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RESUMO

Neste relatério nés introduzimos uma analise Bayesiana de dados binarios correla-
cionados onde cada observagao tem sua prépria covaridvel. Nés assumimos os modelos de
regressdo logistico e probito para dados binarios correlacionados considerando os efeitos
aleatdrios uma mistura de distribui¢des normais. Assumimos distribuicoes a priori infor-
mativas para os parametros do modelo e métodos de Monte Carlo em Cadeias de Markov,

nés obtivemos estimativas de Monte Carlo para as quantidades a posteriori de interesse.
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Abstract

In this paper, we introduce a Bayesian analysis of correlated binary data when
each binary observation have its own covariates. We assume logist and probit regres-
sion models for correlated binary data with random effects considering a mixture
of normal distributions. Assuming informative prior distributions for the parame-
ters of the model and Markov Chain Monte Carlo methods, we obtain Monte Carlo

estimates for the posterior quantities of interest.

keywords: correlated binary data, covariates, random effects, mixture of normal distribu-

tions.

1 Introduction

Consider two or more measurements taken at one time for the same subjects or when
repeated measurements are taken over time, where we observe a binary (0-1) response
y;; on the ith observation and jth variable, 7 = 1,... ,nand j =1,... ,J. Associated

to each response y;; let z,; = (z41,. .. , Tijp;) be the corresponding pj-dimensional row
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regression vector. Let y. = (yu,... %) and y = (y,,...,y, )" be the observed data,
where y;1, ...,y are dependent and y , ...,y are independent.

Different models are proposed in the literature for modelling correlated binary data in
the presence of covariates (see for example, Dey and Chen, 1996; Prentice, 1988; or Ochi
and Prentice, 1984).

Prentice (1988), consider the random effect binary logistic regression model for y;;

given z;;,

P{Yys = yiglows B, 2} = piy (1 = i)' ™% )

where p;; = w = (Bjr- -+ +Bp;i), 3 =1,...,J are p;-dimensional vector of

+exp{ai+f g, }’
regression coefficients. Observe that o; denotes a random effect on the ith observation,
which captures the correlation among v;1,... ,¥iJ.

Dey and Chen (1996) assume,
a; ~ N(0,07) ()

where the random effects o; are independent.

Other possibility is to consider a probit regression model for y;; given z;; (1) with

pij = ®(a; + ﬁ;%]) (3)

where @(-) is the standardized normal integral

®(t) = —= / @)

(see for example, Cox, 1970).

Other models are considered in the literature to analyse correlated binary data. Chib
and Greenberg (1998) consider a multivariate probit model; a generalization of multivari-
ate probit models is given by multivariate t-link models (see for example, Dey and Chen,
1996).

The use of classical methods based on the usual asymptotical approximations could
involve very intensive computation and the accuracy of the obtained inferences could be
not appropriate.

Albert and Jais (1998), introduce a Bayesian analysis for the logistic regression model

(1) considering the use of the Gibbs sampler (see for example, Gelfand and Smith, 1990)



to obtain the posterior quantities of interest. Dey and Chen (1995) consider a hierarchi-
cal Bayesian analysis of model (1). They also introduce some model diagnostics using
simulation based approach for model adequacy.

In this paper, we consider a random effect regression model for correlated binary data

assuming a mixture of normal distributions for the random effects o, given by,
K
(o) = Zpk¢k(ailﬂka op) ()
k=1

where Z,Ifﬂ px = 1 and @ denotes a normal density N (u,o?).
For a Bayesian analysis of this model, we consider the use of Markov Chain Monte
Carlo (MCMC) methods to simulate samples of the joint posterior distribution for the

parameters.

2 A Bayesian Analysis Assuming a Mixture of Nor-
mal Distributions for o;

Let us assume that the random effects o;, ¢ = 1, ... ,n are independent with a mixture of
K = 2 normal distributions (5), with p; + p; = 1.

From (1), the likelihood function for g, By ,B8, where o = (01,...,0p) is given
by,
(e, B,,--- HHp”” )y (6)
=1 j=1

where p;; is the logistic or the probit link.

