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Abstract: Although many Soil Spectral Libraries (SSLs) have been created globally, these libraries still
have not been operationalized for end-users. To address this limitation, this study created an online
Brazilian Soil Spectral Service (BraSpecS). The system was based on the Brazilian Soil Spectral Library
(BSSL) with samples collected in the Visible–Near–Short-wave infrared (vis–NIR–SWIR) and Mid-
infrared (MIR) ranges. The interactive platform allows users to find spectra, act as custodians of the
data, and estimate several soil properties and classification. The system was tested by 500 Brazilian
and 65 international users. Users accessed the platform (besbbr.com.br), uploaded their spectra,
and received soil organic carbon (SOC) and clay content prediction results via email. The BraSpecS
prediction provided good results for Brazilian data, but performed variably for other countries.
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Prediction for countries outside of Brazil using local spectra (External Country Soil Spectral Libraries,
ExCSSL) mostly showed greater performance than BraSpecS. Clay R2 ranged from 0.5 (BraSpecS) to
0.8 (ExCSSL) in vis–NIR–SWIR, but BraSpecS MIR models were more accurate in most situations. The
development of external models based on the fusion of local samples with BSSL formed the Global
Soil Spectral Library (GSSL). The GSSL models improved soil properties prediction for different
countries. Nevertheless, the proposed system needs to be continually updated with new spectra so
they can be applied broadly. Accordingly, the online system is dynamic, users can contribute their
data and the models will adapt to local information. Our community-driven web platform allows
users to predict soil attributes without learning soil spectral modeling, which will invite end-users to
utilize this powerful technique.

Keywords: proximal soil sensing; soil spectral library; spectroscopy; soil analysis; soil quality;
precision agriculture; community practice; soil health monitoring

1. Introduction and Contextualization

Soil is an important component of the environment as it offers vital services such as
food production, clean water, and carbon sequestration [1]. To achieve sustainable use
of these resources, the world’s soil community must form partnerships and seek reliable
methods for obtaining its information. So far, the traditional soil laboratory has been the
most common way to obtain soil data, but it is not environmentally friendly, and it becomes
expensive when large amount of samples need to be analyzed [2]. This is especially crucial
in developing countries, where farmers either do not conduct soil analysis due to high
costs or the absence of locally accessible laboratory services. Despite the disadvantages,
traditional laboratory analysis is, and will continue to be, the most suitable way to obtain
soil data. However, alternatives such as soil spectroscopy have proved to be a convenient
way to optimize soil analysis and a rapid alternative to disseminate the results to all
interested parties. Indeed, a recent study [3] proved that wet laboratories’ analysis results
have more variation between laboratories than between spectral sensors.

Soil spectroscopy is well-documented in the literature with a strong background in
science and evidence [4–7]. Understanding the infrared phenomena on soil has provided
researchers with confidence in its use to quantify soil properties, with much research con-
ducted post-2000. Soil researchers are encouraged by the power of the infrared technique
and seek a global communication tool, such as the so-called Soil Spectral Libraries (SSLs).
The first publication on developing an SSL with global soil reflectance data was presented
by Stoner and Baumgartner in 1981 [8], followed by others, [9,10]. The latter example had
92 participating countries. In addition, countries have developed their own SSLs, such
as the Brazilian Soil Spectral Library (BSSL) [11,12], the Czech Republic [13], France [14],
Denmark [15], Mozambique [16], Spain [17], Australia [18], China [19–21], USA [22–24],
New Zealand [25], and Tajikistan [26].

Soil spectroscopy is mostly understood by researchers and has gathered hundreds
of papers in the last 60 years [6,7]. Despite the substantial research, the technique has not
advanced to the end-users. Traditional wet chemistry soil analysis has continued to be
performed since early 1800. There is no doubt regarding the importance of conventional wet
chemistry lab analysis, but the demand for soil analysis is increasing and the dependency
on wet chemistry is not be sustainable [27].

Many researchers have demonstrated the efficiency of soil spectroscopy and robust
predictive capabilities for multiple soil properties [28], summarized in [7]. In addition, the
MIR spectral range has been proven to provide superior prediction compared to vis–NIR–
SWIR spectra [29–31]. The SSLs, thus, are important research initiatives [10] but the data
are only available through scientific journal publications. Other initiatives have adopted an
‘open spectra’ approach. This includes regional programs such as the ICRAF-ISRIC Soil
VNIR Spectral Library [32], the LUCAS framework (Land Use/Cover Area Frame Survey;
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http://eusoils.jrc.ec.europa.eu/projects/Lucas accessed on 12 January 2022) [33] with data
from 23 countries in Europe [34], African Soil Information System (AFSIS) [35] and the
GEOCRADLE with samples from 9 countries in the Balkans, Middle East, north and central
Africa [36], the Open Soil spectral Library [37] promoted by the Soil Spectroscopy for a
Global Good, based on the Rapid Carbon Assessment [38] spectral data from USA and
Africa [32,35]. In both cases, the closed and open spectra data still lack operationalization
to make them readily available to end-users, such as farmers and land managers.

Spectral data require scientific expertise to infer soil properties using complex pro-
cessing algorithms not available to the general public. Moreover, there are variations in
spectra aroused from different measurement protocols [39]. As an analogy, when satellite
imagery was available for free for the first time, it was not widely adopted. Most users
lacked computational competencies in pre-processing issues (e.g., atmospheric correction
and georeferencing) and the complexity in supervised and unsupervised classification
methods [40]. These shortcomings were removed when the images were made available
to general users in pre-processed and georeferenced data format. Nowadays, we have
a similar situation, where many SSLs and software processing are available [41] but did
not make the bridge to making their use easier for the end-users, and thus they (farmers,
consulters, others) cannot see the importance. As the first step on a learning curve, why
not start delivering the spectral soil products directly to users? Such a win-win approach
would boost even more research aimed at providing the best possible spectral-derived soil
data and at the same time benefit end-users.

