for simulations due to their
finite size; these terms will be very important in our explanations of the variance reduction
in different spectra.



5.1 Results for P11, Pyj, Pss

Using equations (A.2) and (A.3) one can easily obtain the expression for Pj; in the case of
fixed initial Fourier amplitudes’

PH (k) ~ PE + V1/2/q | PEPEPE _y cos [0k — 0g, — 04, k] Fza(qu, k — qu, k)
1

5.5
/q \/PL PkL qlPL PL2 ) €08 [0g, + Op—q, — Ogy — Ok—g») (5.5)
2

X Fza(qi, k—q1,k)Fz4(q2,k — q2, k).

The leading-order contribution to this spectrum is the linear power spectrum, PkL , and for
the fixed case this has no variance whatsoever; indeed, when we combined the two fixed fields,
their phases canceled completely, and since their amplitudes are fixed to the square root of
the linear power spectrum, we obtain it completely free of noise. It is not hard to see that,
for all spectra which have the linear power spectrum as their leading order term, fixing will
greatly suppress their variance, by cancelling its leading order contribution. This is precisely
the case of these spectra,

Py, Pis, Pss O PE, (5.6)

explaining why fixing provides a large reduction to their variances.

The next-to-leading-order contribution to P;; is given by a term which came from the
combination of three factors of 5%, and we will thus denote it schematically by (§68). Taking
a closer look at this term we can see that, for a simulation which had all of its phases displaced
by m, one would obtain

(000)~ N/ Veorcos [0 —0q — g -k — T Fza(q1,k — q1, k)
q1
fcos[9k79q1 79‘11*’“] (57)

— (569).

The pairing procedure consists precisely of creating two simulations with the same seed — but
one of them with all the phases displaced by m — and then average their spectra. Through
the arguments above one can clearly see that this would cancel the (600) — along with all
other combinations of an odd number of factors of the density field — from the spectrum.
Although the explanation we gave was focused on the case of Pj1, it is valid for the other two
spectra, as all of these contain a term composed of three linear fields, which has a completely
analogous structure to the one described above. Schematically, one can say that

P11, Pis, Pss O (066), (5.8)

and therefore, all of these spectra have their variances further reduced by pairing.
The only term at this order of the calculation which continues to contribute to the
variance is

v
— / /q \/PL Bl PLPL 4 cos[0g, + Ok—q, — 04 — Ok—q,)]
2

xFza(qi, k—qi,k)Fza(q2, k — q2, k).

(5.9)

Tn the following sections, whenever an integral of the kind f %5 appears, we will simplify the notation,

substituting it by [ (537’)“3 — [

~10 -



A very interesting question is then raised, regarding how can one reduce the variance asso-
ciated with terms such as this one, and this expression allows us to immediately see that
searching for other phase-translations in the same spirit as the pairing procedure will not
help. This is because the cosine in the above expression has two phases with a plus sine, and
two with a minus, so that any phase translation will be canceled and will not affect this term
whatsoever.

5.2 Results for P42, P;,2, Pss2, Pj,2
From appendix A we can take the expression for the fields 4; and ds2, and compute P;s2 up

to fourth order in 7, in the case of fixed initial Fourier amplitudes; this will be given by

Pl (k V1/2/ PLP_qupL g COS [0 — Og, — O—q, ]
a

k- (k—q2)
" V/q /q |k Q12‘2 \/PkLP‘ﬁ P‘éPkL a12 €08 [0’“ B qu B 0112 - equm]
1 2

Ki(qi,k — ql)\/Pqu PkL_q1 PqLQPkL_q2 cos [0, + Ok—q, — Ogo — Ok—qs,) -
(5.10)

2 q1 7 q2

This makes it clear that the leading order contribution to this spectrum is not coming from
the linear power-spectrum; indeed this supports our observations from numerical simulations,
which show that fixing has no effect in reducing the variance of these spectra. The intense
mode-mixing coming from the integrals in equation (5.10) destroys the regularity introduced
by fixing the amplitudes, leaving the statistical noise unchanged. However, we see that the
leading-order term for these spectra is in fact precisely of the shape (§d9), allowing us to
affirm

P152,P552,P152,P582 > ((5(55), (511)

and thus the argument developed in the preceding subsection is capable of explaining the
substantial variance reduction to these spectra coming from pairing.

