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Summary

� Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in

plants. Nevertheless, their identification is challenging due to the low sequence conservation

across various species. Existing computational methods for lncRNA identification often face

difficulties in generalizing across diverse plant species, highlighting the need for more robust

and versatile identification models.
� Here, we present PlantLncBoost, a novel computational tool designed to improve the gen-

eralization in plant lncRNA identification. By integrating advanced gradient boosting algo-

rithms with comprehensive feature selection, our approach achieves both high accuracy and

generalizability. We conducted an extensive analysis of 1662 features and identified three key

features – ORF coverage, complex Fourier average, and atomic Fourier amplitude – that

effectively distinguish lncRNAs from mRNAs.
� We assessed the performance of PlantLncBoost using comprehensive datasets from 20

plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a

sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools.

Further analysis revealed that the features we selected effectively capture the differences

between lncRNAs and mRNAs across a variety of plant species.
� PlantLncBoost represents a significant advancement in plant lncRNA identification. It is

freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been

integrated into a comprehensive analysis pipeline, Plant-LncRNA-pipeline v.2 (https://github.

com/xuechantian/Plant-LncRNA-pipeline-v2).

Introduction

Long noncoding RNAs (lncRNAs) are key regulatory molecules
in plants, influencing diverse biological processes, such as gene
regulation, developmental pathways, and adaptive responses to
environmental stresses (Wierzbicki et al., 2021; Yajnik
et al., 2024). These molecules also interact with a variety of
other noncoding RNAs, such as small RNAs (sRNAs), to mod-
ulate the complexity of gene regulatory networks and fine-tune
cellular functions (Traubenik et al., 2024). The identification

and characterization of lncRNAs in plants have become increas-
ingly important for advancing our understanding of plant biol-
ogy and improving crop traits (Bhogireddy et al., 2021).
However, their poor sequence conservation across species
(Palos et al., 2023) poses a significant challenge for the general-
ization of machine learning models (Gudenas & Wang, 2018;
Li & Liang, 2022). To address these challenges, strategic
approaches including model selection, hyperparameter optimi-
zation, and feature selection following comprehensive feature
extraction are critical for improving the accuracy of lncRNA
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identification (Bischl et al., 2023; Lv et al., 2023; Chen &
Ghosh, 2024; Niu et al., 2024).

Model selection and feature selection are pivotal in enhancing
the generalization of machine learning models, thereby improv-
ing their predictive performance (Negri et al., 2020). By carefully
selecting the appropriate model, such as boosting models, such as
Categorical Boosting (CatBoost), eXtreme Gradient Boosting
(XGBoost), and Light Gradient Boosting Machine (LightGBM),
which can mitigate the effects of multicollinearity and capture
underlying patterns without overfitting (Li & Liang, 2022; Kha-
lid et al., 2023), it is possible to achieve more reliable and accu-
rate predictions. Hyperparameter tuning further refines this
process, optimizing the model’s performance on unseen data.
Concurrently, feature selection plays a crucial role by eliminating
irrelevant or redundant features, which not only simplifies the
model and makes it more interpretable but also improves its abil-
ity to generalize from the training data to new, unseen data.
Despite the robustness of these strategies for building machine
learning models that are both accurate and generalizable, they are
rarely implemented for plant lncRNA identification.

Robust and discriminative sequence features are essential for
lncRNA identification. First, open reading frame (ORF)-related
features (Adjeroh et al., 2024), such as ORF length and coverage,
leverage the fact that lncRNAs generally lack long ORFs, unlike
mRNAs. Tools like Coding Potential Calculator (CPC) (Kong
et al., 2007) and Coding Potential Assessment Tool (CPAT)
(Wang et al., 2013) utilize ORF features to estimate coding
potential. Second, nucleotide composition features, including
guanine-cytosine (GC) content, k-mer frequencies, and Fickett
score, are rooted in the statistical distribution of nucleotides
within sequences, as seen in predictor of long non-coding RNAs
and messenger RNAs based on an improved k-mer scheme
(PLEK) (Li et al., 2014), RNAplonc (Negri et al., 2018), and
FlExible Extraction of LncRNAs (FEELnc) (Wucher
et al., 2017), where lncRNAs often exhibit distinct patterns from
mRNAs. Third, sequence conservation is based on the assump-
tion that functional noncoding RNAs will show evolutionary
conservation across species, even without coding regions. This
approach is implemented in tools like Phylogenetic Codon
Substitution Frequency (PhyloCSF) (Lin et al., 2011) and
Lncrna Linear Order cOnserved Motifs (LncLOOM) (Ross
et al., 2021), which detect functional lncRNAs by comparing
conservation patterns. Additionally, gene structure features are
utilized in distinguishing lncRNAs from mRNAs, which is
implemented in tools like LncRScan-SVM (Sun et al., 2015).
Furthermore, Plant Long Non-Coding rna Prediction by Ran-
dom fOrests (PLncPRO) (Singh et al., 2017) integrates a broad
range of sequence features, such as ORF coverage and BLASTX

results, with a random forest model to improve lncRNA identifi-
cation in plant genomes. LncMachine (Cagirici et al., 2021)
employs a combination of sequence-based features, including
k-mer frequencies, ORF-related metrics, Fickett scores, and iso-
electric point predictions, to distinguish lncRNAs from coding
RNAs specifically in crop species.

