DISCRETE AND CONTINUOUS Website http://aimSciences.org
DYNAMICAL SYSTEMS
Volume 16, Number 4, December 2006 pp. 883-896

THE THURSTON OPERATOR FOR SEMI-FINITE COMBINATORICS

PEDRO A. S. SALOMAO

Instituto de Matematica e Estatistica
Universidade de Sao Paulo
Rua do Matao, 1010, Cidade Universitaria
05508-090, Sao Paulo, SP, Brasil

(Communicated by Sebastian van Strien)

Abstract. Given a continuous l-modal map g of the interval [0,1] we prove the existence
of a polynomial P with modality < [ such that g is strongly semi-conjugate to P in [0,1].
This is an improvement of a result in [4]. We do a modification on the Thurston operator
in order to control the semi-finite combinatorial case. It turns out that all the essential
attractors of P have the same local topological type as those of g. This allows to construct
the strong semi-conjugacy. We also present some examples agreeing with the results.

1. Introduction. A full family of maps is a family which describes essentially
all the dynamics of a certain class of transformations. For instance, the quadratic
family f,(z) = px(1—=x), p € [0, 4], describes essentially all the possible dynamics of
C' unimodal maps of the interval and, therefore, is called a full family. This means
that given a C'! unimodal map g of the interval, it is possible to find p € [0, 4] such
that ¢ is strongly semi-conjugate! to fu-

In [4], W. de Melo and S. van Strien develop a theory to construct full families
of polynomial maps which describe essentially all the possible dynamics of C* I-
modal maps of the interval. They obtain in some cases a conjugacy between a given
[-modal map and a polynomial map after collapsing some particular intervals. In
this paper we improve their construction to get the strong semi-conjugacy as stated
in Theorem 1. The proportions associated to the Thurston operator are modified
in order to control the combinatoric and the local topological type of the essential
attractors. This turns out to be crucial for constructing the desired strong semi-
conjugacy. We also present a method for interpolating critical values which is used
to iterate the Thurston operator. Many examples are shown in order to illustrate
the results.

2. The Main Statement. Let’s start with some definitions.

Definition 2.1. We say that a continuous map g : [0, 1] — [0, 1] is I-modal if there
exist points cg =0 < ¢1 < ... < ¢ < ¢41 = 1 such that g is alternatingly strictly
increasing and strictly decreasing in each interval [¢;, ¢;41], ¢ = 0,... ,l. Moreover,
we assume that ¢({0,1}) C {0,1}. The points c1,...,¢ are called the turning
points of g.

Definition 2.2. We say that g : [0,1] — [0, 1] is topologically semi-conjugate to
f:]0,1] — [0, 1] if there exists a continuous monotone increasing and surjective map
h:[0,1] — [0,1] such that hog = f o h. The map h is called the semi-conjugacy
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1See Section 3 for definitions.
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between g and f. If h is a homeomorphism we say that g and f are topologically
conjugate and h is called the conjugacy between g and f.

By combinatoric of an [-modal map g we mean the order of the forward orbits of
its [ turning points and, roughly speaking, the dynamics of g is determined by its
combinatoric.

Definition 2.3. We say that two l-modal maps f, g of the interval [0, 1] are com-
binatorially equivalent if they have the same combinatoric, that is, if the following
map

l l
U U me) = U U o e
i=1n>0 i=1n>0

defined by h(f™(c;)) = ¢™(¢;) is an order preserving bijection. Here, ¢1 < ... < ¢
and ¢; < ... < ¢ are the turning points of f and g, respectively.

The following hypothesis will hold throughout the paper:
[H1] every periodic turning point is attracting?.

Note that this condition is satisfied for all C' maps. The main result of this
paper is the following

Theorem 1. Let g : [0,1] — [0,1] be a continuous [-modal map satisfying [HI].
Then there exists a polynomial P with modality lo <[ and degree lo+1 such that g
is strongly semi-conjugate to P in [0, 1], i.e., there exists a semi-conjugacy between
g and P which collapses only the following intervals: wandering intervals, intervals
of periodic points of the same period and their pre-images, and the components of
the attracting basins of the inessential periodic attractors.

In order to prove Theorem 1 we use the theory developed in [4]. The proof
depends on the combinatoric of g. More precisely, 3 different types of combinatorics
are considered:

Finite Combinatoric. The orbits of the turning points of g are finite, i.e., all
turning points are periodic or eventually periodic.

Semi-finite Combinatoric. Each turning point of ¢ is periodic, eventually
periodic or has an infinite orbit converging to an essential periodic orbit (at least
one of the turning points satisfies this last condition).

Infinite Combinatoric. All the other cases, i.e., there exists a turning point
of g with an infinite orbit which does not converge to an essential periodic orbit.

In the case of finite combinatoric, Theorem 1 is proved in [4] and the essen-
tial conjugacy obtained there is in fact a strong semi-conjugacy. In this paper we
treat the cases of semi-finite and infinite combinatoric where a modification on the
Thurston operator presented in [4] may be necessary to guarantee the existence of h.
This modification is the main contribution of this paper. A method is presented in
Section 8 to iterate the Thurston operator in order to obtain the desired polynomial.

3. Preliminary definitions and facts. Let g be a continuous /-modal map and
p be a periodic point of g, i.e., g"(p) = p for some n > 0.

