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Abstract. In this work we use tools of dynamical systems and
algebraic geometry to give a new characterization of the Jacobian
conjecture for polynomial maps in the the real plane in terms of
the non-existence of real branches emerging from a singularity of a
1-parameter family of algebraic curves explicitly given. Using the
Newton-Puiseux algorithm we state new sufficient conditions in
order that the Jacobian conjecture in the real plane holds. We also
provide an arbitrary degree family of polynomial maps satisfying
the Jacobian conjecture.

1. Introduction

Let F : R2 → R2 be a polynomial map, i.e., F (x, y) = (f(x, y), g(x, y))
with f, g ∈ R[x, y]. If we assume that its Jacobian detDF is nowhere
zero, clearly F is a local diffeomorphism, but it is not always injective.
Indeed there is a counterexample given in [22]. There are very general
well-known additional sufficient conditions to ensure that F is a global
diffeomorphism, see for instance [11, 16, 23].
The Jacobian conjecture in the real plane is an open problem that

consists in to determine if any polynomial map F with non-zero con-
stant detDF is injective. The conjecture was posed by Keller [20] in
1939 and since then it has been studied intensively and various partial
results have been obtained. The reader can consult for example [4, 15]
to obtain more information about the history of this well-known con-
jecture. We also mention that a formulation for polynomial maps in
Ck of the Jacobian conjecture appears in the 16th problem of Smale’s
list [25] of open mathematical problems.
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Jacobian conjecture in R2: Let F = (f, g) be a real polynomial
map with non-zero constant value of detDF . Then F is a global dif-
feomorphism of the plane onto itself.

In this work we give a new characterization of the Jacobian con-
jecture in R2 using tools from algebraic geometry and the qualitative
theory of dynamical systems, see [18] as a seminal work.
Let n = deg(F ) = max{deg(f), deg(g)} and consider the real poly-

nomial map

(1) F (x, y) = (f(x, y), g(x, y)) =


x+

∑

2≤i≤n

fi(x, y), y +
∑

2≤i≤n

gi(x, y)


 ,

with detDF ≡ 1 and where fi and gi are homogeneous polynomials
of degree i. Then fn 6≡ 0 and there is k ∈ R such that gn = kfn, see
Proposition 10. We associate to F the 1-parameter family of algebraic
curves F−1(0) with polynomial

(2) F(u, v) = N (u, v)− 2c(u2 + v2)2n = (1 + k2)f 2
n(u, v) + · · · ,

with arbitrary parameter c ∈ R and where N is defined as

(3) H ◦ φ(u, v) = N (u, v)

2(u2 + v2)2n
,

with Bendixson map φ(u, v) = (u/(u2 + v2), v/(u2 + v2)) and Hamil-
tonian H = (f 2 + g2)/2.

Theorem 1. The map (1) with detDF ≡ 1 is a global diffeomorphism
of R2 if and only if its associated 1-parameter family of algebraic curves
F−1(0) has a singularity at the origin without real branches.

We recall that, if F(u, v) =
∑

i,j fiju
ivj with coefficients fij ∈ R and

support supp(F) = {(j, i) ∈ N2 : fij 6= 0}, the Newton diagram N(F)
of F is the boundary of the convex hull of the set

⋃
(j,i)∈supp(F){(j, i) +

R2
+} where R2

+ is the positive quadrant. Looking at the local zero-set
of F near the origin one is only interested in the different edges of
N(F) with rational negative slopes −k1/k2, being k1 and k2 coprimes.
We define W (N(F)) as the set whose elements are the former weights
(k2, k1).
We define the first determining polynomial P(η) = f 2

n(1, η). As-
suming that W (N(F)) = {(1, 1)}, we associate to each non-zero real

root α0 of P the polynomial F̂(u, w) = F(u, α0u+w). To each weight

(pi, qi) ∈ W (N(F̂)) with qi/pi > 1 for i = 1, . . . , ℓ, we define the second
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determining polynomials Pi(η) as

(4) F̂(upi, uqiη) = umiηni (Pi(η) +O(u)) ,

for some multiplicities mi, ni ∈ N.
Using Theorem 1 and the Newton-Puiseux algorithm (see [10] for

details) we prove the following result.

Corollary 2. The map (1) with detDF ≡ 1 and W (N(F)) = {(1, 1)}
is a global diffeomorphism of R2 in the following cases:

(i) The first determining polynomial P(η) has no non-zero real
roots;

(ii) All the second determining polynomials Pi(η), i = 1, . . . , ℓ, have
no non-zero real roots.