In this study, we present a free online platform called the Brazilian Soil Spectral Service
(BraSpecS) for soil properties prediction using visible–Near–Short Wave Infrared (vis–NIR–
SWIR) and Mid-Infrared (MIR) spectral ranges. This platform is a pioneering initiative,
which aims to demonstrate its application for predicting many soil attributes, but here with
a focus on soil organic carbon (SOC) and clay contents with spectral data from Brazil and
the world. Furthermore, by establishing its direct application, we hope to foster a new
generation of collaboration towards building a global online service for soil analysis.

2. Materials and Methods
2.1. The Brazilian Soil Spectral Service (BraSpecS) Construction

We developed an online service called The BraSpecS (Brazilian Soil Spectral Service)
with support of the Geotechnologies in Soil Science Group (GEOCIS, https://esalqgeocis.
wixsite.com/english accessed on 30 January 2022) Laboratory at the Luiz de Queiroz Col-
lege of Agriculture (ESALQ), University of São Paulo (USP). The web interface of the
platform BraSpecS was created in JavaScript language. JavaScript is a lightweight, inter-
preted and object-based language, mainly used in building web interfaces [34]. BraSpecS
is divided into three complementary modules: data localization, soil data visualization,
and soil processing and quantification (Figure 1). The web platform can be accessed at
http://besbbr.com.br/ (accessed on 30 January 2022).

In the data locations module, the user visualizes the number of samples by Brazilian
states and identifies the authors and partner institutions. The map interaction of the
Brazilian states was elaborated using the Leaflet library [42]. The soil data visualization
module shows soil spectra in the vis–NIR–SWIR, and MIR bands filtered by classifications,
orders, groups, layers, and textures.

All spectra and models are kept inside the system, maintaining data privacy and
not publicly disclosed. Scripts for modeling are in the system’s backend, so the user only
needs to choose the desired properties to quantify. The system delivers the following soil
properties which user can choose: soil color (Hue, Value and Chroma), clay, sand, silt, SOC,
pH in water, exchangeable/available contents (Ca2+, Mg2+, K+, Al3+, H + Al, and P), sum of
bases (SB = Ca2+ + Mg2+ + K+), cation exchange capacity (CEC = SB + H+Al), base saturation
(V% = SB/CEC × 100), aluminum saturation (m% = Al3+/(SB + Al3+) × 100), pseudo-total
contents (Fe2O3, TiO2, MnO, SiO2, Al2O3), and Ki weathering index (Ki = SiO2/Al2O3 × 1.7).

http://eusoils.jrc.ec.europa.eu/projects/Lucas
https://esalqgeocis.wixsite.com/english
https://esalqgeocis.wixsite.com/english
http://besbbr.com.br/
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Figure 1. Flowchart of the directions inside the system: (a) Cover page, Entry directions, System
functional architecture, Group, Server center, dataset, (BSSL, Demattê et al., 2018); (b) Dynamics of
the system; (c) Evaluation–Validation procedure.

This system was prepared only for the BraSpecS as an experimental prototype. The
predictive models were prepared in R software [43]. The steps of the soil processing and
quantification module are described in the sections: soil dataset construction (Section 2.2)
and data processing, models, and validation (Section 2.3). The baseline of the system
functional architecture is illustrated in Figure 1.

For the web server, a workstation was acquired with 2 XEON 5120T processor hard-
ware, with 14 cores each, and a video card with 4000 GPU’s, which are essential for the
application of the predictive models. The web server was created using the Apache soft-
ware [44] and PHP programming language [45,46]. Apache is an open-source Hypertext
Transfer Protocol (HTTP) server project to provide a secure, efficient, and extensible web
server on HTTP standards. PHP is a fast and flexible scripting language, mainly used in
web development [47]. The R scripts used in the soil processing and quantification module
were integrated into the Apache web server through rApache software. The rApache
allows the execution of scripts developed in the R programming language on Apache web
servers [48].

Soil processing and quantification is a task that requires high computational re-
sources [49], and to meet this requirement, we employed tools for organizing the spectral
data submitted by users in queues and distributing them to other computers. The First-In-
First-Out (FIFO) [50] model was selected and implemented on the server, allowing for a
dynamic queue data structure that allows the removal and insertion of processing on the
server. A high-performance processing cluster was created and thus made it possible to
distribute the processes with low-cost computers in the R environment.

2.2. Internal Soil Dataset of BraSpecS

As mentioned, the BraSpecS is a service based on the soil dataset from the BSSL [12]
where details of soil sampling and spectra can be achieved. In summary, soil samples
are from different depths (cm)—A (0–20), B (40–60), C (80–100) and D (100–120)—which
were acquired by auger or inside pits. Using these data, we constructed the platform with
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vis– NIR–SWIR, resulting in 49,753 soil samples donated by 81 collaborators, representing
69 institutions from all over the country (https://bibliotecaespectral.wixsite.com/english/
lista-de-cedentes, accessed on 30 January 2022). The BraSpecS in the MIR range comprises
4951 soil samples.

