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1. Introduction

We say that a graph G is Ramsey for the pair of graphs (F, H), and write G — (F, H), if in
every red-blue colouring of the edges of G, there is either a red monochromatic copy of F, or a blue
monochromatic copy of H. When F = H, we write simply G — H. With this notation, the Ramsey
number r(F, H) is defined to be the minimum n such that K, — (F, H).

For any connected graph H the complete (r — 1)-partite graph with each part of size v(H) — 1
implies that

r(Ky, H) > (v(H) — 1)(r — 1) + 1.
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A graph H is said to be r-good if r(K,, H) = (v(H) — 1)(r — 1) + 1. One of the pioneering results in
this direction is due to Erdds [14], who proved that paths are r-good for any r € N, which was later
generalised to trees by Chvatal [12]. Motivated by these results, the study of Ramsey goodness for
general graphs H was initiated by Burr and Erdés [11] in 1983. In addition to proving that many
sparse graphs are r-good, they proposed a number of related problems, several of which remained
open for over 25 years.

Since then, Ramsey numbers for dense versus sparse graphs have been extensively studied.
Notably, Nikiforov and Rousseau [29] solved all but one of Burr and Erdds’s problems. The main
conjecture of [11], that all sufficiently large connected graphs with bounded average degree are
r-good, was disproved by Brandt [10], but Allen, Brightwell, and Skokan [2], among other very
interesting results, proved that, for every r € N, every connected bounded-degree graph H with
bandwidth o(v(H)) is r-good. Another well-known result is due to Fiz Pontiveros et al. [16], who
proved that the hypercube is r-good for any fixed r € N as long as its dimension is sufficiently
large. There are many other recent related results in different directions of this area (see, for
example, [17,19,27,32]). In particular, Pokrovskiy and Sudakov [31] proved a natural and important
generalisation of Erdés’s result of Ramsey goodness of paths, determining r(H, P,) for any n >
4v(H), and Balla et al. [5] extended this generalisation to bounded degree trees. Moreira [28] studied
Ramsey goodness in the random graph G(n, p), proving a sparse random analogue of Erdds’s result,
and Aradjo et al. [4] proved a similar theorem for all bounded-degree trees.

Another recent line of work is built on the following question. For a graph G with at least r(F, H)
vertices, what minimum degree condition guarantees that G — (F , H)? The first person to ask this
question in the symmetric case was Schelp [33]. More precisely, he asked for which graphs H there
exists a constant 0 < ¢ < 1 such that, for a graph G with r(H) vertices, if

8(G) = cv(G)

then G — H (Question 22 in [33]).

This phenomenon of attaining Ramsey properties with only a dense graph, as opposed to a
complete graph, has been extensively explored, particularly in the context of paths and cycles. For
instance, Nikiforov and Schelp [30], in one of the pioneering results related to this topic, showed
that if G is a graph with n vertices then

8G)>(1-10"n = G- Cryyz-

More generally, they actually proved that, with the above minimum degree condition, there are
all cycles up to length [n/27 in one of the colours.! Observe that the largest monochromatic cycle
we can expect to find is of length 2, since a classical result of Faudree and Schelp [15] states that
r(Cy) = 3k — 1 for all k € N. The following colouring given by Schelp [33] shows that there
is a graph with n vertices and minimum degree about %” which is not Ramsey for C(%TH' Let
A1, Ay, B1,B; C [n] be a balanced partition of [n], then connect in blue all the pairs in A; U A,
and B; U B, and connect in red the edges between A; and B and between A, and B,. Building on a
series of results by various authors [7,18,23,30], Balogh, Kostochka, Lavrov, and Liu [6] proved that
the above construction is tight, i.e.,

3n—1

8(G) = 2

There are several variations of Schelp’s question that were introduced very recently. For in-
stance, Luczak and Rahimi addressed the three-colouring version for cycles in [24,25] and Zhang
and Peng [34] asymptotically solved the bipartite version for cycles.

We solve an asymmetric version of Schelp’s question for the pair (K;, P;), generalising Erdés’s
result on the Ramsey goodness of paths. More precisely, we prove a sharp minimum degree
condition that forces a graph G with r(K;, P;) vertices to be Ramsey for (K;, P;), where P; is the
path with t vertices. Recall that r(K, P;) = (r — 1)(t — 1) + 1.

= G—)Cz?n.