2gee Section 3 for definitions.
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Definition 3.1. We say that the periodic orbit O(p) := {¢’(p) : i € N} is attract-
ing if its basin B(p) := {x € I : g'(z) == O(p)} contains an open interval. The
union of the components of B(p) which intersect O(p) is called the immediate basin
and denoted by By(p). If Bo(p) contains a neighborhood of O(p) then we say that
O(p) is a two-sided periodic attractor. Otherwise the points of O(p) are contained

in the end points of By(p) and it is called a one-sided periodic attractor.

Definition 3.2. An attracting periodic orbit O(p) is called essential if there is a
turning point in its immediate basin By(p). Otherwise it is called inessential. To
simplify notations, if O(p) is essential then we can assume that there exists a turning
point in the connected component of By(p) which contains p.

Definition 3.3. An interval J C I is called a wandering interval if its iterates are
pairwise disjoint and do not converge to a periodic orbit.

We introduce the following equivalence relation in I: x ~ y if and only if the
closed interval connecting x and y is contained in a wandering interval, an interval
or a pre-image of an interval of periodic points with constant period, or the closure
of a component of the basin of an inessential periodic attractor. It follows that the
quotient map g = g/ ~: I/ ~— I/ ~ is a continuous lg-modal map of the interval
I/ ~ where [y < I. Note that g has none of the intervals above.

To construct the semi-conjugacy h in Theorem 1 it is enough to construct a
conjugacy h between g and a polynomial P with degree |y + 1 and modality [g.
The conjugacy h is the desired semi-conjugacy h after collapsing points in the same
equivalence class. So from now on we consider the quotient map g which will also
be denoted by g. We therefore assume that besides [H1] g also satisfies the following
hypothesis

[H2] there is no wandering interval.
[H3] there is no non-trivial interval of periodic points with the same period.
[H4] all the attracting periodic orbits are essential.

4. Polynomial families. Let P41, [ +1 > 2, be the set of polynomials P of
degree [ + 1 such that its restriction to the interval [0,1] is an [-modal map?® of
[0,1]. We denote by P, and P} ; the subsets of P11 of polynomials satisfying
P(0) = 0 and P(0) = 1 respectively?. For an arbitrary polynomial we set || P(z)|| =
maz eo,1)| P(x)].
We have the following inequality due to A.A.Markov

Theorem 2. Let P be a polynomial of degree [+1. If 0 < P(x) < 1 for all x € [0, 1]
then

1P| < (1 +1)% (2)

The equality in (2) holds if and only if P(x) = %, where Tj11 is the
Tchebychev polynomial defined by cos(l + 1)x = Tj41(cosz). Moreover |P'(z)| =
(I +1)?% is attained only at x = 0 and x = 1.

It is clear from Theorem 2 that if P € P,y then
I1PR| < Cu, 3)

3this implies that all turning points of P are non-degenerate.
4in each case P(1) is determined.
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where the constant Cj; > 0 depends only on [ and k. For a proof of Theorem 2,
see [2] and [5].

4.1. Realizing critical values. Let P € Pﬂ_l where [ + 1 is even®. Since
P(0) = P(1) = 0 we have P(z) = Pa(z) = ayz+agz?+. . +azt+(—a;—. . .—a;)z!t?
where a = (a1,...,a;). Let A ={a: Pye P }and V ={v = (v1,...,0) €
[0,1)": (=1)%(vig1 —vi) >0, 1<i<Il—1}. We define the map F: A — V by

F(a) = (Pa(e1(a) .., Palcr(a))), (4)

which assigns to each parameter a the critical values® of the corresponding poly-
nomial Py. (From Theorem 2 we know that A is bounded. The boundary 0A is
composed by parameters where at least one of the following possibilities occurs:

1. two or more turning points coincide.
2. some of the critical values are 0 or 1.

In [4], it is shown that F' is a diffeomorphism. Here we show how to obtain a
which realizes an arbitrary v € V. This is equivalent to solve for ¢; and a;, 1 <1 <,
the following system

P@(Ci) = vy, Pé(CZ) = 0, Pa(O) = O, Pa(l) = O (5)
Let P;(a) = Pa(ci(a)). Using Vandermonde’s formula, we can see that F' is a
local diffeomorphism. This implies that given a € A, ThA = E; & ... & E; where
E; is one-dimensional, DP;(a)v # 0 and DP;j(a)v =0 for all v € E; and j # 4.
For a given v = (v1,...,v;) € V, let S : A — R be defined by S(a) = 15!_, (v; —
P;(a))?. Now consider the gradient vector field X in A given by

a=X(a) =—-VS(a). (6)

A point a € A is an equilibrium point of (6) (or a critical point of S) if and
only if F(a) = v (this means S(a) = 0). Solutions of (6) decrease S and therefore
approach the desired a. However it may hit A and the solution may not be
continued. To avoid that let X; be the vector field in A given by X;(a) = —VS;(a),
where S;(a) = (v; — Pi(a))?, 1 < i < I, and let X; be the canonical projection of
X; onto E;. A point a € A is an equilibrium point of

a= Xi(a) (7)

if and only if P;(a) = v;. Moreover, solutions of (7) preserve P; for any j # i.
We can now construct the desired a using step by step each X;. Starting from an
arbitrary ag € A we do the following: if P;(ay) < v; we use X; and then X5 to
reach in the limit the critical values v, and vy. Otherwise we first use X5 to reach
vo and then use X; to reach v;. This avoids hitting 0A. After that we proceed in
the same way with X35 and X, and so on. In the end we adjust v; and find a such
that F(a) = v.

