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Abstract. The fluctuations in the temperature and polarization of the cosmic microwave
background are described by a hierarchy of Boltzmann equations. In its integral form, this
Boltzmann hierarchy can be converted from the usual Fourier-space base into a position-space
and causal description. We show that probability densities for random flights play a key role
in this description. The integral system can be treated as a perturbative series in the num-
ber of steps of the random flights, and the properties of random flight probabilities impose
constraints on the domains of dependence. We show that, as a result of these domains, a
Fourier-Bessel decomposition can be employed in order to calculate the random flight prob-
ability densities. We also illustrate how the H-theorem applies to the cosmic microwave
background: by using analytical formulae for the asymptotic limits of these probability den-
sities, we show that, as the photon distribution approaches a state of equilibrium, both the
temperature anisotropies and the net polarization must vanish.

Keywords: CMBR theory, CMBR polarisation

ArXiv ePrint: 1303.7258

© 2013 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1475-7516/2013,/06 /043


mailto:reimberg@fma.if.usp.br
mailto:abramo@fma.if.usp.br
http://arxiv.org/abs/1303.7258
http://dx.doi.org/10.1088/1475-7516/2013/06/043

Contents

1 Introduction 1
2 Boltzmann’s equations 3
3 Uncoupling the temperature evolution 4
3.1 CMB temperature in position space 4
3.2 CMB polarization in position space 5
4 Random flights and the CMB 7
5 The polarization in position space 10
6 Diagrams 12
7 Full coupled temperature evolution 12
7.1 Temperature at first order 13
7.2 Temperature at second order 14
7.3 Polarization at second order 15
7.4 Diagrammatic rules 17
8 Fourier-Bessel series for the extended random flight probabilities 19
9 Large number of scatterings and the H-theorem 20
10 Conclusions 22
A Extended random flight integrals times even functions 23
A.1 The case of Gi1(R, X;71,...,7,) when f(k) = k? 24
A.2 Higher powers of f(k) 25

1 Introduction

The cosmic microwave background (CMB) has been a prolific source of theoretical [4] and
experimental [2, 13, 15] results over the last couple of decades. Because it relies on low-
energy interactions well inside the linear regime, the CMB now occupies a central part in
our understanding of Cosmology, providing crucial information about the initial state of the
Universe and about many processes that distorted it since the surface of last scattering.

A fundamental description of the temperature and polarization of the CMB starts with
the basic interaction dynamics (free propagation and scatterings with matter sources), and
is fully realized through the Einstein-Boltzmann hierarchy of equations. We shall here de-
scribe the system in a backward fashion: starting with the integral version of Boltzmann’s
equations, we will uncover details about the physical system described by that set of equa-
tions. Our procedure will be directed by the underlying structure of those integral equations,
in particular by the way in which the hierarchy couples the equations. By removing and
then reintroducing the source terms we will be able to reveal some hidden details about
the microscopic dynamics of the physical processes that lead to the properties of the CMB



which are observed today. To be clearer, we shall demonstrate that the Boltzmann equations
preserve, in a very fundamental way, the fact that the fluctuations in the temperature and
polarization of the CMB were imprinted through Thomson scatterings of low energy photons
and free electrons during the recombination. Consequently, the hierarchy can be rewritten
in terms of a series expansion over the number of scatterings that photons suffered before
decoupling from matter. In this series expansion, besides the probability for each interaction,
the number of scatterings appears as a key ingredient, since it determines the probability
density that mediates the way in which the source terms imprint their contribution into
the final signal.

The argument which leads to these conclusions will take us through a treatment of the
CMB in position space and, in many senses, the present work is a further development of [1].
When performing the conversion from Fourier space to position space, it is unavoidable
that a certain class of integrals over products of spherical Bessel functions appear in the
description. The proper understanding and interpretation of these integrals constitute the
key barrier that we should overcome in the description of the system in position space. As
we shall see, these integrals codify the memory of the fundamental scattering dynamics. In
fact, we shall demonstrate that these integrals constitute a generalization of random flight
probability densities.

Random flights are a classical problem in mathematical physics [18], with many appli-
cations in physics and astronomy [3]. The problem was first proposed in the beginning of the
20" century in context of the study of bird migrations. Lord Rayleigh, soon after, applied
the same ideas in acoustics. Further contributions on this subject are described in ref. [5].
In very simple terms, a random flight (in a D-dimensional space) is the trajectory performed
by a body which moves at constant speed and changes its direction of motion into another
random direction at Poisson-distributed time intervals. If the movement has a fixed origin,
we may ask, based on the length of the intermediate displacements, as well as on the number
of displacements, what is the probability for the moving body to reach a distance r from
the origin.

The precise form of the visibility function also plays a fundamental role in the description
of the CMB in terms of random flights, since it models the probability of scatterings during
the recombination — which changes as a function of time only. The spatial independence of
the visibility function and the elasticity of Thomson scattering (which are, of course, already
codified in the usual Boltzmann hierarchy) are the fundamental ingredients which lead to a
random-flight-based description of the CMB.

This paper is organized as follows: after introducing the Boltzmann hierarchy in the
integral form in section 2, we temporarily decouple the evolution of the temperature from
the polarization, and show the consequences of this simplification for the expression of the
temperature and polarization in section 3. We then show, in section 4, how the family of
integrals over spherical Bessel functions that appears in that description is related to random
flight probability densities functions. After clarifying the structure of this dynamical system
under the approximation of uncoupled temperature evolution, we go back to the original form
of the hierarchy in section 7, and show that the formalism introduced in the previous sections
can be extended to treat the general case. We present, in section 8, a computational tool
based on Fourier-Bessel expansions which is suitable for computing the probability functions
appearing in our description. Finally, in section 9 we use asymptotic arguments to show
that high order terms should not contribute to the observables, which is expected from
Boltzmann’s H-theorem.



2 Boltzmann’s equations

The hierarchy of Boltzmann’s equations describing CMB temperature fluctuations and po-
larization can be written in terms of a set of coupled integral equations — see, e.g., [14]. Let
the temperature anisotropies observed at position x, and at (conformal) time 7, along the
direction 0 be given in terms of its momenta as:

. d*k ik - .
@(xo,no,o):/( 7 ke 047{:1 01(k, 1) Y7, (K) Y (0) . (2.1)

Similarly, the polarization, in terms of the usual Stokes parameters (), U and I, is decomposed
as:

Q+ZU AN dgk ik-x, - * (1 A
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where 2Y,, are the spin-weighted spherical harmonics [16].
The momenta of the CMB temperature and polarization are then given by the integral
equations:
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and

ok, ) = ,/ /no U%[@Q(k) ﬁag(k,n)}m. (2.4)

In egs. (2.3)—(2.4) a prime denotes a derivative with respect to conformal time 7, the optical
depth to Thomson scattering is p(n), and we have defined the interval Any = n,—n. It is some-
times convenient to define the ubiquitous source term P(k,n) = 1 [O2(k,n) — V6aa(k,n)].
The system above is closed once the perturbed Einstein equations are used to determine how
the linear scalar cosmological perturbations gy, V3, ® and ¥ evolve with time. However,
both the precise nature of the perturbed Einstein equations, or of the initial conditions that
are used to evolve those equations, are irrelevant for our results.