1 Note that this result is best possible, even in K;, since one of the colours might be a complete bipartite graph.
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Theorem 1.1. Letr,t € N, and let G be a graph with n > (r — 1)(t — 1) + 1 vertices. If

t
8(G)=n— ’72—‘

then G — (K:, P).

Note that the case r = 2 follows from Dirac’s Theorem. In Section 2 we will show that the
minimum degree in Theorem 1.1 is tight when n = r(K;, P;). For larger values of n, however, we
expect that a weaker lower bound on the minimum degree suffices. In particular, in the case r = 3
we have the following improved minimum degree condition, which is tight for all n > 2t — 1.

Theorem 1.2. Lett € N, let G be a graph with n vertices, and let k € N be such that
2t— Dk <n<2(t—1)k+1).1If

L2 k+1]2
then G — (K3, P;).

In particular, Theorem 1.2 gives a second proof of the case r = 3 of Theorem 1.1. In Section 2
we will construct, for all k(r — 1)(t — 1) <n < (k+ 1)(r — 1)(t — 1), a graph G with n vertices and
minimum degree

e[l

such that G 4 (K;, P¢). For r = 3 this construction shows that the lower bound on the minimum
degree required in Theorem 1.2 is tight. This construction motivates us to state the following
conjecture, which is an extension of Theorem 1.2, replacing the triangle with an arbitrary clique
K. The case r = 2 follows from standard techniques (see Proposition 5.1) and the case r = 3 is
exactly Theorem 1.2.

Conjecture 1.3. Letr,t € N with r > 2, let G be a graph with n vertices, and let k € N be such that
(r—1)(t—1Dk<n<r—1)(t—1)k+1).If

- k+1|r—1

then G — (K:, P).
1.1. Overview of the proof

The first step in the proof of both of our main theorems is the following structural result. In any
colouring of the edges of G with no blue P; we can find a partition V(G) = A; U - - - U A, such that
for any i # j there are no blue edges in G[A;, Aj] and

[t/2]+1 <Al <t-1

Note that to find a red K; in G, it is enough to find a clique in G with at most one vertex in
each part, since there are no blue edges in between parts. This is equivalent to finding a transversal
independent set of the m-partite auxiliary graph given by the nonedges of G going in between the
parts. (A transversal independent set of an m-partite graph is an independent set with at most
one vertex in each part.) Conditions for finding transversal independent sets have been widely
studied, and can be seen as generalisations of Hall’s theorem. In particular, Haxell (see Theorem
3 in [21]) gave a tight sufficient condition for finding a transversal independent set of size r in an
r-partite graph. In Section 3, we use this result to give a similar condition for finding a transversal
independent set of size r in an m-partite graph, for any m > r (see Theorem 3.1). This condition,
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which relates to the non-existence of small dominating sets in the graph, can be verified for our
auxiliary m-partite graph.

The proof of Theorem 1.2 follows a similar strategy, but the argument described above for finding
a red triangle in this m-partite graph does not work. That is, when the number of vertices of the
graph is greater than 2t — 1, the weaker lower bound on the minimum degree is not sufficient
to verify the hypothesis of Theorem 3.1, as we do in the proof of Theorem 1.1. To amend this,
we replace this part of the argument by a classical theorem of Bollobas, Erdés, and Straus [9] (see
Theorem 5.2), which provides a sharp minimum degree condition for finding triangles in balanced
m-partite graphs. The authors of [9] actually proved an unbalanced version of this result, but to
avoid some technicalities in stating the unbalanced version, we apply the balanced version of this
result to an appropriate blow-up of the m-partite graph given by the edges of G between the parts.
The blow-up will make the graph balanced, and it is enough to find a triangle in this modified graph
to find a red triangle in G.

The paper is organised as follows. In Section 2 we give examples showing that the minimum
degree conditions in Theorems 1.1 and 1.2 and Conjecture 1.3 are tight, in Section 3 we use Haxell's
theorem to obtain a sufficient condition for finding a transversal independent set of size r in an
m-partite graph, and in Sections 4 and 5 we give the proofs of Theorem 1.1 and Theorem 1.2,
respectively.

2. Constructions

We present two constructions showing that the minimum degree conditions in Theorems 1.1
and 1.2 cannot be improved. First, we describe a graph G with n = (r — 1)(t — 1) 4+ 1 vertices and

t
6(G)=n—’72—‘—1

with G » (Kr, P[), showing that the minimum degree condition in Theorem 1.1 is tight.