5.3 Results for Pj2452, Py2,2, Py2 g2

Analogously to what has been done before, one can take expressions for dz2 from appendix A
and compute Ps252 for the case of fixed initial Fourier amplitudes; this gives us

PESP ~ /q /q EEPE ( PLPE 08 [0, + Ok-qy — 0 — O1—gs) (5.12)
1 2

The leading-order contribution to this spectrum is an integral which will mix the initial
Fourier modes in a highly nontrivial way, and will thus be unaffected by fixing. Pairing will
not affect this term either since the first odd combination of factors of the density field will
only appear at fifth order, and will therefore be negligible in comparison to the contribution
from the fourth order term. It is interesting to notice that this term has many similarities in
form with equation (5.9) and with one of the fourth-order contributions to equation (5.10).
If one was to encounter a method analogous to F&P to mitigate the variance associated
with this kind of term, there would be a massive reduction in the error of the final galaxy
clustering model due to the simultaneous reduction in all the relevant basis spectra.
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5.4 Discussion on Pjv24, Psv2s5, Ps2v2s, Ps2v2s, Py2svzs

Analytically, the behaviour of these terms would be very simple to derive, since in Fourier
space one can write V2§ — —k?4. It is quite clear that, although multiplying ¢ by k2 could
change the kernels connecting the linear fields, it would not change the general structure of
these terms, which should then behave as if the laplacian was a linear field; as stated earlier,
this is not what we see. It is not yet clear whether these effects are a product of a lack of
numerical resolution to which the laplacian would be exceedingly sensible, or if it would be
necessary to improve our analytical modeling to reproduce this behaviour.

5.5 Quantitative predictions

Throughout this section we have presented a theoretical framework for analytically computing
power spectra while retaining in these expressions the statistical properties characteristic of
a simulation, and have employed it to obtain a qualitative understanding on the behaviour
of the variances for auto and cross-spectra in F&P simulations. This same framework can
also be used to compute expressions for the variances of these spectra in F&P simulations,
an thus obtain quantitative predictions for them. In the remainder of this section we will
describe the general procedure employed (details will be omitted from the main text, but can
be found in appendix B) and compare our predictions to results from an ensemble of COLA
simulations.
We can readily write a formal expression for the variance in these spectra,

~

o2 (he) = (B2, (ki) — (B (k) (5.13)

in which .
= 1 d’k = A
P (ki) = P, (k)= |P.(k
k) = Gy | gy P (8) = [Bus(k)
and V;(k;) = 4rk3 A(In k) is the volume of the spherical shell of radius k; and width A(In k),
while sz indicates integration over this shell in Fourier space. In order to simplify equa-

tion (5.13) so that we can evaluate it analytically, we will make the approximation that

]@(kn , (5.14)

{ﬁj”(k)} ok {ﬁ“l’(kﬂ 2@(ki) ’ (5.15)

and that we are working in the linear regime so that power spectra at different wave vectors

will be uncorrelated, that is, (P, (k)P (k")) = 0 if k # k’. Using these approximations, we

can write )
2 _ 2
O-,ul/(ki) - Nkz Up,u(k)7 (516)

in which Ny, = Vgg; i) is the number of independent Fourier modes falling inside the spherical

shell of radius k;, and Vy = (27)3/V is the volume of one Fourier cell. This expression now
makes it simple to compute Ji,j(k:i) by computing Uiy(k) from the expressions for the fields
in appendix A, and then dividing them by Ny,.