Equations (2.3)—(2.4) show that the primary sources of temperature fluctuations are the
Sachs-Wolfe term, gy, the baryon velocity, V3, and the gravitational potentials ® and W
(also known as the Bardeen potentials — we work in the conformal-Newtonian gauge). The
primary source of the polarization of the CMB, on the other hand, is the quadrupole of the
temperature fluctuations. The integral equations then couple all the momenta of temperature
and polarization, mediated by the visibility function g(n) = u'(n)e= ",

Henceforth we will take x, = 0, i. e., the observer is taken to be at the origin of the
coordinate system employed for the description of the problem.




3 Uncoupling the temperature evolution

We can decouple egs. (2.3)-(2.4) by neglecting the term s in eq. (2.3). This truncation
represents the approximation whereby deviations from the equilibrium temperature are de-
scribed by the Sachs-Wolfe (SW) and integrated Sachs-Wolfe (ISW) effects. Within this
approximation, then eq. (2.3) becomes:

Ok, 1) = /0 " dn {gn) [Bw (. n) i 2>o) — e Vilde, ) (o)
+ e (W 4 @) (k) julkAm) | (3.1)

Neglecting polarization as a source term for the temperature anisotropies is in fact a very
good approximation, and the reason for this underlies the argument presented in this paper.
The visibility function g(n) should be regarded as the probability per unit (conformal) time
that photons will scatter with some free electron — and, in fact, g(n) is defined in such a way
that this probability is normalized, fo dng(n fo dpe ™ = 1. This means that each time
a factor of the visibility function 1ntermed1ates a source term, that source term is damped by
a factor e, with 0 < € < 1. Since the lowest-order polarization term has at least one factor of
the visibility function, it contributes as a source term to the temperature with two factors of
the visibility function. Hence, the SW and ISW effects dominate the intensity of the signal,
and eq. (3.1) accounts for the largest contribution to the temperature anisotropies.

3.1 CMB temperature in position space

Let’s now take the lowest-order contribution to the temperature anisotropies, and express it
in terms of position space. Expressing eq. (2.1) as

77m Ze 770 Ylm )7 (32)

the coefficients 0(0) (n,) are given by:

" 24 o)
lm770 —22/ dn/ 1/2 /dke w(n

x {u’(n) [esw<k, 0 — Vh(k, n)a‘ﬂ ) (K, n>} Vi, () ji(kAn,) . (3.3)

We shall then define the primary source term operator as:

Sin(ho) = [ e {u’(n) [HSW(k,"?)—Vb(ka 77);7] )k, n>} Vi, (k). (3.4)

where we stress the fact that we have included the optical depth to Thomson scattering in
the definition of the source term. In terms of eq. (3.4), eq. (3.3) can be written as:

/no i / 172 k2 Sy (k,m) 51 (kAR . (3.5)

In order to obtain a position-space description, we will express the coefficients Si,,(k,n) in
terms of their counterparts in position space, by means of a Hankel transform:

dX

Sim(kyn) = 2 (—i)! / 2n)1? X2 Sp(X,n) ik X) . (3.6)




Using now the orthogonality relation for spherical Bessel functions,

dk k2 j1.(ak) jr(bk) = = v 5(a—b),
JL\ar) JrL 9 al+2 a

we obtain:

o _ [™ _
01 = dn S (X = Amno,n) . (3.7)
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Eq. (3.7) has a straightforward interpretation: it states that, in order for a source term at
time 7 contribute to the CMB signal at time 7,, that source must be located at the spherical
shells of radius Ang = 1, — 1 centered at the observer. The set of those spherical shells is a
hypersurface which corresponds, of course, to the past light cone of the observer on {x,,7,}.
Since the visibility function is highly peaked at the time of decoupling, the primary source
term contributes the most to the signal near the epochs when z(n) ~ 1100.

3.2 CMB polarization in position space

We shall now decompose the polarization as:

Q LZU (10:0) = > T (10) 2 Y1 (6) . (3.8)

Ilm

with the aim of determining the coefficients 7, (7,). The source terms in eq. (2.4) are ©2 and
@, which are built iteratively from an initial temperature quadrupole. We can, therefore,
organize the iterative solution as a series into powers of the visibility function. As a first step
in the iterative solution, for example, ay (which is of higher order in the visibility function)
will not be taken into account — only the temperature quadrupole will contribute to generate
polarization at this order. The first iteration is, therefore:

l_|_2 Mo 1
T (1) = \/1_7/ dm g m/ dn/ e k? Sim (K, )

k‘A

(3.9)

where the time intervals are defined as An; = 1 —n and Any = 1, —n1. The source term Sy,
is the same as was defined in eq. (3.4). Using once again the Hankel transform of eq. (3.6)
we can recast eq. (3.9) as

Mo
Wl(m = \/ /dmgm / dn/ dX X2 Sy (X, 1)

Ji(kAn,) .
X /0 dk k2 ji(kX) F—2 (hAn,)? ja(kAn). (3.10)

The interpretation of the expression above is the following: at time 7 a source term generates
a temperature quadrupole. That quadrupole then generates, through a scattering at time
1, the polarization which is finally observed at time 7,. As we shall see, the integral of the
second line of eq. (3.10) guarantees that the source term, at a distance X from the origin,
is located in the past lightcone of the observer, for all possible 77 and 7. The variable X
will also be upper-bounded, and therefore the upper limit in the integration over the source



terms will be replaced by a finite value that, as we shall see, corresponds the radius of the
observer’s past lightcone.

(1)

The next step in the iterative solution is to take the 7, just computed and use it as
a source term for the polarization itself — this means that now the polarization piece of the
source term in eq. (2.4), ag, is no longer assumed to vanish. This contribution, which we will

(2)

lm>
(l+2)! /"" / d’k .| V6 Ji(kAn,)
Trlm l 2 m g 771 ( )3/2 4mi 9 042(1{, 771) (kAno)2

=—2\/E ; d771g(171)4ml[—\§<—;>\ﬁ/ dnz g(n2)

1 dk . ~ Jo(kAnL) | 1(kAn,)
- k| d®kOy(k,m0) Y (k
<5 [ gt [ RO m) i G G

call ;"7 is therefore given by:

Y (k)

where now the interval An; = n; — 72. In terms of the primary sources in position space,
after using eq. (3.7) we obtain:

( Mo 72 72
T (1) = / dn g m/o dnzg(nz)/o dn

. / AX X250 (X.1) [9 [ xR e P )

(3.11)

(2)

The term 7’ (1,) is weighted twice by the visibility function and corresponds, as we will
show in details, to the contribution to the total polarization coming from photons that have
Thomson scattered twice during the recombination.