The BraSpecS contains laboratory analysis for several soil attributes in vis–NIR–SWIR
and MIR regions. In this paper, we focused only on clay and SOC. The total content of
SOC was determined according to a modification of the Walkley–Black method [51] where
SOC is oxidized with potassium dichromate (K2Cr2O7) in the presence of sulfuric acid
(H2SO4), and the heat released in the acid dilution is used to catalyze the redox reaction.
After digestion, the remaining unreduced K2Cr2O7 is titrated with ferrous ammonium
sulfate (Fe(NH4)2(SO4)26H2O). The methodological procedure for this analysis was fol-
lowed as described by [52]. For clay, in general the informed method was determined by
measurements from [53]. For the vis–NIR–SWIR analysis, the soil samples were dried at
45 ◦C for 48 h, crushed, sieved with a 2 mm mesh, and homogeneously distributed in petri
dishes prior to the measurement of the spectra in the 400–2500 nm range [12]. The spectral
data were acquired using the Fieldspec 3 spectroradiometer (Analytical Spectral Devices,
ASD, Boulder, CO, USA). The sampling interval was 1 nm, reporting 2151 channels. The
light source was provided by two external 50-W halogen lamps, which were positioned
at a distance of 35 cm from the sample (non-collimated rays and a zenithal angle of 30◦)
with an angle of 90◦ between them. The sensor is calibrated using a white Spectralon plate
(Lab-sphere, North Sutton, NH, USA) representing a 100% reflectance standard (reflectance
factor 1.0). The reflectance of each sample was calculated as the radiance ratio between the
soil sample and the Spectalon reference.

For spectral analysis in the MIR, the soil samples were ground and passed through
100 mesh. Reflectance spectra were obtained with the Alpha Sample Compartment RT-
DLaTGS ZnSe (Bruker Optik GmbH, Ettlingen, Germany) equipped with an accessory for
acquiring Diffuse Reflectance Infrared Fourier Transform (DRIFT). The sensor has a HeNe
laser positioned inside the equipment and a calibration pattern for each wavelength. It has
a KBr beam allowing a high amplitude of the incident radiance to penetrate the sample.
Spectra were acquired between 4000 to 600 cm−1 (which is about 2500–16,667 nm) with a
spectral resolution of 5 cm−1 and 32 scans per minute per spectrum. A gold reference plate
was used as standard, and the sensor was calibrated every four measurements.

2.3. Data Modeling Provided by BraSpecS

Different pre-processing methods were evaluated for the vis–NIR–SWIR range and
those that presented the best results for each soil property was selected. The Standard
Normal Variable (SNV) and the Continuous Removal (CR) were used for clay and SOC,
respectively, and all calculations were done using the ‘prospectr’ package in R [34]. In
order to minimize the influence of noise at the tail ends of measured spectra, the ranges
from 350 to 420 nm and from 2480 to 2500 nm were removed to have the spectra range
from 420 to 2480 nm. Finally, we resampled the spectra at a resolution of 10 nm to reduce
spectral multicollinearity and processing time and improve the modeling efficiency for this
large dataset [54,55]. For the MIR spectral range, the Savitzky–Golay first Derivative (SGD)
with a first-order polynomial and a window size of 9 nm and SNV were applied.

The datasets for each soil property were randomly split into a calibration (training;
70%) and a validation (testing; 30%) datasets, independently for each property. The
complete BraSpecS dataset was used to calibrate spectroscopy models using the cubist
machine learning algorithm [56]. Cubist is a rules-based algorithm that applies the M5
(Model Tree) approach to create categorical decision trees to deal with continuous classes.
The algorithm produces ‘trees’ through rules that use boost training [56]. Reinforcement
training is based on converting weak learners into strong learners, in addition to giving
stronger learners more weight [57]. Cubist has been successfully applied to model clay and
SOC from vis–NIR–SWIR spectra in numerous other studies (e.g., [10,21,58,59]). According
to a comprehensive review by [60], Cubist stood out as a method, among other machine

https://bibliotecaespectral.wixsite.com/english/lista-de-cedentes
https://bibliotecaespectral.wixsite.com/english/lista-de-cedentes


Remote Sens. 2022, 14, 740 6 of 27

learning methods, to predict SOC reliably from vis–NIR–SWIR spectra with R2 between
0.76–0.89 and residual prediction deviation (RPD) between 1.99–2.88 in several studies.

The final model is regulated by a set of nodes along the tree and two hyperparam-
eters (committees and neighbors), which improve the model’s performance. The model
construction and estimation process were performed by the caret package in R [61], which
has a set of functions that seek to simplify the process of creating predictive models. The
first criteria used to select the optimal models was the Coefficient of Determination (R2).
However, the Root Mean Square Error (RMSE) and Ratio of Performance to Interquartile
Distance (RPIQ) also were used for interpretation of results.

The online system was tested by users using their own spectra with a total of 500 Brazil-
ian participants recruited along a spectroscopy course (https://esalqgeocis.wixsite.com/
english/probase, accessed on 30 January 2022) composed by laboratory technicians, re-
searchers, students, farmers, consultants, and distributed along 20 states of the federation
(two spectra per user, total of 1000 spectra) for the vis–NIR–SWIR and 200 samples for
MIR using equipment and protocol equal to that used for the construction of BraSpecS.
The spectral soil predictions for clay and SOC were made on-the-fly immediately after
submission of the spectra. These blind set soil predictions were compared post-hoc after
retrieval of participants’ soil analytical lab data to evaluate deviations. Users were also
invited to provide critiques of the system for further improvement.

2.4. Data Modeling Provided by BraSpecS

We compared clay and SOC models derived using the world, national (BraSpecS),
and local vis–NIR–SWIR and MIR datasets. The following approaches were used: (a) We
entered the world spectral data to predict clay and SOC using the BraSpecS soil models. The
global data entailed 28,598 soil samples with vis–NIR–SWIR scans from 65 countries and
8039 samples from 4 countries with MIR scans (390 from Australia, 170 from Iran, 2728 from
the USA, and 4751 from Brazil); (b) we created for each of the 65 countries Local Models
(ExCSSL) with their spectral population and predicted clay and SOC locally; (c) finally, we
merged the BraSpecS with the spectra from the other 65 countries and generated a GSSL.