Example 2.1. The graph G is obtained by removing a copy of the complete bipartite graph with part
sizes [t/2] and [t/2] from the complete graph K. The blue edges form r vertex-disjoint cliques: the
two parts of the bipartite graph we removed from G, and r — 2 cliques of size t — 1. The remaining
edges of G are all coloured red.

More formally, let V4, ..., V; be disjoint sets with |V;| = t—1 foreveryi € [r—2], |V;_1| = [t/2]
and |V;| = [t/2]. Let G be the graph obtained by joining every pair of verticesinV =V, U---UV,,
except for those pairs uv with u € V,_; and v € V;. Note that n = v(G) = (r — 1)(t — 1)+ 1 and

(G)=(r—=2)(t—-1)+t/2] —1=n—-T[t/2] - 1.

Now, colour every edge inside V; blue, for i € [r], and colour every other edge of G red. Each part
Vi has size at most t — 1, so there is no blue copy of P;. Moreover, since the graph induced by the
red edges is (r — 1)-partite with parts V4, ..., V,_5, V.1 U V,, this colouring also contains no red
copy of K;.

We will next show that for every (r — 1)(t — 1)k < n < (r — 1)(t — 1)(k + 1), where r > 3 and
k,t > 1, there exists a graph G with n vertices and

k n
8(C)=n- {m [iﬂ -1

such that G - (K;, P;). This construction motivates the bound on §(G) in Conjecture 1.3.

Example 2.2. The graph G is obtained by placing k + 1 cliques of size &~ n/(r — 1)(k+ 1) into each
part of the Turan graph T,_;(n). The edges of these cliques are coloured blue, and the remaining
edges of G are coloured red.
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More formally, we will define a graph G with n vertices as follows. Let
r—1
v(G) = A
i=1

be a partition of V(G) into r — 1 parts of size that differ at most by one. Now for each i € [r — 1]
define

a partition of A; into k + 1 parts of size that differ at most by one. Two vertices v € A;,j, and
w € A, j, are connected in G if i; # i and also if iy = i, and j; = j,. The edge vw is coloured red
if i # j, otherwise is coloured blue.

It is easy to see that the minimum degree of G is given by the vertices that are in parts A;; with

Al =[] and |A;;| = L%J Thus,

so=n-| 5[+ o [ [ [ ms [ -

Since the red graph is (r — 1)-partite, the largest red clique has size r — 1. The largest blue path has
size max;; Al = [ [Z5]] =t -1

Note that in Example 2.2 the blue cliques can be as small as t/2.
3. Transversal independent sets

In this section we will use a result of Haxell to prove Theorem 3.1, below. Recall that a transversal
independent set in an m-partite graph is an independent set with at most one vertex in each
part. The theorem gives a sufficient condition for an m-partite graph to contain a transversal
independent set of size r. A set of vertices A in a graph G is dominated by another set of vertices B
if A C Ng(B) := UNG(v) (that is, every vertex in A has a neighbour in B).

veB

Theorem 3.1. Let m > r > 1, let G be a graph, and let V(G) = V; U --- U V,; be a partition of the
vertex set. Suppose that for every S C [m], the set of vertices

vs=Uvi

ieS
is not dominated by any set of2(|5| —m+r— 1) vertices of Vs. Then there exists an independent set
I with |I| > r, such that [ N V;| < 1 for every i € [m].

A result equivalent to the case m = r of Theorem 3.1 follows from the proof in [20] and is
stated explicitly in [21]. For a topological proof of a more general result, see [26], and for a simple
combinatorial proof, see the survey [22]. We will deduce the general case from the case m = r. The
proof uses a standard technique for deducing such “defect versions” of variants of Hall’s theorem
(see for instance [1] for a similar approach), but for the reader’s convenience we give the details.

Proof. Define G’ to be the disjoint union of G with k disjoint copies of K;,;,, which we denote by
Ty, ..., Ty, where k = m — r. For each i, we place exactly one vertex of T; in each of the parts
Vi, ..., V. More precisely, let V(T;) = {ul(i), ey um(i)} for each i € [k], and define, for each
j€lmj,