In recent advances, mathematical descriptors have shown great
potential for lncRNA identification. Among thousands of

mathematical features of DNA/RNA sequences, Fourier trans-
form features extract periodic signals and frequency-domain
information from sequences (Messaoudi et al., 2014), while
entropy-based features (e.g. Shannon and Tsallis entropy) quan-
tify sequence complexity and randomness as implemented in an
ab initio lncRNA identification and functional annotation tool
based on deep learning (LncADeep) (Yang et al., 2018). The
extensive array of DNA/RNA features, such as those introduced
in MathFeature, facilitates a more profound comprehension of
sequence properties by capturing intricate patterns that extend
beyond traditional biological features.

In this study, we undertook a comprehensive approach to
model selection, hyperparameter optimization, and feature selec-
tion, aimed at advancing the predictive accuracy of plant lncRNA
identification. Following feature extraction, we specifically
focused on three key features that were selected from 1433 con-
ventional and 219 novel mathematical descriptors. Finally, we
developed PlantLncBoost, a computational model designed to
address the challenges of generalization and accuracy in plant
lncRNA identification. By leveraging both traditional and inno-
vative mathematical descriptors, PlantLncBoost enhances predic-
tion accuracy and offers deeper biological insights.

Materials and Methods

Training and test data collection

For the construction of our classification model, we utilized
lncRNA and mRNA datasets from nine diverse angiosperm species
(Table 1). The selected species were Amborella trichopoda Baill.,
Arabidopsis thaliana (L.) Heynh, Brachypodium distachyon (L.) P.
Beauv., Citrus sinensis (L.) Osbeck, Cucumis sativus L., Glycine max
(L.) Merr., Oryza sativa L., Populus trichocarpa Torr. & A. Gray,
and Ricinus communis L. Redundant sequences with over 80%
sequence identity were removed using CD-HIT-EST (Li & God-
zik, 2006). Additionally, sequences containing ambiguous nucleo-
tides (represented as ‘N’) were discarded to reduce noise and
uncertainty. A total of 24 152 lncRNA sequences were obtained
from GreeNC (Di Marsico et al., 2022), a database employing
stringent criteria for high-quality plant lncRNA selection. An equal
number of mRNA protein-coding sequences were obtained from
PHYTOZOME v.13 (https://phytozome.jgi.doe.gov/), in order to
guarantee a balanced training set for our supervised learning model.

To evaluate the effectiveness of our model, we used a compre-
hensive test set consisting of lncRNAs from 20 plant species,
including Amborella trichopoda, Ananas comosus (L.) Merr., Ara-
bidopsis thaliana, Brachypodium distachyon, Cucumis sativus, Gly-
cine max, Manihot esculenta Crantz, Medicago truncatula Gaertn.,
Musa acuminata Colla, Oryza sativa, Populus trichocarpa, Sola-
num lycopersicum L., Sorghum bicolor L., Vitis vinifera L., Zea
mays L., Chlamydomonas reinhardtii P.A. Dang., Coccomyxa sub-
ellipsoidea, Micromonas pusilla (Butcher) Manton & Parke, Vol-
vox carteri F. Stein, and Physcomitrella patens (Hedw.) Bruch &
Schimp., which were ever used previously (Tian et al., 2024)
(Supporting Information Table S1). This diverse array of species
was used in order to verify its general applicability in plant
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lncRNA classification. To compile a high-confidence set of
experimentally validated lncRNAs, data were integrated from
two databases: experimentally validated lncRNAs (EVLncRNAs)
(Zhou et al., 2018; Zhou et al., 2024); v.1.0 and updated v.3.0)
and plant long non-coding RNA database (PlncDB) (Jin et al.,
2020), which aggregates highly reliable lncRNAs previously
curated from EVLncRNAs v.1.0 (Zhou et al., 2018). Initially,
overlaps between the two databases were identified, resulting in
the removal of 55 redundant transcripts. Consequently, a total of
358 unique, experimentally validated lncRNAs were retained for
further analysis, distributed across 20 plant species (Table S2),
with lncRNAs from 12 species not included in both training and
test sets, that is Brassica napus, Brassica rapa, Daucus carota,
Ganoderma lucidum, Gossypium barbadense, Gossypium hirsutum,
Malus domestica, Panax ginseng, Raphanus sativus, Salvia miltior-
rhiza, Triticum aestivum, and Vigna radiata.