The processing was the same as the previously described for the BraSpecS, that is,
random data split with 70% for model calibration (training) and 30% for validation (testing)
and modeling using the machine learning algorithms. Finally, we compared the results
from the BraSpecS tested by other countries and compared them with the developed
ExCSSL, BraSpecS and GSSL models were compared with the same 65 countries. This
made it possible to evaluate the differences between global, national, and local datasets on
the quantification of soil properties. The workflow process is illustrated in Figure 2. The
number of samples per country is provided in Supplementary Materials.

Remote Sens. 2022, 14, 740 7 of 28 
 

 

local datasets on the quantification of soil properties. The workflow process is illustrated 
in Figure 2. The number of samples per country is provided in Supplementary Materials. 

 
Figure 2. World participants. Exploiting different populations and models to quantify soil 
properties, (a) spectra from 65 countries were tested into the BraSpecS model, (b) the Local 
model, (c) the Global Soil Spectral Model. 

3. Results 
3.1. Online Interaction Experience 

The website is available on “besbbr.com.br” and brings together spectral information 
in vis–NIR–SWIR and MIR ranges (Figure 3). This is a user-friendly interface intended to 
provide a favorable experience for users. The web is designed for: (a) end-users, who want 
the soil analysis; (b) researchers and academic employees, who want to test and evaluate 
their models; (c) students who are interested to learn; (d) pedologists and soil scientists to 
test and have new insights and view the soil spectral signatures patterns; (e) startups to 
create their own market. 

The website presents the following sequence (Figure 3). First, a user registers in the 
system. Afterward, the user can view the general information on how the BraSpecS was 
developed or go directly to BraSpecS-related services. 

The tool offers three services (Figure 3), which are as follows. First, (1) an alignment 
tool, where the user can search for the owners for spectral data and personal contact 
information. With this information, users can contact the data provider directly and ask 
for specific datasets to initiate a collaboration. Furthermore, the user will see where to find 
potential users on spectroscopy. The idea was to stimulate users to interact and create a 
new collaboration. The interactive map of contributors allows one to search for specific 
institutions or researchers and visualize Brazilian State spectral data. The map also allows 
the interaction between researchers and that leads to spectral data sharing and 
partnerships. Second, (2) users find several examples of soil types of patterns. One may 
ask for a specific soil class, for example, a Ferralsol, and the system will filter and show 
the average of all Ferralsols in the dataset or from a specific state. Users can run searches 
by specific criteria, such as soil depth, soil type, and specific soil property. For example, 
the user can ask to retrieve vis–NIR–SWIR samples of sandy soils at surface depth and in 
a specific state, owner, region, or the whole library. The result of the search is the average 
of soil spectra regarding the chosen characteristic. Depending on the number of soil 

Figure 2. World participants. Exploiting different populations and models to quantify soil properties,
(a) spectra from 65 countries were tested into the BraSpecS model, (b) the Local model, (c) the Global
Soil Spectral Model.

https://esalqgeocis.wixsite.com/english/probase
https://esalqgeocis.wixsite.com/english/probase


Remote Sens. 2022, 14, 740 7 of 27

3. Results
3.1. Online Interaction Experience

The website is available on “besbbr.com.br” (accessed on 12 January 2022) and brings
together spectral information in vis–NIR–SWIR and MIR ranges (Figure 3). This is a
user-friendly interface intended to provide a favorable experience for users. The web
is designed for: (a) end-users, who want the soil analysis; (b) researchers and academic
employees, who want to test and evaluate their models; (c) students who are interested
to learn; (d) pedologists and soil scientists to test and have new insights and view the soil
spectral signatures patterns; (e) startups to create their own market.
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The website presents the following sequence (Figure 3). First, a user registers in the
system. Afterward, the user can view the general information on how the BraSpecS was
developed or go directly to BraSpecS-related services.

The tool offers three services (Figure 3), which are as follows. First, (1) an alignment
tool, where the user can search for the owners for spectral data and personal contact
information. With this information, users can contact the data provider directly and ask for
specific datasets to initiate a collaboration. Furthermore, the user will see where to find
potential users on spectroscopy. The idea was to stimulate users to interact and create a
new collaboration. The interactive map of contributors allows one to search for specific
institutions or researchers and visualize Brazilian State spectral data. The map also allows
the interaction between researchers and that leads to spectral data sharing and partnerships.
Second, (2) users find several examples of soil types of patterns. One may ask for a specific
soil class, for example, a Ferralsol, and the system will filter and show the average of all
Ferralsols in the dataset or from a specific state. Users can run searches by specific criteria,
such as soil depth, soil type, and specific soil property. For example, the user can ask
to retrieve vis–NIR–SWIR samples of sandy soils at surface depth and in a specific state,
owner, region, or the whole library. The result of the search is the average of soil spectra
regarding the chosen characteristic. Depending on the number of soil spectra falling under
specific criteria, the process may take some time. As an example, we selected the São Paulo
(SP) state, the vis–NIR–SWIR spectra, the sandy textural class from the first layer (A), with
no indications for soil classification. This query took about 3 min. Figure 3 gives detail on
spectral patterns that users have access. Users can see the spectra regarding clay content or
soil classification and compare them with their spectra.

Finally, (3) we have the Soil Analysis Spectral Service. Here the user has spectral
data and wants to make a soil prediction anywhere in the world. To access the prediction
module, the user must register on the platform with an email address to receive the results.
Afterward, the user must log into his/her account in the platform to: (1) download the
template to organize the soil spectra; (2) upload the file (.csv format) with the soil spectra;
(3) select the attributes to be predicted; and (4) send the data for processing in the platform.
Thus, the user uploads the spectra, and chooses among vis–NIR–SWIR or MIR spectral
range and the desired soil properties, and then runs the processing. The system runs all
scripts in the background, not displayed on the web but presented in this paper. After
about 15 minutes, depending on the filtering and number of samples chosen, the user will
receive a report by email. The report entails all soil analyses of the specific spectra, method
(cubist), and statistical performance metrics of the backend. The user also has the option to
provide feedback online and share the wet soil analytics of user spectra, so the system will
be recharged with new data and will increase the dataset.