This proves that F' is a surjective map. Moreover, PIOJr1 has only one connected
component otherwise there would exist P € Pﬂ_l, P # P*, with the same critical

Severything in this section is analogous if P € Pll+1 and/or [ 4 1 is odd.

60 < c1(a) < ... < ¢;(a) < 1 are the turning points of Pa.
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values of P*, the corresponding Tchebychev polynomial defined in Theorem 2. The
extremal properties of P* and a topological argument on the graphs of P and P*
imply that P — P* has more than [ + 1 zeros, a contradiction.

We summarize this section with the following

Theorem 3. Py; has two connected components Pﬂ_l and Pll+1 The component
PﬁH can be parameterized by A and the map F : A — V defined in (4) is a
diffeomorphism. Given | and k, there is a constant C ;, > 0 such that ||[P®)|| < Cy,
for any P € PﬁH. An analogous statement is true for Pll+1

4.2 Schwarzian derivative. Let P € P4; and 0 < ¢; < ... < ¢ < 1 be its

turning points. The Schwarzian derivative Sp : [0,1]\{c1,...,a} — R of P is
defined by Sp(x) = 1;,—((;)) - %(1;/((5)) )2. Since all zeros of P’ are real and distinct,

it is not difficult to see that Sp(z) is negative for all . This implies that

Proposition 4.1. Let P : [0,1] — [0,1] where P € P.y;. Then P satisfies [H1]-
[H4]. Moreover P’ does not have a positive local minimum or a negative local
maximum.

See [4] for a proof.

5. The Thurston Operator for finite combinatorics. In [4], it is introduced
the Thurston operator associated to the combinatoric of a given [-modal map g :
[0,1] — [0,1]. We assume that we are in the finite combinatorial case, i.e., all
turning points are periodic or eventually periodic. Let C(g) = {c1(g),...,a(9)}
be the turning points of g and C*(g) = U;>09'(C(g)). By assumption C*(g) =
{m1 < ... < z} for some k > 0. Now define 7 : {1,... k} — {1,...,k} by
w(i) = j < g(z;)) = z;. Moreover, let t; < ... < #; be such that z, = ¢;(g).
Note that 7 and the numbers ¢y, ... ,%; carry all the combinatorial information of
g. This is enough to define the Thurston operator T : W — W where W = {z =
(z1,...,2%) €[0,1]F: 0 < 21 < ... <z < 1} is an open simplex.

Given z € W, let a € A be such that Py € Plgfl)) and all the critical values
associated to x are realized by Py, i.e., F'(a) = (Zx(t,),- - » Tr(t,)) Where I is defined
in (4). By Theorem 3 there is only one such a.

We set y;, = ci(a). For j ¢ {t1,...,t;} let m be such that z; € [z, 2,...],
assuming that z;, = 0 and z;,,, = 1. We then define y; to be the point in [y, ¥, ]
such that Pa(y;) = 2 (;). This defines y; for 1 <4 < k. Now set T'((21,... ,2x)) =
(ylu s 7y/€)'

This is the pull-back construction for finite combinatorics in the real case. The
Thurston operator T' can be continuously extended to OW and it is possible to
prove that depending on the combinatoric of g there exists a fixed point of 7" in
the interior of W (see [1], [4] and [6]). In fact, this is the case when g satisfies
hypotheses [H3]-[H4]. This fixed point corresponds to a parameter a € A such that
the combinatorics of g and Pp coincide. Moreover, this operator is a contraction of
the Teichmiiller metric and, therefore, the fixed point can be easily obtained just
by iterating an initial condition. It also implies uniqueness of this combinatoric in
Py

Remark 5.1. If z; = 0 we fix 1 = 0 and work in the open simplex W = {z =
(m2,...,2) €[0,1]*71:0 <2y < ... < < 1}. It is analogous in the case z = 1.

More about the Thurston operator can be found in [1], [3], [4] and [6].
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5.1 Existence condition The condition for the existence of the fixed point of T
is the following:

[C1] given z; and zj, ¢ # j € {1,...,k}, there exists m > 0 and k € {1,... 1}
such that ¢, is contained in the closed interval connecting ¢ (z;) and ¢g"(z;).
In terms of the combinatoric of g this condition is equivalent to

[C2] Given i # j € {1,...,k} there exists m > 0 and k € {t1,...,t} such that
(1) <t < a™(5) or () <t < 7™ (4).

Condition [C1] is sufficient as it can be seen in the proof of Lemma 4.1 in Chapter
IT of [4]. It is also necessary since otherwise this would imply that Py does not
satisfies one of the hypotheses [H3]-[H4], which is impossible by Proposition 4.1.

It is interesting to note that if [C1] is not satisfied then the Thurston operator
T is still a contraction and iterates will accumulate in a point at W, which is the
union of simplexes with dimension smaller than k. Some experiments suggest that
the polynomial associated to this limit point has a simpler combinatoric which can
be obtained from 7 after an appropriate quotient. This quotient is obtained by
identifying 7 and j not satisfying condition [C2].

We conclude that given an [-modal map g satisfying properties [H1]-[H4] and with

finite combinatoric, there exists a unique Py € Pﬁ?) with the same combinatoric of

g.