Model selection

To identify novel predictive features for plant lncRNAs and effi-
ciently classify these sequences, we evaluated three gradient
boosting algorithms known for their effectiveness in handling
complex biological datasets: CatBoost (Dorogush et al., 2018),
XGBoost (Chen & Guestrin, 2016), and LightGBM (Ke
et al., 2017). CatBoost incorporates ordered categorical features
and reduces overfitting through advanced target-based encoding,
while XGBoost is known for robust performance through opti-
mized gradient boosting and regularization techniques.
LightGBM, in turn, offers superior computational efficiency by
employing histogram-based algorithms and leaf-wise tree growth
(Ke et al., 2017). Given the high dimensionality and complexity
of datasets, our analysis placed particular emphasis on assessing
computational efficiency and scalability, which are crucial for
large-scale genomic analyses. All analyses were executed on a ser-
ver equipped with AMD EPYC 7H12 processors. This server fea-
tures a dual-socket configuration, with each socket containing 64
cores and each core supporting 2 threads.

Feature extraction

MathFeature (Bonidia et al., 2021) was utilized to extract features
for the construction of the lncRNA prediction model. This tool

can extract multiple sequence characteristics, including ORF
length, coverage, k-mer frequencies, and a variety of novel mathe-
matical features. By converting biological sequences (DNA,
RNA, and proteins) into numerical information, MathFeature
facilitates a comprehensive analysis of nucleotide sequences from
both mathematical and statistical perspectives. In this study, a
total of 1662 features were extracted, encompassing basic
sequence characteristics (e.g. ORF coverage, k-mer frequencies,
and Fickett score), numerical mappings, Fourier transforms,
entropy measures, and complex network features.

Identification of optimal feature subset

Feature selection is essential for building accurate plant lncRNA
prediction models. Here, we systematically evaluated six distinct
methods for feature selection: Pearson correlation coefficient,
ANOVA correlation coefficient, mutual information, recursive
feature elimination (RFE), random forest importance (RFI), and
variance threshold (VT). The VT method was applied to elimi-
nate features with a variance below 0.01, thereby removing
near-constant features. For other selection methods, we con-
structed and compared models based on the top 10 features iden-
tified. These selected feature sets were then utilized as inputs for
model optimization. Bayesian hyperparameter optimization
(Zhang et al., 2020) was applied using the CatBoost algorithm to
fine-tune the parameters for each feature set.

We employed a 10-fold cross-validation strategy to evaluate
and compare the performance of various feature selection meth-
ods. The training dataset was randomly divided into 10 equal
subsets. In each iteration, nine subsets were used for model train-
ing, while the remaining subset served as the test set for evalua-
tion. This process was iterated 10 times, ensuring that each
subset was used once as the test set. The final evaluation metrics
for each model were determined by calculating the mean perfor-
mance metrics across all iterations.

Model construction and implementation

Building upon the algorithm evaluation, feature extraction and
selection, and hyperparameter optimization procedures described
above, we developed an innovative prediction model for plant
lncRNAs, named PlantLncBoost. The complete model

Table 1 The lncRNA and mRNA data used for model training.

Species

lncRNA mRNA

GreeNC Used PHYTOZOME Used

Amborella trichopoda 5698 4556 26 846 4556
Arabidopsis thaliana 3008 1803 35 386 1803
Brachypodium distachyon 5584 4877 46 147 4877
Citrus sinensis 2562 2215 27 775 2215
Cucumis sativus 3987 1803 46 147 1803
Glycine max 2562 1804 30 364 1804
Oryza sativa 1929 1803 88 647 1803
Populus trichocarpa 6689 1804 39 068 1804
Ricinus communis 4198 3487 31 221 3487
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construction process is shown in Fig. 1. PlantLncBoost is
available in the GitHub repository, https://github.com/
xuechantian/PlantLncBoost.

Results

Comprehensive sequence and feature collection

The training set consisted of 24 152 lncRNA and 24 152 mRNA
sequences from nine species (Table 1). The test set included a col-
lection of 144 268 lncRNA and 144 268 mRNA sequences from
20 species, among which 13 species were not included in training
(Table S1) (Tian et al., 2024). To identify critical features for
training a robust lncRNA model, we extracted a set of 1662 fea-
tures (Table S3) from our training dataset. This set includes both
conventional sequence-based metrics – such as ORF coverage,
k-mer frequencies, and Fickett scores – and novel mathematical
features designed to capture intricate sequence patterns (Table S3).
In particular, 1433 of these features are fundamental sequence
descriptors, while 133 result from numerical sequence mapping
and Fourier transforms. We also included 78 complex network fea-
tures and 19 features derived from Shannon and Tsallis entropy.

Gradient boosting algorithms: model selection

In a comparative analysis of three gradient boosting algorithms
(CatBoost, XGBoost, and LightGBM), we utilized fivefold

cross-validation on a the training dataset. CatBoost consistently
outperformed the other algorithms, demonstrating superior per-
formance and faster model construction times compared to
XGBoost and LightGBM. Specifically, CatBoost achieved the
highest accuracy of 93.92%, a sensitivity of 99.83%, and an
F1-score of 94.30%, surpassing both XGBoost and LightGBM
(Table S4).