Assuming prior independence among the parameters, consider the following prior den-
sities for u1, po, 02,02, p1, B, L=1,...,p;; 7 =1,...,J:
e ~ N(dy,€2); di, ex known, k =1,2;
o2 ~ IG(ay,bi); ax, by; known, k =1,2;
p1~ B(f,9); f, g; known;
Bij ~ N(blj,cfj); bij, cj; known, I =1,...,p;; j=1,...,J,

where N(u,0?) denotes a normal distribution with mean x4 and variance o?; IG(a,b)

denotes an inverse gamma distribution with mean b/(a — 1) and variance v*/[(a—1)*(a -



2)] and B(f, g) denotes a beta distribution with mean f/(f + g) and variance fa/l(f +

9P (f +g9+1)]
The joint posterior for 8 = (a, p1, 2, p1, 03,03, 8,5 - , B,) is given by,
n 2
r(8ly, 2) o« W(Q){Hzpm(ailuk, az)} )
i=1 k=1
where

@) ={ 10 een(- )} {TT ooy -]}

k=1 k k=1

Pl (1=p)" {HHexp[ (B — ;) ]}

=1 j=1

TTITrt - g

i=1 j=1
To obtain better performance for the Gibbs sampling algorithm, we consider the

introduction of latent variables (see for example, Tanner and Wong, 1987) given by
Z; = (Zn,Zn), i =1,...,n, where Z;;|0,y,z ~ b(1,h;y) (a Bernoulli distribution)
with h;; given by

p1¢1(ailﬂl,0%) (9)

hat =
' pio1(ailpr, 02) + (1 — p1)da(as| e, 02)

That is,
m(Z;) o< h5H (1 — hyp) % (10)
where Z;; = 1 with probability h;; (Z;; = 0 with probability 1 — h;;). Observe that
Zian+ Zip=1.

Thus, we have,

Hz— Hk 1[pk¢k(al,/1'ka )] ik (11)
I{Zk 1 Pe®e (il i, 0F)}
Combining equation (11) with equation (8), we obtain,

"o Zol) o ¥ @ { T TTintn ol D (12)

i=1 k=1

71-(—Z-ly v ,Zn)

where ¥(0) is given in (8).
To generate samples of the joint posterior distribution (12) we use the Gibbs sampling

algorithm. Starting with initial values §© = (0§°), . 9(0)) we follow the following steps:
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(i) Generate a sample Z(!) = 2, ... , Z\1) from equation (10).
(ii) Generate a sample of @ from the conditional distributions

761165, 09,20 2, y), 7(6161,65,... 09,20 z,v),

can ,7r(0p|0{1), ey 1(,1_)1,_Zf1);§a _y_)

(13)

Then, continue iterations by repeating steps (i) and (ii).
Considering the logistic link p;; = exp(a;+ Q;x,]) /1 +exp(a;+ ﬁ;gzij)], the conditional

distribution for Gibbs Sampling algorithm are given by,

(i)

Zia 102 + Zigipo? o202
114103 242071 192 }\Pl(a,ﬂ),

2
TG0, 4y Ty D1,y ,.’E,Z ~ N ?
(lf, i, ", P, 2, Z) { Zy03 + Ziot ’ Zu03 + Zipo}

where

J
¥1(a, B) = eXp{aiyL - Z log[1 + exp(e; + é;zm)]},

g=1

J
. (14)
yi-zzyij’ 1=1,...,n,

=1

p=(m,p); o= (0203

(ii)

Z?:l Zik(ai - Nk)z)
2

v
W(Ulﬂg., é’ Hy U(zk)7p17 Yz, Z) ~IG (ak + Ek'abk +
where vy =Y Zue k=1,2; o= of, j#k 4 k=12,
(iii)

ﬂ'(pllga _ﬂ_a H_a Qzaga Zz, Z) ~ B(f + V1,9 +U2)a



(iv)
(Bisle By 1o @01, 2, Z) ~ N(byj, ci;) Ta(es B),
where ¥y(a, ) = exp{ﬂzjajz — iy log[l +exp(a; + ﬁ;%])]},

a1 = Yim1 Tigiiss By = (Bujs -+ Bivs Brargo -+ » Bpys)s

I=1,...,p; j=1,...,J,

(v)

2, 2% 2 2
drog + €D iy QiZik €x0k }
)

2 Z)~ N
m(ule, B, by, @ P1, Y, T, Z) { ot+eld Za ‘oi+ed . Zu

where H(k) = Hjs J # k, J)k =1,2.