At this point it is important to clarify our notation. We will always count the photon
scatterings backwards in time: the time the photons are observed is always taken to be
7o; the last time that the photons scattered before being observed is 7;; and so on. By
convention, we will always evaluate the primary source term Sy, at the instant 7, so the
sequence of scatterings ends with 1. Hence if, as in the case described by eq. (3.11), there
are two scatterings between the generation of the signal at n and its observation at 7,, then
we have 1, > 1m1 > n2 > 7, and the time intervals always express the differences between one
time and the previous one, so in that case Any =1, — 11, Any = n1 — n2, and Ang =19 — 1.

The same argument allows us to calculate the next order contribution, which takes into
account three intermediate scatterings:

l+2 To m 72
i) (1) = \/ = / dn g(m) /O dnw(nz)/o dns g(n3)

3
></ dn/ dX X? S, (X, 1)
0 0

Ji(kAn,) ja(kAm) ja(kAns)
(kAmo)? (kAm)?  (kAng)?

><92/dl<:k2jl(kX) Ga(kAnR3) . (3.12)



The general term in the iterative series expansion with n intermediate scatterings can be
written as:

) = o[l [ dmatm) oty [T dm o Tlam) - g}

MNn oo
X / dn / dX X? S (X, 1)
0 0

Gi(kAnG) ja(kAm)  ja(kAn,—1)
(kAno)? (kAm)? " (kAny—1)?

x9(”1)/dkk2jl(kX) jo(kAn,). (3.13)

(n—1) times

Here, T stands for the time-ordered product of the sub-intervals, whose purpose is to repro-
duce the chain of integrations mediated by visibility functions shown in, e.g., eq. (3.12).
The coefficients 7, appearing in eq. (3.8) can be expressed, therefore, as:

Tim(10) = D i (16) (3.14)
n=0

with ﬂl(;) (no) given by eq. (3.13).

An important condition for the validity of this perturbative expansion of the CMB
temperature and polarization is that all the terms in the expansion of eq. (3.8), with an
arbitrary number n of intermediate scatterings, must be expressed in position space. However,
this can only be true if the k integrals over products of spherical Bessel functions appearing
in eq. (3.13) can be in fact performed, and are well-behaved. In the next section we will show
that, in fact, these integrals are probability densities for random flights with n steps, in a
space of suitable dimensionality.

4 Random flights and the CMB

From the previous section — specially from eq. (3.13) — it is evident that a complete treat-
ment of the CMB in position space requires that some specific integrals of products of spher-
ical Bessel functions should be computed. In order to fulfill this requirement, we will proceed
in the following way: first, we will present a simplified version of those integrals, and we will
show that they give rise to probability densities associated with random flights. Next, we
will show how the integrals we have to solve can be expressed in terms of the random flight
integrals.
Let’s recall the well-known identities satisfied by spherical Bessel functions:



we are able to write:
)(n+1)/2 ’r‘L

n—1 .
& 92 . ]L(kTi) . o (% n
/0 dk k jL(kT) g (kri)L JL(krn) - [F (L + %)]nfl TL+2
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The derivative of the second line in eq. (4.1) is, in fact, the probability density associated
with a random flight — see, e.g., ref. [18]. This is the probability density that a particle which
moves with a constant (and finite) speed, and which starts from a given position in space,
will be at a distance r from the point of origin, after changing randomly directions n times
during its trajectory. The length of the intermediate steps are denoted by r;, ¢ = 1,...,n.
The order L of the spherical Bessel functions in these integrals is related to the dimensionality
of the space where the flight takes place: namely, the dimension D of that space is given
by D =2L+ 3.
Following the notation employed by ref. [18] we shall denote:

d 3 n—1
pa(rsre,. .y |20+ 3) == dr{ [r <L+ 2)]

[ (5) e TP

i=1 (krz‘)LJr%

However, the integral (4.1) is still not what we need in order to solve the momentum integrals
that appear in our iterations — see, e.g., the Fourier integration of eq. (3.13).

We will now extend the random flight integrals to include the scenario that appears in
the context of the CMB. If | > L (which is always the case in our iterative solutions), then
the product of two spherical Bessel functions of order [ can be written in terms of a single
spherical Bessel function of order L. This is a consequence of Gegenbauer’s relation [17, 18]
and of the orthogonality of associated Legendre polynomials — see [1] for a derivation:

: : (—pk KR (XRNPTY L

Ji(kX) ji(kR) = —— drk” | — P "(cosa) (sina)” jr(kr) (4.3)
|X—R| "

where 7, R and X must form a triangle, with the angle a being given implicitly in terms of

the relation r? = R?+ X2 —2RX cos a, and Pl_L (cos a) is an associated Legendre polynomial.

Applying eq. (4.3) and eq. (4.1) with L = 2 we can recast the Fourier integral in eq. (3.13) as:

00 , 1(kAno) T J2(kAn;) |
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where we used the notation introduced in eq. (4.2).
In eq. (4.4) we have introduced the function Fjs(Ang, X; Anq, ..., Any,), which denotes
what we shall call extended random flight integrals. In general, Fyy, is defined by eq. (A.1).



We should examine eq. (4.4) more carefully. As anticipated, the presence of the term
pn(r; Any, ..., Any,|7) should not be surprising, due to the interpretation of a random flight
process and its validity with respect to the physics of the recombination. The dimensionality
(D =2x2+3=T7) of the space associated with the random flight, however, is not yet fully
understood. That dimension is determined by the order of the spherical Bessel functions
which mediate the sources of anisotropies and the final CMB signal, but since only the
quadrupole of the temperature fluctuation contributes to the polarization, the spherical Bessel
function of order 2 is the one that characterizes the random flight for the CMB. A possible
explanation for this dimension is that, after separating the angular dependence of the CMB
from its radial and time dependence through the spherical harmonic decomposition, the light
cone has only two dimensions left. Since the multipole L has 2L 4 1 degrees of freedom,
we end up with 2L + 3 dimensions where our relevant variables can perform random flights.
However, a more refined argument to explain the dimension 7 is not yet known.

Looking back now at eq. (3.13), we recognize that for the Wl(;) term in the polarization
expansion, the probability density p,(r; Ani, ..., An, |7) appears clearly. The interpretation
of an expansion in the number of interactions during recombination is therefore strengthened.
We should remark, however, that explicit formulae for p,(r; Ani, ..., An, |7) are not known
in the general case [9, 10].