During hyperparameter optimization, CatBoost proved highly
efficient, requiring only 14.45 min to evaluate parameter combina-
tions with fivefold cross-validation. By contrast, XGBoost required
164.18 min, and LightGBM required 55.67 min to complete the
same task (Table S5). This result underscores the superior perfor-
mance of CatBoost in model tuning compared to the other algo-
rithms. Moreover, constructing the final model with optimized
hyperparameters in CatBoost takes c. 19.41 min, while XGBoost
and LightGBM require 53.89 and 25.58 min, respectively
(Table S5). CatBoost also excelled in lncRNA prediction, produ-
cing results in under 10 s (Table S5). Consequently, we identified
CatBoost as the best gradient boosting algorithm for plant lncRNA
classification.

Feature selection methods

The optimal hyperparameter configurations for each feature
selection method are detailed in Table S6. Fivefold
cross-validation results demonstrated that the model employing
RFI feature selection outperformed others across key evaluation

 Algorithm
CatBoost

XGBoost

LightGBM

ORF coverage

Kmer frequencies

Fickett scores

Fourier transform

Shannon and Tsallis Entropy

Complex networks

Feature extractionData collection

lncRNA

mRNA

Feature selection
Variance thresholding

Mutual information

ANOVA F-value

RFE

RF importance

Pearson

Training set Best algorithm Key features

Model training and cross-validation 

Model evaluation
Comparison

CPAT-plant LncFinder-plantCNCI CPC2 LncADeep

RNAPlonc PLEK-plant

Methods

Key metrics AccuracySpecificity

ROC curve

Sensitivity Precision F1-score AUC

PlantLncBoost
High accuracy and generalization in plant lncRNA identification

LncMachine PLncPRO

Fig. 1 Workflow of PlantLncBoost development.
ORF, open reading frame; AUC, area under the
curve; RFE, recursive feature elimination. RF,
random forest; CNCI, Coding-Non-Coding
Index; CPC, Coding Potential Calculator; CPAT,
Coding Potential Assessment Tool; PLEK,
predictor of long noncoding RNAs and
messenger RNAs based on an improved k-mer
scheme; ROC, Receiver operating characteristic;
CatBoost, Categorical Boosting; lncRNA, Long
noncoding RNA; P; LncPRO, plant long
noncoding RNA prediction by random forests;
LncFinder, an integrated platform for long non-
coding RNA identification.
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metrics (Fig. 2a). The RFI-based model achieved an accuracy of
94.21%, an F1-score of 94.56%, a precision of 89.82%, a sensi-
tivity of 99.91%, and a specificity of 88.51% (Table S7).

Models based on VT and RFE methods performed second best
to those of RFI-based method. By contrast, filter-based methods
such as analysis of variance, Pearson correlation coefficient, and
mutual information demonstrated relatively poorer performance,
with accuracies ranging between 75% and 79% and F1-scores c.
77% (Fig. 2a; Table S7). These findings indicate that the feature
selection strategy utilizing RFI is the optimal choice for subse-
quent analyses.

Selection of key features

To determine the optimal number of features for model con-
struction using the RFI method, we evaluated models incorporat-
ing the top 1 to 20 ranked features identified by RFI.
Hyperparameter optimization was conducted for each model to
ascertain the best parameter combinations (Table S8). The five-
fold cross-validation results indicated that the highest perfor-
mance metrics were achieved with the top three features, as
represented in the RFI-3 model (Fig. 2b; Table S9). The RFI-3
model exhibited superior performance with an accuracy of
94.35%, an F1-score of 94.68%, a precision of 89.99%, a sensi-
tivity of 99.96%, and a specificity of 88.73% (Table S9). Perfor-
mance metrics began to decline when the model included more
than three features (Fig. 2b).

The RFI-3 model incorporated three key predictive features:
ORF coverage, complex Fourier average, and atomic Fourier
amplitude. ORF coverage, which represents the proportion of
ORFs in a sequence, is critical for distinguishing coding
sequences from noncoding ones (Wang et al., 2013). Complex
Fourier Average and Atomic Fourier amplitude are novel mathe-
matical features derived from Fourier transformation. To digitize
RNA sequences for Fourier transformation, seven numerical
mapping techniques were employed, including binary, Z-curve,
real, integer, Electron-Ion Interaction Potential (EIIP), complex
number, and atomic number encodings. Complex Fourier aver-
age and atomic Fourier amplitude were specifically derived from
the complex number and atomic number encoding methods,

respectively. These features may capture significant sequence or
structural information pertinent to plant lncRNAs.