V= ViU {u(i) | i € [kI}.
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Note that a transversal independent set of size m in G’ cannot contain more than one vertex
from V(T;) for each i € [k], since T; is a clique. Therefore, a transversal independent set of size m in
G’ contains a transversal independent set of size m—k = r in G. Thus, it is enough to show that the
m-partite graph G satisfies the conditions of Theorem 3.1 with r = m. That is, we need to show,
for every S C [m], that the set

v =V (1)
ieS
is not dominated by any set of 2(|S| — 1) vertices of V(.
Fix § C [m], let X C V{ with |[X| = 2(|S| — 1) and assume for a contradiction that X dominates
V¢. Observe that X must contain at least 2 vertices from V(T;) for each i € [k], since T; is a connected
component of G'. Therefore,

k
X Nvs| = |X] — Z X NV(T)| <20 = 1) =2k =2(IS| —m+r1 —1). (2)
i=1
Note also that X N Vs dominates Vs, since a vertex in X N V(T;) has no neighbours in Vs. Together
with (2), this contradicts our assumption that Vs is not dominated by any set of 2(|S| —_m+r— l)
vertices of Vs, and this contradiction proves (1). As explained above, we may therefore apply the
theorem of Haxell (the case m = r of Theorem 3.1) to find a transversal independent set of size r
in G, as required. O

4. Proof of Theorem 1.1

The first step in the proof is the following lemma, which gives the decomposition described in
the introduction.

Lemma 4.1. Letd € N, and let G be a P4-free graph with n vertices and §(G) > |d/2]. There exists
a partition V(G) = Ay U - - - U Ay, of the vertex set for some integer m, such that the following hold for
every i € [m]:

ld/2] +1 <Al =d—1, (3)
A; is a connected component of G, and G[A;] has a hamiltonian cycle.

We note that somewhat similar results were proved by Allen, Brightwell, and Skokan [2, Lemma
19] and Moreira [28, Proposition 3.2], but neither of these results is suitable for our purposes; the
former since it requires a stronger minimum degree condition, and the latter since it does not give
a partition of all the vertices. We will deduce Lemma 4.1 from the following fundamental lemma
of Pésa (see [8], Chapter IV, Theorem 2).

Lemma 4.2. Let P be a path of maximum length in a graph G, let U = V(P), and let u and v be the
end vertices of P. If
d(u) + d(v) = |U]
then G[U] has a hamiltonian cycle. Moreover, there are no edges between U and V(G) \ U.
Now we proceed to the proof of Lemma 4.1. It is proved by greedily removing maximal paths

from the graph and showing that we can close each to a cycle of the same length.

Proof of Lemma 4.1. We will describe directly the ith step of the algorithm. Let i > 1 and
assume we have Ay, ..., Aj_; being connected components of G, satisfying (3) and that G[A;] has
a hamiltonian cycle for each j € [i — 1]. Moreover, assume that the set V; = V(G)\ (A1 U+ - UAi_4)
of remaining vertices is non-empty.
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Let A; be the vertex set of a path of maximum length P; in G; := G[V;]. It is enough to verify
that A; is a connected component of G satisfying (3) and that G[A;] has a hamiltonian cycle. Since
8(G;) > 8(G) > |d/2] and by the assumption that G; is Py-free, we have

[d/2]+1 <Al <d-1

Since §(G;) > |d/2] > |A;|/2, we can apply Lemma 4.2 to the path P; in the graph G; to show that
there is a hamiltonian cycle in G;[A;] and moreover that there are no edges between A; and V; \ A;,
so A; is a connected component of G; (and hence of G), as required. O

Finally, let us prove Theorem 1.1.

Proof of Theorem 1.1. The proof will proceed by induction on r > 2. If r = 2, we have
8(G) = n—[t/2] = [n/2],

where the second inequality holds since n > t, and every edge of G is blue. Thus by Dirac’s theorem
we can find a hamiltonian path in G and, in particular, a blue P;.

Let r > 3, and assume the theorem holds for r — 1. Let n > (r — 1)(t — 1) + 1, let G be a graph
with n vertices and §(G) > n — [t/2], and let R and B be the graphs of red edges and blue edges,
respectively, in a 2-edge-colouring of E(G). Assume that this colouring contains no blue copy of P;;
we will show it contains a red copy of K.

Note that for every u € V(G),

8(GINg(u)]) > dg(u) — [t/2].
Indeed, for every v € Ng(u), we have that
|NG(v) N Ng(u)| = |Ng(v)| — [Ng(v) \ Ne(u)|
= (n—[t/21) — (n — dr(u))
= dp(u) — [t/2].

Now, suppose there exists u € V(G) such that dg(u) >n—t+ 1> (r — 2)(t — 1) 4+ 1. In this case,
the graph G[Ng(u)] satisfies the induction hypothesis, and it follows that

GINR(W) = (Kr—1, Py).