6. The Thurston operator for semi-finite combinatorics. Now we introduce
the Thurston operator for the case where either the orbit of a turning point is finite
or it is infinite converging to an essential periodic orbit. Assume that at least one
turning point has infinite orbit. In order to get the strong semi-conjugacy as in
Theorem 1 we introduce a modification on its associated proportions. We continue
assuming hypotheses [H1]-[H4].

To define the finite-dimensional simplex W where the Thurston operator acts, we
first “cut” the tails of the orbits of those turning points with infinite orbit. Before
doing that, we analyze the local topological types of periodic attractors.

Let p be an attracting periodic point with prime period n > 0. Locally, the
topological type of O(p) can be one of the following cases:

A1l. g™ is monotone increasing in p and p is a one-sided attractor.

A2. ¢g" is monotone increasing in p and p is a two-sided attractor. In Section
6.1, this case is divided in two sub-cases A2a and A2b depending, respectively, if
there are turning points approaching p through only one or both sides of p.

A3. pis a turning point of g"(p) and therefore is a two-sided attractor.

A4. ¢" is monotone decreasing in p and therefore p is a two-sided attractor.

6.1 “Cutting” infinite orbits. We deal with each case separately. Let p be as in
case Al and ¢ be the nearest turning point to p which is in the connected component
of By(p) that contains p. The turning point ¢ converges monotonically to p by g".
So we can find k > 0 such that the interval I = [¢¥"(c), g**1)"(¢)] is a fundamental
domain for the attracting periodic orbit O(p) in the following sense: every turning
point ¢’ with infinite orbit converging to O(p) intersects I at least once and at most
twice”. For all turning points converging to O(p) we will only consider their iterates
until hitting I for the last time, forgetting the iterates after that. In this case we

“the latter case happens when an iterate of ¢/ coincides with g*™(c).
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define the interval J = [¢*"(c), p] which will be important in the definition of the
Thurston operator.

Let O(p) be an attracting periodic orbit as in case A2 and, as before, let ¢ be
the nearest turning point to p which is in the connected component of By(p) that
contains p. Assume first that all turning points converging to p by g™ intersect
the interval connecting ¢ and p (case A2a). So we can find k£ > 0 such that all
turning points with infinite orbit converging to O(p) intersect the fundamental
domain I = [gF"(c), g"** 1" (c)]. We only consider the iterates of the turning points
with infinite orbit converging to O(p) until hitting I for the last time, forgetting
the iterates after that. In this case let J = [¢*"(c),p]. Now assume we are still in
case A2 but there are turning points with infinite orbits converging by ¢g" through
both sides of p (case A2b). In the side that contains ¢ we construct the fundamental
domain I = [g""(c), g*1 TV (¢)] as in the previous case for an appropriate k;. In
the other side, we consider k2 > 0 and a turning point ¢’ such that any other turning
point converging to p by g" through the same side of ¢’ intersects the fundamental
domain I, = [g(k2+D)7(¢'), g*2(¢')]. Forget all the iterates of the turning points with
infinite orbit converging to O(p) after hitting I; U I5. Let J be the smallest closed
interval containing I; U Is.

In case A3 it may happen that there is no other turning point in By(p). There
is one side of p such that orbits converge to p by ¢” monotonically. So if necessary
we choose a turning point ¢ and k£ > 0 such that every turning point with infinite
orbit converging to O(p) intersects the fundamental domain I = [¢*"(c), g*+1)"(c)]
which is in that side of p. Forget the iterates of the turning points with infinite
orbit converging to O(p) after hitting I for the last time and let J = [¢*"(c), p].

In the last case A4 let ¢ be the nearest turning point to p in the connected
component of By(p) that contains p and k > 0 be such that every turning point with
infinite orbit converging to O(p) intersects the interval I = [¢?"(c), g>*+1n(¢)] C
[e,p]. Also we do not consider the iterates of the turning points after hitting I for
the last time. Let J = [¢?*"(c), p].

To define the simplex W we consider the following points in the interval:

1. all the iterates of the turning points which are periodic or eventually periodic.

2. the iterates of the turning points with infinite orbit only until hitting for the
last time the corresponding fundamental domain I as explained before. Note that
both endpoints of I are included.

3. all the periodic orbits which attract turning points.

So we have k > 0 points z; < ... < zi corresponding to the orbits of the turning
points of g (after cutting the tails of the infinite orbits as described above) and the
essential periodic attractors. Denote by z;, < ... < z; the corresponding turning
points of g. Let 7 : {1,... ,k}\A — {1,... ,k} be defined by n(i) = j < g(z:) = z;
whenever it is well defined. The set A consists of indexes where 7 is not defined and
corresponds to the points in the interior of the intervals J constructed above. The
Thurston map will act on W = {z = (z1,... ,2x) € [0,1]F: 0 <21 < ... <2 < 1}
in the following way®: first find a € A realizing the critical values associated to
z, that is, F(a) = (Zx(t,),--+ »Tr(,)).- The turning points of Py are the points
Yy, < ... <uyy, that is, y¢, = ¢;(a) for all 1 <4 <. For each j in the domain of
7, j & {t1,... .t} let m be such that z; € [2,,,21,,,,] (2, =0 and 2, =1). We

8see remark 5.1.