Exploration of key features

The further analysis across three model plant species (Arabidopsis
thaliana, Oryza sativa, and Populus trichocarpa) demonstrated
that ORF coverage, complex Fourier average, and atomic Fourier
amplitude are robust features for distinguishing lncRNAs from
mRNAs (Fig. S1). ORF coverage showed a clear separation
between lncRNAs and mRNAs in all three species. For instance,
in A. thaliana, lncRNAs peaked at lower ORF coverage values (c.
0.2), while mRNAs peaked at higher values (c. 0.7) (Fig. S1).
This pattern was also observed in O. sativa and P. trichocarpa,
with slight variations in peak positions, highlighting the universal
applicability of this feature across diverse species. Similarly, com-
plex Fourier average and atomic Fourier amplitude exhibited sig-
nificant classification potential (Fig. S1). In all three species,
lncRNAs consistently peaked at lower values, whereas mRNAs
had a broader distribution skewed toward higher values.

Additionally, we evaluated traditional sequence-based features,
including k-mer frequencies and Fickett scores, for their effective-
ness in distinguishing lncRNAs. Both features exhibited limited
discriminatory power across all species (Figs S2, S3). Specifically,
the k-mer distributions showed substantial overlap between
lncRNAs and mRNAs, while Fickett scores, despite showing
slight separation, still presented considerable overlap.

Principal component analysis (PCA) revealed a distinct separa-
tion between lncRNAs and mRNAs based on three key features
(Fig. 3). The two fourier-based features complex Fourier average
and atomic Fourier amplitude, were primarily responsible for the
separation along the first principal component, which accounted
for up to 97% of the variance across A. thaliana, O. sativa, and P.
trichocarpa (Fig. 3). This suggests that these features capture
essential differences between lncRNAs and mRNAs. Meanwhile,
ORF coverage contributed to the variance along the second prin-
cipal component, providing further discriminatory power
(Fig. 3).

These results underscore the effectiveness of our feature selec-
tion, emphasizing the potential to enhance lncRNA prediction
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Fig. 2 Fivefold cross-validation
evaluation of features selected with
different feature selection methods.
(a) The comparative assessment of
different feature selection methods,
including ANOVA, Pearson
correlation coefficient, mutual
information, random forest
importance (RFI), variance threshold,
and recursive feature elimination
(RFE). (b) The comparative
assessment based on RFI method and
different numbers of features.
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models by prioritizing Fourier-based features for primary classifi-
cation. Additionally, a minor overlap between lncRNAs and
mRNAs likely indicates RNAs with intermediate traits or shared
features (Fig. 3). This overlap may also result from annotation
discrepancies or other factors, complicating the clear distinction
between lncRNAs and mRNAs.

Modeling with key features

Utilizing the CatBoost algorithm and three key features, we
developed an enhanced plant lncRNA prediction model,
PlantLncBoost. Tenfold cross-validation results demonstrated
that PlantLncBoost outperforms the leading models,
LncFinder-plant and CPAT-plant (Fig. S4). Specifically,
PlantLncBoost achieved an accuracy of 94.35%, an F1-score of
94.68%, a precision of 89.99%, a sensitivity of 99.96%, and a
specificity of 88.73% (Fig. S4). These metrics collectively high-
light the robust predictive power of PlantLncBoost in differen-
tiating plant lncRNAs from mRNAs.

Benchmarking of multiple models

We benchmarked our new model, PlantLncBoost, against nine
established lncRNA prediction models: LncFinder-plant, CPAT-
plant, RNAplonc, PLncPRO, CPC2, LncDeep, LncMachine,
PLEK-plant, and CNCI (Table S10). The evaluation used test
datasets from 20 diverse plant species of a broad range of plant
lineages, that is Spermatophytes, Bryophyte, and Archaeplastida.
The results indicated that PlantLncBoost outperformed all other
models across key metrics, achieving the highest values in sensi-
tivity (98.42%), specificity (94.93%), accuracy (96.63%), preci-
sion (95.14%), area under the curve (AUC) (98.35%), and
F1-score (96.74%) (Tables 2, S10, S11). Remarkably, the model
demonstrated near 100% sensitivity in most species while main-
taining specificity and precision above 90% consistently (Fig. 4;
Table S10). This enhancement in sensitivity did not compromise
specificity, highlighting the robustness of the model and its abil-
ity to balance critical performance metrics for accurate plant

lncRNA prediction. The receiver operating characteristic (ROC)
curve for PlantLncBoost was notably closer to the top-left corner,
underscoring its superior predictive capability across the majority
of tested species (Fig. 5).

LncFinder-plant and CPAT-plant (Tian et al., 2024) followed
closely behind PlantLncBoost in overall performance (Figs 4, 5;
Table 2). Notably, RNAplonc also demonstrated commendable
performance with a high sensitivity of 96.71%, an accuracy of
93.68%, and an AUC of 95.22%, positioning it as the fourth
best-performing tool in our comparative analysis. LncMachine
showed comparable accuracy (93.63%) to RNAplonc but with
lower sensitivity (93.68%). By contrast, PLncPRO demonstrated
relatively lower sensitivity, accuracy, and F1-score, though it still
showed competitive specificity and precision (Table 2). Mean-
while, CPC2, LncDeep, PLEK-plant, and CNCI exhibited sig-
nificantly lower accuracy and F1-scores, ranging between 80%
and 90%, reflecting a marked underperformance compared to
the other tools (Table 2).

