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We explicitly construct, in terms of Gelfand–Tsetlin tableaux, a new family of simple

positive energy representations for the simple affine vertex algebra Vk(sln+1) in the min-

imal nilpotent orbit of sln+1. These representations are quotients of induced modules

over the affine Kac–Moody algebra ŝln+1 and include in particular all admissible simple

highest weight modules and all simple modules induced from sl2. Any such simple

module in the minimal nilpotent orbit has bounded weight multiplicities.

1 Introduction

Relaxed highest weight modules for affine Kac–Moody algebras attract a considerable

interest due to their connection to the representation theory of conformal vertex

algebras and conformal field theories, cf. [16], [2], [3], [4], [5], [1], [10] and the references

therein. In particular, the importance of relaxed highest weight admissible modules for

conformal field theory was shown in [34], [11], [12], see also [35], [15]. Using the Zhu’s

functor the study of positive energy representations of simple affine vertex algebras

reduces to the representations of the underlined finite-dimensional Lie algebra. This

allows to construct new families of simple representations of admissible vertex
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algebras. This has been exploited in [9], where new families of simple modules were

constructed for the affine vertex algebra of sln and a complete classification of all

simple relaxed highest weight representations with finite-dimensional weight spaces

in the case n = 3 was obtained. Further on, this approach was developed in [29*]

and [30] using Fernando–Mathieu classification of simple weight representations with

finite weight multiplicities of finite-dimensional simple Lie algebras. These papers

provided an algorithm for classifying all admissible relaxed highest weight modules

starting from admissible highest weight modules. The latter modules were classified

in [27] and [7]. However, explicit construction of admissible relaxed highest weight

representations beyond their classification is rather difficult. Moreover, the algorithm

is limited to the modules with finite weight multiplicities. We refer to the recent paper

[20], where the localization and the Wakimoto functors were used to construct relaxed

Wakimoto modules for the universal and simple affine vertex algebras with infinite

weight multiplicities.

The current paper aims to give an explicit construction of admissible repre-

sentations extending [9], where the Gelfand–Tsetlin tableau realization was used to

describe admissible families in type A. Such realization provides a basis and explicit

formulas for the action of the Lie algebra. In this paper we describe several new

families of simple positive energy weight representations of the admissible affine vertex

algebra Vk(sln). These families include all simple highest weight modules in the minimal

nilpotent orbit described in [6]. They also include simple modules in the minimal

nilpotent orbit induced from an sl2-subalgebra. All constructed modules have bounded

weight multiplicities. Our approach is based on the theory of relation Gelfand–Tsetlin

modules developed in [21], where explicit tableau basis was constructed for different

classes of simple Gelfand–Tsetlin modules for gln.

Our 1st main result is Theorem 4.8, which provides a tableau realization for

simple highest weight modules, namely we give necessary and sufficient conditions

for such modules to be relation modules with respect to the standard Gelfand–Tsetlin

subalgebra. In Section 5 we apply twisted localization to relation Gelfand–Tsetlin

modules. We establish the following result (cf. Theorem 5.4).

Theorem 1.1. Let g = sln+1, � the standard Gelfand–Tsetlin subalgebra (correspond-

ing to the chain of embeddings starting from the upper left corner), f = E21, and M a

�-relation module with an injective action of f . Then the twisted localization Dx
f M of M

is a �-relation Gelfand–Tsetlin module for any x ∈ C.
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Using the theorem above we obtain our 2nd main result—Theorem 5.6, where

we classify all simple �-relation Gelfand–Tsetlin modules induced from sl2-subalgebra

generated by E12 and E21. Also, in Theorem 5.8, we obtain an explicit construction of

a family of simple sln+1-modules, which are parabolically induced from cuspidal a-

modules, where a � slm is part of the �-flag, m = 2, . . . , n. Further, localization of simple

highest weight relation modules is considered in Proposition 5.12 for a multiplicative

set generated by any number of commuting generators of the form Ek1.

Finally, in Section 6, we establish our 3rd main result—explicit description

of simple admissible highest weight sln+1-modules and modules induced from sl2

subalgebra in the unique minimal non-trivial nilpotent orbit Omin of sln+1. Let

k + n = p

q
− 1, p > n, q ≥ 1 and (p, q) = 1,

a ∈ {1, 2, . . . , q − 1} and λa = λ − ap
q �1, where λ = (

λ1, . . . , λn

)
is a weight of sln+1 with

λi ∈ Z≥0, for all i = 1, . . . , n, λ1 + . . . + λn < p − n. Then we have (cf. Theorem 6.3 and

Theorem 6.12):

Theorem 1.2.

(i) If � is the standard Gelfand–Tsetlin subalgebra then the simple highest

weight module L(λa) is a bounded �-relation Gelfand–Tsetlin sln+1-module.

Moreover, all simple admissible highest weight modules in the minimal

nilpotent orbit are bounded �-relation Gelfand–Tsetlin modules.

(ii) Let π be a basis of the root system of g, b(π) the corresponding Borel

subalgebra of g, β a positive (with respect to π ) root of g, and ρπ the half-

sum of positive (with respect to π ) roots. Let Lb(π)(λ) be an admissible simple

b(π)-highest weight g-module in the minimal orbit, such that
〈
λ + ρπ , β∨〉

/∈ Z,

and f = fβ . Denote by Aπ ,β the set of all x ∈ C\Z for which x+〈
λ + ρπ , β∨〉

/∈ Z.

Then the twisted localization modules Dx
f Lb(π)(λ), x ∈ Aπ ,β , exhaust all

simple sl2-induced admissible modules in the minimal orbit. Moreover, there

exists a flag F such that Dx
f Lb(π)(λ) is �F -relation Gelfand–Tsetlin g-module.

2 Preliminaries

2.1 Weight modules

Let g be a simple complex finite-dimensional Lie algebra, h a fixed Cartan subalgebra,

U(g) the universal enveloping algebra of g, and W the Weyl group of g. By � we denote
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the root system of g and by �+ the set of positive roots with respect to a fixed basis π

of �. Put Q = ∑
α∈�

Zα for the root lattice and Q∨ = ∑
α∈�

Zα∨ for the coroot lattice, where

α∨ = 2α/(α, α). Let ρπ to be the half sum of positive roots.

By b(π) we denote the standard Borel subalgebra of g corresponding to the set

π . In addition to the standard Borel subalgebra of g we also consider the standard

parabolic subalgebras of g. For a subset 
 of π denote by �
 the root subsystem in h∗

generated by 
. Then the standard parabolic subalgebra p
(π) of g associated to π and


 is defined as p
(π) = l
 ⊕ u
+

 with nilradical u+


 := ⊕
α∈�+\�


gα, opposite nilradical

u
−

 := ⊕

α∈�+\�

g−α, and Levi subalgebra l
 defined by

l
 := h ⊕
⊕

α∈�


gα.

Moreover, we have the corresponding triangular decomposition g = u
−

 ⊕ l
 ⊕ u

+

 . Note

that if 
 = ∅ then p
(π) = b(π), and if 
 = π then p
(π) = g.

Recall that a g-module (respectively l
-module) M is called weight if h is

diagonalizable on M. Let V be a simple weight l
-module. Set p := p
(π) and consider V

as a p-module with trivial action of the nilradical u+

 . The generalized Verma g-module

Mg
p (
, V) is the induced module

Mg
p (
, V) = Indg

pV = U(g) ⊗U(p) V.

The module Mg
p (
, V) has a unique maximal submodule and a unique simple quotient

Lg
p(
, V). We write M(λ) for the Verma module Mg

b(π)
(∅,Cvλ) and L(λ) for Lg

b(π)
(∅,Cvλ)

when it is clear which Borel subalgebra is meant.

Let M be a weight g-module. For λ ∈ h∗ the subspace Mλ of those v ∈ V such that

hv = λ(h)v is the weight subspace of weight λ. The dimension of Mλ is the multiplicity

of weight λ. We say that a weight module is bounded if all weight multiplicities are

uniformly bounded. A weight g-module M is torsion free if for any nonzero weight

subspace Mλ and any root α, a nonzero root vector X ∈ gα defines an isomorphism

between Mλ and Mλ+α. A weight module M is cuspidal if M is finitely generated torsion

free module with finite weight multiplicities.

Proposition 2.1. [31, Corollary 1.4] For a simple weight g-module M with finite weight

multiplicities, the following assertions are equivalent:

(a) M is cuspidal;
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(b) M is torsion free;

(c) The support of M is exactly one Q-coset.

A weight module satisfying Proposition 2.1, (c) is called dense.

2.2 Annihilators

Recall that λ ∈ h∗ is dominant if
〈
λ + ρπ , α∨〉

/∈ Z<0, for all α ∈ �+. Similarly λ is

antidominant if
〈
λ + ρπ , α∨〉

/∈ Z>0 for all α ∈ �+. Also, λ is regular if
〈
λ + ρπ , α∨〉 
= 0 for

all α ∈ �. If Z is the center of U(g) and λ ∈ h∗, then χλ : Z → C stands for the central

character of L(λ).

For an associative algebra A and an A-module M, the annihilator of M in A is

the ideal {a ∈ A | am = 0 for allm ∈ M} and will be denoted by AnnA(M).

Proposition 2.2. [13, 8.5.8] If λ ∈ h∗ is dominant, then the annihilator of L(λ) is the

unique maximal two-sided ideal of U(g) containing U(g) ker χλ.

If λ is regular dominant, then the correspondence I �→ IM(λ) gives an order-

preserving bijection between two-sided ideals of U(g) containing U(g) ker χλ and sub-

modules of M(λ) [24, Corollaries 4.3 and 4.8]. As a consequence of Proposition 2.2 we

immediately have the following well-known assertion.

Corollary 2.3. Let λ, μ ∈ h∗ be dominant. If μ = w·λ for some w ∈ W then AnnU(g) L(λ) =
AnnU(g) L(μ). Moreover, the converse holds if λ is regular.

2.3 Affine vertex algebras

Consider the non-twisted affine Kac–Moody algebra associated with g: ĝ = g[t, t−1]+CK,

where K is a central element. Denote by �̂ the set of roots of ĝ. Then �̂re = {α + mδ | α ∈
�, m ∈ Z} is the set of real roots and �̂re+ = {α + mδ | α ∈ �+, m ∈ Z≥0} 
 {−α + mδ | α ∈
�+, m ∈ Z≥1} is the set of positive real roots with respect to the basis π ∪{−θ + δ}, where

θ is the maximal positive root of g and δ is the minimal indivisible positive imaginary

root. By W̃ = W � Q∨ we denote the extended affine Weyl group of ĝ.

For k ∈ C denote by Vk(g) the universal affine vertex algebra associated with g

at level k ([18, 26]):

Vk(g) = U (̂g)U(g[t]⊕CK)Cvk,

where g[t]vk = 0 and Kvk = kvk.
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The simple affine vertex algebra associated with g at level k is the unique simple

graded quotient of Vk(g), which will be denoted by Vk(g). In the conformal case (i.e.,

k 
= −h∨, where h∨ is the dual Coxeter number of g) there is a one-to-one correspondence

between simple positive energy representations of Vk(g) and simple A(Vk(g))-modules

[36], where

A(Vk(g)) � U(g)/Ik

is the Zhu’s algebra of Vk(g) and Ik is some two-sided ideal of U(g).