Once established the approximations that we will be using, we now turn to describing
how the calculation of UZV takes place. For brevity we will not show the calculations for all
the spectra, but merely indicate how one can perform the calculation of o;;(k). Consider
equation (5.5) for the power spectrum of a fixed simulation, and let us recall that the first
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and second terms in this equation will not contribute to the variance in the F&P case. Let
us call the third term in this equation T3(k),

Ty(k) = % ; /q2 VPEPE ( PEPL ) cos[0g, + 0kq, — 0g, — Okg)) s
x Fza(q1,k — q1,k)Fza(q2, k — q2, k),
and we can write the variance of Pj; simply as
oty (k) = (T3 (k)) — (T5(k)). (5.18)
To simplify the notation, we will write T3(k) as
Tik) = [ [ Alargak)cos ( (a1, 22)). (5.19)
aJa
in which we have used
Alq1, g2, k) = K\/PL;,LlP,f_ PLPy _kFzalark —aq))Fza(a k — q2)
4 a © (5.20)

@(qlv q2, k) = eql + 0k_q1 — 9,12 — Hk—t;{g'

Let us begin by computing the first term on the right-hand side of equation (5.18). Using
the notation we just defined, we can write it as

/ A(q17q27k)A(q37q47k) <COS (@(QLQQ’I‘?))COS (@(q37q47k))> . (521)
q1,92,93,94

Notice that © is a sum of random variables, and is therefore also a random variable uniformly
distributed between 0 and 27. This implies that if ©(q1, g2, k) is independent of O(qs, g4, k),
we can split the ensemble average of the product into the product of the ensemble averages,
which will both be null. Therefore, the only cases for which the above integral will not be
zero are when

cos (0(q1, g2, k)) = cos (©(qs, q4, k)) , (5.22)

as in this case the expression becomes the expected value of the square of the cosine of a
random variable, which equals %, in a well known result. This will be satisfied when one of
the following conditions is fulfilled,

q1 = q3 and @2 = qq, or
q1 = q4 and g2 = g3, or
q = q2 and g3 = qq4, or q=k—q3 and q=k—q, or
g =k—q2 and q3=gqu, or q=k—qs and q2=k—gs, or
Q= q2 and g3 =k —qu, or Q1 = q3 and g2 =k —qu, or
q=k—q and g3=k—qu, or g =k—q3 and @q2=gqu, or
q =qu and g2 =k —qs, or
q=k-—q4 and @ =gs.
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Figure 4. Theoretical predictions for the variances compared to measurements from an ensemble of
200 COLA simulations.

Each of these cases will give a contribution, e.g.: for the first case of the block on the right
we substitute the ensemble average of the cosines by the expression

1
X 7307 (@1 — 4s) ¥ 50" (a2 — qu). (5.23)

(cos?) q1=q3 q2=q4

We have divided these cases into two blocks because the block on the left will give con-
tributions which will precisely cancel the second term in the r.h.s. of equation (5.18), and
contributions to the variance will only come from the block to the right. Fortunately, for
the case of 03, all of the cases will contribute the same value, and thus we can write the
expression for the variance, having already integrated over the Dirac deltas,

o2 (k) ~ / P(q)P(Ik — a)) Fia(a.k — q), (5.24)

a remarkable simplification compared to the expressions from which we began.

The results obtained from these calculations are shown in figure 4, along with the
variances computed from the ensemble of COLA simulations. We can see that our calculations
are able to reproduce well most of the variances up to scales of k ~ 0.2 [Mpc/h]; those which
are not well reproduced such as 011,015 and os5 are the ones which have their leading-order



and next to leading order contributions cancelled, and therefore, the calculation of their
variances becomes quite complex, requiring us to go to higher orders in perturbation theory
to have very precise predictions — a task already beyond the scope of the current work.

6 Optimal phase-fields

The previous section has demonstrated the power of F&P in reducing statistical noise in
simulations, and thus its great potential for building simulation-based theoretical models for
galaxy clustering. We have seen, however, that these techniques do not reduce the variance
in all basis spectra — as a direct consequence, for certain combinations of values of the
bias parameters, 044 Will be dominated by contributions coming from os252, 05242 and o252,
precisely the terms which get no variance reduction. The question that poses itself naturally
is whether there is a way to reduce these terms as well.