Observe that the variables o;, and B ¢ = 1,... ,n; I =1,...,p;; 7 =1,...,J
should be generated using the Metropolis-Hastings algorithm (see for example, Smith
and Roberts, 1993).

Considering the probit link (3), the conditional distributions for the Gibbs sampling
algorithm are given by (14) with

hiwd) = H loi+ g;gzii)yij [1 - ®(ai + ﬁ;ﬁij)]l_y‘j,

j=1

and (15)

Vo(a, B) = H<I>(a,~ + é;-%j)y""[l — &y + ﬁ;&ij)]l_y"'

=1

3 A Bayesian Analysis Assuming a Normal Distribu-
tion for o;
If we assume that the random effects o3, 7 = 1,...,n have a normal distribution
N(0,02) with prior distributions,
o2 ~IG(a,b); a, b known;
a (a,b) (16)
Bij ~ N(blj,cfj); bl,-,c,zj known; I=1,...,p;;i=1,...,J,

and prior independence, the conditional distributions for the Gibbs sampling algorithm

considering the logistic link are given by,



m(ilog, B,,2) ~ N(0,07)¥3(a, f) (17)
where
¥s(a, B) = eXP{ Qi Y Yij — Yoj=y log[1 + exp(a; + ﬁ;—x—ij)]}7
(ii)

n 2
W(Ug'g_, _/_B_, Y, 5_17_) ~1IG (g— + a, b+ Ei=21 o )

(iii)
W(ﬂljlg, GZ’ é(l])’ g) _x_) ~ N(bl]) clzj)\p4(g1 é)

where
Uy(a, é) = eXP{ﬂljajl — i log[1 + exp(a; + _IB_;EJ)]};
@t = i Tigi¥igs
I=1,...,p;; 7=1,...,J.
Observe that we need to use the Metropolis-Hastings algorithm to generate the vari-
ables a; and ;.

Considering the probit link (3), the conditional distributions for the Gibbs sampling
algorithm are given by (17) with

J
Us(a, f) = [ ] (as + Bz, )51 — B(ou + Bz,
j=1
and (18)
n
\II4(Q’ g) = H (D(az + é;iij)yij [1 - <I)(a, -+ é;gij)]l—yij
i=1
It is interesting to observe that if we consider « fixed with prior distributions,
o ~ N(ug,03); po, 0a  known;
(ko,00); Hos 05 19)

Bij ~ N(blj,cfj); bij, cfj known;
and logistic link, the conditional distributions for the Gibbs sampling algorithm are given

by,



W(alga Y, 2) ~ N(/,Lo,ag)\lf5(a, é)’ (20)

where

Us(, ) = eXP{ay-- — Y S log[l + exp(a+ 300, Bii)] },
Yo = Yy i Yig-
(ii)
(818,50 & 4, 2) ~ N(byj, ) Te(e, B),

where
Ws(a, EJ) = eXP{aljﬂlj -0 log[l + exp(a+ Y 12, ﬂzjxijz)]}

where a;; and 3, . are defined in (14).

(45)
With probit link (3), we have,

n J
Tslenf) = H H (o + é;glij)yij [1-®(e + ﬁ;&ij)]l—yij,

i=1 j=1
and

V(o §) = [[ 0l + Bz,)" 1 - 2l + Biz) '

4 An Example

In table 1, we have the captures (y;; = 1 for captured; y; = 0 for not captured) of
peromyscus maniculatus collected by V. Reid at East Stuart Gulch, Colorado (data set
introduced by Huggins, 1991). The columns represent the sex (m or f), the ages (y: young,
sa: semi-adult, a: adult), the weights in grams, and the capture histories of 36 individuals
over 6 trapping occasions.

