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RESUMO

Neste relatério nés introduzimos uma analise Bayesiana, de dados binérios correla-

cionados onde cada observagao tern sua prépria covariavel. Nés assumimos os modelos de

regressao logistico e probito para dados binarios correlacionados considerando 0s efeitos

aleatérios uma mistura de distribuigées normais. Assumimos distribuigées a priori infor-

mativas para os parametros do modelo e métodos de Monte Carlo em Cadeias de Markov,

nés obtivemos estimativas de Monte Carlo para as quantidades a posteriori de interesse.
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Abstract

In this paper, we introduce a Bayesian analysis of correlated binary data when

each binary observation have its own covariates. We assume logist and probit regres-
sion models for correlated binary data with random effects considering a mixture

of normal distributions. Assuming informative prior distributions for the parame-

ters of the model and Markov Chain Monte Carlo methods, we obtain Monte Carlo

estimates for the posterior quantities of interest.

keywords: correlated binary data, covariates, random effects, mixture of normal distribu-

tions.

1 Introduction
Consider two or more measurements taken at one time for the same subjects or when

repeated measurements are taken over time, where we observe a binary (0-1) response

yij on the ith observation and jth variable, i = 1, . .. ,n and j = 1, . .. ,J. Associated

to each response yij let gij = (zij1,... ,:r,~jpj)’ be the corresponding pj-dimensional row
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regression vector. Let 3/4 = (y,1,. .. ,y,J)’ and _y_ = (£1, . .. ,gny be the observed data,

where 3/51, . .. ,yiJ are dependent and Q1, . .. , En are independent.

Different models are proposed in the literature for modelling correlated binary data in

the presence of covariates (see for example, Dey and Chen, 1996; Prentice, 1988; or Ochi

and Prentice, 1984).

Prentice (1988), consider the random effect binary logistic regression model for yij

given xij,

P{Ki—yvlau_ij}= Pf}j(1“P'j1_y”) (1)

where 11,7: M31— =(,81j,.. . , flpjj), j = 1, . .. ,J are pj-dimensional vector of+exp{ai+fl z l’g
regression coefficients. Observe that a,- denotes a random effect on the ith observation,

which captures the correlation among yil, . .. ,yu.
Dey and Chen (1996) assume,

a,- N N(0, 03) (2)

where the random effects a,- are independent.

Other possibility is to consider a probit regression model for y,,- given E1 (1) with

pij = (I)(ai + figiij) (3)

where <I>(-) is the standardized normal integral

<I>(t)= mfine-“— (4)

(see for example, Cox, 1970).

Other models are considered in the literature to analyse correlated binary data. Chib

and Greenberg (1998) consider a multivariate probit model; a generalization of multivari—

ate probit models is given by multivariate t-link models (see for example, Dey and Chen,

1996).

The use of classical methods based on the usual asymptotical approximations could

involve very intensive computation and the accuracy of the obtained inferences could be

not appropriate.

Albert and Jais (1998), introduce a Bayesian analysis for the logistic regression model

(1) considering the use of the Gibbs sampler (see for example, Gelfand and Smith, 1990)



to obtain the posterior quantities of interest. Dey and Chen (1995) consider a hierarchi-

cal Bayesian analysis of model (1). They also introduce some model diagnostics using
simulation based approach for model adequacy.

In this paper, we consider a random effect regression model for correlated binary data

assuming a mixture of normal distributions for the random effects a,, given by,

K

flw=zpmmwmn @
k=1

where 25:11”: = 1 and (15k denotes a normal density N (,uk, oi).
For a Bayesian analysis of this model, we consider the use of Markov Chain Monte

Carlo (MCMC) methods to simulate samples of the joint posterior distribution for the

parameters.

2 A Bayesian Analysis Assuming a Mixture of Nor-

mal Distributions for oz,-

Let us assume that the random effects a,, i = 1, . . . ,n are independent with a mixture of

K = 2 normal distributions (5), with pl + pg = 1.

From (1), the likelihood function for g, 21, . .. ,EJ Where g = (011, . .. ,an)’ is given

by,

Luna )=HH#f(1—w)1w (o
i=1j= 1

where p,, is the logistic or the probit link.