890 PEDRO A. S. SALOMAO

define y; to be the point in [y;,,,¥t,,,,] such that Pa(y;) = x.(;. For j € A we
do the following: z; corresponds to the last point considered in the infinite orbit of
a turning point or to a periodic point in the case A2b. It is in the interior of the
interval J where J = [z, z,] is one of the intervals defined above. Now note that
the points y, and ys are already defined so let J' = [y,,ys] and S : J — J’ be an
affine map such that S(z,) = y, and S(zs) = ys. We now define y; = S(z;). We
have defined y; for all 1 < j < k so the Thurston operator 7' : W — W is defined
by T((z1,..-,2k)) = (Y1, -+, Yk)-

A topological argument proves that since ¢ satisfies hypotheses [H3|-[H4|, then
T has a fixed point in the interior of W which corresponds to a polynomial Pj
with the same modality as g, but in the case A2b it may have a slightly different
combinatoric. See [4].

6.2 Changing proportions. To construct a conjugacy between g and the poly-
nomial Py obtained in Section 6.1 it is necessary that not only the combinatorics of
g and Py are the same but also that each essential periodic attractor of ¢ has the
same local topological type of the corresponding periodic attractor of Py. We now
show how to change the Thurston operator to get this correspondence.

Let y = (y1,...,yx) be the fixed point of T" and Py be the corresponding poly-
nomial. Let J' = [z, z5] be one of the intervals associated to an essential periodic
orbit constructed in Section 6.1 and let J = [y,,ys] be the corresponding interval
for y. Then the following holds: for any r < 4,7 < s the corresponding points in J’

and J have the same proportions, i.e, % = % This follows from the fact

that the Thurston operator is an affine map from J’ to J.

Now note that if we change the relative positions of the points {z,, ..., z5} with-
out changing their order, then we find a different fixed point for T' corresponding to
these new proportions. We now explain how to change these proportions in order
to find Py such that the corresponding attracting periodic orbits of g and Py have
the same type.

Let’s start with case A4 and show that depending on the proportions chosen
either we find the ”correct” attractor or a ”wrong” one. Let h = P}. Let J = [y,, ys]

where y, = h?¥(c) is as above, y; is a fixed point of h and c is a turning point of Py
which is in the immediate basin of y, and [y, ys] C [c,ys]. Let ym, = h2F+(c) €
(yr,ys).- Note that the position of y,, in J is determined by the position of z,, in

J' = [z, 2], 1€, d = lﬁj:zm” = l"?:i’"". The following Lemma, gives a criterion to
gs Jgr s T

choose d in order to get the same type of periodic attractor

Lemma 6.1 (Case A4). There are constants d > 0 and d > 0 which depend only
on | (the modality of g), n (the period of y,) and k (which defines the fundamental
domain) such that (i) If 0 < d < d then vy, is an essential periodic attractor of
Py with period n and [c,ys] C Bo(ys). This implies that the periodic attractors
of g and Py have the same local type. Moreover, (ii) if d < d < 1 then y, is a
repelling periodic point and there is an attracting periodic point § € (Ym,ys) with
period 2n such that [y.,ys) C Bo(y). This implies that the corresponding periodic
attractors of g and Py are different and, therefore, g and Py cannot be topologically
conjugate.

Proof. Let f = h%. Then y; is a fixed point of f and f(y,) = ym. Let I1 = [y,, ys]
and Is = [ym,ys]. Note that d = % For each 0 < d < 1 we find a polynomial
fa corresponding to the fixed point of the Thurston operator T, points ¢(d), y,(d),
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ym(d), ys(d), and intervals I1 (d) and Iz(d). To simplify, we omit d in the notation.
By construction, f is always strictly increasing in I; and to prove part (i) we
must show that if d is small enough then y; is a two-sided periodic attractor and
¢ € Bo(ys).

Let Is = [ym — 2|I2|,ym]. For d small, I3 C I; and since f is an increasing
function in I; and f(I3) C I there exists a point w € I3 such that 0 < f'(w) < 1.
If we take d — 0 then w — y,. Now we recall from (3) that f” is uniformly bounded.
So we find d > 0 such that w is near enough ys and this implies that |f’(ys)| < 1
for any 0 < d < d.

If part (ii) is not true we can assume by contradiction that for d arbitrarily close
to 1, f'(ys) <1, f([le,ys]) C [e,ys] and there is no fixed point of f in [c,ys). We
enumerate the claims

1. We first claim that |[;] — 0 as d — 1 otherwise from a subsequence of
d — 1 we would find in the limit a non-affine polynomial map fa with an interval
of periodic points with the same period which is impossible.

2. the turning point ¢ cannot approach y, for a subsequence of d — 1 since
f/(ys) would converge to 0 and this would imply that d would approach 0.

3. f'(ys) — 1 as d — 1 otherwise if for a subsequence of d — 1, we have
f'(ys) — A, 0 < X <1, then, since [I]| — 0, d — X < 1, a contradiction.

4. f(c) also cannot approach y, for a subsequence of d — 1 since this would
imply the existence of points with derivative less than % approaching y, which is in
contradiction with claim 3 because f” is uniformly bounded.

5. claims 2,3,4 and the uniform bound of f” imply that f¥(c) cannot approach
Ys as d — 1 which is in contradiction with claim 1.