Without modifying the underlying physics, the freedom we have in an N-Body simu-
lation is essentially that of changing the initial conditions — amplitudes and phases of the
Fourier modes 6% (k). Using F&P the amplitudes are no longer free after we fix them to be
exactly the square root of the power spectrum, but the phases remain unconstrained. One
could think of these phases as parameters to be adjusted, and try to fit them so that the
spectra measured from the simulation match their ensemble averages; this would of course
have a prohibitive cost if for every point to be tested in this extremely high-dimensional
space we should have to run a complete simulation and then compute its power spectra.
This prompts us to look for an approximation to the power spectra of the fully evolved simu-
lations such that it can be quickly calculated, and captures the statistical properties of these
power spectra, namely their deviations from the ensemble average.

At linear scales it is known that the growth of structures proceeds independently between
different scales k # k’. This means that there is little mode mixing at these scales, so that
the statistical properties of these modes in the initial conditions will be essentially preserved
in the final output of a simulation. Therefore, the level of noise of e.g.: Ps252 computed from
the initial conditions of a simulation 6'C(@) will be very similar to the level of noise in P22
computed from the fully evolved field, provided we compare them at sufficiently large scales.
This gives us an approximation with the characteristics we were looking for: computing the
power spectra of the initial conditions is very fast, and approximately captures the statistical
properties of the power spectra of the fully evolved field.

Having found a sufficiently fast approximation to the power spectra of a fully evolved
simulation, we can now use it to find the optimal phase-field that reduces the distance of the
relevant power spectra to their ensemble averages. Notice that the ensemble average can be
easily computed up to the desired precision, simply by generating as many realizations of the
initial conditions as needed, computing their power spectra and averaging over them. Further
explaining and systematizing the optimization procedure, we can divide it into three steps:

1. Generating or Receiving ICs. First the amplitudes of the Fourier modes are gen-

erated |07(k)| = A(k) = /L3PEL(k), and the phases are either generated randomly
or received from an iteration of this whole procedure, allowing us to form the initial
density field 6% (k) = A(k)ei(*),

2. Computing the Loss-Function. We compute Pjs252(6;), Ps2,2(0;) and P2 ,2(0;) tak-
ing 67 (k) as input, and use this to calculate a loss-function that measures the distances
of these spectra from their ensemble averages. This is done by taking advantage of the
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Figure 5. In this figure we compare the deviations of the optimal spectrum from the ensemble
average to those from a random realization. In the first row the solid line with circular markers
shows the optimal spectrum, the gray lines show 200 spectra from random realizations, and the black
line shows their mean. In the second row the solid line with circular markers shows the deviation
of the optimal spectrum from the ensemble average, divided by the standard-deviation in the set of
200 random spectra; the black dotted line shows bands corresponding to a 10% deviation from the
mean. In the final row the solid line with circular markers represents the fractional difference of the
optimal spectrum to the ensemble mean, and the dashed line shows the same quantity for a random
realization.

Python library JAX [27]; functions implemented using this library can be automati-
cally differentiated, allowing one to evaluate their gradients without having to write
any additional code; this feature will be very important for the next step, at which the
gradient of this function will be used inside a minimization algorithm.

3. Stepping Minimization Algorithm. The value of the loss-function and its deriva-
tive with respect to the phases is fed to the SciPy implementation of the L-BFGS-B
algorithm [28, 29], that produces an updated phase field 6,1 with a smaller value of the
loss-function. Steps 1-3 are repeated until the loss-function is reduced by a specified
factor, at which point one says the algorithm has converged, and outputs an optimal
phase-field 6ps.