3.2. The Quantification

The descriptive metrics for spectroscopy clay content and SOC estimated concentra-
tions using different population models, that is the BraSpecS, GSSL, and the ExCSSL are
shown in Figure 4. For clay, the predicted content standard of all models w very similar
with the observed distribution, with 90% of the population ranging mainly from 150 to
400 g·kg−1. For SOC, the predicted value distributions obtained from the GSSL and the
ExCSSL were in accordance with the observed values, with 90% of the population ranging
mainly from 10 to 180 g·kg−1. However, the BraSpecS model underestimated SOC values
compared to SOC observations.
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3.3. Prediction Models Based on Different Populations

Figures 5 and 6 present the R2 values of the vis–NIR–SWIR models results for clay
and SOC using the different models (ExCSSL, BraSpecS and GSSL) while the RMSEs and
RPIQ of clay and SOC models are shown in Figures 7–10, respectively. ExCSSL presented
better results followed by the global and the BraSpecS models. The BraSpecS model was
very good for Brazilian samples, but not for other countries.

The BraSpecS model showed a very different value from the ExCSSL in other countries
for both clay and SOC in the MIR range (Figures 11 and 12). Prediction values derived from
MIR closely matched the observed properties’ distributions, except for clay predictions
using BraSpecS. Interestingly, the R2 for clay validation models mirrored the results of
vis–NIR–SWIR. However, for SOC, the R2 derived from MIR spectra were substantially
better than those derived from vis–NIR–SWIR using the BraSpecS.

Spectra from a large country such as Brazil has advantages due to its high variability
in soils and biomes. Table 1 shows that, using the BraSpecS model, 24 countries achieved
an R2 of greater than 0.5 for clay with vis–NIR–SWIR data. When the BraSpecS model
was applied in 16 different African countries, 7 had R2 score over 0.5, which means that
BraSpecS was feasible. In fact, many countries from Africa have similar soils as Brazil. In
contrast, the BraSpecS models did not perform well on spectra from Asia. Using ExCSSL,
11 models in Asia achieved R2 ≥ 0.7. The GSSL models outperformed the BraSpecS models,
but did not perform as well as the ExCSSL. In total, 54 countries achieved an R2 higher
than 0.5 for clay estimation using GSSL compared to only 24 countries using the BraSpecS.
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Table 1. Number of countries with R2 for clay model using vis–NIR–SWIR data.

Model R2 Total Africa Asia Europe North
America Oceania South

America

ExCSSL Clay

0–0.3 1 0 0 1 0 0 0
0.3–0.5 3 0 0 3 0 0 0
0.5–0.7 8 3 1 2 1 0 1
0.7–0.8 11 1 2 4 1 1 2

>0.8 40 11 9 13 3 1 3

BraSpecS Clay

0–0.3 14 3 3 6 1 0 1
0.3–0.5 25 6 5 8 2 2 2
0.5–0.7 12 4 1 5 0 0 2
0.7–0.8 9 1 1 4 2 0 1

>0.8 3 2 1 0 0 0 0

GSSL Clay

0–0.3 3 1 1 1 0 0 0
0.3–0.5 6 2 1 3 0 0 0
0.5–0.7 18 3 4 8 1 0 2
0.7–0.8 18 5 3 4 3 1 2

>0.8 18 4 3 7 1 1 2

In summary, the best clay model performance was obtained for ExCSSL > GSSL > BraSpecS
irrespective of different continents with ExCSSL clay models showing R2 larger than 0.5 in
59 countries. Interestingly, even in South America, BraSpecS clay models were outper-
formed by GSSL and ExCSSL models. What also stands out is the high performance of
ExCSSL clay models in Europe, with 13 countries out of 23 achieving a R2 > 0.8. Another
interesting point is that 4 countries from Europe had the same R2 (0.7–0.8) with all models
(BraSpecS, ExCSSL and GSSL).

For SOC, the results for R2 in validation mode using vis–NIR–SWIR data were less
promising, when using the BraSpecS (Table 2) but maintained the trend of better for the
GSSL and the best for the ExCSSLs. The BraSpecS and somewhat GSSL SOC models
performed especially poorly in European countries. Indeed, these ones have very different
mineralogy and carbon contents.

Table 2. Number of countries with R2 for Soil Organic Carbon (SOC) models using vis–NIR–
SWIR data.

Model R2 Total Africa Asia Europe North
America Oceania South

America

ExCSSL SOC

0–0.3 3 0 0 3 0 0 0
0.3–0.5 9 0 0 9 0 0 0
0.5–0.7 17 0 2 11 1 0 3
0.7–0.8 9 4 1 0 4 0 0

>0.8 19 7 7 1 2 1 1

BraSpecS SOC

0–0.3 38 3 5 22 3 1 4
0.3–0.5 11 5 2 1 1 0 2
0.5–0.7 6 2 2 1 1 0 0
0.7–0.8 1 0 0 1 0 0 0

>0.8 1 0 1 0 0 0 0

GSSL SOC

0–0.3 17 4 5 4 1 1 2
0.3–0.5 14 2 1 6 2 0 3
0.5–0.7 22 3 3 13 2 0 1
0.7–0.8 2 1 0 1 0 0 0

>0.8 2 1 1 0 0 0 0
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4. Discussion
4.1. The Web Service Advantages and Limitations

The BraSpecS online platform presented here overcomes some practical limitations
and makes soil spectra a service accessible to anyone, democratizing its usage. Although a
highly complex, state-of-the-art machine learning method (Cubist) was used in this study,
our platform frees the end-user from having to learn spectral modeling. A user only needs
to upload a spectrum and will receive the soil analysis. This may start to bring years of infrared
research directly to the public.