This shows that f'(ys) > 1 for d close enough to 1. Since f(c¢) > c and there exist
at most 2 fixed points of f in [c,ys] we conclude that for d close enough to 1, ys
is repelling and there exists an attracting fixed point of f in (¢, ys) which contains
[e,ys) in its basin, finishing the proof of the lemma. O

For instance, suppose g is unimodal (I = 1) and its turning point converges to
an essential fixed point which reverses orientation. As explained in Section 6.1 the
points considered are 0 < z1 < 29 < z3 < z4 < 1 where 21 is the turning point of
g, 9(z1) = 24, g(z4) = 22 and z3 = g(z3) is the essential attracting fixed point of
g. The simplex is defined by W = {x = (21, 22,73,24) € [0,1]* : 0 < 21 < 22 <
23 < 24 < 1} and 7 : {1,3,4} — {1,2,3,4} is given by (1) = 4, 7(3) = 3 and
m(4) = 2. In this case t; = 1 and the Thurston operator T': W — W is defined
as follows: given x = (x1,x2,3,24) € W, let a1 = 4y and Py, (z) = a1z(1 — x)
(note that Py, (3) = 4). Then y1 = 1, y4 € (3,1) is such that P,, (y4) = z2 and
ys € (,1) satisfies Py, (y3) = 3. To define y2 let S : [21, 23] — [y1,ys] be an affine
map with S(z1) = y1 and S(z3) = y3. Let y2 := S(22). Now T(x) = (y1, Y2, Y3, Ya)-
Iterating an initial condition we find a good approximation for the fixed point P of
T which has the same combinatoric of g. This fixed point depends on the proportion
d= % For each value of d we find a different P and if we take d small enough
as stated in Lemma 6.1 then, agreeing with g, P has a fixed point which attracts
the turning point ¢ = % Otherwise, if 1 — d is small the corresponding fixed point
is repelling and ¢ converges to an attracting periodic orbit with prime period 2, so
g and P cannot be conjugate. See Figure 1.

Now we consider case A2a where y; is a two-sided attracting periodic orbit with
period n, h = P} is strictly increasing in p and orbits of the turning points con-
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@ (b)

Figure. 1. An example of case A4. The dashed lines correspond to the fixed
point of the Thurston operator. In (a) we obtain P, (z) ~ 2.903z(1 — x) corre-
sponding to d = 0.5; the critical point converges to the attracting fixed point. In
(b), Py, (z) = 3.1182z(1 — z) and d = 0.8; the critical point converges to the attract-
ing periodic orbit of period 2. Although combinatorially equivalent, P,, and P,,
are not conjugate.

verging to O(p) approach through the same side of p. As before let J = [y, ys]
where y, = h¥(c) is as above, y, is a fixed point of h and ¢ is a turning point of P
which is in the immediate basin of y5. Let y,, = h**1(c) € (y,,ys). The topological

|25 —2m| — [ys —Yml
IZS_ZTI ‘ys_yTI

properties of h depend on the choice of the proportion d = as

stated in the following

Lemma 6.2. (Case A2a). There are constants d > 0 and d > 0 which depend
only on | (the modality of g), n (the period of ys) and k (which defines the funda-
mental domain) such that (i) If 0 < d < d then y is an essential periodic attractor
of Py with period n and [c,ys] C Bo(ys). Moreover, (i) if d < d < 1 then y, is
a repelling periodic point with prime period n and there is an attracting periodic
point § € (Ym,ys) with prime period n such that [y,,ys) C Bo(7).

Proof. The proof is the same as in Lemma 6.1. O

Case Al can be obtained by a dichotomy-like procedure of case A2a. In fact,
varying d from 0 to 1 in a continuous path in the space of parameters A, the
eigenvalue of h at ys; changes from less than 1 to bigger than 1. We have the
following

Lemma 6.3. (Case Al). There exists 0 < d* < 1 such that y, Is a one-sided
attracting periodic orbit of Py and the turning point c is in the connected component
of By(ys) which contains ys.

Proof. By dichotomy we find 0 < d* < 1, such that h'(ys) = 1. In fact, following
the same ideas as those of Section 4.1, we can find a continuous path in the space of
parameters A, corresponding to the fixed points of Ty, so that d varies continuously
from close to 0 to close to 1. This gives the desired d*. For such d*, c is in the
connected component of By(ys) which contains y,. Since y, attracts turning points
only through one side and since h has negative Schwarzian derivative, y, must
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be repelling in the other side of ys. This implies that ys is locally topologically
equivalent to the corresponding one-sided attractor zs of g. 0