Benchmarking with experimentally validated plant lncRNAs

In this benchmarking with experimentally validated
lncRNAs (Table S2), PlantLncBoost and LncFinder-plant both
achieved the highest detection rate, identifying 357 of 358
lncRNAs (99.72%). CPAT-plant followed closely with 355
lncRNAs (99.16%), while CPC2, LncMachine, PLncPRO, and
RNAplonc each recognized 353 (98.60%). By contrast, CNCI
captured 333 transcripts (93.02%), LncADeep identified 321
(89.66%), and PLEK-plant had the lowest detection rate at 311
(86.87%).

Notably, the single lncRNA (GenBank: KC549675.1, from
Triticum aestivum and it was designated as TalncRNA18) (Zhang
et al., 2013) that escaped detection by PlantLncBoost was consis-
tently classified as a protein-coding RNA by all other tools. Revi-
siting its initial characterization revealed critical methodological
limitations: the original classification as a lncRNA depended
exclusively on ORF detection using the legacy NCBI ORF Fin-
der (Zhang et al., 2013), which failed to identify any significant

Fig. 3 Principal component analysis of lncRNA and mRNA based on three key features across three model species. LncRNA, long noncoding RNA; ORF,
open reading frame; PC1, first principal component; PC2, second principal component.
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ORF. However, modern multi-feature tools (LncFinder-plant,
CPAT-plant, lncMachine, CNCI, CPC2, etc.) all predicted the
ORF spanning > 100 amino acids, with coding potential scores
surpassing empirical thresholds. Further analysis using the

updated NCBI ORF Finder identified 12 putative ORFs, with
the longest ORF encoding a 387-amino-acid polypeptide, exhi-
biting sequence homology to E3 ubiquitin-protein ligase UPL1-
like gene.
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Fig. 4 Performance evaluation of 10 lncRNA identification tools on 20 plant datasets. From left to right, the panels present Sensitivity (proportion of true
positives correctly identified), Specificity (proportion of true negatives correctly identified), Accuracy (overall correctness of predictions), Precision
(proportion of positive identifications that were correct), F1-score (harmonic mean of precision and sensitivity), and AUC (area under the ROC curve,
measuring overall discriminative ability).The x-axis in each panel represents the 20 different plant species tested. PlantLncBoost consistently shows superior
performance across most species and evaluation metrics. AUC, area under the curve; CNCI, Coding-Non-Coding Index; CPC, Coding Potential Calculator;
CPAT, Coding Potential Assessment Tool; lncRNA, long noncoding RNA; PLEK, predictor of long noncoding RNAs and messenger.

Table 2 Overall performance of 10 lncRNA identification methods on datasets from 20 plant species.

Models Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC (%)

PlantLncBoost 98.42 94.93 96.63 95.14 96.74 98.35
LncFinder-plant 98.18 93.28 95.73 93.64 95.84 97.88
CPAT-plant 97.86 92.44 95.15 92.91 95.30 97.08
RNAplonc 96.71 91.63 93.68 92.06 94.26 95.22
LncMachine 93.68 93.58 93.63 93.68 93.65 96.99
CPC2 91.98 91.88 91.93 91.94 91.93 96.63
PLncPRO 77.26 94.36 85.81 93.47 84.19 95.82
LncADeep 71.07 94.79 82.93 93.32 80.37 91.60
PLEK-plant 79.61 87.05 82.12 87.15 82.44 92.92
CNCI 74.59 85.58 80.08 85.49 77.86 82.70

AUC, area under the curve; LncADeep, an ab initio lncRNA identification and functional annotation tool based on deep learning. Values in bold represent
the highest scores in each column.
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Fig. 5 ROC curve of 10 lncRNA identification methods on 20 plant datasets. Each panel displays the performance of different lncRNA identification
methods (PlantLncBoost, CNCI, CPC2, CPAT-plant, LncADeep, LncFinder-plant, LncMachine, PLEK-plant, PlncPro, and RNAplonc) on a separate plant
species. The species analyzed include Amborella trichopoda, Ananas comosus, Arabidopsis thaliana, Brachypodium distachyon, Cucumis sativus, Glycine

max, Solanum lycopersicum, Manihot esculenta, Medicago truncatula, Musa acuminata, Oryza sativa, Populus trichocarpa, Sorghum bicolor, Vitis