For λ ∈ h∗ and k ∈ C denote by L̂k(λ) the simple highest weight ĝ-module with the

highest weight λ̂ := λ + k�0 ∈ ĥ
∗
, where �0(K) = 1, and �0(h) = 0 for h ∈ h. Following

[27], the module L̂k(λ), and the highest weight λ, will be called admissible if

(1) 〈λ + ρ̂, α∨〉 /∈ Z≤0 for all α ∈ �̂re+ ;

(2) Q�̂(λ) = Q�̂re,

where �̂(λ) = {α ∈ �̂re | 〈λ + ρ̂, α∨〉 ∈ Z}. The level k of ĝ is admissible if the ĝ-module

Vk(g) ∼= L̂k(0) is admissible.

In this paper we are interested in type A only, hence from now on we fix n ≥ 2

and assume that g is of type An. In this case the description of admissible levels is as

follows.

Proposition 2.4. [28, Proposition 1.2] Let g = sln+1. The number k is admissible if and

only if

k + n = p

q
− 1 with p, q ∈ N, (p, q) = 1, p ≥ n + 1.

2.4 Relaxed highest weight modules

Fix an admissible number k. Following [9], we say that a g-module M is admissible of

level k if M is an A(Vk(g))-module. The corresponding simple quotient of the induced

module for ĝ is a relaxed highest weight module. We have a one-to-one correspondence

between the set of isomorphism classes of simple admissible g-modules of level k and

the isomorphism classes of simple positive energy representations of Vk(g).

Denote by Prk the set of admissible weights λ such that there exists y ∈ W̃

satisfying �̂(λ) = y(�̂(k�0)), and Prk,Z := {λ ∈ Prk | λ(K) = k, 〈λ, α∨
i 〉 ∈ Z for all i =

1, . . . , l}, where l is the rank of g. If k has the denominator q such that (q, r∨) = 1, then
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(see [28])

Prk =
⋃

y∈W̃

y(�̂(k�0)+)⊂�̂re+

Prk,y, and Prk,y := y · Prk,Z.

Let Prk := {λ̄ | λ ∈ Prk} ⊂ h∗, where λ̄ is the projection of λ to h∗. The importance of this

set comes from the following Arakawa result by Arakawa.

Theorem 2.5. [7, Main Theorem] Let k be admissible, λ ∈ h∗. Then L̂k(λ) is a module

over Vk(g) if and only if λ ∈ Prk.

For λ ∈ h∗ denote by Jλ the corresponding primitive ideal AnnU(g) L(λ). By

Theorem 2.5, a simple g-module M is admissible of level k if and only if AnnU(g) M = Jλ

for some λ ∈ Prk. As a consequence of Proposition 2.2 and Corollary 2.3, we have

immediately the following statement.

Proposition 2.6. [9, Proposition 2.4] For λ ∈ Prk, the primitive ideal Jλ is the unique

maximal two-sided ideal of U(g) containing U(g) ker χλ. In particular, Jλ = Jμ for λ, μ ∈
Prk if and only if there exists w ∈ W such that μ = w · λ.

Remark 2.7. The following characterization of the Zhu’s algebra of Vk(g) was shown

in [8, Theorem 3.4]:

A(Vk(g)) �
∏

λ∈[Prk]

U(g)

Jλ

.

For a two-sided ideal I of U(g), denote by Var(I) the associated variety of I (the

zero locus of the associated graded ideal grI in g∗, with respect to the PBW filtration).

If I is primitive then Var(I) = O for some nilpotent orbit O of g [25, Theorem 3.10].

Definition 2.8. A simple g-module M is in the orbit O if Var(AnnU(g) M) = O.

We have the following:

Theorem 2.9. [6, Corollary 9.2 and Theorem 9.5] A simple g-module M in the orbit O

is admissible of level k if and only if AnnU(g) M = Jλ for some λ ∈ [Pr
O

k ]. Moreover, there
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exists a nilpotent orbit Oq that depends only on q such that

Var(Ik) = Oq.

Hence, Var(Jλ) ⊂ Var(Ik) = Oq for any λ ∈ Prk. Moreover, by Theorems 2.5 and 2.9,

we have

Prk =
⊔

O⊂Oq

Pr
O

k ,

where O is a nilpotent orbit of g and Pr
O

k = {λ ∈ Prk | Var(Jλ) = O}.
Set [Prk] = Prk/ ∼, where λ ∼ μ if and only if there exists w ∈ W such that

μ = w · λ. By Proposition 2.6, the ideal Jλ depends only on the class of λ ∈ Prk in [Prk].

Therefore,

[Prk] =
⊔

O⊂Oq

[Pr
O

k ],

where [Pr
O

k ] is the image of Pr
O

k in [Prk].

3 Twisted Localization

In this section F := {f1, . . . , fr} will denote any set of locally ad-nilpotent commuting

elements of U(g), x any element of Cr. A g-module M will be called F-bijective if fi acts

bijectively on M for each i = 1, 2, . . . , r. By DFU(g) we denote the localization of U(g)

relative to the multiplicative set 〈F〉 generated by F. Similarly, for a g-module M denote

by DFM = DFU(g) ⊗U(g) M the localization of M relative to 〈F〉. We will consider DFM

both as a U(g)-module and as a DFU(g)-module.

Proposition 3.1. Let M be an F-bijective g-module, L, N submodules of M, such that L

is not F-bijective, and M/L is simple. If L is isomorphic to a proper submodule of DFN

then DFN � M.

Proof. As DF is an exact functor, then DFN is a submodule of DFM � M. Since L is a

proper submodule of DFN, the statement follows from the maximality of L in M. �
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For x = (x1, . . . , xr) ∈ Cr consider the automorphism �x
F of DFU(g) such that

�x
F(u) :=

∑
i1,...,ir≥0

(
x1

i1

)
. . .

(
xr

ir

)
ad(f1)i1 . . . ad(fr)

ir (u) f −i1
1 . . . f −ir

r ,

for u ∈ DFU(g), where
(x

i

)
:= x(x − 1)...(x − i + 1)/i! for x ∈ C, i ∈ Z>0 and

(x
0

)
:= 1 ([31,

Section 4]).

Definition 3.2. For a DFU(g)-module N, we will denote by �x
FN the DFU(g)-module on

N twisted by �x
F , where the new action is given by

u · vx := (�x
F(u) · v)x,

for u ∈ DFU(g), v ∈ N. Here vx stands for the element v considered as an element of

�x
FN.

If M is a g-module and x ∈ Cr, then Dx
FM := �x

FDFM is the twisted localization

of M relative to F and x.

Remark 3.3. Note that for x ∈ Zr, we have �x
F(u) = fxuf−x, where fx := f x1

1 ...f xr
r .

Moreover, Dx
FM and DFM are isomorphic for any g-module M.

The following important property of the twisted localization is a consequence

of [23, Lemma 2.8].

Proposition 3.4. Let M be a weight g-module with finite-dimensional weight spaces

and assume that F is injective on M. Then

AnnU(g)M = AnnU(g)DFM ⊂ AnnU(g)D
x
FM,

for any x ∈ Cr. Moreover, AnnU(g)M ⊂ AnnU(g)N, for any subquotient N of Dx
FM.

Applying Proposition 3.4 and Proposition 2.2 to simple highest weight modules

with dominant highest weights we obtain the following statement.
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Corollary 3.5. Let λ ∈ h∗ be dominant, x ∈ Cr, and F be injective on L(λ). If N 
= 0 is a

simple subquotient of Dx
FL(λ) then

AnnU(g)L(λ) = AnnU(g)D
x
FL(λ) = AnnU(g)N.

4 Relation Gelfand–Tsetlin Modules

4.1 Gelfand–Tsetlin modules

For any flag F : gl1 ⊂ · · · ⊂ gln+1 we have an induced flag U1 ⊂ · · · ⊂ Un+1 of the

corresponding universal enveloping algebras. Let Zm be the center of Um. Following [14],

we call the subalgebra �F of U := Un+1 generated by {Zm | m = 1, . . . , n+1} the Gelfand–

Tsetlin subalgebra of U (with respect to F ). If the flag is given by left-upper corner

inclusions, the corresponding Gelfand–Tsetlin subalgebra will be called the standard

Gelfand–Tsetlin subalgebra and will be denoted by �st. Consider a standard basis Eij,

i, j = 1, . . . n+1 of gln+1. Then the standard flag Fst of gln+1 consists of glk, k = 1, . . . , n+1,

with gls generated by Eij, i, j = 1, . . . s for all s. If w ∈ W and F = wFst then �F = w�st

with a natural action of w.

Definition 4.1. A finitely generated U-module M is called a �F -Gelfand–Tsetlin

module if M splits into a direct sum of �F -modules:

M =
⊕

m∈Specm�F

M(m),

where

M(m) = {v ∈ M | mkv = 0 for some k ≥ 0}.

Identifying m with the homomorphism χ : �F → C with Kerχ = m, we will call

m a Gelfand–Tsetlin character of M if M(m) 
= 0. The dimension dim M(m) will be called

the Gelfand–Tsetlin multiplicity of m.

Remark 4.2. Let τ : gln+1 → sln+1 be a natural projection that extends to a

homomorphism τ̄ : U(gln+1) → U(sln+1). If � is a Gelfand–Tsetlin subalgebra of gln+1

then τ̄ (�) of � is called a Gelfand–Tsetlin subalgebra of sln+1.
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Unless otherwise is stated, from now on we will assume that �F = �st, which

we simply denote by �. We will refer to �-Gelfand–Tsetlin modules simply as Gelfand–

Tsetlin modules.

4.2 Relation modules

A class of relation Gelfand–Tsetlin modules was constructed in [21]. These modules have

properties similar to finite-dimensional modules [22] and to generic Gelfand–Tsetlin

modules [14]. We recall their construction here since it will be used later on.

Set V := {(i, j) | 1 ≤ j ≤ i ≤ n + 1}, and R := R− ∪ R0 ∪ R+ ⊂ V × V, where

R+ := {((i, j); (i − 1, t)) | 2 ≤ j ≤ i ≤ n + 1, 1 ≤ t ≤ i − 1}
R− := {((i, j); (i + 1, s)) | 1 ≤ j ≤ i ≤ n, 1 ≤ s ≤ i + 1}
R0 := {((n + 1, i); (n + 1, j)) | 1 ≤ i 
= j ≤ n + 1}

Any subset C ⊆ R will be called a set of relations. With any C ⊆ R we associate

a directed graph G(C) with the set of vertices V, which has an arrow from vertex (i, j)

to (r, s) if and only if ((i, j); (r, s)) ∈ C. For convenience, we will picture the set V as a

triangular tableau with n+1 rows, where the k-th row is {(k, 1), . . . , (k, k)}, k = 1, . . . , n+
1.