The following example covers cases Al and A2a. Let g be a 2-modal map of the
interval [0,1]. Suppose g(0) =0, g(1) = 1 and g(z) > z for all z €]0,1[. Assume
that both turning points 0 < ¢; < ¢z < 1 converge to the fixed point z = 1.
Assume that I = [g(c2), g%(c2)] is a fundamental domain and g(c1) €]g(c2), g*(c2)[.
So we consider only the points 0 < 21 < ... < 25 < 2¢ = 1 where z1 = ¢y,
29 = ca, 23 = g(c2), z4 = g(c1) and z5 = g?(c). In the cases Al and A2a, the
fixed point z = 1 is a one-sided and two-sided attractor, respectively. The function
m:{1,2,3,6} — {1,...,6} is defined by (1) = 4, 7(2) = 3, 7(3) = 5 and 7(6) = 6.
Also t; = 1 and t2 = 2. In this case J = [z3,1] and d = H:;I The Thurston
operator T acts on the open simplex W = {0 < 1 < @2 < ... < 25 < 1} in
the following way: given (z1,...,x5) let a = (a1,az2) be such that the polynomial
Pa(z) = a1z + aaz® + (1 — a1 — ag)x® has critical values v; = x4 and vy = x3. Let
y1 < y2 be the critical points of Py and ys be the only point in Jys, 1[ such that
Pa(y3) = z5. To determine y4 and ys let S : J — [ys3, 1] be the affine map satisfying
S(z3) = y3 and S(1) = 1. Finally, let y4 := S(z4) and y5 := S(z5). Iterations of
this map approach the desired fixed point which corresponds to a polynomial also
denoted by Pa. According to Lemmas 6.2 and 6.3 there exists d* such that if the
initial choice of d satisfies 0 < d < d* then x = 1 is a two-sided attractor of Py
attracting both its turning points and we are in case A2a. If d = d* we are in case
Al and x = 1 is a one-sided attracting fixed point with both turning points in its
immediate basin. Also, if d is sufficiently close to 1, then x = 1 is repelling and
there exists an attracting fixed point £ < 1 which contains both turning points in
its immediate basin. Note that in this particular example g is semi-conjugate to
Py for 0 < d < d*. This is because we are not interested in the behavior of Py for
x > 1. Figure 2 illustrates these results.

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

(@ (b) ©
Figure 2. An example of cases Al and A2a. The dashed lines correspond to
the fixed point of the Thurston operator. In (a), for d = 0.6, we find P(x) =~
4.092 — 5.9522 + 2.872% and the fixed point 2 = 1 is a two-sided attractor. In (b),
d=0.712, P(z) ~ 4.14x — 6.272% + 3.1423 and x = 1 is approximately a one-sided
attracting fixed point. In (c), d = 0.9, P(z) ~ 4.13z — 6.812% 4 3.6922 and = = 1 is
a repelling fixed point.

Now we treat Case A2b. Let Py corresponds to the fixed point y = (y1,...,Yk)
of the Thurston operator and consider the same notations as before.

First note that y, may not be a periodic point for Py since its construction is
not based on a pull-back argument but on the affine map S. This implies that if a
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turning point ¢ of ¢ is eventually periodic and g™ (¢) = z, for some ny > 0 then g
and Py may not even be combinatorially equivalent. We now show how to overcome
this problem by choosing the proportions appropriately.

Let 1 = [Yr, Ym], I2 = [Yi,y;], J = [Yr,y;] and J" = [ym, y;] where the points
are defined in Section 6.1. Note that g, is contained in the interior of J’. Let
dy = “Zi_f;:” = ‘f;;’?:” and dp = ‘yi;}fl = ||::;j‘. We will show how to find
0 < di,ds < 1 such that y, is an attracting periodic orbit with prime period n and
¢ is in the connected component of By(ys) which contains y,. First we find d;.

Lemma 6.4. (Case A2b). There exists d* > 0 which depends only on | (the
modality of g) and n (the period of ys) such that if 0 < dy < d* then there exists a
point g in the interior of J' which is an essential periodic attractor of Py, has prime
period n and [c,y;] C Bo(7).

Proof. The proof is identical to case (i) of Lemma 6.1. Let h = Pj. Note that since
h(J) C J', h(yr) = ym and h(y;) = y; there must exist an attracting fixed point g
in the interior of J'. O

For arbitrary 0 < do < 1, § # ys. Next Lemma shows how to choose ds in order
that they coincide. We now do the same dichotomy procedure of Lemma 6.3 to
choose dy appropriately. We have

Lemma 6.5. (Case A2b). For d; > 0 sufficiently small as in Lemma 6.4, there
exists 0 < d* < 1 such that if do = d* then ys; = ¥, I.e., ys is an attracting periodic
orbit with prime period n attracting all the interval [c,y;] C Bo(ys).

Proof. We know that ¢ is the only fixed point of h in J'. Moreover, if d; > 0 is
fixed sufficiently small, then there are constants C7,C5 > 0 such that 0 < C; <
W(g) < C2 < 1 for any 0 < dy < 1. This implies that if dy is sufficiently small then
ys > ¢ otherwise the interval J should collapse for a subsequence of de — 0 forcing
the critical point to approach ¢ contradicting the lower bound of A'(g). A similar
argument implies that if do is chosen sufficiently close to 1, ys < §. Again, as in
Lemma 6.3 we find the desired d*. 0

Remark 6.1. For dy — 1 and |Iz| — 0, h has 3 fixed points in J’, one of them
repelling and the others attracting.

Let us illustrate Case A2b with the following example. Let g be a 4-modal map
of [0, 1] satisfying ¢g(0) = 0, g(1) = 1 and there is only one fixed point Z € (0,1)
which attracts all the turning points 0 < ¢; < ¢c2 < Z < ¢3 < ¢4 < 1 of g. Assume
also that

1. g(z) >z if 2 €(0,2) and g(x) < z if x € (3,1).
2. I} = [e2,9(c2)] and Iy = [g(c3), c3] are fundamental domains in the left and
right side of § respectively. In this case J = [ca,c3], J = [g(c2),g(c3)], di =

|J'| _ lg(es)—2]|
To(es)—cz1 @0d d2 = Sy

3. g(c1) = c3 and g(cq) = 2.