Assuming prior independence among the parameters, consider the following prior den-

sities for N1,u2,0%,0§,p1,fllj,l:1,...,pj;j= 1, . .. ,J:

pk ~ N(dk,ek); dk, ek known, k = 1,2;

0,3 ~ IQ(ak,bk); ak, bk; known, k = 1,2;

pi ~ B(f,g); f, 9; known;

Q,» ~ N(blj,c,2j); blj, Clj; known, I = 1,... ,p,; j: 1,... ,J,
where N (u, 02) denotes a normal distribution with mean ,u and variance 02; Ig(a, b)

denotes an inverse gamma distribution with mean b/ (a — 1) and variance b2/[(a —1)2(a —



2)] and B( f, g) denotes a beta distribution with mean f/ (f + g) and variance fg/ [(f +
9)2(f + g + 1)l-

The joint posterior for Q = (Q,u1,u2,pl,a%,o§,_fi_1, . . . ,_fi_J) is given by,

n 2

new, 1) cc momzpmmluk, an} (8)
i=1 k=l

where

we) ={l2l<oz>-<ak+l>exp<—%>} - {llexp[— 21,011 — do]}
k=1 k k: 1

p{1()9"1—p1 {fiHexpl—giz2m,- buy”-
[11-1

finp,;f<1—pm>~
i=1j=1

To obtain better performance for the Gibbs sampling algorithm, we consider the

introduction of latent variables (see for example, Tanner and Wong, 1987) given by

_Z_,- = (Zith), i = 1,... ,n, where Zi1|Q,_g,i,g ~ b(1,h,~1) (a Bernoulli distribution)

with hfl given by

p1¢1(ailfllia%)
(9)hi =1

P1¢1(ailui,af) + (1 — P1)¢2(Oéi|fl2,03)

That is,

”(Zi) 0C hfi“(1 — hay" (10)

where Zfl = 1 with probability hil (Zn = O with probability 1 — h“). Observe that
Zn + 212 = 1.

Thus, we have,

l—Ii=11_‘[k:=1lp/c¢lc(ail/J'ka0.Ii:)lzuc
(11)

21:1{Zk=1pkq>k(aillukaalc)}

Combining equation (11) with equation (8), we obtain,

flag.- mwmw ){fll_l[pk¢k(azluk,az>1ztk} (12)
i=1k= 1

71-(—Z-li - ~ - iZn)cc

where \II(Q) is given in (8).

To generate samples of the joint posterior distribution (12) we use the Gibbs sampling

algorithm. Starting with initial values Qlo) = (0&0), . . . ,9,‘,°)), we follow the following steps:
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(i) Generate a sample Z“) = (_Z_§1), . .. ,_Z_$,1)) from equation (10).

(ii) Generate a sample of Q from the conditional distributions

7T(91|9g())>' ' ' 70£0),Z_(1),£, g): ”(92lol1)70§0)7 ' ' ' i0§0)7_Z_(1)’£1g),

,7r(e,,10§1>,... ,0‘” flag)-p—I’

Then, continue iterations by repeating steps (i) and (ii).

Considering the logistic link pij = exp(a,~ + £41917” [1 +exp(a,- + £2517”, the conditional

distribution for Gibbs Sampling algorithm are given by,

(i)

2 2Zn/MUQ + Zizflzdl Ufa?
2 2 ’ 2 2Zi10'2 + Zi20'1 Zi10'2 + Zi201

W(ailé,g,z2,p1,g,z,Z)~ N{ }\P1(g,g),

where

J
‘I’1(Q,_fl_) = eXP{01iy1~ —Z 10gl1 + eXP(0‘i + figfifll}

j=1

J
. (14)yi-zzyij’ Z=1,--- Ml,

1:1

u =(u1,uz); g. = (G? 03)

(ii)

Z?=1Zik(a,~ — N )2

—————2
’° )v

”(alflgiérfirU?k)ap17_y_)§7Z) N Ig (ah: + {fibk +

where w, = E?=1Zik k = 1,2; ”(2m = of, jaé k; j,k = 1,2,

(iii)