For the data set of table 1, we first assume the logistic regression model (1), that is,
P{Y;; = yilou, B, B, By g} = piy’ (1 — pig)' ™% (21)

where

pii = exp{a; + zij1 B + Tij2B25 + Tials;}
T 1+ exp{a; + zij1815 + Tijolboj + Tij3bsi}

8



1=1,,36, .7217’67 _/3_1=(ﬂ117'-‘):816); é2=(:821;'-"/826);
By = (Bar,-- s B3);  @ijn = 1(0) for m(f); - zij2 = 1(y), 2(sa) or 3(a); 243 = weight—
14.

Table 1: Huggins Data

Captures of peromyscus maniculatus

m y 12 1 1111 1|f y 10100 10 0
f y 1610 0 1 1 1]f a 23 01 0010
my 151100 11|f y 7 01100 1
my 1511011 1lmy 8 010001
my 1311111 1|m a 19 0101 0 1
m y 1301101 0|f a 2 0071111
f y 5 01010 1/f y 100010 11
m a 2001000 1{f y 14001111
my 12 0 1 001 1|f a 19 0 0 1 0 0 0
f y 6 00100O0|f a 20000100
m a 21 11011 1|msa 16 0 0 0 1 1 1
m y 11 111 110{f y 11 0001 1 0
msa 1511100 1m y 14 00001 0
my 1411111 1}f y 11 0 00 0 1 0
my 1311011 1{m a 2 00001 0
f a 22 1 1101 1/my 9 000001
my 1411111 1|msa 16 0 0 0 0 0 1
my 11 1 01 1 1 0(f a 19 0 0 0 0 0 1

Assuming o fixed, maximum likelihood estimators for a, 8, 8, and 3, are given by
& = 1.629,
_B_: = (1.3060, 0.9334, —0.6831, 0.0606, 1.3575, 0.4252),

B, = (~1.9722, —1.2288, —1.0135, ~1.0931, —1.3414, —0.7094),

B, = (0.3256,0.1863,0.0876,0.1560, 0.3142,0.1114).

Also assuming « fixed for a Bayesian analysis of model (21) with prior densities (19)
with gg = 1.6, 0o = 0.2, by = 1.3, by = 0.9, bz = —0.6, by = 0.06, bys = 1.3,
big = 0.4, by; = —1.9, byy = —1.2, byg = —1.0, bog = —1.0, bys = —1.3, by = —0.7,
by = 0.3, bsp = 0.1, bgg = 0.08, byy = 0.1, b3z = 0.3, bsg = 0.1 and ¢;; = 0.2, 1 =1,2,3;
j=1,2,...,6, we generated 5 separate Gibbs chains, each of which ran for 2000 iterations.

We monitored the convergence of the Gibbs samples using the Gelman and Rubin (1992)



method, which utilizes the analysis of variance technique to determine if further iterations
are needed. For each parameter, we discarded the 500 first iterations (" burn-in-samples”)

and we considered the 10th, 20th, ... iterations.

Monte Carlo estimates for the posterior means for «, 8, 8,, and B, aproximated from

the generated Gibbs samples (see (20)) are given by,

& = 1.6255,

—

B, = (1.3177,0.9018, —0.5956, 0.0629, 1.3072, 0.3999),

:ﬁ:; = (—1.9060, —1.2081, —0.9963, —1.0933, —1.3101, —0.7078), and

—

B, = (0.3057,0.1807,0.0766,0.1471,0.3076,0.1057).