Remark 3. It is worth to recall that N(F) is not coordinate free,
that is, in general N(F) 6= N(F ◦Ψ) for some analytic diffeomorphism
Ψ around the origin of R2. In the easiest case we can take a linear
change Ψ(u, v) = (au+ bv, cu+ dv) with ad− bc 6= 0 so that, using (2),

F ◦ Ψ(u, v) = (1 + k2)f̃ 2
n(u, v) + · · · , where f̃n(u, v) = fn ◦ Ψ(u, v) =∑

i+j=n aiju
ivj and generically with a0nan0 6= 0. In summary, recalling

that if F has no real branches at the origin then a conjugation of F
doesn’t have them either, after a linear change of coordinates Ψ, we get
W (N(F◦Ψ)) = {(1, 1)} generically. Hence we can perform the Newton-
Puiseux algorithm to F ◦ Ψ instead of F to obtain a similar result as
Corollary 2. Another option in the non-generic situation W (N(F)) 6=
{(1, 1)} is to use the Newton-Puiseux algorithm to each edge in N(F)
to describe a procedure that generalizes Corollary 2. Although, for the
sake of simplicity, we do not explicitly write here this generalization we
will use it in the example of section 6.

Remark 4. We emphasize that the sufficient condition provided in [5]
for the Jacobian conjecture in R2 to be true under the assumptions
detDF ≡ 1 and W (N(F)) = {(1, 1)} is equivalent to statement (i) in
Corollary 2. More specifically, in Theorem 1 of [5] it is proved that, if
the homogeneous polynomials fn ∂xfn and fn ∂yfn do not have common
real linear factors and detDF is nowhere zero, then F is injective. We
notice that the former condition about the non-existence of common
real linear factors is equivalent to the non-existence of real linear factors
of just fn (hence the non-existence of real roots of P(η)). This is true
because, by the Euler relation x∂xfn+y∂yfn = nfn, the common factors
of ∂xfn and ∂yfn must be also factors of fn.

Now we present one of the results one can obtain as application of
Theorem 1.
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Theorem 5. Let 0 6= k ∈ R be such that gn = kfn and assume that
f 2
n−1(1, k)+g2n−1(1, k) 6= 0 and k(−kf 2

n−1(1, k)+2fn−1(1, k)gn−1(1, k)+
kg2n−1(1, k)) < 0. Assume moreover that

∑
i+j=n+1

i,j 6=n
Jij ≡ 0 where Jij

is the Jacobian determinant of the polynomial map (fi, gj). Then the
Jacobian conjecture in R2 holds for family (1) with detDF ≡ 1.

Remark 6. Along the proof of Theorem 5 we see that the strange
condition

∑
i+j=n+1

i,j 6=n
Jij ≡ 0 is equivalent to impose that fn only has a

linear factor in its factorization over C[x, y] that has the form fn(x, y) =
cn(y − kx)n with nonzero cn ∈ R.

2. Some background

2.1. Global centers. A singular point (x0, y0) ∈ R2 of a vector field
in R2 is a center if it possesses a punctured neighborhood foliated by
periodic orbits. The period annulus of a center is the maximal open
punctured neighborhood with that property. The center is global if its
period annulus is R2\{(x0, y0)}.
The next result due to Sabatini, see Theorem 2.3 of [24], will be used

to prove Theorem 1.

Theorem 7 ([24]). Let F = (f, g) be a real polynomial map with
nowhere zero detDF and F (0, 0) = (0, 0). Then the following state-
ments are equivalent.

(a) The origin is a global center for the Hamiltonian vector field
XH = (−∂yH, ∂xH) with H = (f 2 + g2)/2.

(b) F is a global diffeomorphism of the plane onto itself.

2.2. Bendixson’s compactification: blowing-down the polycicle
at infinity. We state the following result which although is straight-
forward it is a key piece in the proof of Theorem 1. We recall here
that a singularity of a planar vector field is called monodromic if the
local orbits of it turn around the singularity. Examples of monodromic
singularities are centers and foci.

Theorem 8. Let the origin be the unique singularity of a real pla-
nar Hamiltonian polynomial vector field X of degree m. We consider
the Bendixson compactification X̃ = (u2 + v2)m φ∗(X ) of X where φ∗
is the pull-back associated to φ(x, y) = (u(x, y), v(x, y)) = (x/(x2 +
y2), y/(x2+y2)). If the origin is a center of X then it is a global center
if and only if the origin of X̃ is a monodromic singularity.