The spectral platform approach enhances equity of making spectral soil models and
knowledge readily available to the global community at no cost. The data-driven knowl-
edge engrained in soil models, such as ExCSSL, BraSpecS, and GSSL, developed from
vis–NIR–SWIR and MIR spectral data is shared with users who become participants to
co-create larger and larger global soil spectral libraries that serve the greater good.

The web services on the spectral platform are user-friendly, fast, and facilitate the
formation of an active and engaged community of experts, soil scientists, students, farmers,
consultants, and other stakeholders. As a living technology platform, suggestions from
the user community can be readily integrated. People who belong to a global soil spectral
community can also benefit by retrieving soil analytics from their uploaded spectral data.

While other global and continental soil spectral models were driven by researchers
and professional soil databases other ongoing global spectral community efforts (e.g., Soil-
Spec4GG) are more vertical with researchers subsuming people’s spectral data without a
data sharing policy that fully acknowledges and credits the user’s labor and costs of field
data collection. Works such as from [10], the European LUCAS dataset modeled by [62,63],
as well as the U.S. soil spectral data modeled by [23,64,65], were important to show the
community the importance and potential of the technique. A free repository such as by [66]
have great importance to make this grow since users have access to data. Therefore, our
initiative demonstrates the importance of providing online results to end-users and this
may encourage other working groups to improve similar new systems.

One of the reasons the accuracy varies between SSLs is the difference in measurement
protocol used by the SSL owners. This issue needs to be resolved in the near future with
an initiative to establish an agreed standard and protocols amongst the global users. This
effort is being carried out by the IEEE SA P4005 working group.

In addition to the service, developing a soil-spectral data web platform that is antici-
pated to grow even further in the future with the submission of new spectra provides a
virtual space to build community. Due to data ownership, the system used a non-disclosed
dataset idea. If one is interested in the data, the system indicates the data owner, and
encourages the user to contact the data custodian, increasing community knowledge.

The pedometric and soil modeler community have become quite specialized in AI,
scripting, modeling, and high-end data processing, which has somewhat disconnected
them from work with field pedologists and farmers cropping the fields. Thus, our soil-
spectral web platform helps bridge the gap between modelers and users of soil data. Our
tool offers people to collaborate, form partnerships, get to know others who are interested
in soil spectroscopy, and better understand soils in all regions of the globe. Reconnecting
soil modelers and soil spectral data collectors offers new avenues to build community. In
essence, new connections can be made between “the machine” that models soils and people
with interest in soils.

To understand the usefulness of shared SSL, consider the following example: Stake-
holders (farmers or researchers) could send their soil samples to a central SSL (e.g., national,
or global SSL), where they would be scanned and the spectral data stored, or they could
send already acquired soil spectra. Local SSL can be explored for personal interests or to
meet other needs (e.g., soil monitoring) and feed the global SSL, growing a global repository.
Once a global SSL is trained and evaluated, spectra from a profile of an unknown type
can be compared with spectra in the global SSL and a preliminary soil classification or
specific soil properties, such as SOC or clay content, can be estimated. Global, regional, and
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local SSL can co-exist because they serve different needs and purposes. While local SLs are
customized to specific soil regions, they tend to perform better to predict SOC and clay than
regional (BraSpecS) and global (GSSL) models, as demonstrated in our study. However,
the outlook for SSL is that as more soil-spectral data pairs are added, global prediction
performances using more advanced analysis are expected to become better at modelling
local soil variations. Growing a global SSL will eventually converge to a saturation level at
which regional soil variabilities are well represented; thus, it is expected that global SSL
using AI technology will provide as robust and accurate soil prediction models as local SSL
in the future.

One requirement for a robust model is that the dataset must be standardized with the
same spectral bands and the same soil analysis method. This is because the interaction
between wet analytical data and spectra can be different when spectral models are trained
using unharmonized spectra and SOC data. This could increase the predictive uncertainty
and reduce the interpretability of the model. Data quality is crucial for superior results,
although it is difficult to achieve with legacy datasets. Thus, it is imperative to start using
agreed-upon standards and protocols on careful and agreed spectral soil measurements
with the quality of soil wet chemistry analysis, which are the basis for success in delivering
accurate model estimates for soil properties.

Another limitation is that end-users will need to acquire or gain access to spectrora-
diometers to collect soils’ vis–NIR–SWIR and/or MIR data. These limitations are viewed as
temporary since soil sensor technology has become more widespread with the advent of pre-
cision agriculture and “smart” agricultural management. In addition, regional cooperatives
or centers may serve farmers and end-users in more resource-limited settings.

4.2. Brazilian Users of the BraSpecS

For the Brazilian vis–NIR–SWIR dataset, clay content presented good results using
the platform, with R2 = 0.75. In contrast, SOC presented lower values (R2 of 0.45). These
results indicate that the SOC is more dependent on so many factors such as biomes, land
use, mineralogy [12,67], and has great dynamics due to climate and microorganisms that
mean its quantification can become a challenge. This agrees with past studies, e.g., [6]. In
this scenario, the use of SSL and local models can be a strategy for the online service to
return more accurate estimates to end-users. Moreover, SOC spectral estimation has been a
challenge in Brazilian agricultural areas because of the low soil carbon content. The SOC
results using MIR were significantly better than vis–NIR–SWIR, since they reached R2 of
0.8 and 0.7 for clay and SOC, respectively, in agreement with past studies [68–70]. Thus, the
BraSpecS online platform can be used as an important service for soil analysis over Brazil,
considering the level of accuracy and the clay and SOC property.