For v ∈ C
(n+1)(n+2)

2 denote by T(v) the image of v via the natural isomorphism

between C
(n+1)(n+2)

2 and Cn+1 × · · · × C1. If T(v) = (v(n+1), . . . , v(1)) then we refer to v(k) =
(vk1, . . . , vkk) as the k-th row of T(v). Hence, we can picture T(v) as a triangular tableau,

a Gelfand–Tsetlin tableau of height n + 1. Finally, by Z
(n+1)(n+2)

2
0 , we will denote the set of

vectors v in Z
(n+1)(n+2)

2 such that v(n+1) = 0.

Definition 4.3. [21, Definition 4.2] Let C be a set of relations and T(L) any Gelfand–

Tsetlin tableau, where L = (lij) ∈ C
(n+1)(n+2)

2 .

(a) We say that T(L) satisfies C if:

(i) lij − lrs ∈ Z≥0 for any ((i, j); (r, s)) ∈ C ∩ (R+ ∪ R0);

(ii) lij − lrs ∈ Z>0 for any ((i, j); (r, s)) ∈ C ∩ R−.

(b) We say that T(L) is a C-realization if T(L) satisfies C and for any 1 ≤ k ≤ n

we have lki − lkj ∈ Z if only if (k, i) and (k, j) in the same connected component

of the undirected graph associated with G(C).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/20/15788/6314694 by U
SP-R

eitoria-Sibi (inst.bio) user on 01 June 2023



Simple Modules in the Minimal Nilpotent Orbit 15799

(c) We call C noncritical if for any C-realization T(L) one has lki 
= lkj, 1 ≤ k ≤
n, i 
= j, if (k, i) and (k, j) are in the same connected component of G(C).

(d) Suppose that T(L) satisfies C. Then BC(T(L)) denotes the set of all tableaux

of the form T(L + z), z ∈ Z
(n+1)(n+2)

2
0 satisfying C. Also, VC(T(L)) denotes the

complex vector space spanned by BC(T(L)).

Remark 4.4. Note that if T(L) satisfies C, and C is the maximal set of relations satisfied

by T(L), then T(L) is a C-realization.

Definition 4.5. [21, Definition 4.4] Let C be a set of relations. We call C admissible if

for any C-realization T(L), VC(T(L)) has a structure of a sln+1-module, endowed with the

following action of the generators of sln+1:

Ek,k+1(T(w)) = −
k∑

i=1

(∏k+1
j=1 (wki − wk+1,j)∏k

j 
=i(wki − wkj)

)
T(w + δki),

Ek+1,k(T(w)) =
k∑

i=1

(∏k−1
j=1 (wki − wk−1,j)∏k

j 
=i(wki − wkj)

)
T(w − δki),

Hk(T(w)) =
(

2
k∑

i=1

wki −
k−1∑
i=1

wk−1,i −
k+1∑
i=1

wk+1,i − 1

)
T(w).

(1)

A pair {(k, i), (k, j)} ⊂ V is an adjoining pair for a graph G if i < j, there is a path

in G(C) from (k, i) to (k, j), and there is no path in G(C) from (k, i) to (k, j) passing trough

(k, t) with i < t < j.

Suppose that C is a noncritical set of relations whose associated graph G = G(C)

satisfies the following conditions:

(i) G is reduced;

(ii) If there is a path in G connecting (k, i) and (k, j) with tail (k, i) and head (k, j),

then i < j (in particular G does not contain loops);

(iii) If the graph G contains an arrow connecting (k, i) and (k + 1, t) then (k + 1, s)

and (k, j) with i < j, s < t are not connected in G.

By [21, Theorem 4.33], the set C is admissible if and only if G is a union of

connected graphs satisfying the following
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�-Condition: For every adjoining pair {(k, i), (k, j)}, 1 ≤ k ≤ n, there exist p, q such that

C1 ⊆ C or there exist s < t such that C2 ⊆ C, where the graphs associated to C1 and C2 are

as follows:

From now on we will assume that C is an admissible set of relations and consider

the sln+1-module VC(T(L)). The simplicity criteria for VC(T(L)) is as follows.

Theorem 4.6. [21, Theorem 5.6] The Gelfand–Tsetlin module VC(T(L)) is simple if and

only if C is the maximal (admissible) set of relations satisfied by T(L).

We will call VC(T(L)) a �-relation Gelfand–Tsetlin module. Similar construction

can be made for any Gelfand–Tsetlin subalgebra �F = w�st, w ∈ W. Applying w to the

formulas (1) we obtain explicit action of sln+1 on �F -relation Gelfand–Tsetlin modules.

4.3 Classification of highest weight relation modules

The goal of this section is to describe all simple highest weight modules that can be

realized as VC(T(L)) for some admissible set of relations C. From now on we fix g :=
sln+1, the set of simple roots π = {α1, . . . , αn}, and set αr,s := αr + . . .+αs for 1 ≤ r ≤ s ≤ n.

We use elements Eij, i, j = 1, . . . , n + 1, i 
= j, Hk := Ekk − Ek+1,k+1, k = 1, . . . , n, as a basis

of g.

From [21, Proposition 5.9], we have the following statement.

Lemma 4.7. If
〈
λ + ρπ , α∨〉

/∈ Z≤0 for all α ∈ �+ \ {αk,n | k = 1, . . . , n}, then the simple

highest weight module L(λ) is a �-relation module.

The following assertion classifies all simple highest weight �-relation modules.

Theorem 4.8. The simple highest weight module L(λ) is a �-relation module if and

only if one of the following conditions holds:

a)
〈
λ + ρπ , α∨〉

/∈ Z≤0, for all α ∈ �+ \ {αk,n | k = 1, . . . , n}.
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b) There exist unique i, j with 1 ≤ i ≤ j < n such that:

i)
〈
λ + ρπ , α∨

k

〉 ∈ Z>0 for each k > j,

ii)
〈
λ + ρπ , α∨〉

/∈ Z≤0 for all α ∈ �+ \ {αi,k | k ≥ j},
iii)

〈
λ + ρπ , α∨

i,n

〉
∈ Z≤0.

Proof. Suppose that L(λ) is a �-relation Gelfand–Tsetlin module. Then L(λ) � VC(T(v))

for some tableau T(v). As L(λ) is simple, we can assume without loss of generality that

T(v) is a highest weight vector of weight λ and C is the maximal set of relations satisfied

by T(v) (cf. Theorem 4.6). Then Ek,k+1(T(v)) = 0 for all k = 1, . . . , n, which implies vij =
vkj for all 1 ≤ i, k < j ≤ n + 1 (see (1)), and C ⊃ {((i + 1, j); (i, j)) | 1 ≤ j ≤ i ≤ n}. Set

vj := vn+1,j, and note that vi − vj+1 =
〈
λ + ρπ , α∨

i,j

〉
for all 1 ≤ i ≤ j ≤ n. Now suppose that

for some α ∈ �+ \ {αk,n | k = 1, . . . , n} we have
〈
λ + ρπ , α∨〉 ∈ Z≤0. Hence, there exists a

pair (r, s) with 1 ≤ r ≤ s < n such that vr − vs+1 = 〈
λ + ρπ , α∨

r,s

〉 ∈ Z<0. This shows that

I = {(r, s) | vs − vr ∈ Z>0 and 1 ≤ r < s < n} 
= ∅. Now choose i = min{r | (r, s) ∈ I} and

j = min{s | (i, s) ∈ I}. Then (j, i) and (j, j) form an adjoining pair and the associated graph

looks as follows:

On the other hand, C is an admissible set of relations and, hence, by the �-condition the

associated graph must satisfy

Therefore, vj−vj+1 ∈ Z>0 and vj+1−vi ∈ Z>0. Repeating the same argument, we conclude

that vk − vk+1 ∈ Z>0 for all k = j, . . . , n and vn+1 − vi ∈ Z≥0. Consequently, we have

vr − vs ∈ Z>0 for all j ≤ r < s ≤ n + 1. On the other hand, from the choice of i, we have

that vr − vs /∈ Z≤0 for each 1 ≤ r < i and s > r. From the definition of j we also have
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vi − vs /∈ Z≤0 for each i < s < j. Given that vs − vi ∈ Z≥0 for all s ≥ j and vi − vr /∈ Z≤0 for

all i < r < j, we obtain vs − vr /∈ Z≤0 for all s, r such that i < r < j ≤ s ≤ n + 1. Finally,

vs −vr /∈ Z≤0 for all s, r such that i < r < s < j. Indeed, assume that vs −vr ∈ Z<0 for some

i < r < s < j. Then there exists r < j′ ≤ s such that vk − vk+1 ∈ Z>0 for all k = j′, . . . , n. In

particular, vs − vj ∈ Z>0, which is a contradiction.

Conversely, suppose first that (a) holds. Then by Lemma 4.7 we have that L(λ) is

a �-relation module. Now assume (b) and let vs − vs+1 = 〈
λ + ρπ , α∨

s

〉
for each 1 ≤ s ≤ n

such that
n+1∑
s=1

vs = −
(

n + 1

2

)
. Then for some 1 ≤ i ≤ j < n the following conditions are

satisfied:

• vn+1 − vi ∈ Z≥0,

• vr − vs ∈ Z>0 for all j + 1 ≤ r < s ≤ n + 1,

• vr − vs /∈ Z≤0 for all 1 ≤ r ≤ j, r < s ≤ n + 1 and r, s 
= i,

• vr − vi ∈ Z>0 for all j + 1 ≤ r ≤ n,

• vr − vi /∈ Z≤0 for all 1 ≤ r ≤ j and r 
= i.

Let T(v) be a Gelfand–Tsetlin tableau with entries

vrs =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vs, if 1 ≤ s < i or i ≤ r ≤ j,

vs+j−i+1, if i ≤ s < r + i − j,

vs−r+j, if s ≥ r + i − j,

for 1 ≤ s ≤ r ≤ n+1, and let C be the maximal set of relations satisfied by T(v). To prove

that C is admissible we consider the following cases.

Case I: Suppose that (k, r) and (k, s) form an adjoining pair for some 1 ≤ k < j.

Then we have an indecomposable subset C′ of C with the associated graph

The same happens in the following cases:

• j ≤ k ≤ n and 1 < s < i;

• j < k ≤ n and 1 ≤ r < s = i;

• j + 1 < k ≤ n and i < s < n + i − j where r = s − 1.
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Case II: Suppose j ≤ k ≤ n, 1 ≤ r < i, and s ≥ k + i − j. If (k, r) and (k, s) form

an adjoining pair, then we have an indecomposable subset C′ of C with the following

associated graph:

The graph is the same in the case k = j and r ≥ i.

Case III: Fix j < k ≤ n with r ≥ k + i − j. If (k, r) and (k, s) form an adjoining pair,

then the associated graph of the indecomposable subset C′ of C is as follows:

Case IV: Finally, let j < k ≤ n, s = k + i − j, and r = s − 1. In this case (k, r) and

(k, s) are an adjoining pair with the associated graph as follows:

The same happens in the case: j < k ≤ n and r = k + i − j − 1 for each adjoining pair

{(k, r), (k, s)}.
Therefore, C is admissible and VC(T(v)) is a simple module by Theorem 4.6.