Remark 9. To use Theorem 8 we must to study the monodromy of the
origin of the associated vector field X̃ = P̃ (u, v)∂u + Q̃(u, v)∂v. There



A NEW CHARACTERIZATION OF THE JACOBIAN CONJECTURE 5

are several monodromy algorithms for singularities of polynomial pla-
nar vector fields developed in the literature, see for instance [1,2,7,21].
It is worth to mention that all the necessary monodromic conditions
stated in Theorem 3 of [1] holds for the origin of X̃ but the sufficient
monodromic condition (4) in Theorem 4 of [1] fails. When Theorem
4 in [1] does not work the monodromic algorithms involve blowing-up
the singularity and its implementation with arbitrary degree is quite
difficult, thus we follow another path.

The construction of the Bendixson compactification can be found in
Chapt. 13 of [3] or Chapt. 5 of [14]. It follows that the monomials in
the components of X̃ have minimum degree m + 2, see below. Hence
(0, 0) is a singular point of X̃ . Notice that Bendixson compactification
blows-down the polycycle Γ at infinity of X into the singularity at the
origin of X̃ preserving their monodromic nature. This argument proves
Theorem 8 taking into account that the existence of a global center of
X is equivalent to the one-side monodromy of Γ, that is, there is a well
defined Poincaré map in a transversal section to Γ with one endpoint
on Γ.

Letting X = P (x, y)∂x + Q(x, y)∂y with degree m = deg(X ) :=
max{degP, degQ}, and using that the Bendixson map φ(x, y) = (u, v) =
(x/(x2 + y2), y/(x2 + y2)) has inverse φ−1(u, v) = (x, y) = (u/(u2 +
v2), v/(u2+ v2)), we get the explicit expression of the associated vector
field X̃ = P̃ (u, v)∂u + Q̃(u, v)∂v defined in Theorem 8 which is

P̃ (u, v) = (u2 + v2)m
(
(v2 − u2) (P ◦ φ−1)(u, v) − 2uv (Q ◦ φ−1)(u, v)

)
,

Q̃(u, v) = (u2 + v2)m
(
(v2 − u2) (Q ◦ φ−1)(u, v) − 2uv (P ◦ φ−1)(u, v)

)
.

We write P (x, y) =
∑

1≤i≤m Pi(x, y) and Q(x, y) =
∑

1≤i≤mQi(x, y)
with Pi and Qi homogeneous polynomials of degree i. Then we have

P̃ (u, v) = (v2 − u2)
∑

1≤i≤m

(u2 + v2)m−iPi(u, v)

−2uv
∑

1≤i≤m

(u2 + v2)m−iQi(u, v),

Q̃(u, v) = (u2 − v2)
∑

1≤i≤m

(u2 + v2)m−iQi(u, v)

−2uv
∑

1≤i≤m

(u2 + v2)m−iPi(u, v).

We therefore have the expansion P̃ (u, v) = P̃m+2(u, v)+· · · , Q̃(u, v) =
Q̃m+2(u, v) + · · · where P̃m+2 and Q̃m+2 are homogeneous polynomi-
als of degree m + 2 and the dots denote higher order terms. More
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specifically

P̃m+2(u, v) = (v2 − u2)Pm(u, v)− 2uvQm(u, v),

Q̃m+2(u, v) = (u2 − v2)Qm(u, v)− 2uvPm(u, v).

We remark that, when m is even, the origin of X̃ always possesses
characteristic directions because uQ̃m+2(u, v) − vP̃m+2(u, v) is an ho-
mogeneous polynomial of odd degree. Since X has degree m, that is,
P 2
m(x, y) + Q2

m(x, y) 6≡ 0, it follows that P̃ 2
m+2(u, v) + Q̃2

m+2(u, v) 6≡ 0

too. Therefore, for the origin of X̃ to be monodromic it is necessary
that m be odd.

2.3. Branches of analytic curves at singularities. In this subsec-
tion we consider real analytic functions F(x, y) defined in a neighbor-
hood of the origin of R2. We assume that F(0, 0) = 0 and ∇F(0, 0) =
(0, 0), hence the origin is a singular point of F . By Newton-Puiseux
Theorem (see [6] for instance) there exists a local finite factorization

(5) F(x, y) = U(x, y) xm
∏

i

(y − y∗i (x))
mi

where U is a real analytic unit, that is, U is a real-valued analytic
function defined in a neighborhood of the origin with U(0, 0) 6= 0,
m ∈ N ∪ {0}, mi ∈ N and the y∗i (x) are complex-valued holomorphic
functions of x1/ni with y∗i (0) = 0 called branches of F at the origin.
The exponents ni are positive integers called the indices of the branches
y∗i (x).