In this situation there are 7 points considered 0 < z1 < ... < 27 < 1 where
21 = c¢1, 29 = co, 23 = g(ca), 24 = Z, z5 = g(c3), 26 = c3 and z7 = ¢4. The
function 7 : {1,2,6,7} — {1,...,7} is defined by n(1) =6, 7(2) =4, 7(6) = 5 and
m(7) =4. Let t1 = 1, to = 2, t3 = 6 and ¢4 = 7. The Thurston operator T" acts on
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W={0<z <...<ax7 <1} as follows: let a = (a1, as,as,as) be such that the
polynomial Py = a1z + a2x? + azx® + agz* + (1 — a; — az — a3 — a4)x® has 4 critical
points 0 < ¢ < ... < é4 < 1l and Pa(6;) = wrp, for i = 1,...,4. Let y;, = &,
t=1,...,4. To define y3, y4 and ys5 consider the affine map S satisfying S(z2) = y2
and S(zs) = ys. Let y; := S(z;), for i = 3,4,5. Iterations of the Thurston map
converge to a fixed point of 7" which corresponds to a polynomial also denoted by
Py. We can choose dq small enough so that Py has only one fixed point & € (0,1)
attracting all of its turning points also denoted by 0 < ¢; < ... < é4 < 1. Also, by
a dichotomy procedure, we find 0 < dy < 1 such that Pa(¢4) = Z. The results are
depicted in Figure 3.

08 J 08 08

0.6 0.6 0.6

0.4

0.2

(€Y (b) ©
Figure 3. An example of case A2b. The dashed lines correspond to the fixed
point of the Thurston operator. Fixing d; = 0.67, we have an attracting fixed point
g in (0,1) with all turning points in its immediate basin. In (a), d2 = 0.1 and
ys > §. In (b), do = 0.375 and ys = 7. In (c), d2 = 0.9 and ys < 7.

In the case A3 since the corresponding attracting periodic points of g and Py are
turning points, they must be of the same local type and there is nothing else to do.

Remark 6.2. Choices of the proportions in the cases A1 and A2b must be done
after all others cases. A dichotomy-like procedure in the choices of the corresponding
proportions is needed in order to find a such that Py satisfies simultaneously all the
adjustments.

7. Proof of Theorem 1. First consider the finite and semi-finite combinatorics.
To construct the topological conjugacy h it is necessary that g and Py have the same
combinatorics. Moreover, it is necessary that the corresponding attracting periodic
orbits of g and Py have the same type. Choosing appropriately the proportions for
the semi-finite combinatorics, as explained in Lemmas 6.1-6.5, we can assume it is
true. Let hg the the conjugation between C*(g) and C*(Py), the sets of forward
orbits of the turning points of g and Fj, respectively. Extend hg to a conjugation
h1 defined in the corresponding basin of all attracting periodic orbits and the set of
pre-images of all turning points. Since g and Py, satisfy [H1]-[H4], h; is defined in
a dense set of the interval [0, 1] and its image is also dense in [0, 1]. The conjugacy
h is the continuous extension of hy in the interval [0, 1].

In the infinite combinatorial case, it is also possible to find Py which is combi-
natorially equivalent to g. In fact, there is a sequence g, — ¢ in the C° topology
as n — oo satisfying for all n > 0:

1. The first n iterates of the turning points of g, and ¢ coincide.
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2. the maps g,, have semi-finite combinatoric for all n > 0.

For each g, we find the corresponding Pa_. Note that if necessary we can choose
appropriately the proportions so that the attractors of Pa and g with period less
than n have the same local type.

In [4], it is shown that Pa — Pa as n — oo, where Py is combinatorially
equivalent to g. Also, by construction, all attracting periodic orbits have the same
local type as those of g. The same steps done before define the conjugacy h between
g and Py. This completes the proof of Theorem 1. O

8. Interpolating critical values. Thurston operator defined in Sections 5 and 6
is a contraction in the finite combinatorial case and it seems that the same holds for
semi-finite combinatorics. Accordingly, in order to find a good approximation for
its fixed point, which realizes the desired combinatoric, we only need to iterate an
initial condition. In each iteration we face the following problem: given (x1,... ,zy),
find a = (a1,... ,a;) such that Py(ci(a)) = xr@,) for each i = 1,... 1, where c¢;(a)
are the critical points of Py. The values of Py in the end points of the interval [0, 1]
are also determined by ¢(0) and g(1). As we have seen, there is only one such a.
The following method gives an approach to it. Let v; = wr(,), i = 1,... L.
Choose points 0 < z1(0) < ... < 27(0) < 1 and let P, be the polynomial with
degree [ + 1 interpolating (0, ¢(0)), (z;(0),v;) and (1,¢(1)) for ¢ = 1,...,l. Note
that P, can be found explicitly by Lagrange formula. It follows that P, has [
turning points 0 < ¢1(1) < ... < ¢(1) < 1 which can also be easily found. Now let

z;(1) =¢;(1), 1 =1,...,l. Repeat the interpolation with these new x;’s to find P
and so on.

Let S be the map z;(n) — z;(n+1) = ¢;(n+ 1), i = 1,...,1, defined in the
simplex W = {x = (z1,... ,2;) € [0,1]': 0 < 21 < ... < 2y < 1}. A fixed point ¥ of

S corresponds to a solution of the interpolation problem. The existence of Z is given
by the surjectiveness of F' : A — V defined in Section 4.1. A direct computation
shows that the Jacobian matrix of S at Z is identically 0 and this implies a fast
convergence to the fixed point z.

Remark 8.1. All figures presented in this paper were obtained by this method.
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