But G has no blue P, so there is a red K;_; in Ng(u). Together with u this forms a red copy of K; in
G, as we wanted to find.
We can therefore assume that dg(u) < n — t, and hence,

dg(u) = 8(G) —dp(u) = n — [t/2] —(n—t) =t — [t/2] = [t/2]

for every u € V(G). Applying Lemma 4.1 to the graph B with d = t we obtain a partition
V(G)=VB)=A1U---UA,

with
t/2]+1 <Al <t—1

for each i € [m], and hence

n
r< <m,
e

since n > (r — 1)(t — 1) + 1. Moreover, all the edges of G between different parts are red.

Observe that any K; in G with at most one vertex in each part must be a red K, which motivates
the following definition. Define H to be the m-partite graph with parts Ay, ..., Ay, in which two
vertices are connected in H if they are not an edge of G. In this way, it is enough for us to find an
independent transversal set of size r in H to yield a contradiction.

7
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In order to do so, we will show that H with the partition V(H) = A; U --- U A, satisfies the
conditions of Theorem 3.1. Let S C [m] and note that

AH)<n—1-6(G) < t/2]1—1.
Let X C As be any set with |X| < 2(|S| — m 4+ r — 1), and observe that X dominates at most
A(H) - 1X] < 2(IS| = m+r —1)([t/2] — 1)

vertices. Now, observe that

2(1S| =m+r—1)([t/21 = 1) < (r— 1S = 1)(t = 1) (4)
sn—[St—-1)—1 (5)
< |Asl, (6)

where (4) holds because |S| + |S°| = m and 2[t/2] < t + 1, (5) is just our assumption that
n > (r— 1)t — 1)+ 1, and (6) follows because |A;] < t — 1 for every i € S°. It follows that X
cannot dominate As, and therefore, by Theorem 3.1, there exists an independent transversal set of
size r in H. By the observations above, this is exactly a red copy of K; in G, as required. O

5. Proof of Theorem 1.2

In this section we will prove Theorem 1.2; the proof uses some of the same ideas as that of
Theorem 1.1, but instead of using Theorem 3.1, we will use a different idea to find a triangle in
some blow-up of the red graph.

We will need the following straightforward (and presumably well-known) proposition, which
gives a tight lower bound condition on the minimum degree of a graph with n vertices to contain
a path with at least [n/k] vertices. It is a simpler variant of an old result of Alon [3] (see also [13]),
which says that every graph with minimum degree [n/(k 4+ 1)] contains a cycle of length [n/k],
but since it follows easily from Lemma 4.1, we give the proof for completeness.

Proposition 5.1. Let n, k € N and let G be a graph with n vertices. If G has minimum degree at least
| &4 | then it contains a path with [} vertices.

Proof. Assume by contradiction that G is Py, -free. We will apply Lemma 4.1 to the graph G with
d =2 [n/(k+ 1)] + 1. The reader can easily verify that

d n n
8(G) > {ZJ = LkHJ and d> (k—‘ (7)

Since G is Py -free, it follows that G is also Py-free. Thus, by Lemma 4.1, we obtain a partition
A1, ..., A of the vertices of G with

LI NI B B
k+1 R

for eachi € [m], where the upper bound holds since G[A;] is hamiltonian and Py, i -free. Then, using
[x]—1<x<|x]+1,
K n n < n n
= < —— <
n/k (R -17 0 7 | Es ]+ n/k+1)

yielding the desired contradiction since m must be an integer. O

=k+1,

For the proof of Theorem 1.2, applying Theorem 3.1 does not work. The reason for that is because,
in this case, the condition about the non-existence of small dominating sets is too strong. Instead,
we use the following theorem of Bollobas, Erdés, and Straus [9].

8
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Theorem 5.2. Let H be a balanced m-partite graph where each part has size N. If

5(H) > EJN

then H contains a triangle.

The authors of [9] actually prove an unbalanced version of this theorem. To avoid using this
more technical statement, we will use a simple blow-up argument in order to apply the balanced
case directly. We do this in the following simple corollary, which is tailored for our application.

Corollary 5.3. Let k € N, and let H be an m-partite graph with parts A4, ..., An where m = 2k + 1.
If for each i,j € [m] and u € A; we have

INu(u) \ Ai| < kA, (8)

then H contains a triangle.