For a Bayesian analysis of the logistic regression model (21) assuming random effects
@i, i =1,2,...,36 with a normal distribution N(0,02) and prior distributions (16) with
a =4, b =1/3 and the same values for the parameters of the prior distributions (19) with
o fixed, we also generated 5 separate Gibbs chains, each of which ran for 6000 iterations.
Monte Carlo estimates for the posterior means of o2, él, éz and ﬁa approximated from

the generated Gibbs Samples (see (17)) are given by,
o2 = 0.3267,

= (1.3715,0.9660, —0.5516,0.1321, 1.3635, 0.4574),

=

B, = (—1.2067, —0.4186, —0.2174, —0.3053, —0.4614, 0.1390), and
ﬁg = (0.2272,0.0785, —0.0480, 0.0550, 0.2052, 0.0056).

Assuming a mixture of K = 2 normal distributions (5) for the random effects o;, i =
1,2,...,36 and prior distribution (7) with d; = —0.4, d, = 0.4, e; =e3 =0.2, a1 = ay =
4,b; =by =1/3, f = g =1 and the same values for b;; and clzj, [=1,2,3,7=1,2,...,6
considered for the prior distributions (16) and (19), we also generated 5 separated Gibbs
chains, each of which ran for 6000 iterations.

In table 2, we have the posterior summaries obtained for the parameters.
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Table 2: Posterior Summaries (mixture of two normal

distributions for o;) - LOGIT LINK

Parameter ~Mean s.d. 95 % credible interval R
p -0.6478 0.3881  (-1.4215;0.1078)  1.0287
12 1.0367 0.2925  ( 0.5044 ; 1.6452)  1.0366
o? 0.1317 0.1172  ( 0.0380 ; 0.4470)  1.0147
o3 0.1317 0.1172  ( 0.0380 ; 0.4470)  1.0147
) 0.3586 0.1477  ( 0.0890 ; 0.6551)  1.0289
B 1.2975 0.1948  (0.9284;1.6791)  1.0014
br2 0.8999 0.1990  ( 0.5140; 1.2726)  1.0010
Bas -0.6039 0.2042 (-1.0033;-0.2117)  1.0011
Pra 0.0577 0.1934  (-0.3100;0.4333)  1.0007
Pis 1.2930 0.1964  ( 0.9037; 1.6887)  0.9999
bPre 0.3962 0.2001  (-0.0247;0.7842)  1.0011
Pa1 -1.2995 0.2061  (-1.7026 ; -0.8977)  1.0000
P22 -0.5030 0.2001  ( -0.8949 ; -0.1181)  1.0016
Pa3 -0.3006 0.2015  (-0.7041;0.0911)  1.0052
Paa -0.3952 0.2032  (-0.7832;-0.0161)  1.0017
Das -0.5020 0.1972  (-0.8984 ; -0.0960)  1.0045
Bas 0.0599 0.1961 (-0.3277;0.4368 )  1.0045
Ba1 0.3047 0.2019  (-0.0871;0.7049 )  1.0019
Ps2 0.1725 0.2024  (-0.2293;0.5590 )  1.0022
Paa -0.0824 0.2047 (-0.4873;0.3255)  1.0033
Bsa 0.1416 0.1938  (-0.2369 ; 0.5188 )  1.0018
Pas 0.3078 0.1909  (-0.0688 ; 0.7014 )  1.0024
Pse 0.1159 0.2024 (-0.2681;0.5214)  1.0031

We also have in table 2, the estimated potential scale reductions R (see Gelman and

Rubin, 1992) for all the parameters. In this case, the number of iterations considered was

sufficient for approximate convergence (\/ﬁ < 1.1 for all the parameters).

In table 2, we observe from 95% credible intervals for the regression parameters §;,
1=1,2,3;j =1,2,...,6 that the covariates z; (sex) and z, (ages) present significative
effects on the probabilities of captures for most times J = 1,2,...,6, but the covariate

z3 (weight) does not present a significative effect (the 95% credible intervals for Js;,

j=1,2,...,6 include zero).