Having carried out this process, one can run a full simulation using the optimal phase-
field as input and compare the power-spectra measured from it to those from a standard
simulation. Figure 5 shows precisely this comparison for the three spectra of interest; one
can see how the deviations from the ensemble average are typically smaller than 1o at all
scales, demonstrating that the method does not introduce any statistically significant biases,
and how these deviations are significantly reduced at large scales, corresponding to a small
fraction of the standard deviation in simulations with random phase-fields. Furthermore,
these deviations are restricted to less than 10% at all scales — this is particularly impressive
for large scales, at which deviations in standard simulations can easily reach 40%.
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This optimization algorithm provides very distinct results depending on the given initial
phase-field; taking advantage of that, we ran it using different initial conditions to find five
independent optimal phase-fields. From the simulations run with these initial conditions one
can then estimate the power spectra and compute their variance and compare it to the result
for usual F&P. This comparison can be seen in figure 8 of appendix D and shows a reduction
by a roughly a factor of 10 in the variances of Ps252, Ps2.2 and Py2,e.

One would hope that this optimization procedure could reveal general properties of the
optimal phase-fields responsible for reducing the noise. However, we have investigated the
probability density function of the phases and its power spectrum, but did not find significant
differences to the same properties computed for random realizations. This can be most likely
attributed to the fact that this optimization algorithm has the freedom to fit a very large
number of free parameters — the values of the initial phases — and therefore the solution
that we find is a very specific one. Indeed, if one tries to use this same phase-field to initialize
a simulation at a different cosmology or with a different box size, the optimal properties are
quickly lost.

7 EUCLID forecast

The error in hybrid Lagrangian bias expansion models of large-scale structure will have mul-
tiple sources, depending on each particular implementation. One main source will be related
to the interpolation scheme used to allow access to the model in any required cosmology;
another source is associated to the algorithms employed in carrying out simulations; finally,
there is the error coming from the statistical noise of the simulation itself. The latter arises
because of the finite volume of the simulations, and is precisely the one which can be reduced
through F&P techniques, or through the optimization procedure described above.

This statistical noise in the dark-matter only simulations will translate itself to a source
of noise in the galaxy power spectrum; we can write this relationship using once again the
bias expansion

_ 2
P99 = > babpbuby oo s (7.1)
a767u7ye[1757627827v26]
and in this expression we have slightly changed our notation for the variances. This was
necessary because our previous notation did not allow us to represent cross-variances between
different spectra, which we now write as

Uiﬁ,,uz/ = <(Paﬂ - Paﬁ)(Puu - P,uzl)>- (72)

These cross-variances can give quite large contributions to the galaxy spectrum variance,
which represents an issue since our calculations are not capable of giving predictions for
them; however, as we have seen, one can divide these spectra into three groups, namely
{P11, P15, Pss}, {Pis2, P1s2, Pss2, Pss2} and {Ps2g2, P22, P22} such that the spectra belong-
ing to a same group have very similar noise properties. Therefore, we will assume that if the
spectra P,3 and P, belong to the same group, their cross-variance will be given by

OaB,uv = 4/0aB0uv, (73)

and if they belong to different groups,

Oaguv = 0. (7.4)
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VE[Gpc/h]3 NELG [h/Mpc]_3 z blL
33.05 1.83 x 1073 0.85-0.95 | 0.38

Table 2. Fiducial parameters used to estimate the measurement error for galaxy power-spectra in
an EUCLID-like survey.

bL bL bL bL

1 2 52 V2§
Fiducial Case | 0.38 | —7.16 x 1074 | —5.04 x 1073 | 4.01 x 102
Worst Case 0.38 0.80 1.49 4.01 x 1072

Table 3. Bias parameters used to infer the minimum simulation volume necessary to have the model
error under control. We quote values both for a fiducial case, in which we choose the values preferred
by the coevolution relations obtained in [17], and a worst case scenario, in which we choose the largest
values allowed by this analysis for b% and bfz.

Using these approximations and our calculations of the variances o, p,v € [1,6, 52,52 V2]
for F&P simulations we can thus compute the contribution of the statistical noise in sim-
ulations to the final error in the galaxy power-spectrum, and even forecast the size of the
simulations one should run to have this term below the expected measurement error in EU-
CLID galaxy power spectra.