Hence, VC(T(v)) = U(g)T(v), Ek,k+1(T(v)) = 0, and Hk(T(v)) = 〈
λ, α∨

k

〉
T(v) for all k =

1, . . . , n. �

In particular, applying Theorem 4.8 and [31, Proposition 8.5], we get the fol-

lowing criterion for infinite-dimensional simple highest weight modules to be bounded

�-relation modules.
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Corollary 4.9. The simple highest weight module L(λ) is a bounded infinite-

dimensional �-relation module if and only if one of the following conditions holds:

(a)
〈
λ + ρπ , α∨

n

〉
/∈ Z>0, and

〈
λ + ρπ , α∨

k

〉 ∈ Z>0 for all k < n;

(b)
〈
λ + ρπ , α∨

1

〉
/∈ Z, and

〈
λ + ρπ , α∨

k

〉 ∈ Z>0 for all k > 1;

(c)
〈
λ + ρπ , α∨

1

〉 ∈ Z<0,
〈
λ + ρπ , α∨

1n

〉 ∈ Z≤0, and
〈
λ + ρπ , α∨

k

〉 ∈ Z>0 for all k > 1;

(d) There exists a unique i ∈ {2, . . . , n − 1} such that
〈
λ + ρπ , α∨

i

〉 ∈ Z<0,〈
λ + ρπ , α∨

i−1,i

〉
∈ Z>0,

〈
λ + ρπ , α∨

in

〉 ∈ Z≤0, and
〈
λ + ρπ , α∨

k

〉 ∈ Z>0 for all k 
= i;

(e) There exists a unique i 
= n such that
〈
λ + ρ, α∨

i

〉
/∈ Z,

〈
λ + ρπ , α∨

i+1

〉
/∈ Z,〈

λ + ρ, α∨
i,i+1

〉
∈ Z>0, and

〈
λ + ρπ , α∨

k

〉 ∈ Z>0 for all k 
= i, i + 1.

Remark 4.10. For i = 1, 2, . . . , n, the highest weight module L(−ωi) is bounded but not

a �-relation module.

Corollary 4.11. Let λ ∈ h∗. The following conditions are equivalent:

(a) The Verma module M(λ) is a simple �-relation module;

(b)
〈
λ + ρπ , α∨〉

/∈ Z, for any α ∈ �+ \ {αk,n | k = 1, . . . , n}, and
〈
λ + ρπ , α∨

k,n

〉
/∈ Z>0

for k = 1, . . . , n.

Remark 4.12. By Corollary 4.11, M(λ) is a simple �-relation module if and only if

M(λ) � VC(T(v)), where T(v) is a generic tableau and C is the maximal set of relations

satisfied by T(v). This generalizes [32, Proposition 1] (cf. [9, Corollary 3.7] and [21,

Example 5.10]).

Since L(λ) has finite-dimensional weight subspaces, then it is a w�-Gelfand–

Tsetlin module for any w ∈ W. Denote by W̃ the extension of the Weyl group of g by

the symmetries of the root system. Let w ∈ W̃ and b = wbst. Then, clearly, Lb(wλ)

is a w�-relation Gelfand–Tsetlin module if and only if wλ satisfies the conditions of

Corollary 4.9 for wα∨
k , k = 1, . . . , n. In particular, we obtain the following:

Corollary 4.13. Let λ ∈ h∗ and
〈
λ + ρπ , β∨

j

〉
∈ Z>0 for some simple roots βj, j = 1, . . . , t.

Consider the minimal w ∈ W such that
〈
w(λ + ρπ), β∨

j

〉
∈ Z≤0 for all j = 1, . . . , t, and

set �F = w�. Then the simple highest weight module L(λ) is a bounded infinite-

dimensional �F -relation Gelfand–Tsetlin module if and only if λ satisfies one of the

conditions of Corollary 4.9.
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Proof. Since Lwbst
(wλ) � L(λ), it is sufficient to consider the weight wλ and apply

Corollary 4.9. �

Corollary 4.13 shows that L(λ) can have different realizations via Gelfand–

Tsetlin tableaux as a relation module.

Lemma 4.14. Suppose λ satisfies conditions (a) or (e) of Corollary 4.9. Let i > 1 and

set wi = si−1sisi−2si−1 · · · s2s3s1s2 ∈ W, then Li = Lw−1
i bst

(w−1
i λ) is a �-relation Gelfand–

Tsetlin module.

Proof. Let us consider {v1, . . . , vn+1} ⊆ C such that v1 − v2 = 〈
λ + ρπ , α∨

i

〉
, v1 − vi+1 =

−
〈
λ + ρπ , α∨

i−1

〉
, v2 − vi+2 =

〈
λ + ρπ , α∨

i+1

〉
, vk+2 − vk+3 = 〈

λ + ρπ , α∨
k

〉
for all 1 ≤ k ≤ i − 2,

vk − vk+1 = 〈
λ + ρπ , α∨

k

〉
for all k ≥ i + 2, and

n+1∑
i=1

vi = −
(

n + 1

2

)
.

Let T(v) be the Gelfand–Tsetlin tableau with entries

vrs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 + i − 1, if r = s = 1,

v1 + i + 1 − r, if 1 < r ≤ i and s = r − 1,

v1, if r > i and s = i,

v2 + i + 1 − r, if 1 < r ≤ i and s = r,

v2, if r > i and s = r,

v3, if r ≥ 3 and s = 1,

vs+2, if r ≥ 4 and 2 ≤ s < i,

vs, if r > s ≥ i + 1.

Consider the set of relations C = C+ ∪ C−, where

C+ := {((r + 1, s); (r, s)) | 1 ≤ s < r ≤ n or r = s = 1}
⋃

{((r + 1, r + 1); (r, r)) | i + 1 ≤ r ≤ n}

C− := {((r, r); (r + 1, r + 1)) | 1 < r ≤ i}
⋃

{((r, s); (r + 1, s + 1)) | 1 ≤ s < r ≤ n}.

In this case, C is an admissible set of relations, T(V) is a C-realization, and

VC(T(v)) is a simple module by Theorem 4.6. Moreover, VC(T(v)) = U(g)T(v), E12(T(v)) =
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Ei+1,1(T(v)) = E2,i+2(T(v)) = Ek,k+1(T(v)) = 0 for all k /∈ {i − 1, i, i + 1}, H1(T(v)) =〈
λ, α∨

i

〉
T(v),

∑i
k=1(−Hk)(T(v)) =

〈
λ, α∨

i−1

〉
T(v),

∑i+1
k=2 Hk(T(v)) =

〈
λ, α∨

i+1

〉
T(v), Hj+2(T(v)) =〈

λ, α∨
j

〉
T(v) for all 1 ≤ j ≤ i − 2, and Hj(T(v)) =

〈
λ, α∨

j

〉
T(v) for all j ≥ i + 2. Hence,

VC(T(v)) � Li. �

5 Induced Relation Modules

In this section we fix f = E21 and � = �st.

5.1 Localization of relation modules

Lemma 5.1. Suppose that T(v) is a C-realization for some admissible set of

relations C.

(a) f is injective on VC(T(v)) if and only if ((1, 1); (2, 1)) /∈ C and ((1, 1); (2, 2)) /∈ C.

(b) f is surjective on VC(T(v)) if and only if ((2, 1); (1, 1)) /∈ C and ((2, 2);

(1, 1)) /∈ C.

Proof. For any T(w) ∈ BC(T(v)) we have f (T(w)) = T(w − δ11) ∈ BC(T(v)), since

((1, 1); (2, 1)) /∈ C and ((1, 1); (2, 2)) /∈ C. Suppose that 0 
= u = ∑
i∈I aiT(wi) ∈ VC(T(v)).

Then

f (u) = f
( ∑

i∈I

aiT(wi)

)
=

∑
i∈I

aiT(wi − δ11) 
= 0,

as ai 
= 0, T(wi − δ11) ∈ VC(T(v)) and T(wi − δ11) 
= T(wj − δ11) for all i 
= j ∈ I. On the

other hand, if ((1, 1); (2, 1)) ∈ C or ((1, 1); (2, 2)) ∈ C, then there exists T(w) ∈ BC(T(v))

such that w11 − w21 = 1 or w11 − w22 = 1, and hence f (T(w)) = T(w − δ11) = 0, as

T(w − δ11) /∈ BC(T(v)). This shows item (a).

If ((2, 1); (1, 1)) /∈ C and ((2, 2); (1, 1)) /∈ C then for any T(w) ∈ BC(T(v)), we have

T(w + δ11) ∈ BC(T(v)) and f (T(w + δ11)) = T(w). Hence, for any u ∈ VC(T(v)),

u =
∑
i∈I

aiT(wi) =
∑
i∈I

aif (T(wi + δ11)) = f

(∑
i∈I

aiT(wi + δ11)

)
.

On the other hand, assume that ((2, 1); (1, 1)) ∈ C or ((2, 2); (1, 1)) ∈ C and f is surjective

on VC(T(v)). Then there exists T(w) ∈ BC(T(v)) with w11 = w21 or w11 = w22 and
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u ∈ VC(T(v)), such that

f (u) =
∑
i∈I

aiT(wi − δ11) = T(w).

Hence, T(w) = T(wi − δ11) for some i ∈ I. As T(wi) ∈ BC(T(v)), we have 0 = w21 − w11 =
wi

21 − wi
11 + 1 ∈ Z>0 or 0 = w22 − w11 = wi

22 − wi
11 + 1 ∈ Z>0. This implies (b). �

Next we consider the twisted localization of VC(T(v)) with respect to f and its

tableaux realization.

Lemma 5.2. Let C be an admissible maximal set of relations such that

C ∩ {((1, 1); (2, 1)), ((1, 1); (2, 2))} = ∅

and T(v) a C-realization. If D = C \{((2, 1); (1, 1)), ((2, 2); (1, 1))} then the localized module

Df (VC(T(v))) is isomorphic to VD(T(v)).

Proof. Set M = VC(T(v)) and N = VD(T(v)). By Lemma 5.1, the action of f on M is

injective but not bijective. Hence, M is a proper submodule of Df M. On the other hand,

consider the set of relations C1 = D ∪ {((1, 1); (2, 1))}. By Theorem 4.6, VC1
(T(v + δ11)) is a

simple module isomorphic to N/M and hence, M is a maximal submodule of N. Finally,

since f is bijective on N, by Proposition 3.1, we have N � Df M. �

Under the assumptions of Lemma 5.2 the following is straightforward.

Lemma 5.3. For any tableau T(w) ∈ BC(T(v)) and any x ∈ C denote by T(w)x the image

of T(w) as an element of the twisted module Dx
f (VC(T(v))). Then we have

E12 · T(w)x = −(w11 + x − w21)(w11 + x − w22)T(w + δ11)x.

Ek,k+1 · T(w)x = −
k∑

i=1

(∏k+1
j=1 (wki − wk+1,j)∏k

j 
=i(wki − wkj)

)
T(w + δki)x, for all k = 2, . . . , n.

E21 · T(w)x = T(w − δ11)x.