Using branching theory we know that any branch y∗i of F emerging
from (x, y) = (0, 0) can be locally expressed as convergent Puiseux
series determined by the descending sections of the Newton diagram
N(F) of F with rational negative slopes −k1/k2, that is with (k2, k1) ∈
W (N(F)) being k1 and k2 coprimes. Thus any branch y∗i (x) in (5) has
the form

(6) y∗i (x) = α0x
k1/k2 + o(xk1/k2)

with α0 ∈ C\{0} and 0 < k1/k2 ∈ Q. The leading coefficients α0

are the nonzero roots of a determining polynomial P(η) associated to
each descending segment of N(F ), and defined by the first term of the
expansion

(7) F(xk2 , xk1η) = xs1 ηs2
[
P(η) +O(x)

]
,

for some si ∈ N ∪ {0}. The Newton-Puiseux algorithm can be used
to determine the higher order terms of the branch (6) appearing in its
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convergent Puiseux series

y∗i (x) =
∑

j≥0

αjx
k1
k2

+ j
ni .

All the branches y∗i (x) are analytic functions of x
1/ni . A branch y∗i (x) is

called a simple branch if α0 is a simple root of P. For simple branches
ni = k2 and moreover αj ∈ R for all j provided that α0 ∈ R, see a
proof in [26].

3. Proof of Theorem 1

Proof. We consider the Hamiltonian vector field XH = (−∂yH, ∂xH)
with Hamiltonian H = (f 2 + g2)/2. By Theorem 7, F = (f, g) is a
global diffeomorphism in R2 if and only if the origin is a global center
of XH .
Using the Bendixson’s compactification X̃ = (u2 + v2)2n−1 φ∗(X ) of

XH as it was described in Theorem 8, we know that the origin is a global
center of XH if and only if the origin of X̃ is a monodromic singularity.
We claim that the above turns out into the equivalent condition that
the associated 1-parameter family of algebraic curves F−1(0) defined
in (2) has a singularity at the origin without real branches finishing the
proof.
To prove the claim we just notice that H̃ = H◦φ(u, v) with φ(u, v) =

(u/(u2 + v2), v/(u2 + v2)) is a rational first integral of the polynomial

vector field X̃ because H is a first integral of XH . Since all the orbits
of X̃ are contained in the level sets {H̃ = c} of H̃, and taking into
account (3), it follows that any orbit of X̃ must lie in one element
of the 1-parameter family of algebraic curves F−1(0) for certain value

c ∈ R. The monodromy of the origin of X̃ is therefore equivalent to
the non-existence of real branches of F−1(0). �

4. Proof of Corollary 2

We stated in the introduction the contains of the following well-
known proposition, see for example Lemma 10.2.4 in [15]. Anyway we
include it here with very simple proof for the sake of completeness.

Proposition 10. If detDF ≡ 1 then there is k ∈ R such that gn =
kfn.

Proof. Using the Euler identity for homogeneous functions XE(fn) =
nfn and XE(gn) = ngn where XE = u∂u+ v∂v we know that there exist

functions f̃ and g̃ such that and fn = xn f̃(σ) and gn = xng̃(σ) where
σ = y/x. Since detDF ≡ 1, the Jacobian of the homogeneous map



8 I.A. GARCÍA, J. GINÉ, A. L. RODERO, AND X. YANG

(fn, gn) is identically zero, which implies that f̃(σ)g̃′(σ)− g̃(σ)̃f ′(σ) = 0

and therefore g̃(σ) = kf̃(σ) finishing the proof.
�

Proof of Corollary 2. By (2) we have

F(u, v) = (1 + k2)f 2
n(u, v) + · · · ,

and despite this expression, the function F is not necessary positive
defined in a punctured neighborhood of the origin because the homo-
geneous polynomial fn can have a linear factor in R[u, v].
The algebraic curve F−1(0) has a singularity at (u, v) = (0, 0) and

its eventual branches emanating from it can be expressed as conver-
gent Puiseux series v∗(u) = α0u + o(u) since W (N(F)) = {(1, 1)} by
assumption. The leading coefficient α0 is a non-zero root of the deter-
mining polynomial P(η) = (1 + k2)f 2