Proof. We would like to apply Theorem 5.2 to H, but since H is not necessarily balanced, we first
need to construct from H an auxiliary graph H' with balanced parts. Consider a blow-up of H into
a balanced m-partite graph H” with parts A}, A, ..., A;, obtained in the following way: for each
i € [m], we replace each vertex u € A; by a set F(u) C A} of % vertices, where N := H,m=1 |A;i|. More
precisely, for each i € [m]

A= JFw)
u€eh;
and
E(H') = {xy : x € F(u) and y € F(v) for some uv € E(H)}.

Observe that every triangle in H' corresponds to a triangle in H and therefore, by Theorem 5.2,
to finish the proof it will suffice to show that

S(H') > EJN = kN.

Let M = minjc[y |Aj] and observe that [F(u)] < N/M for every u € V(H), and therefore for every
i e [m], u €A and ug € F(u), we have

N
Nk (o) \ Af| < MWH(U)C \ Ai| < kN,
where the second inequality holds from the hypothesis (8). Therefore, since |A{| = N,
8(H') > mN — kN — |A]| = kN,
as we wanted to prove. O
Finally, let us proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let n = 2(t — 1)k + s, where 1 < s < 2(t — 1), let G be a graph with n
vertices and

o 3]+ 2]}

and let R and B be the graphs of red edges and blue edges, respectively, in a 2-edge-colouring of
E(G). Assume that this colouring contains no blue copy of P;; we will show that it contains a red
copy of Ks.

Suppose first that there exists u € V(G) with dg(u) > [ 5], we claim that

dgr(u)
8(GINz(w)]) = { k‘; ]J. 9)
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Indeed, for every v € Ng(u) we have
|N(v) N Ng(u)| = [Ng(v)| = |Ng(v) \ Ng(u)]|
n 1 n
> | = — | = || -(n—d
=5+ | 5] - - e
n 1 n
= d —_ — —
SN H]
- dg(u) 7
T lk+1
as claimed, where the last inequality uses that the function ¢(m) = m — L%J is increasing on the
positive integers, so that ¢(dg(u)) > ¢([n/21), since dg(u) > [n/27.
Now, by Eq. (9), we can apply Proposition 5.1 in G[Nk(u)] to obtain a path with at least [dR,E”)

vertices in G[Ng(u)]. Using again that dg(u) > [n/27], n = 2k(t — 1) + s and s > 1, we have that the
number of vertices of this path is at least

dr(u) nl s
42 5] -0 5]

which implies there is a red edge in G[Ng(u)], since we have no blue P;. This red edge in G[Ng(u)]
together with u forms the desired red copy of Ks.
Therefore, we can assume that A(R) < [2] — 1, and hence,

n 1 n n
8(B) = 8(G) — A(R) =| = — = — - —1
@z 00 -amz|3 |+ | 53] - ([5]-)
1 n
= 4 5 ’
|l ]
since [n/2] + 1 > [n/2]. We will apply Lemma 4.1 to the graph B with
1 n
d=2| —| = 1.
bR
We may do so since
1 n d
B> | ——| = ==, 10
= i3] =[5 (10
and since B is Py-free, which follows since n > 2(t — 1)k, and therefore

(t—Dk+1 t
d>2|~— 2T I y1>2(-|+1>¢
> { s J+ > M+ >

Hence, by Lemma 4.1, there exists a partition V(G) = A{U- - -UA, such that every edge between
different parts is red and

d
bJ“swst—l (1)

for each i € [m], where the upper bound holds since G[A;] is hamiltonian and P;-free.

Define the auxiliary graph H = G[Aq, ..., An] as the m-partite graph formed by the distinct parts
of the partition V(G) = A; U --- U Ap,. Notice that H = R[A4, ..., An], since only red edges appear
between the parts. Our goal now is to apply Corollary 5.3 to H, which will give us the desired red
copy of a triangle. Let us verify first that, in fact, m = 2k 4 1. To do so, observe that, by (11) and
our choice of d,

n___1|n o <t—1<n (12)
LI L I . 1t
2k+1) ~ k+1|2 2 - = 2k

10
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for each i € [m], where the final inequality holds since n > 2(t — 1)k. We therefore have
2k<m<2(k+1) = m=2k+1,

since m is an integer.
Now it is enough to verify the bound in (8) for H. Let M = minje[m |A;| and observe that, by (12),
we have

M > d 1 —l n 13
_M+ >k+1H. (13)

Hence, for every i € [m] and u € A; we have

INu(u) \ Ai| < (n—|Ail) — (8(G) — |Ail + 1)
<n . + ! 1 +1
- 2 k+1]2
k
< — n < kM,
k+1]2
as we wanted to prove, where the last inequality follows from (13). O
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