E32 · T(w)x = w21 − (w11 + x)

w21 − w22
T(w − δ21)x + w22 − (w11 + x)

w22 − w21
T(w − δ22)x.
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Ek+1,k · T(w)x =
k∑

i=1

(∏k−1
j=1 (wki − wk−1,j)∏k

j 
=i(wki − wkj)

)
T(w − δki)x, for all k = 3, . . . , n.

H1 · T(w)x = (2(w11 + x) − (w21 + w22) − 1)T(w)x.

H2 · T(w)x = (
2(w21 + w22) − (w31 + w32 + w33) − (w11 + x) − 1

)
T(w)x.

Hk · T(w)x =
(

2
k∑

i=1

wki −
k+1∑
i=1

wk+1,i −
k−1∑
i=1

wk−1,i − 1

)
T(w)x, for all k = 3, . . . , n.

Theorem 5.4. Let M be a �-relation module with an injective action of f . Then Dx
f M is

a �-relation Gelfand–Tsetlin module.

Proof. By hypothesis, M � VC(T(v)) for some C-realization T(v). By Lemma 5.2, the set

{T(v+�δ11) | � ∈ Z} is a basis of the localized module Df M. Define the linear isomorphism

φ from Dx
f (VC(T(v))) to VD(T(v + xδ11)), such that φ(T(w)) := T(w + xδ11) = T(w)x ∈

BD(T(v +xδ11)) for any T(w) ∈ BC(T(v)). Comparing the twisted action of g from Lemma

5.3 with the Gelfand–Tsetlin formulas, we have

φ(g · T(w)x) = gφ(T(w)x)

for any g ∈ g. Hence, φ is an isomorphism of modules, which completes the proof. �

Corollary 5.5. Let M be a simple �-relation Gelfand–Tsetlin module.

(a) If f is bijective on M, then M is isomorphic to Dx
f (N) for some simple �-

relation Gelfand–Tsetlin module N with an injective action of f and x ∈ C\Z.

(b) If f is surjective on M but not injective, then M is isomorphic to Df (N)/N for

some simple �-relation Gelfand–Tsetlin module N with an injective action

of f .

Proof. As M is a simple relation module, then M � VC(T(v)) for some Gelfand–Tsetlin

tableau and a maximal admissible set of relations C satisfied by T(v).

Part (a): Suppose that f is bijective on M. By Lemma 5.1, we have v11 − v21 /∈ Z

and v11 − v22 /∈ Z. Without loss of generality, we assume that v21 − v22 /∈ Z. In this case,

let x = v11 − v21 and consider the Gelfand–Tsetlin tableau T(v′) = T(v + xδ11). Then,

C′ = C ∪ {((2, 1); (1, 1))} is the maximal admissible set of relations satisfied by T(v′).
Hence, by Theorem 4.6, N = VC′(T(v′)) is a simple �-relation Gelfand–Tsetlin module. By

Lemma 5.1, f is injective on N but not surjective. Then Dx
f N � M by Theorem 5.4.
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Part (b): Suppose that f is surjective on M, but not injective. By Lemma 5.1, we

can assume that v11 − v21 ∈ Z>0 and v11 − v22 /∈ Z. Set again x = v11 − v21 and T(v′) =
T(v +xδ11). Then C′ =

(
C \ {((1, 1); (2, 1))}

)
∪{((2, 1); (1, 1))} is the maximal admissible set

of relations satisfied by T(v′). Hence, N = VC′(T(v′)) is a simple relation Gelfand–Tsetlin

module by Theorem 4.6. From Lemma 5.1, we have that f is injective on N and that the

localized module Df (N) is isomorphic to VC\{((1,1);(2,1))}(T(v′)) (cf. Lemma 5.2). Moreover,

N is a maximal submodule of Df (N), and hence Df (N)/N � VC(T(v′)) is a simple module.

We conclude that Df (N)/N � VC(T(v)). �

5.2 sl2-induced relation modules

Let p ⊂ g be a parabolic subalgebra of g with the Levi factor isomorphic to aα = sl2 + h

based on the root α = α1 ∈ π . Let V = V(γ , μ) be a simple cuspidal weight aα-module,

where μ ∈ h∗ is such that Vμ 
= 0, and γ ∈ C is the eigenvalue of the Casimir element

cα = (E11 − E22 + 1)2 + 4E21E12 of aα. Denote by L(γ , μ) = Lg
p({α}, V) the unique simple

quotient of the induced module Indg
p({α}, V) with the trivial action of the radical of p

on V. Let �α be any Gelfand–Tsetlin subalgebra corresponding to the flag containing aα

and h.

We have the following:

Theorem 5.6. Let n > 1. The module L(γ , μ) is a �α-relation Gelfand–Tsetlin g-module

if and only if L(λ) is a �α-relation highest weight g-module, where
〈
μ − λ, α∨

1

〉 = 2x,〈
μ − λ, α∨

2

〉 = −x,
〈
μ − λ, α∨

i

〉 = 0 for each i = 3, . . . , n,
〈
λ + ρπ , α∨

1

〉
/∈ Z≥0 and (2x−μ1−1)2 =

γ . In this case, L(γ , μ) � Dx
f (L(λ)) and x satisfies the condition x − 〈

μ + ρπ , α∨
1

〉
/∈ Z.

Moreover,

(a) L(γ , μ) is bounded if and only if L(λ) is bounded;

(b) If λ is dominant then s1 · λ is dominant and γ 
= m2 for all m ∈ Z. In this

case, AnnU(g)L(γ , μ) = AnnU(g)L(λ) = AnnU(g)L(s1 · λ);

(c) If γ = m2 for some m ∈ Z \ {0} then L(λ) is bounded and the weight w · λ

is integral, for all w ∈ W. In this case, AnnU(g)L(λ) ⊂ AnnU(g)L(γ , μ) ⊂
AnnU(g)L(w · λ), if w · λ is dominant.

Proof. Since V is a simple dense sl2-module, then γ 
= (μ1 − 2k + 1)2 for all k ∈ Z, and

hence x /∈ Z. On the other hand,γ = m2 for some m ∈ Z if and only if
〈
λ + ρπ , α∨

1

〉 ∈ Z.

Consider the following two cases:
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Case 1: Let γ 
= m2 for all m ∈ Z. Assume that L(γ , μ) is a �α-relation Gelfand–

Tsetlin g-module. Then L(γ , μ) � VC(T(v)) for some set of relations C and a tableau

T(v) = T(vij), such that

vij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1 + x, if i = 1

v1, if i > j = 1

vj, if j ≥ 2,

with v1 −v2 = 〈
μ + ρπ , α∨

1

〉−2x, v2 −v3 = 〈
μ + ρπ , α∨

2

〉+x, vj −vj+1 =
〈
μ + ρπ , α∨

j

〉
for each

3 ≤ j ≤ n and
∑n+1

j=1 vj = −n − 1. On the other hand, f is bijective on VC(T(v)) if and only

if x − 〈
μ, α∨

1

〉
/∈ Z, in which case

C ∩ {((1, 1); (2, 1)), ((1, 1); (2, 2)), ((2, 1); (1, 1)), ((2, 2); (1, 1))} = ∅.

Consider the tableau T(v′) = T(v′
ij) with entries v′

11 = v21 and v′
ij = vij for i 
= 1.

Then, D = C ∪ {((2, 1); (1, 1))} is the maximal set of relations satisfied by T(v′), since〈
λ + ρπ , α∨

1

〉
/∈ Z. Hence, the module VD(T(v′)) is simple by Theorem 4.6. Then VD(T(v′)) �

U(g)T(v′), Ek,k+1(T(v′)) = 0, and Hk(T(v)) = λkT(v) for all k = 1, . . . , n, λk = 〈
λ, α∨

k

〉
. We

get VD(T(v′)) � L(λ). Moreover, cα(T(v′)) = (λ1 + 1)2T(v′) = γ T(v′). Applying Theorem

5.4, we conclude that Dx
f L(λ) � L(γ , μ).

Conversely, let L(λ) be a �α-relation Gelfand–Tsetlin module. Then L(λ) �
VC(T(v)), where T(v) = T(vij) is the Gelfand–Tsetlin tableau such that vij = vj with

vj − vj+1 =
〈
λ + ρπ , α∨

j

〉
for each 1 ≤ j ≤ n, and

∑n+1
j=1 vj = −n − 1. Note that C is

the maximal set of relations satisfied by T(v). Without loss of generality we assume

that ((2, 1); (1, 1)) ∈ C and ((1, 1); (2, 1)) /∈ C. Hence, the localized module Dx
f (L(λ)) is

isomorphic to VD(T(v + xδ11)), where D = C \ {((2, 1); (1, 1))} by Theorem 5.4. Given that

x + v11 − v22 /∈ Z, then VD(T(v + xδ11)) is a simple module. Further, the sl2-module

spanC{T(v+(x+�)δ11) | � ∈ Z} is isomorphic to V. By (1), we have Ek,k+1(T(v+(x+�)δ11)) =
0 for all k = 2, . . . , n and � ∈ Z. Hence, we get an epimorphism of U(g)-modules

φ : Mg
p ({α}, V) → VD(T(v + xδ11)),

such that φ(u ⊗ T(v)) = uT(v) for all u ∈ U(g). Therefore, L(γ , μ) � VD(T(v + xδ11)).

Case 2: Let γ = m2 for some m ∈ Z. In this case,
〈
λ + ρπ , α∨

1

〉 ∈ Z<0 and the

construction is similar. We leave the details out.
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Note that if
〈
λ + ρπ , α∨

1

〉 = 0 then L(γ , μ) is not a relation module. The statement

(a) is clear from the construction, while (b) and (c) follow from Proposition 2.2, Corollary

2.3, and Corollary 3.5. �

5.3 Family of induced relation modules

In this section, we give an explicit construction of a family of parabolically induced

bounded �-relation modules.

Fix complex {ui}i=1,...,n+1 and {vi}i=1,...,n satisfying conditions:

(a) ui − v1 /∈ Z for any 1 ≤ i ≤ n.

(b) vj − vj+1 ∈ Z>0 for any 1 ≤ j < n.

Let T(v) be a Gelfand–Tsetlin tableau with entries

vij =
⎧⎨⎩ui, if j = 1

vj−1, if j 
= 1
(2)

for 1 ≤ j ≤ i ≤ n + 1.

Consider the set of relations Q = Q+ ∪ Q−, where

Q+ :={((i + 1, j); (i, j)) | 2 ≤ j ≤ i ≤ n}
Q− :={((i, j); (i + 1, j + 1)) | 2 ≤ j ≤ i ≤ n}.

Lemma 5.7. Let T(v) be a Gelfand–Tsetlin tableau (2). Then, VQ(T(v)) is a bounded

dense g-module. Moreover, VQ(T(v)) is simple if and only if ui−ui+1 /∈ Z for all 1 ≤ i ≤ n.

Proof. Follows from [33, Lemmas 3.1, 3.2, and 3.3]. �

If C is any admissible set of relations containing Q and T(v) is a C-realization,

then VC(T(v)) is a submodule of VQ(T(v)) and hence a bounded module. In particular,

VC(T(v)) has finite length [17].

For m ∈ {2 . . . , n} consider the tableau Tm(v) as in (2) satisfying the conditions

ui = um for i = m + 1, . . . , n + 1, and ui − ui+1 /∈ Z for i = 1, 2, . . . , m − 1.