n(1, η), see (7).
If α0 ∈ R, we take fn(u, v) =

∑
i+j=n fiju

ivj and we assume that

f0nfn0 6= 0 so that f 2
n(u, v) = f 2

n0u
2n + · · · + f 2

0nv
2n which is clearly

a necessary and sufficient condition for having W (N(F)) = {(1, 1)},
since fn 6≡ 0.
In order to compute the next term in the Puiseux expansion of the

branch v∗(u) we perform the change v 7→ w with v = α0u+w. Then F
is transformed into F̂(u, w) = F(u, α0u+w) = (1+k2)f 2

n(u, α0u+w)+

· · · with f 2
n(u, α0u+ w) = f̂ 2

n0u
2n + · · ·+ f̂ 2

0nw
2n. Indeed f̂n0 = 0 since

fn(u, α0u) ≡ 0 and consequently there is at least one edge in N(F̂)
with weights different from (1, 1).
By the Newton-Puiseux algorithm we know that the eventual branches

must be of the form v∗(u) = α0u + α1u
qi/pi + o(uqi/pi) with (pi, qi) ∈

W (N(F̂)) satisfying qi/pi > 1 and α1 a non-zero real root of the second
determining polynomial Pi(η) defined as

F̂(upi, uqiη) = umiηni (Pi(η) +O(u)) .

The proof of the statements (i) and (ii) finishes recalling Theorem 1
and imposing that all the possible branches v∗(u) be complex-valued
either because either α0 ∈ C\R or α1 ∈ C\R, respectively. �

5. Proof of Theorem 5

Proof. Let F = (f, g) = (x + · · ·+ fn, y + · · ·+ kfn) and consider the
terms of degree n − 1 in the polynomial detDF , that is, we look at
Jn−1 =

∑
i+j=n+1 Jij where Jij denotes the Jacobian determinant of the

polynomial map (fi, gj). Imposing the condition
∑

i+j=n+1
i,j 6=n

Jij ≡ 0, and

taking into account that Jn−1 ≡ 0 since detDF = 1, we obtain that fn
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must satisfy the linear partial differential equation ∂xfn + k∂yfn ≡ 0.
The general solution of this equation is an arbitrary function of y−kx,
hence fn(x, y) = cn(y − kx)n with nonzero cn ∈ R. Then W (N(F)) =
{(1, 1)} thanks to (2) provided that k 6= 0, and the determining poly-
nomial P(η) is, up to a multiplicative constant, given by (η − k)2n.
To continue we need first to compute higher order terms in the ex-

pression of F given in (2). It is straightforward to see that F(u, w) =∑
i≥2n Fi(u, w) being Fi homogeneous polynomials of degree i and

F2n(u, v) = (1 + k2)f 2
n(u, v),

F2n+1(u, v) = 2(u2 + v2)fn(u, v)(fn−1(u, v) + kgn−1(u, v)),

F2n+2(u, v) = (u2 + v2)2(f 2
n−1(u, v) + 2fn−2(u, v)fn(u, v) +

2kfn(u, v)gn−2(u, v) + g2n−1(u, v)).

Now the eventual branches of F are v∗(u) = ku + o(u). We perform
the linear change of variables v 7→ w defined by v = ku+w, such that
F(u, v) is transformed into F̂(u, w) = F(u, ku+ w) =

∑
i≥2n F̂i(u, w)

being F̂i(u, w) = Fi(u, ku + w) homogeneous polynomials of degree i.
Thus we obtain

F̂2n(u, w) = (1 + k2)c2nw
2n,

F̂2n+1(u, w) = 2cnw
n((1 + k2)u2 + 2kuw + w2)×

(fn−1(u, ku+ w) + kgn−1(u, ku+ w)),

F̂2n+2(u, w) = ((1 + k2)u2 + 2kuw + w2)2 ×
(f 2

n−1(u, ku+ w) + g2n−1(u, ku+ w) +

2cnw
n(fn−2(u, ku+ w) + kgn−2(u, ku+ w))).

Due to F̂2n the point (2n, 0) is a vertex of N(F̂). Moreover, the point

(0, 2n+ 1) 6∈ N(F̂) because F̂2n+1(u, 0) = 0. We impose that (0, 2n +

2) ∈ N(F̂), that is, the homogeneous polynomial f 2
n−1(u, ku + w) +

g2n−1(u, ku+w) contains the monomial u2n−2; equivalently f 2
n−1(1, k)+

g2n−1(1, k) 6= 0. In this situation we claim that N(F̂) has only one edge
the one connecting the points (2n, 0) and (0, 2n+2). The claim follows

just observing first that the points with integer coordinates in supp(F̂)

coming from F̂2n+1, that is those on the line x + y = 2n + 1, have

abscissas greater or equal than n since wn divides F̂2n+1 and secondly
because the point (n, n+1) is the intersection between the former line

and the edge of N(F̂).