The calculation of the measurement error for galaxy power-spectra in an EUCLID-like
survey was done using the parameters shown in table 2, and the expression for the variance
in a random Gaussian field

2
0'125 = FkP;g, (75)
in which Ny = 47k3A(Ink)Vg/(2m)3 is the number of Fourier modes falling the spherical
shell of radius k, and the power spectrum is given by

1
Py = > bibjPij + =. (7.6)
i,JE[1,6,0%,5%,V26] n

We have considered two separate cases for the values of the bias parameters summarized in
table 3. In the first case we do a fiducial analysis, considering the bias parameters which
seem most likely to be found by the EUCLID survey; for that, we fixed the linear Lagrangian
bias to its expected value from forecasts, b = 0.38 [30], and the values of the other bias
parameters were obtained from the co-evolution relations for galaxies found in [17]. The
second scenario we have considered is one in which bs2 and b,2 take the maximum values of
the intervals over which [17] observed them to vary; the motivation for this is that in the
fiducial case the contributions coming from os252, 52,2 and o2 are highly suppressed due
to the very small values taken by their accompanying bias parameters, despite their sheer
values being much larger than for the other spectra, as can be seen in figure 6. Therefore,
relatively small variations in these bias parameters could lead to very different scenarios in
which the model error is actually dominated by the noise in these spectra; the second scenario
thus serves to probe such regimes.

From figure 7 one can see that a F&P simulation with a volume V' ~ 2[Gpc/h]? would
be sufficient to have the statistical errors smaller than what is expected for EUCLID, in
the case of the fiducial bias parameters. This shows the great power of the F&P technique,
as this volume corresponds to roughly 6% of the assumed volume for EUCLID; using a
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Figure 6. Figure showing the amplitudes of the variances for the auto and cross-spectra entering
the bias expansion for the galaxy spectrum. Notice that these terms will contribute to equation (7.1)
modulated by their respective bias parameters, which can greatly suppress or amplify their importance
in the final error. The black dashed line shows the contribution to the variance coming from shot-noise
in our dark-matter only simulation.

simulation with usual initial conditions would require a volume at least as large as that
of the survey. For the second set of biases the error becomes dominated by o252, 05242
and o,2,2, and the necessary volume for the statistical error to be below EUCLID errors is
around V' ~ 16 [Gpc/h]?; the dashed lines in this figure show how in this case our optimization
procedure helps reduce by a factor of almost 10 the error in the final galaxy spectrum at the
largest scales. In summary, these results show that controlling this source of error is within
reach, and that obtaining a model with the precision required for EUCLID analysis will
depend mostly on reducing emulation and rescaling errors, as these are in the range 1% ~ 3%,
and thus we can see from figure 7 that they would dominate over the statistical noise.

8 Conclusion

With the analyses presented in this we have demonstrated the power of F&P simulations for
building hybrid Lagrangian bias expansion models of LSS. We have shown that the method
does not introduce any biases to the relevant spectra, while significantly reducing the variance
in the final galaxy spectrum, and thus easing the computational tasks of running simulations
large enough to have the required precision to analyse upcoming survey data. This establishes
this technique firmly as a foremost method to accessing accurate and precise predictions of
LSS summary statistics.

We have also explored the method’s deficiencies, namely the fact that it does not reduce
the variance for all of the basis spectra. We provided a clear analytical explanation for these
observations based on LPT; the same formalism also allowed us to obtain predictions for the
variances of these basis spectra in F&P simulations. These results should be fundamental for
future analyses that use hybrid Lagrangian bias expansion models, as they are a direct and
extremely flexible way to obtain the error being made in the model, and this is expected to
have a sizeable importance with the continuous reduction of experimental errors.