Let Cm = Q ∪ {((i + 1, 1); (i, 1)) | m ≤ i ≤ n}. Then, Tm(v) is a Cm-realization and

the relation module VCm(Tm(v)) is simple.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/20/15788/6314694 by U
SP-R

eitoria-Sibi (inst.bio) user on 01 June 2023



15812 V. Futorny et al.

Consider the subset 
m = {α1, . . . , αm−1} ⊂ π of simple roots and the correspond-

ing parabolic subalgebra pm = p
m
⊂ g. Then, pm has the Levi subalgebra isomorphic to

slm + h. We have the following:

Theorem 5.8. For m ∈ {2, . . . , n}, the module VCm(Tm(v)) is isomorphic to Lg
pm

(
m, V)

for some simple cuspidal slm-module V.

Proof. By construction, Cm is the maximal set of admissible relations satisfied by

Tm(v). Hence, VCm(Tm(v)) is a simple Gelfand–Tsetlin g-module by Theorem 4.6. Let

Dm = D+ ∪ D−, where

D+ = {((i + 1, j); (i, j)) | 2 ≤ j ≤ i ≤ m − 1}
D− = {((i, j); (i + 1, j + 1)) | 2 ≤ j ≤ i ≤ m − 1}.

Then V = VDm(Tm(v)) = spanCBDm(Tm(v)) is a simple cuspidal slm-module by Lemma

5.7, where BDm(Tm(v)) denotes the set of Dm-realizations of the form Tm(v + z), z ∈
Z

m(m+1)
2

0 . It follows from (1) that V is a pm-module with the trivial action of u
+

m

. Hence,

we have a homomorphism

φ : Mg
p (
, V) → VCm(Tm(v))

of U(g)-modules, such that φ(u ⊗ Tm(v)) = uTm(v) for all u ∈ U(g). Since VCm(Tm(v)) is

a simple g-module, then φ is surjective, and Lg
p(
, V) � VCm(Tm(v)). �

5.4 Localization of highest weight modules with respect to Em1

For any 2 < m ≤ n + 1 and any k ≤ m − 1 fix ik ∈ {1, . . . , k}. Associated with the set

{i1, . . . , im−1} define

ε(i1, . . . , im−1) := −δ1i1 − δ2i2 − δ3i3 − . . . − δm−1,im−1 ∈ Z
(n+1)(n+2)

2
0 .

Suppose that T(v) is a C-realization for some admissible set of relations C. For

each T(w) ∈ BC(T(v)) and any 1 ≤ ik ≤ k ≤ m − 1 define

a(w, i1, . . . , im−1) :=
⎧⎨⎩ 0, if T(w + ε(i1, . . . , im−1)) /∈ BC(T(v))∏m−1

s=2

∏s−1
t
=is−1

(wsis−ws−1,t)∏s
t
=is (wsis−wst)

, if T(w + ε(i1, . . . , im−1)) ∈ BC(T(v)).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/20/15788/6314694 by U
SP-R

eitoria-Sibi (inst.bio) user on 01 June 2023



Simple Modules in the Minimal Nilpotent Orbit 15813

One can easily check by direct computation the following analog of [19,Proposition

3.13].

Proposition 5.9. Let C be an admissible set of relations and T(v) a C-realization. If

T(w) ∈ BC(T(v)) then

Em1(T(w)) =
∑

k=1,...,m−1
(i1,...,im−1)∈{1,...,k}m−1

a(w, i1, . . . , im−1) T(w + ε(i1, . . . , im−1)), (3)

for m ∈ {3, . . . , n + 1}.

Theorem 5.10. Let T(v) be the Gelfand–Tsetlin tableau satisfying (2), C an admissible

set of relations containing Q, for which T(v) is a C-realization. Then

(a) Em1 is injective on VC(T(v)) if and only if ((m − 1, 1); (m, 1)) /∈ C;

(b) Em1 is surjective on VC(T(v)) if and only if ((m, 1); (m − 1, 1)) /∈ C.

Proof.

(a) For any T(w) ∈ BC(T(v)) we have

T(w + ε(1, . . . , 1)) = T(w − δ11 − δ21 − δ31 − . . . − δm−1,1) ∈ BC(T(v)).

In fact, (wi+1,1 − 1) − (wi1 − 1) = wi+1,1 − wi1 for all i = 1, . . . , m − 2, wm1 −
(wm−1,1−1) = wm1−wm−1,1+1 /∈ Z≤1, and (wi1−1)−wi+1,2 = wi1−wi+1,2−1 /∈
Z for all i = 1, . . . , m − 1. On the other hand, for any s ∈ {3, . . . m − 1} given

that ws1 − ws−1,2 /∈ Z and ws−1,2 − ws−1,t ∈ Z for all t ∈ {2, . . . s − 1}, we have

ws1−ws−1,t /∈ Z for all t ∈ {2, . . . s−1}. Hence, a(w, 1, . . . , 1) 
= 0. Using the fact

that T(w+ε(1, . . . , 1)) 
= T(w+ε(i1, . . . , im−1)) for all (i1, . . . , im−1) 
= (1, . . . , 1),

we obtain (cf. formula (3))

Em1(T(w)) = a(w, 1, . . . , 1) T(w + ε(1, . . . , 1))+

+
m−1∑
k=2

∑
(i1,...,im−1) 
=(1,...,1)

a(w, i1, . . . , im−1) T(w + ε(i1, . . . , im−1)) 
= 0.
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Now, suppose that 0 
= u = ∑
i∈I ciT(wi) ∈ VC(T(v)) with ci 
= 0 for all i ∈ I.

Then

Em1(u) =
∑

i∈I, k=1,...,m−1
(i1,...,im−1)∈{1,...,k}m−1

ci a(wi, i1, . . . , im−1) T(wi − ε(i1, . . . , im−1)) 
= 0.

In fact, for any i ∈ I, we have cia(wi, 1, . . . , 1) T(wi + ε(1, . . . , 1)) 
= 0 and

T(wi + ε(1, . . . , 1)) 
= T(wi + ε(i1, . . . , im−1)) for all (i1, . . . , im−1) 
= (1, . . . , 1).

Also, as T(wi) 
= T(wj), we obtain T(wi + ε(1, . . . , 1)) 
= T(wj + ε(1, . . . , 1)) for

all i 
= j ∈ I. Finally, suppose that for any i ∈ I, there exists j ∈ I such that

j 
= i and T(wi + ε(1, . . . , 1)) = T(wj + ε(i1, . . . , im−1)) for some (i1, . . . , im−1) 
=
(1, . . . , 1). Then there exists s ∈ {2, . . . m − 1} with wi

s1 − 1 = wj
s1, and hence

∑
j∈I

wj
s1 =

∑
i∈I

(wi
s1 − 1) =

∑
i∈I

wi
s1 − #I =

∑
j∈I

wj
s1 − #I,

which is a contradiction. Thus, there exists i ∈ I such that T(wi +
ε(1, . . . , 1)) 
= T(wj + ε(i1, . . . , im−1)) for all j 
= i and for all (i1, . . . , im−1) 
=
(1, . . . , 1).

Conversely, let ((m − 1, 1); (m, 1)) ∈ C. By the hypothesis,

{((m − 1, j); (m, j + 1)) | j = 2, . . . , m − 1} ⊂ C

and hence there exists T(w) ∈ BC(T(v)) such that wm−1,1 − wm1 = wm−1,j −
wm,j+1 = 1 for each j = 2, . . . m−1. Therefore, T(w+ε(i1, . . . , im−1)) /∈ BC(T(v))

for any 1 ≤ ik ≤ k ≤ m − 1 and Em1(T(w)) = 0.

(b) First, note that for any T(w) ∈ BC(T(v)), we have

T(w′) := T(w − ε(1, . . . , 1)) ∈ BC(T(v)),

since ((m, 1); (m − 1, 1)) /∈ C.

Using (3) we obtain

Em1(T(w′)) =b(w, 1, . . . , 1) T(w)

+
∑

k=2,...,m−1
(i2,...,im−1) 
=(1,...,1)

b(w, i2, . . . , im−1) T(w + ε′(i2, . . . , im−1)),
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with ε′(i2, . . . , im−1) := ε(i1, . . . , im−1) − ε(1, . . . , 1), and

b(w, i2, . . . , im−1) :=

=
⎧⎨⎩ 0, if T(w + ε′(i2, . . . , im−1)) /∈ BC(T(v))∏m−1

s=2

∏s−1
t
=is−1

(wsis−ws−1,t+δ1is−δ1t)∏s
t
=is (wsis−wst+δ1is−δ1t)

, if T(w + ε′(i2, . . . , im−1)) ∈ BC(T(v)).

In particular, for any s ∈ {3, . . . m − 1}, we have ws1 − ws−1,t /∈ Z for any

t ∈ {2, . . . s − 1}, and hence

b(w, 1, . . . , 1) =
m−1∏
s=2

∏s−1
t=2(ws1 − ws−1,t)∏s

t=2(ws1 − wst + 1)

= 0.

As T(w) ∈ BC(T(v)), we have wij − wi+1,j+1 ∈ {1, 2, . . . , dij}, where dij :=
vj−1 − vn+j−i − n + i ∈ Z>0. We consider the following cases:

Case I: w22 − w33 ∈ {1, 2, . . . , d22} and wij − wi+1,j+1 = 1 for all 3 ≤
i ≤ n and 2 ≤ j ≤ i. In this case, T(w + ε′(i2, . . . , im−1)) /∈ BC(T(v)) for all

(i2, . . . , im−1) such that ik > 1 for some k = 3, . . . , m − 1, since (wij − 1) −
wi+1,j+1 = 0 for all 3 ≤ i ≤ n and 2 ≤ j ≤ i. Therefore,

Em1(T(w′)) = b(w, 1, 1, . . . , 1)T(w) + b(w, 2, 1, . . . , 1)T(w + δ21 − δ22).

If ((1, 1); (2, 1)) ∈ C or ((3, 1); (2, 1)) ∈ C, then T(w + δ21 − δ22) /∈ BC(T(v)),

when w11 − w21 = 1 or w31 − w21 = 0. Hence, b(w, 2, 1, . . . , 1) = 0, and

Em1(T(w′)) = b(w, 1, 1, . . . , 1)T(w).

Suppose now that ((1, 1); (2, 1)) /∈ C and ((3, 1); (2, 1)) /∈ C and consider

the following cases:

(i) w22 − w33 = 1.

In this case T(w + δ21 − δ22) /∈ BC(T(v)) implying Em1(T(w′)) =
b(w, 1, 1, . . . , 1)T(w).

(ii) w22 − w33 = i ∈ {2, 3, 4, . . . , d22}.
In this case T(w+δ21−δ22) ∈ BC(T(v)) as (w22−1)−w33 = w22−w33−1 =
i−1 and w32 − (w22 −1) = w32 −w22 +1 ∈ Z>0. By the induction on i, we

have T(w+δ21 −δ22) = Em1(T(w1)), where T(w1) is a tableau in VC(T(v)).