The associated weights of the edge of N(F̂) are (p1, q1) = (2n, 2n +
2), hence q1/p1 > 1 and we need to compute the associated second



10 I.A. GARCÍA, J. GINÉ, A. L. RODERO, AND X. YANG

determining polynomial P1(η). Following (4) we see that

F̂(u2n, u2n+2η) = u4n(1+n) (P1(η) +O(u)) ,

where P1(η) = (1 + k2)(c2nη
2n + (1+ k2)f 2

n−1(1, k) + 2cnη
n(fn−1(1, k) +

kgn−1(1, k))). Then ηn is a root of a quadratic polynomial with dis-
criminant ∆ = k(−kf 2

n−1(1, k) + 2fn−1(1, k)gn−1(1, k) + kg2n−1(1, k)).
We impose that ∆ < 0 that guarantee ηn ∈ C\R and so η ∈ C\R.
Therefore F̂ has no real branches at the origin and the same happens
to F . This finishes the proof applying Theorem 1. �
Remark 11. In the case k 6= 0, applying the theory of asymptotic solu-
tions at the origin of the differential equation P̃ (u, v)dv−Q̃(u, v)du = 0

associated to the vector field X̃ explained in [13,17], according to [8,9].
This theory is based on the so-called Newton diagram N(X̃ ) of X̃ that

is also a polygonal with associated weights W (N(X̃ )) ⊂ N2, see for ex-
ample [17] to a precise definition of it. The outcome of this analysis is
that the unique balance ku has associated a formal Gâteaux derivative
with polynomial V (j) ≡ 0 which is a degenerate case that does not
provide us any information about the index N of the branch v∗ having
Puiseux series v∗(u) = ku+

∑
i≥1 αiu

1+i/N . This case is commented in
[19, page 298], see also page 5 in [12], and the proposed resolution of
this degeneracy consists in to perform a change of variables to compute
the next non-zero term in v∗(u) = ku+ o(u) that is, the term αju

1+j/N

for some j ≥ 1 such that αi = 0 for all i < j .

6. Example with k = 0

We present an example where W (N(F)) 6= {(1, 1)} and moreover
W (N(X )) 6= W (N(F)).
We take the map F (x, y) = (f(x, y), g(x, y)) = (x+ay3+by4, y) with

(a, b) ∈ R2 that has detDF ≡ 1. One has W (N(X )) = {(4, 7), (1, 1)}
and W (N(F)) = {(4, 7)}, hence we get that W (N(X )) ∩W (N(F)) =
(p, q) = (4, 7) and the eventual real branches are of the form v∗(u) =
α0u

7/4 + o(u7/4) with α0 non-zero real root of P(η) = (1 + bη4)2. So
the real branch may exists only if b < 0. Going to the next level in
the Newton-Puiseux algorithm we obtain, defining b = −B2, and com-
puting F̂(u, w) = F(u4, α0u

7 + w), we get W (N(F̂)) = {(p1, q1)} =
{(1, 7)}. Moreover, the second determining polynomials P1(η) is com-

puted by F̂(u, u7η) = −u56 (P1(η) +O(u)), with P1(η) = (−1+B(α0+
η)2)2(1 + B(α0 + η)2)2. Now we have that the eventual real branches
are v∗(u) = α0u

7/4 + α1u
7 + o(u7) with α1 non-zero real root of P1(η).

Going further in the Newton-Puiseux algorithm we compute F †(u, z) =
F(u, α1w

7 + z), and we get W (N(F †)) = {(p2, q2)} = {(1, 7)}. Since
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q2/p2 ≤ q1/p1 the branch v∗(u) does not exist. This is a proof of the
obvious fact that F is invertible.
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[5] F. Braun, J. Giné and J. Llibre, A sufficient condition in order that the
real Jacobian conjecture in R2 holds, J. Differential Equations 260 (2016),
5250–5258.

[6] E. Brieskorn and H. Knörrer, Plane algebraic curves. Translated from the
German original by John Stillwell. [2012] reprint of the 1986 edition. Modern
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