As discussed above, the intervals Anq, ..., An, express the times elapsed between con-
secutive scatterings. All these subintervals are elements of a partition of the time interval
n1—n, which is therefore the total time elapsed since the instant the photon leaves equilibrium
with matter, at time 7, until the instant 77; when the photon has last scattered prior to its
observation. This time interval represents, therefore, the effective duration of recombination
for a given photon. The lengths of each subinterval are weighted by the visibility functions,
and integrated in order to contemplate all possible histories for photons during recombina-
tion. The interval n, — n; expresses the time elapsed since the photon scattered for the last
time, before it is observed at the time 7, (we are assuming that no further scatterings take
place during this interval). We can represent a photon’s history by means of figure 1: on the
left we show the photon’s interactions prior to observation at the vertex of the cone, while on
the right we show a diagrammatic representation of that history, with the relevant elements
that appear in eq. (4.4).

We call special attention to the diagram represented on the right of figure 1. This
diagram represents the extended random flight performed by a photon during recombination.
The steps Any,, ..., An; (going forward in time) belong to a standard random flight, and
describe the trajectory of a photon that has left equilibrium with matter at an instant 7,
then propagated freely for a distance (or a time interval) An,, then Thomson-scattered with
an electron at time 7, then propagated freely for a distance An,_1, and so on until the
instant 71, when it scattered for the last time. The standard random flight ends at the
instant 7;. The photon, at that moment, is a radius r away from the point where the flight
started. The steps indicated by Ang and X do not belong to the standard random flight, but
are present in the extended random flight, and are introduced through the spherical Bessel
functions of different order in the k integral of eq. (4.4). This is necessary because those
two steps are not associated with any movement between successive scatterings, but are in
fact associated with the distance from the observer to the origin of the photon, and to the
end-point of the random flight. It should be strengthened that Any, X and r are related by
7?2 = A+ X%—2Any X cosa. Since 0 <7 < Any+Ana+...+An,, it follows that 0 < X <
Ang+Am+Ane+...+An,, which then determines the domain of dependence of the problem.
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Figure 1. Connection between scatterings of a photon during recombination (left) with a diagram-
matic representation of the random flight (right). The steps An,, ..., An; correspond to the lengths
of the photon’s trajectory between successive scatterings. Ang corresponds to the propagation since
the photon’s last scattering during recombination, at time 7;, and the observation at time 7,. In both

diagrams the observation takes place at the upper vertex

(n)

5 The polarization in position space
" order, m" (n,), can be written as

We shall now go back to eq. (3.13). In terms of the extended random flight just introduced

the polarization coefficient to n
L / dny ... dnn T{g(n2) ... g(nm)}

(L+2)! [T 1
1—2)! dm g(m)
(n+1 Tn Mo —
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where we have already used the aforementioned upper bound for the variable X
The equation (5.1) can be understood as the combination of three procedures

) P ?(cosa) sin® a py,(r; Ay, An, | 7)

(5.1)

e The integration over « corresponds to a marginalization over all possible paths com-
posed of n steps of lengths An; + ...+ An, that have a net displacement r determined
s .

A, Aty

,10,

by X and Ang, as shown in figure 2. This “average over paths” is a function of X, Any,



Figure 2. Marginalization over all paths with n steps, composed of the intermediate displacements
Any, ..., An,, which lead to a fixed displacement r with respect to the origin of the flight. The
distance r is determined by X and Anjg for all possible angles a.

e The contribution from the primary source term, Sj,,(X,n), is then mediated by this
“average over paths” that was just described, for all possible values of X. The maximum
value that X may reach is Ang+An;+. .. +An, = n,—n , which is nothing but the radius
of the observer’s past light cone up to the time 7. After computing the contribution of
the source terms, we end up with an expression that is a function of Ang, Any, ..., An,.

e The last step is to let the intervals Ang, Any, ..., An, assume any values through the
integrations, each one weighted by its corresponding factor of the visibility function
to take into account the probability that the photon will scatter at that instant of
time. This accomplishes the goal of accounting for the contribution from sources
at all distances, and over any possible number of intermediate steps of the extended
random flights.

Adding the contributions from all Fl(;? we obtain:

= \/@/% dni g(m Z:l ] /0711 dny ... dn, T{g(n2) ... g(nm)}

)Y
@

XAn, _
/d cos ) < I ) P2 (cosa) sin® a pu(r; Ani, ..., An, | 7). (5.2)

MNn
/ n / 4X X2 510 (X,1)
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In terms of the extended random flight integrals, eq. (4.4), we can write:

(L+2)! [T = 9n*1 m o
dn1 g(m) Z dn .. dnp T (n)e ) g(na)}
(1 —2)! 2 ;

Mn
x/ dn/ dX X2 S (X, 1) Fa (Ao, X; A, ..., Any,) . (5.3)
0 0

6 Diagrams

We are now able to introduce a diagrammatic representation for all the terms that appear in
the series expansion of the temperature and polarization at n-th order. The graphic elements
are:

e Solid lines mean polarization, and dashed lines mean temperature;

e The vertical lines to the right of the diagrams represent the observable being calculated
(time runs upward);

e The interception of two lines determine what sources are being considered for a given
observable.

The rules for constructing these diagrams will be detailed in the next section, but it is already
easy to represent diagrammatically the contribution to the CMB polarization computed in
eq. (5.2):

————— -0
————— -0
————— © + + -----0 + + (6.1)
_____ O _—— - - -
————— -0

7 Full coupled temperature evolution

We will now show that the formalism developed in the previous sections is not spoiled when
all the contributions to the temperature fluctuations are included. Let’s go back to egs. (2.1)
and (2.3), and write:

~ad [V [ e [ it

2 A
+§ g9(n) P(k,n) [1 + 38(kino)2] } Y, (k) Gi(kAn,) .

0
QSW(kv 77) - %<k7 77)8777 eiu(n)ﬂ// + q)/)(kv 77)
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The first two terms in this equation have already been treated in section 3. We now pro-
ceed to analyzing the remaining term, i. e., that which contains the source P(k,n) =
3 [02(k,n) — V6 aa(k,n)]. We write, therefore:

A o » 1
Oum = Of) +i / dn/ )i72 /kog(Tl)P(km)Yzm(k) [1 +38(M770)2:| Ji(kAn,)

=0 ¢ Zef}; , (7.1)

(n)

where we have defined the 6, " in terms of the integral over sources.