So, Em1(T(w′)) = b(w, 1, 1, . . . , 1)T(w) + b(w, 2, 1, . . . , 1)T(w + δ21 − δ22).

Consequently, T(w) = Em1(T(w0)) for some T(w0) ∈ VC(T(v)).
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Case II: w22 − w33 ∈ {1, 2, . . . , d22}, w32 − w43 = j ∈ {2, 3, 4, . . . , d32}
and wij − wi+1,j+1 = w33 − w44 = 1 for all 4 ≤ i ≤ n and 2 ≤ j ≤ i.

In this case, T(w + ε′(i2, . . . , im−1)) /∈ BC(T(v)) for all (i2, . . . , im−1)

such that i3 = 3 or ik > 1 for any k = 4, . . . , m − 1, as (wij − 1) − wi+1,j+1 =
(w33 − 1) − w44 = 0 for all 4 ≤ i ≤ n and 2 ≤ j ≤ i.

(i) If w22 − w33 = 1 then T(w + δ21 − δ22) and T(w + δ21 − δ22 + δ31 − δ32) do

not belong BC(T(v)). On the other hand, T(w + δ31 − δ32) ∈ BC(T(v)), as

w42−(w32−1) ∈ Z>0, (w32−1)−w43 = j−1 ≥ 2 and (w32−1)−w22 = w43−
w44 + j − 3 ∈ Z>0. Following the case I-(i), we conclude that there exists

T(w1) ∈ VC(T(v)) such that T(w + δ31 − δ32) = Em1(T(w1)). Therefore,

Em1(T(w′))) = b(w, 1, 1, . . . , 1)T(w) + b(w, 1, 2, . . . , 1)Em1(T(w1)).

(ii) Assume w22 − w33 = i ∈ {2, 3, . . . , d22}. We immediately get that T(w +
δ21 − δ22) and T(w + δ21 − δ22 + δ31 − δ32) belong to BC(T(v)). On the other

hand, T(w + δ31 − δ32) ∈ BC(T(v)) if and only if w43 − w44 ≥ i − j + 2,

since w42 − (w32 − 1) ∈ Z>0 and (w32 − 1) − w22 = w43 − w44 + j − i − 2.

Then, following the cases I and II-(i), there exists T(wk) ∈ VC(T(v)) for

each k = 1, 2, 3 such that T(w + δ21 − δ22) = Em1

(
T(w1)

)
, T(w + δ21 −

δ22 + δ31 − δ32) = Em1

(
T(w2)

)
and T(w + δ31 − δ32) = Em1

(
T(w3)

)
(if

w43 − w44 < i − j + 2, then T(w3) = 0).

Hence,

Em1(T(w′)) =b(w, 1, 1, . . . , 1)T(w) + b(w, 2, 1, . . . , 1)Em1(T(w1))

+ b(w, 2, 2, . . . , 1)Em1(T(w2)) + b(w, 1, 2, . . . , 1)Em1(T(w3)).

Repeating the process, after finitely many steps, we obtain that

for any T(w) ∈ BC(T(v)) there exists T(w0) ∈ VC(T(v)) such that T(w) =
Em1(T(w0)), which implies the surjectivity of Em1.

Conversely, assume that Em1 is surjective on VC(T(v)) but ((m, 1); (m−
1, 1)) ∈ C. Choose T(w) ∈ BC(T(v)) such that wm−1,1 = wm1. As

((m, j); (m − 1, j)) ∈ C for all j = 2, . . . , m − 1, we can assume without loss

of generality that wm−1,j = wm,j for all j = 2, . . . , m − 1. On the other hand,

there exists u ∈ VC(T(v)) such that

Em1(u) =
∑

i∈I, k=1,...,m−1
(i1,...,im−1)∈{1,...,k}m−1

ci a(wi, i1, . . . , im−1) T(wi − ε(i1, . . . , im−1)) = T(w).
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Hence, T(w) = T(wi − ε(i1, . . . , im−1)) for some i ∈ I and 1 ≤ ik ≤ k ≤ m − 1.

Then, there exists j ∈ {1, . . . , m − 1} such that 0 = wmj − wm−1,j = wi
mj −

wi
m−1,j + 1 > 0. Therefore, ((m, 1); (m − 1, 1)) /∈ C. �

Remark 5.11. Note that in Theorem 5.10 the set of relations C does not need to be

neither indecomposable nor maximal set satisfied by T(v). This is the case, for example,

when ui+1−ui ∈ Z≥0 for any 1 ≤ i < n and C = {((i+1, 1); (i, 1)) | 1 ≤ i ≤ n} or ui+1−ui /∈ Z

for any 1 ≤ i < n and C = ∅.

Let F := {Emi1 | i = 1, . . . , k} such that, mi ∈ {2, . . . , n + 1} for each i = 1, . . . , k. We

have

Proposition 5.12. Let λ ∈ h∗.

(a) If λ satisfies conditions (b), (c) or (e) for i = 1 of Corollary 4.9, then DFL(λ) is

a bounded relation Gelfand–Tsetlin module.

(b) If M = L(λ) and Fm = {Em1} for some m ∈ {2, . . . , n + 1} such that Em1 acts

injectivity on M, then DFm
(M)/M is simple.

Proof. Suppose that λ satisfies the condition (b) of Corollary 4.9 (the proof of other

cases is similar). Then L(λ) � VC(T(v)) where T(v) is the Gelfand–Tsetlin tableau (2)

such that ui = u1 for all i = 2, 3, . . . , n + 1 and C = Q ∪ {((i + 1, 1); (i, 1)) | 1 ≤ i ≤ n}. Set

M = VC(T(v)) and N = VD(T(v)), where D = C \ {((mi, 1); (mi − 1, 1)) | i = 1, . . . , k}. Then

M ⊂ DFM ⊂ N by Theorem 5.10.

Suppose first that k = 1. Then F = Fm = {Em1}. Since Em1 is injective but not

bijective on M, we conclude by Theorem 5.10 that M is a proper submodule of DFm
M.

On the other hand, consider the set of relations Dm = D ∪ {((m − 1, 1); (m, 1))}. Then

VDm
(T(v + δm−1,1)) is a simple module by Theorem 4.6, and VDm

(T(v + δm−1,1)) � N/M.

Hence, M is a maximal submodule of N. Finally, given that Em1 acts bijectively on N, we

get that N � DFm
M by Proposition 3.1. This completes the proof in the case k = 1.

Now, suppose that statement holds for all subsets of F with k − 1 elements.

Define Fi := F \ {Emi1} and Di := D ∪ {((mi, 1); (mi − 1, 1))} for any i = 1, . . . , k. Then

DFi
M � VDi

(T(v)). Set L = VD1
(T(v)) + · · · + VDk

(T(v)). As DFi
M ⊂ D{Emi1}DFi

M � DFM,

we have L ⊂ DFM. Since L is not F-bijective, then L is a proper submodule of DFM. On

the other hand, let T(w) = T(v + i1δm1−1,1 + (i1 − 1)δm2−1,1 + · · · + δmi1−1,1 + · · · + (k −
is + 1)δmis+1−1,1 + · · · + δmk−1,1). Consider A = D ∪ {((mi − 1, 1); (mi, 1)) | i = 1, . . . , k},
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where {mi | i = 1, 2, . . . k} = {m1, . . . , mi1} ∪ · · · ∪ {mis , . . . , mk} is a disjoint union of sets

with consecutive elements. Then A is a maximal set of relations satisfied by T(w) and

VA(T(w)) is a simple module by Theorem 4.6. As N/L � VA(T(w)), we conclude that L is

a maximal submodule of N and DFM � N by Proposition 3.1. �

6 Simple Modules in the Minimal Nilpotent Orbit

Recall that g = sln+1.

6.1 Minimal nilpotent orbit

Let k an admissible number for ĝ with denominator q ∈ N. In this section, we discuss

explicit construction of simple admissible highest weight and sl2-induced g-modules

in the minimal nilpotent orbit Omin. The orbit Omin is the unique minimal non-trivial

nilpotent orbit of g with dimOmin = 2n. We have the following description of [Pr
Omin
k ]:

Proposition 6.1. [9, Proposition 2.10] Then

[Pr
Omin
k ] =

q−1⊔
a=1

{[λ̄ − ap

q
�1] | λ ∈ P̂p−n−1

+ },

where P̂p−n−1
+ is the set of level p − n − 1 integral dominant weights of ĝ and �1 is the

1st fundamental weight.

To describe simple admissible g-modules in the minimal orbit Omin of level k we

need to find those simple g-modules V for which AnnU(g)V = Jλ, for each λ ∈ [Pr
Omin
k ].

We start with the highest weight modules.

6.2 Explicit realization of highest weight modules

Let

k + n = p

q
− 1, p > n, q ≥ 1 and (p, q) = 1.

By Proposition 6.1, an element of [Pr
Omin
k ] has the form

λ̄ − ap

q
�1 =

(
λ1 − ap

q
, λ2, λ3, . . . , λn−1, λn

)
,
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where λi ∈ Z≥0, for all i = 1, . . . , n are such that λ1+. . .+λn < p−n and a ∈ {1, 2, . . . , q−1}.

Example 6.2. Let g = sl3. As �1 = (λ1 − ap
q , λ2) is regular dominant, by Corollary 2.3,

the simple admissible highest weight modules in the minimal orbit are L(�i), i = 1, 2, 3,

where:

• �2 = s1 · �1 = (
ap
q − λ1 − 2, λ1 + λ2 − ap

q + 1);

• �3 = s2s1 · �1 = (λ2, ap
q − λ1 − λ2 − 3).

These modules have weight multiplicities bounded by λ2 + 1.

Applying Corollary 4.9, (b), we get the following:

Theorem 6.3. Any simple admissible highest weight module in the minimal nilpotent

orbit is a bounded �-relation Gelfand–Tsetlin module.

Example 6.4. Let g = sl4 and �1 = (λ1 − ap
q , λ2, λ3). Then the simple admissible highest

weight modules in the minimal orbit are L(�i), i = 1, 2, 3, 4, where:

• �2 = s1 · �1 = (
ap
q − λ1 − 2, λ1 − ap

q + λ2 + 1, λ3);

• �3 = s2s1 · �1 = (λ2, ap
q − λ1 − λ2 − 3, λ1 + λ2 + λ3 − ap

q + 2);

• �4 = s3s2s1 · �1 = (λ2, λ3, ap
q − λ1 − λ2 − λ3 − 4).

These modules are bounded, for example, the weight multiplicities of L(�1) are bounded

by 1
2 (λ2 + 1)(λ3 + 1)(λ2 + λ3 + 2).

Let F := {Emi1 | i = 1, . . . , k} such that mi ∈ {2, . . . , n + 1} for each i = 1, . . . , k.

From Corollary 3.5 and Proposition 5.12, we immediately obtain the following:

Corollary 6.5. Let n ≥ 2. All simple subquotients of DFL(λ′) are admissible bounded

�-relation Gelfand–Tsetlin g-modules in the minimal orbit.

Remark 6.6.

(i) Corollary 6.5 for sl(3) was shown in [9, Theorem 5.6].