4.3. International Users of the BraSpecS Based on the Internal BraSpecS

International users from several countries submitted spectra via the online platform
to identify whether their local samples could be predicted by the BraSpecS service. We
observed that for clay, three countries from Africa, two from Asia, four from Europe and
two from North America showed R2 values of over 0.7. Despite that, in Europe there were
still five countries with models in the R2 range of 0.5–0.7 for clay. The results were less sat-
isfactory for SOC, which agrees that this property is more dependent on other factors such
as biomes, land use, and others [10]. In the case of clay, results indicated that the BraSpecS
model presented good results for some countries. For example, spectra from Thailand,
Benin, Denmark, Jamaica, Japan, The Netherlands, Nicaragua, Poland, Philippines, South
Africa, and Sweden reached R2 over 0.7. This indicates that for clay, a model built using
spectra from a large, diverse country can quantify spectra from other countries. On the
other hand, many countries reached low values. This gives two indications: (1) a country
model can assist other countries but not all of them; (2) the user will have the opportunity
to choose the SSL depending on soil similarity. For example, if the user lives in a country
that does not have an SSL, the user can choose a global one or another region with similar
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soil. These limitations can be added to the online spectrum service platform, enabling
the user to make the decision to use local or global models based on the accuracy of the
estimates required for each application of the results.

4.4. International Users of the BraSpecS Based on Local Datasets

SSLs may adopt several approaches and levels: a farm [71], a region [72] a coun-
try [12,19], a continent [33], or the world [10]. The present paper presented different
approaches to understand soil population specific modeling (ExCSSL, BraSpecS, and GSSL).

We observed that ExCSSL were clearly better at quantifying clay and SOC in almost
all cases and continents. The user-specific ExCSSL preserved the main characteristics of
their regional soils, parent materials, biomes, and other information which spectra carry.
This finding agrees with [73], for whom the transfer of vis–NIR–SWIR models from global
to local scale, the latter were the best. In our study, better model performances for both
clay and SOC were observed in local models when compared to the GSSL, irrespective
of different continents with diverse soils. We observed only a few cases in Europe where
model performances were quite low for both SOC and clay (R2 < −0.3).

Our results clearly demonstrate that the GSSL model performed better than the
BraSpecS model for both SOC and clay content, while the local country-specific mod-
els outperformed both BraSpecS and GSSL models.

The caveat is that local datasets had different sample sizes (unbalanced sampling
design) which may have influenced model performances. The issue of unbalanced datasets
in testing the transfer of soil spectral models was addressed by [74] who used a standardized
balanced sampling design; however, in their study the transferability and scalability of
spectral models (local to regional scale, and vice versa) for soil carbon were inconclusive.
The study found that the transferability and up- and downscaling of the soil spectral
models were limited by the following factors: (a) the spectral data domain; (b) soil attribute
domain; (c) methods (e.g., machine learning or deep learning AI methods) that describe
the relations between vis-NIR-SWIR and soil carbon; and (d) environmental domain space
of attributes that control soil carbon dynamics.

Other soil spectral studies, such as [75,76], showed that spiking libraries improved the
performance of soil prediction models. These spiking studies suggest that building larger
spectral libraries (continental and world libraries) achieves better results to model soil
properties than regional and local libraries. However, [76,77] pointed out that local model
calibrations customized and optimally fitted to field/farm/local soilscapes are the best to
model soil properties, even with small datasets with as few as 25 samples. Whether local
or global soil spectral models perform better may be more a question of homogenization
of data to reduce the variability in soil, spectral, and/or associated soil-environmental
characteristics. A study [60] found for soils in southern Brazil that the stratification of a
large spectral library into more homogeneous sample groups by environmental criteria
(physiographic regions and land-use/land-cover) improved the accuracy of SOC predic-
tions compared to pedological (soil texture) and vis–NIR–SWIR spectral (spectral classes)
criteria. Subsetting can be considered as an approach to localize and homogenize soil
spectral sample populations, but it is not always successful and depends on the soil and
environmental conditions [78]. In another study [79], they found that stratification by min-
eralogical uniform clusters improved predictive performance of clay content, irrespective
of the geographic region, using a large tropical soil spectral set.

There are several factors that play a role in building world soil spectral libraries
that have contradictory effects on modeling of soil properties. First, adding soil spectral
data may introduce noise to the global library, specifically if the data quality is of poor
quality due to incorrect measurement, or different protocols. Second, adding redundant
soil spectral data that are already present in the world library is unlikely to boost model
performance of soil properties. Indeed, studies demonstrated that more soil data in a
spectral library does not necessarily mean better soil predictions. According to [80], there
was relatively little significant increase in prediction capacity of soil attributes with the
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use of an entire data set compared to a smaller subset, which increased the R2 from 0.63 to
0.72 for SOC and R2 from 0.71 to 0.73 for clay, respectively. On the other hand, representing
the actual soil variability exhaustively of every region of the globe—including cold regions,
mountainous or wetland regions that are difficult access, or politically restricted regions—
would ensure that data gaps are filled, and all soil types are included in a global dataset.
Such efforts are underway, though have been hampered by investment in new soil sample
campaigns and standardized analytics and spectral protocols to ensure high data quality.

The issue of legacy datasets that have dominated national and global soil libraries and
the lack of a consistent global soil monitoring network are noteworthy; [81,82] stressed that
although striking global soil maps have been generated, future soil mapping and modeling
efforts will depend on data mining all existing soil data and an increase in soil monitoring
efforts. A suggestion to use an internal soil sample (ISS) that is disseminated between all
laboratories and align all measurements to this ISS was proposed and validated by [39].
Various users successfully adopted this method using different spectrometers [83] and
measurement conditions [84]. This direction may minimize the variation between many
new SSLs and help better use our system in the global domain as demonstrated by [85].