Using the analytical predictions for the variances in the basis spectra we have also been
able to develop an understanding of the numerical challenges that have to be overcome to
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Figure 7. This figure shows the comparison of the model error for several simulation sizes to the
expected error made by Euclid in measuring power spectra. In the top panel we show these quantities
computed assuming b¥ = 0.38 and using the coevolution relations in [17] to obtain values for the
higher-order bias parameters. In the bottom panel we show these quantities computed assuming the
same linear bias, but assigning to bsz and b,2 the largest values allowed for these bias parameters
according to [17].

make hybrid Lagrangian bias expansion models precise enough for the analysis of EUCLID
data. Our results clearly indicate that, assuming the real biases to be between the fiducial
and worst-case scenarios, simulations with V' ~ 8[Gpc/h]? should be sufficient to make the
statistical noise in the model smaller than EUCLID errors; this volume is well within reach
of current supercomputing facilities. Therefore, other sources of error such as those from
interpolation schemes or from techniques to scale existing simulations to new cosmologies,
are the ones that will need to be mitigated.

Finally, it was also possible to go beyond the limitations of the method, reducing the
variance in terms that remain otherwise unaltered, namely 042452, 02,2 and o,2,2. For the
simulation size and resolution used, the method has empirically proven to be unbiased, and
the reduction in the variances was substantial, reason enough to consider it as a good option
to reduce statistical noise rather than simply running larger simulations. It also highlights the
influence of the initial phase-field in the derived n-point functions, showing that there exist
a large number of initial configurations that lead to results arbitrarily close to the ensemble
average.
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A Advected Lagrangian fields

In this appendix we show the results of applying equation (5.3) to each of the F(q) €
[1,6,6%, s%,V?5]. It is convenient to define a kernel which will appear many times in the
following calculations,

. . 2
Fra(qq) =1+ 1L 2 (ql + q2> + 7('112%2) . (A.1)
q192 @2 q a14>
Al &
1
51(k) = 0F + 5 /q Fralavk - @)0f 5y, + O, (A:2)
A.2 b5
L L k(k—aq) 1 L sL 4
ds) = oF + [ okok qlﬁ 5/ 6 6L 5E gy Fza(a2.k — q12) + O(8Y).
q1 lh‘ qi,
(A.3)
A3 652
k-(k—qi
052 (k) = / 6516’1;1411 +/ 5515525klhzk(_2) + 0(64)' (A.4)
a q1,92 ‘ q12|
A4 b,

k- (k—qu)

o |k—qi? Sa(qu, q2)5q16q25k—q12 + 0(54) :
1,492

(A.5)

k) = [ 050k g Solark—an)+ |
q1 q

A.5 év25

k-(k—q 1
5V25(k):k25,§+/q g6k oE_. |k qu21 5/ 2L GL o Fra(gn, k—q1a) +O(3).
1
(A.6)

B Further details on quantitative predictions

In this appendix we will provide further details on the calculations sketched in section 5.5.
Because we have already described the calculation of 011 (k) in the main text, we will detail
here the calculation of o15(k). We omit the calculations for the other spectra, since they are
completely analogous.

B.1 16

Using the expressions for the advected fields, obtained in appendix A, we can readily write
an expression for the Pjs spectrum

1

T30s(k)d1(—k) = PL(k) + 0O(3)

L k-(k—aq) B.1
+Q/q1 . \/PLPlf 41P‘1L2Pl£ qg‘ipFZA(Q%k q2) (B.1)

X COS(9q1 + Ok—q, — 0gp — 9’6—112)
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in which we have not explicitly written the third-order terms because we already know they
will be cancelled by pairing, and are thus irrelevant to the current calculation. The only term
contributing to the variance will be the fourth-order one,

