

Luminescent Properties of Doped Cadmium Oxyorthosilicate

Elena Iraê A. H. P. Santos (PG),*¹ Flávio M. Vichi (PQ),¹

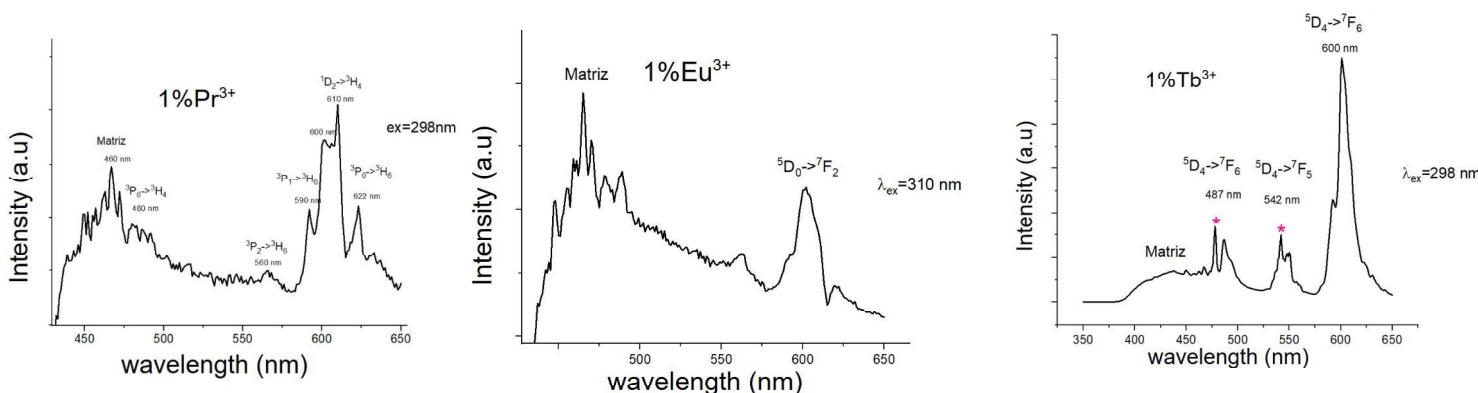
elena.santos@usp.br; fmvichi@iq.usp.br

¹Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, Bloco 3T, Sala 325, 05508-900 São Paulo-SP,

Palavras Chave: Luminescence, Sol-Gel Synthesis, Cadmium Oxyorthosilicate

Highlights

Luminescent property of doped cadmium oxyorthosilicate were obtained for the first time. Cd_3SiO_5 was doped with Pr^{3+} , Tb^{3+} and Eu^{3+} . A pure material was obtained with Pr and Eu, a mixture with Tb doping.


Resumo/Abstract

Cadmium silicates are materials of interest due to their stability under moisture and acidic conditions. A possibility of tailoring phosphors exists in this matrix, due to ionic radii similarities between Cd^{2+} and the most common doping agents. Specifically, Cadmium metasilicate (CdSiO_3) features intrinsic persistent luminescence, and these materials can be and are used in several fields, such as security lighting, light emitting diodes (LEDs) as well as bioimaging and fingerprint identification. [1]

The metasilicate, CdSiO_3 , has been extensively studied as a phosphor, and studies have also been conducted with the orthosilicate, Cd_2SiO_4 , which has a smaller band gap than CdSiO_3 . Cadmium oxyorthosilicate, Cd_3SiO_5 , however, has not received as much attention due to difficulty in obtaining it as a single, or even major phase. Recently, we reported the synthesis of Cd_3SiO_5 as a single phase by a sol-gel method. [2]

Rare earth-doped materials were prepared similarly employing cadmium acetate and tetraethylorthosilicate (TEOS) as precursors in different stoichiometric proportions. Additionally, cetyltrimethylammonium bromide (CTAB) served as a template for creating a mesoporous structure. Adjusting the pH to 3 and subjecting the material to calcination at 950°C for 6h and adding the appropriate RE³⁺ ion to the CTAB solution prior to hydrolysis. we achieved the formation of Cd_3SiO_5 as a single-phase, identified by X-ray diffraction, with 1% (mol) doping of Eu^{3+} and Pr^{3+} . A mixture with the phase -ortho Cd_2SiO_4 is observed for Tb^{3+} doping. Absorption and emission spectra were recorded using appropriate excitation wavelengths.

The Pr-doped material shows strong narrow emission lines associated with the RE ion, and a pink color (298 nm excitation) centered at 610 nm. With Eu, a broad emission line, centered at 613 nm, is observed, also pink. Doping with Tb results in a strong narrow emission line at 600 nm, characteristic of the $5\text{D}^4 \rightarrow 7\text{F}^6$ transition, with a deep red emission which contrasts to the strong green emission observed for the Tb-doped -ortho and -meta phases.

1-Jain.A. et al; *Renewable and Sustainable Energy Reviews* **65** (2016) 135-153

2-Santos.E.I.A.H.P; Vichi.F.M; J.Braz.Chem.Soc **35**,(2024) 12, e-20240124

Agradecimentos/Acknowledgments

We acknowledge the Brazilian agencies CAPES, CNPq and FAPESP for the financial support. The images were made using IQ-USP Central Analítica facilities and assistance.