7.1 Temperature at first order

We shall now calculate the lowest-order contribution described in eq. (7.1) by taking P(k,n)
to be %@2(1{,77) — 1. e., only the temperature quadrupole is taken as a source for the
temperature fluctuations, since the polarization (which is of higher order, since its source is
the temperature quadrupole) is at least a second-order contribution to the temperature. The

(1)

first order contribution to the temperature, ¢, 7, is therefore computed as:

ay _ i [me dk’ 2 [ 21 « 1 d? .
_Zl/m’d ( )/ an kQ/mdS (o) otk (1430 k)
- 2 7719 771 ( )1/2 0 77 Ilm 777 .]2 T’l 8(kA770)2 jl 770

1 [
—2/ dmg(m)/ dn/ dX X2 S (X, 1)
0 0

2
< [ ) [1+3 a(ki ~ ] (ko) jalkAm) (7.2)

where we have once again transformed coefficients into the position-space description using
Hankel transformation. We must now treat the integral in the last line of the equation above:
2 0’
Lo = [ dkEk” 51(kX) |14+ 35| Ji(EAN,) ja(kAN) .
12 / Ji(kX) { 3(,&%)2} Ji(kAn,) ja(kAm)

Clearly, we can write:

2 .
Ip =3 |:8(A67]o)2 - Alno 8(2770):| [(Ano)z/dk k2 ]l(kX) ilk(kAi:?)oz) j2(k?A771)
+ (An,)? / dk k* j;(kX) m Go(kAm) (7.3)

which we can then express as:

I3 9? 1 0
2T9(An)2  An, 0AN,

] [(Ano)? Fia(Ano, X; Any)] +(An0)2G 2 (A, X; Amy) (7.4)
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where the integral corresponding to Gl(;) is related to the already introduced function Fjo —

see eq. (4.4). In fact, using an identity that is proved in the appendix, eq. (A.7), we obtain:

(1) 1 Mo m o0 9
O = 5= dm g(m)/ dn/ dX X= Sim(X,m)
27 Jo 0 0

0? 1 9 ,
' {3 |:8(A770)2 B Ano 8A770:| |:<A770) Fl2(A7707X;A771)]

: 0 0 2 1+2 _
T AT xT2 59X ({?Ano + Ano) [WIOX ) FuH)z(Ano,X,Am)} } (7.5)

In conclusion, first-order corrections to the temperature can also be written in terms the
probability densities of extended random flights.
7.2 Temperature at second order

If we want to calculate further contributions to the temperature, then we must include the
contributions to © that come from the temperature quadrupole, given in eq. (7.4), and those
from ag, given in eq. (3.10). Combining those two contributions leads to:

(_ L ™ " "y [ ax x?
Oim = / dm g(m)/ dnpa g(nz)/ dn/ dX X7 Spn (X, 1)
4 0 0 0 0

9 . . 0? ) 2 )
X /dkk J1(kX) ja(kAns) [1 + 3(%%771)2} J2(kAm) [1 + 3a(m%)2] Ji(kAn)
+ i/o% dmg(m)/om 617729(772)/07]2 dn/o dX X S (X, m)
. . ja(kAm) 9? .
X /dk K’ ]z(kX)h(kAm)m [1 + 3W] Ji(kAno) . (7.6)

(2)

s and the second term takes into

The first term comes from the contribution of ©5 to 6

account the contribution of as to 91(32 These contributions can also be expressed in terms
of the extended random flight integrals: terms with two derivatives can be expressed in
terms of Fjo(Ang, X; Any, Ang); terms with one derivative can be expressed in terms of
Fly1)2(Ano, X5 Ay, Ang); and terms with no derivatives can be expressed, as indicated
in section A.2, in terms of F;;9)9(Ano, X; Anr, Anz).

The complete series expansions for the temperature coefficients, 6;,,, is represented
diagrammatically, up to second order corrections, as:

§(2) _

Im

|

+

|

|

|

|

|
&
_|_
_|_
)
=)

The first diagram represents HZ(TOrB, the second, 952 — see eq. (7.4) — and the two last
(2)

> as shown in eq. (7.6).

diagrams represent 6
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Even if we do not calculate here explicitly the contributions at all orders, the results
presented in section A.2 show that all corrections can be expressed in terms of extended
random flight integrals. In general, él(:;) will be given by:

= ZQZ(ZL)Q(A"?mAT]h 7A77n7 ) (I+q)2 (A7707X A7]17~~ 7A77n) )
q=0

(

where we represent by Glfn)q the coefficients that appear in the expansion. As was seen
explicitly in the case n = 1, these coeflicients are differential operators combined with powers
(n)

of the subintervals of (1, —n) and of X. The complete expression for élm will also depend
on knowledge of the expression for polarization up to the order n — 1 — which is the reason

(n)

for leaving the superscript n explicit in Hlm .

7.3 Polarization at second order

The last step in our construction of the series expansions of the CMB in terms of extended
random flight probabilities is to treat the contribution of the temperature quadrupole to the
polarization, allowing for the corrections to the temperature that come from higher order
contributions of the source terms. We shall write, then:

_(2 2 l+2 /"’70 / d k l} % A~ ]l(kAno)

= 1 / (=2 dm g(m B )3/2 i @2(1{, m) Y7, (k) 7(1{:A770)2
(I+2)! [me m .

_ \/j/ dm g(m {/ dn/ 172 k% Sy (k,n) jo(kAm)

+2/0 dns g 772)/( e k? /deP(k 12) Y (k)
« [1 + 352)2] jg(mm)} Ju(k&m) (7.8)

I(kAm (kAmg)?
where the bar over ﬁl(gl) means that we are taking all corrections up to second order.
At this point we can separate the first-order and the second-order terms, and focus on
the contribution from ©5 to P:

o) _ 3 (1”)!/% /m /dk 2
T = M, — 4 i—2) s dni g(m) . dnz 9(12) (27r)1/2k

, .
X / A’k Oy (k, 112) Y7, () [HSMi )2 } Ja (kA )‘7(1152?7:)02)

_ o 3 [ " _dk_po
=Tim — 3\ gy, dmetm) [ dmglm) [ Gk

2 .
) s ) 4855 ) G0

Mo m
1(71”_527\/ / dmgm/ d7729772/ dn/dXX Sim (X, )
™ 0

Ji(kAno) 0* . .
X {/dkk2 (kX)) 22— (kA [1+3mm)2] ]g(mm)gg(mm)}. (7.9)
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The last integral of the equation above, between curly brackets, can be expressed, after using
eq. (A.7), as follows:

_ (kA 02 : ,
_awP o (9
~ (Ano X)H2 90X \9Any A
. 3( #? 19
8(A771)2 A?’]l aAm

) [(Aﬁo X)H2 Fpaya(Ano, X5 Amy, Am)}

> [(Am)2 Fia(Ano, X35 Am, Ang)} . (7.10)

As we can see, despite the somewhat cumbersome coefficients, the final result can
be expressed, again, as a combination of the extended random flight functions
Fi2(Ano, X5 Any, Anz) and Fiyy1)2(Ano, X; Anr, Ang).

The last term in eq. (7.9) has the same order as ﬂl(fn) Therefore, to second order in
temperature corrections, the polarization results from the following three diagrams:

frl(i): ————— © + + --9--9 (7.11)
----- - |

|

|

|

As we showed above, this contribution can be expressed fully in terms of extended
random flight probabilities, therefore, up to second order the polarization coefficients can be
written as:

7_1-1(31) = WlmO(AWO» A7717 An27 X) Fl2(A770, X» Anla A772) (712)
+ im 1 (Ano, Any, Ang; X) Fiyyqy2(Ano, X5 Any, Ang) .