In table 3, we have a summary of the Monte Carlo estimates for the posterior means

of B, 1 =1,2,3;=1,2,...,6 based on the Gibbs samples and considering the different

models.
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Table 3: Posterior means for 3 (I = 1,2,3; j=1,2,...,6) - LOGIT LINK

Parameter MLE a Fixed o; ~ N(0,02)  a; ~ Mixture of Normals

Jo 1.3060 1.3177 1.3715 1.2975
B2 0.9334  0.9018 0.9660 0.8999
Brs -0.6831 -0.5956 -0.5516 -0.6039
Pra 0.0606  0.0629 0.1321 0.0577
Bis 1.3575  1.3072 1.3635 1.2930
Pre 0.4252  0.3999 0.4574 0.3962
B -1.9722  -1.9060 -1.2067 -1.2995
B2 -1.2288 -1.2081 -0.4186 -0.5030
Bas -1.0135 -0.9963 -0.2174 -0.3006
Baa -1.0931 -1.0933 -0.3053 -0.3952
Bas -1.3414 -1.3101 -0.4614 -0.5020
Bos -0.7094 -0.7078 0.1390 0.0599
B31 0.3256  0.3057 0.2272 0.3047
Ba2 0.1863 0.1807 0.0785 0.1725
B3 0.0876  0.0766 -0.0480 -0.0824
B4 0.1560 0.1471 0.0550 0.1416
Bss 0.3142 0.3076 0.2052 0.3078
Bs6 0.1114  0.1057 0.0056 0.1159

If we assume « fixed with probit link p;; = ®(0 + i1 B+ Tijolaj+Tij3f35), 1 = 1, . .., 36;

J=1,...,6in (21), maximum likelihood estimators for «, B, B, and B, are given by ,

a = 1.0629,

—_—

B, = (0.7799, 0.5650, —0.4330,0.0336, 0.8677, 0.2403),

E = (—1.2116, -0.7623, —0.6351, —0.6830, —0.8444, —0.4452),

-

B, = (0.2012, 0.1129, 0.0549, 0.0973, 0.1968, 0.0698).

Also assuming o fixed and probit link (3) for a Bayesian analysis of model (21) with
prior densities (19) with up = 1, g9 = 0.4, b;; = 0.7, b1a = 0.5, bz = —0.4, by, = 0.03,
bis = 0.8, bjg = 0.2, by = —1.2, byy = —0.7, by = —0.6, byy = —0.6, bys = —0.8,
be = —0.4, b1 = 0.2, b3z = 0.1, bs3 = 0.05, byy = 0.09, bss = 0.19, bss = 0.06 and
aj =04,1=1,2,3;j =1,2,...,6, we also generated 5 separate Gibbs chains, each of
which ran for 6000 iterations. Taking the 3010th, 3020¢h, ... iterations, we have in table
4, Monte Carlo estimates for the posterior means of B 1 =1,2,3;=1,2,...,6 based
on the Gibbs samples.

Also assuming probit link (3) and random effects a;, i = 1,...,36 with a normal

distribution NV (0,02) and prior distribution (16) with @ = 3, b = 0.1 and same values

12



for the parameters of the prior distributions (19), we also have in table 4, Monte Carlo
estimates for (3;;, based on the generated Gibbs samples.

Assuming a mixture of k¥ = 2 normal distributions (5) for the random effects a;, i =
1,...,36 and prior distributions (7) with d; = —0.1,d; = 0.3, e; = €3 = 0.2; a; = a2 = 4;
by = by =1/3; f = g =1 and fixed values for b, c;; | = 1,2,3; j = 1,2,...,6, we
generated 5 separated Gibbs chains, each of which ran for 6000 iterations.

In table 4, we have the posterior summaries obtained for all parameters. Convergence

for the Gibbs algorithm was verified using the Gelman and Rubin (1992) criteriun.