vinifera, Zea mays, Physcomitrella patens, Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, Micromonas pusilla, and Volvox carteri. Higher
curves toward the upper-left corner indicate better performance. CNCI, Coding-Non-Coding Index; CPC, Coding Potential Calculator; CPAT, Coding
Potential Assessment Tool; lncRNA, long noncoding RNA; PLEK, predictor of long noncoding RNAs and messenger.
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In summary, benchmarking with experimentally validated
lncRNAs suggested PlantLncBoost, LncFinder-plant, and
CPAT-plant as the three most effective models for predicting
plant lncRNAs. The plant lncRNA identification model devel-
oped in this research, PlantLncBoost, is freely accessible to
the scientific community at https://github.com/xuechantian/
PlantLncBoost.git. Additionally, this model has been integrated
into a comprehensive lncRNA analysis pipeline, Plant-LncRNA-
pipeline v.2, available at https://github.com/xuechantian/Plant-
LncRNA-pipeline-v2. This pipeline encompasses a series of pro-
cesses, including raw data filtering, transcriptome alignment and
assembly, lncRNA prediction using PlantLncBoost, CPAT-plant,
and LncFinder-plant, lncRNA classification, and origin analysis.
Additionally, if users wish to use more tools, RNAplonc is worth
considering due to its commendable performance in our
evaluation.

Discussion

Challenge of weak generalization in lncRNA identification

The core challenge addressed in this study is the weak generaliza-
tion of existing models for plant lncRNA identification, which pri-
marily results from poor sequence conservation among lncRNAs
across diverse plant species (Budak et al., 2020). Traditional mod-
els such as LncFinder and CPAT, which were originally designed
for nonplant species, exhibit limitations when generalized to plants
due to the reliance on features and classification strategies that are
insufficient for capturing the specific properties of plant lncRNAs
(Tian et al., 2024). To overcome these limitations, PlantLncBoost
integrates advanced gradient boosting algorithms and novel mathe-
matical features, providing a more versatile and generalizable
approach to lncRNA identification in plants. The application of
CatBoost following model selection, combined with comprehen-
sive feature selection, allows PlantLncBoost to capture essential dif-
ferences between lncRNAs and mRNAs that are consistent across a
wide variety of plant species, as it was demonstrated in benchmark-
ings with lncRNAs from diverse plant lineages, especially those
that are experimentally validated.

The weak generalization of previous lncRNA identification
models has been a significant bottleneck in research involving
plant lncRNAs. The lack of sequence conservation among plant
lncRNAs makes it difficult for conventional models, which often
depend on sequence similarity or some secondary structure fea-
tures, to distinguish between coding and noncoding RNAs effec-
tively. Our approach with PlantLncBoost addresses this by
selecting features that do not rely solely on sequence similarity
but instead focus on mathematical properties and signal charac-
teristics of nucleotide sequences, leading to a substantial improve-
ment in cross-species generalization.

Comparison of feature selection methods

Feature selection is pivotal in constructing high-performance pre-
dictive models (Bonidia et al., 2020), especially for increasing
generalization in distinguishing plant lncRNAs from mRNAs.

Effective feature selection not only eliminates redundant and irre-
levant information but also enhances prediction accuracy and
generalization ability (Guyon et al., 2008; Storcheus et al., 2015;
Zhou et al., 2021). In this study, we systematically compared var-
ious feature selection methods, including RFI, RFE, VT, and sev-
eral filter-based approaches, such as Pearson correlation
coefficient, ANOVA, and mutual information.

Our cross-validation results demonstrated that the RFI-based
feature selection strategy outperformed the others across key eva-
luation metrics. This superior performance is likely due to the
random forest algorithm’s ability to automatically learn and
exploit high-order interactions and nonlinear patterns among fea-
tures, as well as its strong resistance to noise and overfitting
(Akhiat et al., 2021). RFE also showed competitive performance,
ranking closely behind RFI. By recursively eliminating the least
important features based on model performance, RFE effectively
captures complex feature interactions, leading to improved model
accuracy. However, RFE is computationally intensive, especially
when dealing with large feature sets, as it requires retraining the
model multiple times to evaluate the importance of each feature
subset. This significant time cost makes RFE more suitable for
small sample datasets (Chen & Jeong, 2007). In datasets with
high dimensionality, such as biological sequence data
with numerous features, the computational cost of RFE becomes
prohibitive, limiting its practicality for large-scale analyses. By
contrast, filter-based methods like Pearson correlation coefficient,
ANOVA, and mutual information exhibited a clear lack of com-
petitiveness. These univariate methods fail to effectively capture
high-order interactions and complex correlation patterns among
features (Saeys et al., 2007). The fundamental differences
between lncRNAs and mRNAs are often embedded within intri-
cate feature patterns that require considering the combined
effects of multiple features for clear differentiation. Moreover,
univariate methods are sensitive to outliers and noisy data, poten-
tially leading to the selection of irrelevant or misleading feature
subsets and adversely impacting classification performance (Bol�o
n-Canedo et al., 2013).