The coefficients 7,y (¢ = 0,1) are differential operators, and depend on the combinations

of the subintervals to some power. The coefficient 7, takes into account the contributions

from the ﬂl(;) term appearing in eq. (7.9) and also the contribution coming from the second

term in the right hand side of eq. (7.10). The coefficient 7,1 can be obtained by working
out the first term in the right hand side of eq. (7.10).
If we examine eqgs. (7.9) and (7.11), it can be seen that 7

(2)

i 18 given by the sum of

(1)

1, and the contribution from the temperature corrected by the polarization. We can write
eq. (7.11) in a more symmetric way if we note that the following diagrams are equivalent:

s

- —o— (7.13)
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This equivalence is due to the fact that both diagrams have the same vertical lines at the
right (we are calculating contribution to the polarization); they have the same number of
vertices; they have the same kinds of lines connecting the vertices (continuous lines); and they
have the same initial source, i. e., the temperature fluctuations (the dashed lines). Hence, it
is better to write eq. (7.11) in terms of the diagram on the left-hand side of eq. (7.13), since
it is easier to draw these types of diagrams when there is a large number of scatterings, as
shown in eq. (6.1).

In general, to order n:

n—1
ﬁ'l(;? = Z WZ(Z)Q(AHO, Anyy ..o, Anp, X) F(l+q)2(A7707 X5 AN, ... Any). (7.14)
q=0

Explicit formulae for all the coefficients ﬂl(z)q are not known explicitly, but can be computed

iteratively after the identification of the diagrams that contribute to some order, and by em-

(n)

I Tequires

ploying the techniques presented in section A.2. Naturally, the computation of 7

the knowledge of 9}:1_1), the computation of 971(::1—1) requires the knowledge of both éz(Z_Q) and
(n—2)

1 > and so on and so forth —0 therefore, in this sense these coefficients form a hierarchy.

T
7.4 Diagrammatic rules

If we accept that Boltzmann’s equations, as presented in egs. (2.1), (2.3), (2.2) and (2.4),
are accurate enough to allow the computation of the CMB temperature and polarization
to all orders, then we can ask how the diagrams for our series expansion should be built.
Clearly, when further precision is required, quadratic and even higher-order corrections for
the metric perturbations may have to be included in Boltzmann’s equation, and at some point
the diagrams presented here may no longer improve the accuracy of the result. However, if
we assume that the Einstein-Boltzmann system of equations is exact, then all contributions
can be written as a sequence diagrams, whose building blocks are presented in table 1.

As a general rule of thumb, the functions j;(kX) and ja(kAn,) must appear as the first
and last elements inside the k integral. Here, 7, stands for the last index in the partition
of the time interval (1, — n). The intervals A must be replaced by the convenient difference
of consecutive conformal times which represent the initial and the final instants of that
segment of the random flight. Outside the k£ integral there should be the integral over the
spatial position of the primary source, [ dX X2 S},,(X,n). Finally, we have the integrals over
conformal time weighted by visibility functions — except the integral over 7, which does not
carry a factor of the visibility function.

For example, the following diagram represents the third-order contribution to polariza-
tion that arises from the polarization at second-order, when that second-order polarization
is due to the first-order correction to the temperature:

z—g;wgfgi/f dmg(m)/[:71 dmg(m)/om dnz g(n3) /Ong dn

. Ji(kAno) ja(kAm)
X / dX X? SZm(Xm){ / ah K i (kX) (k:mo)o2 (QkAm)12

2

d(kAng)?

X {1 +3 ] j2(kA772)j2(kA772)} ; (7.15)
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diag. segment | numerical factor Bessel function
_____ 3 (1+2)! Ji(kA)
2\ (1 —2)! (kA)?
|
: 1 82
_____ —? 5 |:1 + 38([€A)2:| ]l(kA)
|
|
‘, (k)
J2
I ! (kA)?
|
) j2(kA)
(kA)?
--0---0 1 14 3872 2(kA)
> 2 B(kA)? | 7
|
Jj2(kA)
T ’ (k)2
|
|

Table 1. Building blocks for general diagramms.

The diagram below, on the other hand, represents a third-order contribution to polar-
ization arising from the second-order correction to the temperature, when that second-order
correction itself comes from the first-order correction to the temperature:

113 [(l+2) [m m 7 "
[} [}
| |

ji(kAng)?
(kAno)
2

O(kAny)?

X /dXX2 Szm(X,n){/dk:ijl(kX)
2

g [1 kA2

} Jo(kAm) [1 +3 } jQ(kATIQ)jQ(kAn3)} . (7.16)
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8 Fourier-Bessel series for the extended random flight probabilities

From the previous arguments it is obvious that a full description of CMB temperature and
polarization depends upon the evaluation of the extended random flight integrals Fjs. As
we showed in eq. (4.4), the extended random flights can be expressed as marginalizations
over random flight probability densities. Unfortunately, explicit formulae for random flight
probability densities in seven dimensions are not known, which means that at orders higher
than three the computations start to become highly complex. As a computational tool to
deal with the extended random flight integral, we will introduce their series expansion in
terms of a Fourier-Bessel series — this was also suggested by [12].

We will expand the function Fjp (R, X;r1,...,r,), which is ubiquitous in our previ-
ous discussions (just substitute Angyg — R, Anmy — ri, etc.), and which was defined in
eq. (A.1), in terms of a Fourier-Bessel series. Given the behavior of this function and
its interpretation, the segments R,rq,...,r, are fixed for any particular flight. Since
r=vVR2+X2-2RX cosa < ri+7r9+...+1r, = Sy, it follows that the variable X
must have itself an upper limit — see figure 1 for the geometry involved in these limits. In
fact, in the limit where all flight steps 71,...,r, are collinear, we have that » = 5,,, and
in that case X, R and S,, form the sides of a triangle. Hence, the maximum value of X is
determined jointly by both R and S,,, as 0 < X < R+ri+ro+...+1r, = S,,.

Now, we know that well-behaved functions with a limited domain can be expressed in
terms of a Fourier-Bessel series [8]. In fact, since Fjj, is one such well-behaved function,
we have:

o)
P}L(R,X;Tl,...,rn):Zfl(fi)jl (:cl(ln) X) , (8.1)
i=1
where acl(?) = 2} /S'n, and 2! is the i-th root of the spherical Bessel function j;(z). The

coefficients fl(gi) are given by

(n) _ 2 o () :
£ = W/O ax X2y (o) X) Fu(R, X1, 0m) (8.2)
Using eq. (4.4) we obtain:
. (n) . (n)
. o N (%- R) oy o T (% Tq) ()
Fip (R, X;r,...,rp) = ; 539'111(%[‘) (g;l(f) R)L Ji <:ch- X) 1 (ml(ln) rq)L JL (:cli rn>

Now, eq. (4.3) allows us to write (8.3) in the form:

_ (Dt xS (RXN\M 1 .
FlL(R,X,rl,...,rn):TST% ; dr S ﬁPI (cos @) (sin )

00 n—1 4 (n)
x Z . h Jm (ml(?)”') 1_[1 jL(xliqu)jL <Jfl(zn) T’n) , (8.4)

-2
i=1 ]l+1(z’i q=1 (.%'l(;n) T’q)

where 72 = R2 4+ X2 - 2R X cosa.
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The extended random flight integrals can, therefore, be much more easily computed with
the help of eq. (8.4), since in that representation only a discrete number of modes need to be
added, instead of the full-fledged integral that defines the random flight probability density.