1 k- (k—
Ti(k) = 5 \/Pquplf—qlpquplf—qg (7(121)FZA(‘127 k —q2) cos(0g, +Ok—q, — 0g — O—q,)
2 Ja1.42 Ik —qi
= A(q17q27k:) COs (@(q17q27k))7
q1,q2
(B.2)
in which
k-(k—q)
_ I I,
A(q1,q2, k) = \/Rﬁpk_qlpquk_@WFZA(Q% k—q2) (B.3)
(—)(ql7 q27 k:) = 0q1 + Hk—ql - 6(12 - 0’@*(12 .
We must compute the expression
(T (k) — (T1(k))*, (B.4)
and we begin by evaluating the first term in this expression, which we rewrite as
TRk = [ Algr o k) Algs. i, k) (cos (O(g1, @2, k) cos (O(as, ai k). (B.5)

q1,92,93,94

Once again, we see that the ensemble average in the expression above will give a non-zero
contribution only when we have

cos (0(q1, g2, k)) = cos (O(qs, qa, k)) , (B.6)

which implies

qu + ek—ql - 9q2 - gk—qg = 0,13 + Gk—q3 - 9,14 — ek—q4- (B?)

This will be satisfied if one of the following conditions is satisfied

q1 = q3 and g2 = qu, or

q = q and @2 = g3, or
Q= q2 and g3 = qq, or q =k—gqs and g =k —qu, or
q=k-—q and g3 = qu, or G =k-—q and g2 =k —gqs, or
q = q2 and g3 =k —qq4, or q1 = q3 and g2 =k —qq, or
q=k—q2 and g3=k—qu, or g =k—q3 and gy =gqu, or

q1 = q4 and g2 =k —qs, or

q=k—q and g2 = gs.

Each of these terms will give us a contribution, and once again we will not explicitly write
the terms in the left block, because we affirm they will cancel the second term appearing in
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expression (B.4). The contributions coming from the conditions in the right block will be

L[ pt (k—a
_g/ Pa P q1|< % — qu2 ) / Pl g, F7a(a2, k — @)
1 I k-(k—q) 2
A=3 [/P Pj.- q|,k_q,zFZA(%k—Q)]

L k-(k—q)k- Q1
/P P\k q1 Ik —qi|? / Plk q2|FZA(q27k q2)

[/PL g, kq, )FZA(q,k Q)]

(B.8)
1 L k q1
:§/ PPl ‘h'( k—qi? ) / Pl qul F7a(a2.k — @)
kE—q)k-q
/ PLPi q1 |k( q1’21 1/ P|ki q2|FZA(q27k q2)

[/PL k—a kq, )FZA(q,k Q)r
Ag = ;[/prk q|WFZA(q,k:—q)]2.

Many of these contributions are equal, and summing them up, we obtain that the variance
of Pis in a fixed and paired simulation is given approximately by

1 k-(k—q) 2
ots(k) =~ 3 [/ PqLﬂi—q\WFZA(Qak - Q)]

k-(k—q)k- @
/ Plk a1 k— q? / P|k q2|FZA(q2ak7 q2).

C EUCLID forecast parameters

The parameters used to estimate the measurement errors on EUCLID spectra were obtained
from [30]. We have considered the volume of a redshift slice ranging from z = 0.85 to z = 0.95,
spanning an observed area of 15.000 deg? and using the cosmology from [15] to compute the
comoving distances.

D Details of optimization

In section 6 we have derived optimal phase-fields which can be used to initialize simulations
and obtain spectra with reduced variances. Figure 8 shows a comparison between the vari-
ances computed from the 200 usual F&P simulations, and those computed from a set of
5 F&P simulations initialized with distinct realizations of the optimal phase-fields. With
the purpose of including the effects of this suppression into the calculation of o4y — see
equation (7.1) — we fitted the ratio o°P/o¥*" using the following expression

f(k,a,b,c,d,e) = a(b+ ctanh [(k — d)e]) . (D.1)
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Figure 8. This figure shows a comparison between the variances for usual F&P simulations, and
those initiliazed with the optimal phase-fields derived in section 6. The green lines show the fits made
to reproduce the new values of the variances.

Using this fit we could then approximate the optimized variance for any value of the simulated
volume, cosmology or redshift using

0% (k,0,2,V) = o"F(k,0, 2, V) f(k, ao, bo, co, o, e0), (D.2)
in which we have represented the cosmological parameters by ©, z is the redshift, V' is the
simulated volume, and ag, by, - - - are the fitted values of the parameters.
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