Overall, for large sample datasets, the RFI-based feature selec-
tion strategy is the optimal choice for distinguishing plant
lncRNAs from mRNAs, as it balances high predictive perfor-
mance with computational efficiency.

Novel mathematical features and their biological
significance

A major innovation of PlantLncBoost is the incorporation of
novel mathematical features, specifically complex Fourier average
and atomic Fourier amplitude. These features capture intricate
aspects of lncRNA sequences that are not revealed by traditional
sequence-based descriptors (Messaoudi et al., 2014). For
instance, the Fourier transform-based features offer a mathemati-
cal perspective on sequence periodicity and frequency-domain
characteristics, which are distinct between lncRNAs and mRNAs
due to differences in coding potential (Afreixo et al., 2004). An
important characteristic of mRNA is its highly regularized coding
region composed of triplet codons, which exhibit a clear three-
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base periodicity (Tiwari et al., 1997). When applying the Fourier
transform to mRNA sequences, this periodicity manifests as pro-
minent peaks in the frequency spectrum (Tiwari et al., 1997;
Nair & Sreenadhan, 2006). By contrast, lncRNA, which does
not encode proteins, does not adhere to this three-base periodi-
city. As a result, the Fourier spectrum of lncRNA may lack these
specific frequency peaks and instead display a more dispersed or
complex frequency distribution (Rajesh & Krishnama-
chari, 2023). The use of such mathematical descriptors ensures
that PlantLncBoost is not restricted by the poor sequence conser-
vation that typically impairs other models, thus enhancing its
generalization ability across species.

Moreover, the biological relevance of the key features should
not be understated. ORF coverage effectively captures the transla-
tional potential of RNA sequences, allowing the model to differ-
entiate between coding and noncoding RNAs based on their
ability to form complete ORFs, which is generally lacking in
lncRNAs (Kong et al., 2007). The Fourier-based features, such as
complex Fourier average and atomic Fourier amplitude, reflect
inherent sequence periodicity and composition (Tiwari
et al., 1997), which may be related to the structural or functional
motifs critical for lncRNA activity in gene regulation.

Generalization and reliability in novel lncRNA discovery

The integration of novel features, combined with the use of the
CatBoost algorithm, allows PlantLncBoost to significantly
improve the accuracy and generalization of lncRNA identifica-
tion across a broad range of plant species. This is crucial for the
discovery of novel lncRNAs, particularly in less studied plant
genomes. Unlike existing tools that often exhibit biases or
reduced performance on new species, PlantLncBoost demon-
strates consistent results in identifying lncRNAs across 20 diverse
plant species, including both model organisms and nonmodel
plants. The ability of PlantLncBoost to generalize effectively,
even to phylogenetically distant species, underscores its reliability
and potential utility in discovering new lncRNAs in unexplored
plant genomes.

The improvement in generalization directly translates into
greater reliability of research outcomes. By reducing the species-
specific biases that have historically impacted the accuracy of
lncRNA prediction models, PlantLncBoost provides a robust tool
that can be used confidently across different plant species. This is
a significant contribution to the field, as it enables researchers to
extend the study of lncRNA functions beyond well-characterized
species, facilitating new discoveries in plant biology and offering
insights into the evolutionary conservation and diversification of
lncRNAs (Palos et al., 2023; Traubenik et al., 2024).

Implications and limitations

The success of PlantLncBoost in improving the identification of
lncRNAs across a wide variety of plant species has several impli-
cations for future research. First, the use of advanced feature
selection and gradient boosting models could be further extended
to explore other noncoding RNA classes or even protein-coding

genes, particularly in taxa where genomic resources are limited.
Additionally, the key features identified in this study, especially
those derived from Fourier analysis, could provide new avenues
for exploring the structural and regulatory roles of lncRNAs,
which remain largely unexplored in many plant species.

However, there are limitations to the current implementation
of PlantLncBoost that warrant further exploration. While the
model has proven effective in generalizing across diverse species,
the reliance on numerical features means that certain biological
contexts, such as tissue-specific expression or epigenetic regula-
tion, are not explicitly modeled. Future enhancements could
involve integrating more biological context, such as chromatin
accessibility or interaction networks, to further improve the speci-
ficity of lncRNA predictions (Ross et al., 2021). Additionally,
expanding PlantLncBoost to include deep learning
approaches that can learn more abstract representations from raw
sequence data could further boost its prediction capabilities and
adaptability.

Conclusion

In summary, PlantLncBoost represents a significant advancement
in plant lncRNA identification by effectively addressing the chal-
lenge of weak generalization that arises from poor sequence con-
servation. By leveraging novel mathematical features and gradient
boosting algorithms, PlantLncBoost achieves high accuracy and
generalizability, enabling the reliable study of lncRNAs in a wide
range of plant species. The identification of key features, such as
ORF coverage and Fourier-based descriptors, provides deeper
insights into the intrinsic properties of lncRNAs, offering a foun-
dation for future studies into their structural and functional roles
in plants.
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