9 Large number of scatterings and the H-theorem

In this section we shall address a more fundamental question. Up to now we have presented a
formalism that allows us to express the CMB polarization and temperature in position space,
in terms of an expansion over the number of interactions the photons have suffered during
recombination. However, at this point we can ask: up to what order the contributions should
to be taken into account in order to yield an accurate expression for the physical observables?
But this question can only be answered if a concrete problem is given, so there is no general
answer. Hence, we will invert this question, and ask: how important is it, for the observables,
that we reach a certain order n in the expansion? To be more specific, we will study the
contributions arising from very high n terms in eq. (5.2).

Since all computations depend on the probability densities for random flights with n
steps, we will analyze the behavior of p,(r; Any, ..., An, |7), for large n. Although explicit
formulae for these probability functions are not known, an asymptotic expression is known
in the case where all steps have the same lengths, An; = A = ... = An, =: A, and
n — oo [18]. In that case we have:

1 Tr2 5/2 r
Pa(ri s AT = pry (%A?) <2nA2>
79 —7r? Tr? 9 11 —7r2
F - 2 g 1
! 1(2 2’ 2nA2> (%A?) ! 1(2’ 2’2nA2> (O
where:
I'(c) o=T(a+k)2*
Ia . e — —
1 1(0’7 C; Z) I‘(a) prt F(C+k’) k'

is the confluent hypergeometric function [8]. Expanding 1 F} in a power series we obtain:

72 (w2 N2/
Palri &y A1) = 57y <2nA2> (2nA2)

00 9 T ) +k —n22 _7r2\F
szzoli'( i) 4 (1 A)<7). (9.2)

(3+k)(3+F) 2nA?

Now, consider the sum:
I
— k!

It follows, therefore, that:




Consequently, for fixed r > 0, A > 0, and r < nA,
lim p,(r;A,...,A|7)=0.
n—o0

Since p, is a normalized probability density, we conclude that, in the limit above, the prob-
ability distribution collapses into a Dirac delta-function centered at the origin, which is in
agreement with the general features attributed to the random flight probability densities [7].
In other words, increasing the number of changes of directions (i.e., scatterings) in a random
flight leads to trajectories with increasingly smaller displacements from the origin.

Let’s investigate the consequences of this fact for the polarization through eq. (5.1).
Consider, in that respect, the integral:

No—"n XA\ 2
S = li_)m dX X2 Sin(X, n)/d(cos a) (3> P ?(cosa)(sina)® pu(r; A, ..., A7)
n—oo J r
No—"n XA\ 2
= /0 dX X2 Sy (X, 1) [ dr ﬁﬁo (7"3> Pl_2(00s ) (sina)?4(r)
K A? X Ang
= dX X2 Sy (X, n) o lim | —— P> ina)?| . 9.4
/0 im (X, 1) (Am)? fm [ 5 (cos ) (sin ) ] (9.4)
We know, however, from either [18] or [1], that:
<o . . TTiT2 o N2
dk ji(kry) ji(kre) go(krs) = 1.3 P *(cos a) (sina)” , (9.5)
0 3
and also that [1]:
. o : : r3riw
lim dk ji(kry) gi(kr2) ja(krs) = =3 —= 56(r1 —r2) . (9.6)
r3—0 0 7"1 15 2
Therefore, we have that:
No—N T AQ
= X X28,,(X,n) — —06(Angy — X
Sim (105 1) /0 d Sim(X,1) 55 5770(A10 — X)
T A2
= — — S (Ang,m). 9.7

The final lesson is that, in the limit of an infinite number of scatterings, we basically end
with instantaneous recombination — with the crucial caveat that the source term is damped
by (A/Ang)? — 0. The conclusion is, therefore, that no net polarization is generated at
the limit of infinite number of scatterings. Similarly, for the temperature fluctuations the
derivatives of the integral which appears in 61(:1) ensure that the signal vanishes as well.

The large n limit, therefore, cannot contribute significantly to the final observables.
If we regard this order as the number of scatterings that a photon has experienced during
recombination, then the collapse of the probability density associated with random flights
expresses a fundamental physical fact: increasing the number of scatterings takes the system
closer to thermodynamical equilibrium. As we know, in thermodynamical equilibrium the
CMB temperature is given simply by the Planck distribution, with no distortions (apart

from the dipole which is induced by the velocity of baryons). Maximizing the von Neumann
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entropy also ensures that, in equilibrium, no net polarization is generated. These two facts,
together, constitute the expression of Boltzmann’s H-theorem to the CMB [6].

Describing the CMB by means of random flight probability density functions provides,
therefore, an illustration of the statement of the H-theorem: when few scatterings take place
during recombination (low n), photons and electrons are surely out of equilibrium, and
each interaction generates temperature fluctuations and polarization that are not sufficiently
erased by the subsequent scatterings. As a consequence, the low-n terms in the expansions
account for the largest contributions for the signal of the physical observables. For a large
number os scatterings, the signal is washed out by further scatterings, which can be expressed
in terms of the collapse of the probability density in the large-n limit.

All that is left to discuss is the physical grounds for assuming (as we did in this section)
that all the steps performed in the random flights have the same length. Despite the fact
that this working hypothesis was not proposed because of any physical reason, but purely
because of mathematical convenience, we can nevertheless argue that, when the electron-
photon system was close to the tight-coupling regime, the assumption that the visibility
function is step-shaped is not completely crude. Continuity with respect to the arguments
of the probability density distribution makes our working hypothesis less unnatural.

10 Conclusions

The Boltzmann hierarchy for the problem of the evolution of temperature and polarization
fluctuations of the CMB is equivalent to a system of coupled integral equations. We showed
that this system can be written in position space, and that the objects that appear in this
description are the same probability density functions that appear in random flight problems.
The emergence of random flight probability functions from Boltzmann’s equations clarifies
the physical interpretation that CMB temperature fluctuations and polarization are gener-
ated from scatterings of photons by low-energy electrons during the recombination. More
importantly, we showed that the number of scatterings during recombination is a key ingre-
dient in the description of this problem — in fact, a perturbative expansion can be performed
in terms of the number of scatterings.