Table 4: Posterior means for §; (I =1,2,3; j =1,2,...,6)
PROBIT LINK

Parameter =~ MLE afixed a; ~N(0,02) o; Mixture of Normals

Bu 0.7799  0.7328 1.1736 1.1476
B2 0.5650 0.5383 1.0833 1.0615
P13 -0.4330 -0.4261 0.1336 0.1067
B4 0.0336  0.0426 0.5907 0.5789
Bis 0.8677 0.8219 1.5074 1.5021
Bis 0.2403 0.2355 0.6974 0.6976
B -1.2116 -1.1880 -0.7696 -0.8815
P22 -0.7623 -0.7160 -0.3106 -0.4126
P23 -0.6351 -0.6065 -0.2505 -0.3726
P24 -0.6830 -0.6385 -0.2780 -0.4006
Pas -0.8444 -0.8069 -0.3539 -0.4473
P26 -0.4452 -0.3769 0.0688 -0.0157
Pa1 0.2012 0.1983 0.1317 0.0930
PBa2 0.1129 0.1103 0.0485 0.0574
B3 0.0549  0.0462 -0.0093 0.0040
B34 0.0973  0.0897 0.0342 0.0552
PBss 0.1968 0.1934 0.1321 0.1493
P36 0.0698  0.0691 -0.0082 0.0013

In table 5, we have the Pearson residuals d;; for the random effect logistic regression model
with a mixture of two normal distributions for o; to measure the discrepancy between the

data and the model, which are given by

_ Y _517' (22)

dij = —F——==,
? v Dij%ij



where p;; is given in (21) with the Bayes estimates for the parameters and g;; =1 — Dijs
i=1,...,36;,j=12,...,6.

Table 5: Pearson Residuals (mixture of two normal
distributions for ;) - LOGIT LINK

J
1 2 3 4 3 6

0.7292 0.5234 0.7775 0.7326 0.4920 0.4802
1.0291 -1.3546 -1.3195 0.7104 0.6896 0.5731
0.6363 0.5569 -0.8247 -1.2248 0.4274 0.5561
0.5220 0.4568 -1.0054 0.6698 0.3506 0.4562
0.6319 0.4845 0.8176 0.6887 0.4257 0.4572
-1.0433 0.7350 1.2402 -0.9571 0.6457 -1.4417
-0.2121 1.7467 -1.9948 1.4402 -0.3116 1.0218
-0.3549 1.2684 -0.4972 -0.8447 -1.1849 0.6461
-0.9246 0.7763 -0.8671 -0.9203 0.7298 0.7122
-0.1507 -0.3809 0.8559 -0.4549 -0.2218 -0.6329
0.7499 0.4399 -0.5949 0.6354 0.2248 0.2966
0.9131 0.6135 0.8023 0.8455 0.6171 -1.8279
1.0799 0.6346 1.2488 -1.1343 -2.0543 0.4783
0.5442 0.4458 0.8546 0.6436 0.3661 0.4328
0.6951 0.5330 -1.1118 0.7577 0.4683 0.5030
1.2183 0.6259 1.2808 -1.6596 0.3638 0.3374
0.5427 0.4446 0.8522 0.6419 0.3651 0.4316
1.0104 -1.4732 0.8877 0.9356 0.6828 -1.6519
2.8697 -0.6760 -1.2454 1.3177 -0.5160 -1.0031
-0.4908 1.1184 -0.3847 -0.9146 0.6075 -1.6124
-0.2847 1.4847 0.5498 -0.7920 -0.4197 0.9191
-0.4560 1.2084 -0.9275 -0.6289 -0.6716 0.9900
-0.6897 0.7453 -0.4531 1.0436 -2.2939 0.4748
-0.7434 -1.4469 1.4143 0.6653 0.4017 0.3726
-0.4361 -0.8460 0.6416 -0.9498 1.5486 0.7966
-0.8355 -1.2442 0.7264 0.7615 0.8033 0.6066
-0.2595 -0.6159 2.2669 -0.6701 -0.8650 -1.2437
-0.2682 -0.5959 -0.3757 1.5664 -0.8955 -1.1698
-0.8469 -1.3490 -0.6035 1.0459 0.5314 0.5748
-0.4004 -0.7270 -1.1790 1.2443 1.6842 -1.0486
-0.7195 -0.8784 -0.4582 -0.6084 0.9349 -0.9047
-0.2882 -0.5233 -0.8487 -0.5785 2.3399 -0.7548
-0.8582 -1.1996 -0.2142 -0.7930 0.3477 -1.6348
-0.4268 -0.7251 -0.7154 -0.5426 -0.6296 1.1622
-0.5324 -0.8479 -0.3793 -0.6010 -1.1828 0.9144
-0.2380 -0.5648 -0.4045 -0.6145 -0.7933 0.8768