(ii) All simple modules in Corollary 6.5 are highest weight modules (with respect

to some Borel subalgebra) with bounded weight multiplicities.

We have from Corollary 4.13
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Corollary 6.7. Let b = b(π), βj ∈ π , j = 1, . . . , t with
〈
λ + ρπ , β∨

j

〉
∈ Z≥0 for all j, and let

w ∈ W be such that
〈
w(λ + ρπ), β∨

j

〉
∈ Z<0 for all j = 1, . . . , t. Then L(λ) � Lb(wπ)(wλ) is a

�F -relation Gelfand–Tsetlin module, where �F = w�.

We also have the following result.

Corollary 6.8. Let λ ∈ h∗, π a basis of the root system, L(λ) = Lb(π)(λ) an admissible

highest weight module in the minimal orbit (with respect to the Borel subalgebra b(π))

and β ∈ π is such that
〈
λ, β∨〉

/∈ Z≥0. Then

(a) The module Lb(sβπ)(λ + β) is an admissible sβ�-relation Gelfand–Tsetlin

module in the minimal orbit.

(b) Let i > 1, β = βi the 1st simple root of π such that
〈
λ, β∨〉

/∈ Z≥0 and w =
si−1sisi−2si−1 · · · s2s1s3s1s2 ∈ W. Then Lb(w−1π)(w

−1λ) is a �-relation Gelfand–

Tsetlin module in the minimal orbit.

(c) For any x ∈ C, Dx
fβ

L(λ) is a w�-relation Gelfand–Tsetlin module in the

minimal orbit.

Proof. Let � = λ̄− ap
q �1, where λ̄ = (λ1, . . . , λn) with non-negative integers λi for all i =

1, . . . , n. Then λ = st . . . s1 · � for some t ≤ n. If t = n then λ has the last component non-

integral in which case β = αn. If t < n then λ has exactly two non-integral components in

the places t and t+1 and β = αt or β = αt−1. Hence, L(sβ ·λ) is a simple admissible highest

weight module in the minimal orbit. Note that sβ ·λ = sβ(λ+β) and consider Lb(sβπ)(λ+β).

This is the highest weight module with respect to the Borel subalgebra b(sβπ) and the

corresponding highest weight (with respect to b(sβπ)) is λ + β. Therefore, Lb(sβπ)(λ + β)

is an admissible module in the minimal orbit, and it is a �′-relation Gelfand–Tsetlin

module where �′ is the standard Gelfand–Tsetlin subalgebra of sβπ , that is �′ = sβ�.

This shows (a).

Since L(λ) is a module in the nilpotent orbit, then Lw−1b(w−1λ) is also an

admissible module in the nilpotent orbit. Hence, Lb(w−1π)(w
−1λ) is a w−1�-relation

Gelfand–Tsetlin module. The statement (b) follows from Lemma 4.14. Now, twisting

Lb(w−1π)(w
−1λ) by w, that is applying w to the corresponding Gelfand–Tsetlin formulas,

we obtain that L(λ) is a w�-relation Gelfand–Tsetlin module. Note that w ∈ W is the

element of minimal length such that β is the 1st simple root of wπ . Hence, (c) follows

from Theorem 5.4. �
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6.3 Classification of sl2-induced modules

Let k = p
q − n − 1 be an admissible number for ĝ. In this section, we complete

the construction of all simple admissible g-modules in the minimal orbit, which are

the quotients of modules induced from parabolic subalgebras with the Levi factor

isomorphic to sl2 + h. All such modules are �F -relation modules for some F .

Let M be an admissible g-module of level k. Consider a parabolic subalgebra

p = p
 = l
 + n
 of g, where 
 consists of one simple root β. Denote by Mn the subspace

of all n
-invariants, which is an l
-module. Suppose M = Lg
p(
, N) for some simple

weight l
-module N with n
N = 0. Then Mn � N is admissible l
-module of level

kβ = 2
(β,β)

(k + n + 1) − 2 by [9, Theorem 2.12].

The following is straightforward.

Proposition 6.9. Let a = sl2, V = V(γ , μ) a simple dense weight a-module, γ , μ ∈ C.

Then V is admissible of level k in the minimal orbit if and only if μ = λ − ap

q
+ 2x and

γ =
(

λ − ap

q
+ 1

)2

, where λ ∈ {0, 1, . . . , p − 2}, a ∈ {1, . . . , q − 1}, x ∈ C \Z and x − ap

q
/∈ Z.

Remark 6.10. In the proposition above we have V = VC(T(v)), where C = ∅, T(v) =
T(vij) is the Gelfand–Tsetlin tableau with height 2, such that v11 = μ

2
, v21 = 1

2

(
λ − ap

q

)
,

and v22 = 1

2

(
ap

q
− λ − 2

)
(cf. Theorem 5.6). The set BC(T(v)) = {T(v + �δ11) | � ∈ Z} is a

basis of V.

Applying Proposition 6.9, Theorem 2.9, and Theorem 5.6, we obtain the follow-

ing statement.

Corollary 6.11. Let n > 1, γ ∈ C, μ = (μ1, . . . , μn) ∈ h∗, such that V � V(γ , μ1) is

a simple dense weight sl2-module and μi = 〈
μ, α∨

i

〉
, i = 1, . . . , n. Let L(γ , μ) = Lg

p({α}, V).

Then, L(γ , μ) is admissible of level k in the minimal orbit if and only if μ1 = λ1− ap

q
+2x,

μ2 = λ2 − x, μj = λj for all j = 3, . . . , n and γ =
(

λ1 − ap

q
+ 1

)2

with {λi}i=1,...,n ⊂ Z≥0

such that λ1 + . . . + λn < p − n, a ∈ {1, 2, . . . , q − 1}, x ∈ C \ Z and x − ap

q
/∈ Z.

Theorem 6.12. Let π be a basis of the root system of g, β a positive root of g (with

respect to π ). Let Lb(π)(λ) be an admissible simple b(π)-highest weight g-module in the
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minimal orbit, such that
〈
λ, β∨〉

/∈ Z, and f = fβ . Denote by Aπ ,β the set of all x ∈ C \ Z

such that x + 〈
λ + ρπ , β∨〉

/∈ Z.

(a) The g-module Dx
f Lb(π)(λ) is admissible in the minimal orbit for any x ∈ Aπ ,β ;

(b) Modules Dx
f Lb(π)(λ), where π runs the sets of simple roots of g, β runs

positive roots with respect to π , x ∈ Aπ ,β ,
〈
λ, β∨〉

/∈ Z, and Lb(π)(λ) is

admissible module in the minimal orbit, exhaust all simple sl2-induced

admissible modules in the minimal orbit. All such modules have bounded

weight multiplicities;

(c) There exists a flag F such that Dx
f Lb(π)(λ) is �F -relation Gelfand–Tsetlin

g-module.

Proof. Let π = {α1, . . . , αn}. First we prove (a). Let β = αr + . . .+αt for some consecutive

simple roots αj, j = r, . . . , t. Since λ is admissible in the minimal orbit then we have two

possibilities: either there exists only one simple root i such that
〈
λ, α∨

i

〉
/∈ Z, or there are

only two such roots which are consecutive. Assume the 1st case. Then either i = r = 1

or i = t = n. Without loss of generality we may assume that i = 1 (if i = n then

apply symmetry of the root system), and hence
〈
λ + ρπ , α∨

j

〉
∈ Z>0, j = 2, . . . , t. Take the

following basis of the root system

π ′ = {β, −αt, . . . , −α2, α2 + . . . + αt+1, αt+2, . . . , αn}.

Let w ∈ W be such that wπ = π ′. Then w satisfies Corollary 6.7, and L(λ) � Lb(wπ)(wλ)

is a w�-relation Gelfand–Tsetlin module. Then the statement follows from Theorem 5.4.

Consider now the 2nd case. Assume that
〈
λ, α∨

i

〉
/∈ Z for i = k, k + 1 for some k.

If β = αk then the statement follows from Corollary 6.8, (c). If β = αk+1 then apply the

symmetry of the Dynkin diagram and Corollary 6.8, (c). Let β = αr + . . . + αk for some

1 ≤ r ≤ k − 1. Take the minimal w ∈ W such that wπ contains β and −αr, . . . , −αk−1

(such w clearly exists). Then L(λ) � Lb(wπ)(wλ). Hence, the problem reduces to the case

β = αk, which was argued above. If β = αk+1 + . . . + αt for some k + 1 ≤ t ≤ n, then

the statement follows from the symmetry of the Dynkin diagram. Now (b) and (c) follow

from (a) and Theorem 5.6. �

We note that Theorem 6.12 was initially proved for g = sl(3) in [9, Theorem 5.6].

Let β be a root of g and π be a basis of the root system containing β as the 1st

root (such π always exists by the conjugation by the Weyl group). Let p = aβ ⊕ n be a

parabolic subalgebra of g containing b(π) with the Levi factor aβ � sl2 + h based on the
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root β. Let V = V(γβ , μ), γβ ∈ C, μ = μ1�1 + . . . + μn�n ∈ h∗, where γβ is the eigenvalue

of the Casimir element of aβ and
〈
�i, β

∨
j

〉
= δij, i = 1, . . . , n.

Corollary 6.13. The module Lπ ,β(γβ , μ) := Lg
p(V) is admissible in the minimal orbit if

and only if
〈
μ − λ, β∨

1

〉 = 2x,
〈
μ − λ, β∨

2

〉 = −x,
〈
μ − λ, β∨

i

〉 = 0 for each i = 3, . . . , n, and

γβ = 〈
λ + ρb, β∨

1

〉2, with
〈
λ + ρπ , β∨

i

〉 ∈ Z>0 for all i ∈ {2, . . . , n}, x ∈ C\Z, x+ 〈
λ + ρπ , β∨

1

〉
/∈ Z

and
〈
λ + ap

q �1 + ρπ , β∨
1

〉
∈ Z>0,

〈
λ + ap

q �1 + ρπ , β∨
1,n

〉
< p for some a ∈ {1, 2, . . . , q − 1}.

Remark 6.14. Theorem 6.12 provides an algorithm how to list all simple sl2-induced

admissible modules in the minimal orbit:

• Consider all possible Borel subalgebras of g containing h;

• For each Borel subalgebra b(π) describe λ ∈ h∗ for which Lb(λ) is admissible

using the Arakawa’s classification for the standard Borel and applying the

Weyl group;

• Choose any positive (with respect to π ) root β such that
〈
λ, β∨〉

/∈ Z, and

define Dx
f Lb(π)(λ) for any x ∈ C\Z such that x+ 〈

λ + ρπ , β∨〉
/∈ Z, where f = fβ .

Obtained modules exhaust all simple sl2-induced admissible modules in the minimal

orbit. Moreover, the proof of Theorem 6.12 explains how to define the flag F for

which Lπ ,β(γβ , μ) is a �F -relation Gelfand–Tsetlin g-module, and hence to obtain explicit

tableaux realization for all such modules.
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[1] Adamović, D. “A realization of certain modules for the N = 4 superconformal algebra and

the affine Lie algebra A(1)
2 .” Transform. Groups 21 (2016): 299–327.
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