The GSSL of clay compared to the ExCSSL, agrees with [86], who presented a method-
ological framework for using vis–NIR–SWIR spectroscopy at local and global scales by
spectral treatment and regression methods. In our study, MIR-based predictions of clay
showed the highest R2 for ExCSSL, followed by GSSL and last BraSpecS. MIR data (and
pooled MIR + vis-NIR-SWIR) compared to solely using vis-NIR-SWIR data have shown
superior results to predict SOC and/or clay in numerous studies (e.g., [64,78,87,88]). Al-
though MIR spectra have fingerprinting capabilities to trace fundamental spectral elemental
bonds, vis-NIR-SWIR is limited to identifying overtones in spectra. However, the former
is much more costly and laborious to use. This explains the rapid growth of national and
continental vis-NIR-SWIR libraries, while large MIR libraries that cover the variability of
soils around the globe are still limited.

Figure 13 shows an example of application. The Israel dataset was inserted in BraSpecS
and reached an R2 of 0.88. When using the local model, the performance was still at
0.88 with a lower error. For SOC in Kenya, BraSpecS reached 0.44, and with the local
model, 0.92. As both datasets were inserted in the GSSL, results varied; the Israel prediction
became worse but it improved for Kenya. The examples indicate that BraSpecS can be
used depending on the country and soil similarity. This may be the track for SSLs of the
world, a user can seek SSL that provides the best result for its spectral data. For example,
‘if’ Israel did not have any SSL, which SSL would they choose to use: BraSpecS or a global
one? As we suggest for the future, the user can test both and use the best one according
to the user’s objective. We need to have global, continental, country, and local SSLs. To
alleviate the problem of the current model of central data custodian, SSLs need to have a
distributed model where users can contribute towards a global SSL but their data ownership
and privacy are preserved [49]. In the future, distributed SSLs linked via a system such
as a blockchain would ensure data ownership is respected, yet users can still access the
global dataset.
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× Predicted by the BraSpecS model, (e) Observed × Predicted ExCSSL, and (f) Observed × Pre-
dicted GSSL.

5. Conclusions and Final Considerations

It was possible to construct a platform where its importance can cover resource-limited
regions which may consider the opportunity to submit spectra and retrieve estimated soil
data in an established online service, such as BraSpecS. End-users can already interact with
infrared technology.

The BraSpecS system facilitates dynamic communication between worldwide users
and delivers important soil information. The presented system can be applied for several
purposes, including research, farming, soil analytical laboratories, industries, consulting
companies, creation of startups, teaching, pedology research, digital soil mapping, precision
agriculture, and more. The system is user-friendly and does not require the user to have
competency and literacy in soil spectral modeling. Users simply insert the soil spectra into
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the system and receive soil estimates with statistical metrics information. The user also has
the ability to find the owners of spectra, request data, get in contact, and build partnerships.
The platform also allows users to view spectral patterns of soil classes, soil texture, SOC
content, and many other soil properties. Finally, the user receives a report of the soil model
results for spectra that were submitted to the web platform. Nevertheless, this system is
not without drawbacks and limitations, which will be resolved once the system is in use
and feedback is received from worldwide users.

In the case of clay and SOC quantification, vis–NIR–SWIR presented reasonable data
(best for clay) and MIR reached the best in both cases. In terms of data model population,
statistics increased as follows: Global Model—BraSpecS model—Local model.

The cascading future growth of GSSL holds much promise through the pooling of
local and regional soil spectral data to represent the global soil variability. End-user and
stakeholder engagement in the BraSpecS will be profoundly important to build a robust and
sustainable global soil spectral library that serves the greater good of soils. Our approach of
a community-driven GSSL in which people and stakeholders participate in collecting new
soil samples and spectra that represent actual soil conditions will overcome some of the
limitations of global SOC and clay maps/grids derived via digital soil mapping that were
mainly produced from legacy soil data representing historic soil conditions. Monitoring
soil change is profoundly important in an age of multi-hazard natural disasters (such
as wildfires and flooding), global climate change, and interconnected soil, food, social,
economic, and ecological dilemmas. The need for up-to-date SOC, clay, and other soil
properties is imminent. BraSpecS has operationalized soil spectroscopy to address these
urgent needs for accurate and current soil information as well as assessment of soil change
around the globe.

6. Future Works

The quality of model performances is influenced by multiple factors including: (a) qual-
ity and consistency of spectral data (absence of an agreed protocol); (b) quality and consis-
tency of soil wet laboratory analysis (method and accuracy); and (c) soil forming factors,
mineralogy, biome, and other environmental factors that influence soil genesis. These
should be addressed in future studies to achieve the best results to assess soils. We would
like to stress that community-driven global soil spectral libraries allow the contributors to
construct clay, SOC, and other soil property models of various kinds. This work paves the
way to investigate spectra modeling using spectra similarities from a global or regional SSL.
Similarities of soil and environmental factors between regions matter when transferring
spectral models overseas is certainly the best approach, as indicated in our work.

An important direction for the future should be a filter inside the system, which
would achieve the best spectra to create the model (i.e., spectral fitting). Thus, for each
spectrum (and for each soil attribute), the user could have a different model, increasing the
use worldwide. Looking at the same ideas, the system of soil classification (which is also
presented here) could be improved with photo and soil description, to assist pedologists
and soil survey. Along these insights, the system could also allow pre and post-processing
which would gather other end-users in a larger community such as researchers, consultants,
and industries.

Web sites

(1) The Brazilian Soil spectral Service (BraSpecS): besbbr.com.br or http://143.107.213.22
7/layout/_en/apresenta_temp.php. (Accessed on 2 February 2022)

(2) The Brazilian Soil Spectral Library (BSSL): https://bibliotecaespectral.wixsite.com/
english or http://143.107.213.227/layout/. (Accessed on 2 February 2022)

(3) The Group that developed, Geotehnologies on Soil Science Group (GeoCis): https:
//esalqgeocis.wixsite.com/english. (Accessed on 2 February 2022)

(4) Corresponding author profile: https://jamdemat.wixsite.com/dematte (Accessed on
2 February 2022)
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