We showed, using asymptotic formulae for the random flight probability distribution,
that contributions coming from high-order terms (i.e., many scatterings) should indeed be
negligible. Since high-order terms represent the past history of photons that have scattered
many times during recombination, we concluded that their vanishing contribution to the
CMB signal is an illustration of Boltzmann’s H-theorem. In the context of the CMB, this
theorem states that, in thermodynamical equilibrium, the CMB temperature should be given
by a Planck spectrum, and that the net polarization should vanish.

Using the fact that the random flight distribution functions vanish identically if one
cannot form a closed polygon from its intermediate steps, we presented Fourier-Bessel series
expansions for the associated probability distribution function. These expressions lead to
simple numerical recipes for the computation of these distributions, since explicit formulae
for them are not presently known for any dimension. Another very important result which
derives from the emergence of random flights is the fact that, at each given time, the domains
of dependence of the problem are compact sets. This is not obvious from the usual treatment
of Boltzmann’s equations in Fourier space.

From a more formal perspective, it would be important to understand which classes of
Boltzmann’s equations are amenable to a treatment in terms of random flight probability
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densities. Many of those problems could be then examined in light of the formalism that has
been developed for the study of the CMB.

Finally, we can foresee some possible applications of this work. The series expansion in
terms of the number of scatterings can be used for numerical simulations of constrained maps
of temperature and polarization. Due to the general vanishing property of the probability
density functions for the extended random flight if intermediate displacements do not form
a polygon, and the decreasing of the visibility function for z > 103, we can in practice take
all the sources to vanish outside of a sphere of radius R sufficiently large, and calculate the
temperature and polarization corrections using Fourier-Bessel expansions, as shown in ref. [1].
In Fourier-Bessel basis only a discretized tower of modes contribute to each observable at
each multipole, and the computational advantages of this approach are described in ref. [11].
In what concerns the convergence of the iterative process, depending on the desired accuracy,
application or the angular scale that one wishes to examine, it may be sufficient to consider
only the first couple of scatterings of the photons, since going further in the expansion would
bring only contributions from terms highly suppressed by powers of the visibility function.
We should emphasize that in the limit of large number of interactions the signal will be doubly
suppressed: the first suppression comes from the high order power of the visibility function,
and the second from the vanishing of the temperature and polarization corrections due to the
collapse of the random flight probability density function. Also corrections of higher orders
could be comparable to the corrections coming from second order perturbations in space-time
metric, or more detailed models for the dynamics of interactions during the recombination.
The partial summation of some classes of diagrams (in the spirit of a renormalization group)
can also be performed, which would lead to more accurate results without increasing the
complexity. In particular, the position-space analysis is especially suited for introducing
gravitational lensing (work in progress).

A Extended random flight integrals times even functions

We shall show the possibility of expressing a larger set of integrals in term of random flight
probability densities. Specifically, we will concentrate in expressions with the form:

(k (k
FlL(R,X;n,...,rn):/o dk k2 (kX)) ]’ R H*“ ”i () - (A1)

Our aim is to express integrals like:

GlL(R,X;rl,...,rn):/ dk k2 £ (k) j (kX) ” k"R H‘“ qu (k) (A.2)
0

in terms of combinations of Fyp/(R, X;7r1,...,ry,), for some adequate I" and L'. In Gy, f(k)
is taken to be a real function such that its Taylor series carries only terms with even powers
of k. The simplest such function is a k°, for a € R. Naturally, in that case the connection we
are looking for is quite obvious. We will, therefore, study monomials in the Taylor expansion,
namely, we will take f(k) = k2.
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A.1 The case of Gj;,(R,X;ry,...,7,) when f(k) = k?

The following will be the object of our attention:

L kR (k
Gz(%)(R,X;m, ooy Tn) :/ dk K K g jl H It 7'(2 Jr(kra) (A-3)
0

where the superscript indicates that we are treating the power k2 in the expansion of some

f (k).

Recall the recurrence relations obeyed by spherical Bessel functions:

d

= [ @)] =2 (). (A-4)

It then follows that, for some integer [, that:

xl+2jl(x) _ %( l+2]l+1( ))

The chain rule gives:

@ i@} = (s i@} 2.
If y(z) = kx,
(k) = }CUC;WCZ: (k)21 (k) (A5)

Inserting (A.5) into (A.3) we obtain:

00 1 1 1 d ,
G (R Xir, o) = [ kbt T kR) 1 (kR)|
0

LGyt
_ Ml)m /OO dk 12 (k}l{)L d‘j__{ [R +231+1(l<:R)]
xS [0 2 ()] H S ).
However,
o ar ™ = i [&ﬁﬂ * i

for any function u(R). Hence,

(2) 1 d d 142 / 2 ]l+1(k'R)
Xir,...,rp) = ———5—4 — X dk k kX
GlL (Ra 5T, , T ) (RX)I+2 dx { dR (R ) ( 0 (]{IR) l+1( )
n—1 .
Jrlkry) m 1+2
m n ) X
(qu)L Jm(kry) + R(R )
q=1

X (/OOO dka% JL krn)> } (A.6)
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We obtained, therefore, a relation:

2 1 o (0 L
GO R, X1, ) = (m()lwax<aR+R> [(RX)’“FUH)L(R,X;H,...,rn) . (A7)
i. e, Gl(?(R,X;rl, ...,Tp) can be expressed in terms of Fiyyq)(R, X;71,...,7,), which is

the result we were looking for.

A.2 Higher powers of f(k)

We will not derive a closed-form expression for Gl(%) (R,X;71,...,m) in the case of any

even ¢, however, we will illustrate how to generalize the argument presented in the previous
subsection to these higher powers.

First, we point out that higher powers in the expansion of f(k) must be canceled out
by corresponding factors 1/k when eq. (A.5) is iterated for the appropriate number of times.
For the fourth degree monomial in the expansion of f(k) we would have:

, L1 d | of1 1 dy 3.
Jilkz) = %242 g [»’U <l<::13’+3d:c [93 ]l+2(k3$)}
11 d& : 1 d ,
2 [ml+3 dz2 (xl+3]l+2(k$)) s m(wl%]lﬂ(kx))} : (A.8)

This holds for jj(kR), as well as for j;(kX). We must bear in mind that, in the original

Ji(kR)
(ER)E

with respect to R with a term like (kR)~~. This can be performed easily with the aid of the
Leibniz formula for the n-th derivative of products of functions:

s~ (30

equations, terms like appear, and therefore we must change the orders of the derivatives

(k:R)LdTBq[u( )] = dR1

g -1\ I L(L—1).. (L—q—7
_Z<q > [“(R)]((k;f)z)L ( )Rq(r ¢—7)

This process must be iterated until all derivatives with respect to R have been interchanged
with terms like (kR)~%.

As a final remark, we note that, even if the analytical problem is quite cumbersome,
Gl(g)(R, X;r1,...,ry) can always be obtained, for even ¢, in terms of derivatives of the func-
tion Fypq/on (R, X57m1,...,70).
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