In figure 1, we have the plots of the Pearson residuals d;; against i for each value of
J=12,...,6. We observe good fit of the random effect logistic regression model with a

mixture of two normal distributions for o; considering the data set of table 1.
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Figure 1. Pearson Residuals (mixture of two normal distributions for o;) - LOGIT LINK
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To check the overall performance for a model, we can consider the total Pearson

residual discrepancy measure which is given by

J

zn: yz] pz]) (23)

pz]‘]zy

i=1 j=1

For the random effect logistic regression model with a mixture of two normal dis-
tributions for o;, we have D = 183.3444. Considering a normal distribution N(0, o)
for the random effects o;, we have D = 185.7211 and considering a fixed o, we have
D = 207.5838. That is, we have better fit of the data set of table 1 for the random effect

model with a mixture of two normal distribution for a;, ¢ =1,2,... ,n.
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In figure 2, we have plots of the Pearson residuals d;; against ¢ for each value of
j=1,2,...,6 considering the random effect probit regression model with a mixture of

two normal distributions for o;.

Figure 1. Pearson Residuals (mixture of two normal distributions for o;) - PROBIT

LINK

ALL DATA Jut Je2
° o
°
@ 2| 13| ° °
ki o Y °
° o o .
ke o5 #p° oce . 18 ° 3
o L °
Rog o0 odf® g o 9% .8 @9 o ° osf o ° "ooe
$ % g ega® \ . Qe e
0|
P o © o]
°
T o opo ‘@y o2 o, o 03 °n ® n
Sop sa o 8T '&‘, ° oo °
1 9 oo S © oo g 03] ° °
o oass Ppo [ o ° o
° °
°
° 0o o ° oo 4 f ° o °°°
-2 ° o ° o
o ° o o
o8| o @ ° T8 18] o
° © 4, o0
) oo .
o o . 3 o
- 1.
0 100 150 200 30 s o AL 20 £ 0 s 40 s " " 2 3 Ed » “«0
abwservation obasrvalion obeervation
43 dad Ja=B
T
4 °
18 9
o o e
° °
15]
o o o 1, ao o 1
| o o ° ° ° o % e ° °
° o ° °
o o O o o o o %0 0°® o0 o° °
o o ® a o L2 ad o o o .
(2 o
i ; °° °o @
9 ) ° ° °
of o
°
° P2 -3 ° 3 3
o8] ° o o o o ° o LYo
° o ° e o RS °
J e ° ° ) o ° - ° °
oo o a e
°
-1, 1
s 0 18 20 E-] £ s 0 s 0 18 0 E_ ] x £l 4
PR R 0 0 W x 35 ) 3
Jod
v °
- vo
° a0 40
osf Yo 7 o a® % e
o %o o 0?
o
-0
-1 o a0 °
i °® o® o
-18]
°
-2
- o
3
°
5 0 " 20 3 Ed 3 4@
obeervation

For the random effect probit regression model with a mixture of two normal distribu-
tions for ;, we have (see(23)) D = 191.9622. Considering a normal distribution N (0, 02)
for the random effects o; with probit link (3) we have D = 192.7197 and considering a
fixed a, we have D = 209.4069.
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That is, the smallest value for D is given by the random effect logistic regression model
with a mixture of two normal distributions for a; (D = 183.3444) which indicates the best

model for the data set of table 1.

5 Concluding Remarks

The use of mixture of normal distributions for random effect models for correlated binary
data with logit or probit links gives a great flexibility of fit to real data. Usually, these data
have the presence of many covariates and the use of Markov Chain Monte Carlo methods

for a Bayesian analysis is a suitable way to get the posterior summaries of interest.
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