7T(p1|Q,_fl_,-[£,Q2,Q,Q,Z)N B(f + ”179 +112),



(iV)

”(filjlga Em), Ha 22,P1,g, E Z.) N N(bljacl2j)\1’2(gn_)i

Where ‘1’2(Q, E) = exp{fl1jafl — 22:1 log[1 + eXP(C¥i + gin-ll},

031 = 22121 wijzyij, £01.) = (flu, ~ -- ,flt—1,j,,31+1,j,~- iflpjj)’

l:1,...,p,-; j=1,...,J,
(V)

2 2 n 2 2dkak + 6k 2:12:1011'2’ilc ekak } ’
2 Z ~N7r(,uk|g,_fl_, fl(k)aQ ,P1,Q,L_) {

013+ Ci 2L Z“c
’ 013+ e% 22; 2,7,

Where “(1&3) = “j, j 7é k, jak : 112

Observe that the variables a,, and flu; i = 1,... ,n; l = 1,... ,pj; j = 1,... ,J
should be generated using the Metropolis-Hastings algorithm (see for example, Smith

and Roberts, 1993).

Considering the probit link (3), the conditional distributions for the Gibbs sampling

algorithm are given by (14) with

‘I’1(Q,é) = H (Mal + gig-UV“. [1 _ <I>(a,- + figfiijllby“,
j=1

and (15)

\II2(Q,Q) = H<I>(a,- + é;§ij)yijl1 _ (I)(ai + flfiijlll—y”
1:1

3 A Bayesian Analysis Assuming a Normal Distribu—

tion for a,-

If we assume that the random effects a,, z' = 1,... ,n have a normal distribution
N (0, 03) with prior distributions,

02 ~Ig a,b ; a, b known;a ( )
(16)

fl“- ~ N(blj,cfj); blj,c,2j known; I: 1,... ,p,; j = 1, . .. ,J,

and prior independence, the conditional distributions for the Gibbs sampling algorithm

considering the logistic link are given by,



(i)

”(addifiyfl“ON N(O 0a)\1,3(a1 16) (17)

where

‘I’3(Q7fi) = eXP{C¥i 25:1 yij —' ZJJ=1logl1+ eXp(a’i + [3jar-fin}?

(ii)

740mm_)~ Igg- + a b+ 2—51)

(iii)

”(flljlg, OZ, éuj), g) 1x.) N N(blja clzj)\p4(gi é)

where

‘I’4(Q1é) z 9XP{5ljajl _ Z?=110g[1 + exp(a, + égiijfl};

“it = 2221 151112111;

l=1,... ,pj; j=1,... ,J.
Observe that we need to use the Metropolis-Hastings algorithm to generate the vari-

ables a, and fili-

Considering the probit link (3), the conditional distributions for the Gibbs sampling

algorithm are given by (17) with

J
We é>:—I[1<1>(a,+ Q;xW1 — <1><ai + flaw-w,

J:
and (18)

n
\Il4(g, Q) = H <I>(a,~ + gin)?!” [1 — ©(ai + fi;£ij)]1—yij

i=1

It is interesting to observe that if we consider a fixed with prior distributions,

a~N ,02; ,02 known;(flo 0) [£0 0
(19)

fl“- ~ N(blj,c,2j); blj, cf]. known;

and logistic link, the conditional distributions for the Gibbs sampling algorithm are given

by,



”(algyfi) ~ N(uo,0§)‘I’5(a,£), (20)

where

W503" g) = exp{ay.. ‘ 2111 Zj=11°gl1 + “NO1 + 2&1 flzjfiviflfl},

y" : zy=1 ijl yiJ'

(ii)

7r(flljlfi(lj)a (1&4) N N(blj7 clzj)\p6 (a) E):

where

WSW, £3“) : eXp{aleBlj ” EL log[1 + exp(a + 2&1 flljxijl)]}

where G” and Q are defined in (14).
(11)

With probit link (3), we have,

n J
1115(01,fi) = HH<I>(a,- + éfiijyu [1 _ ©(ai + fi2§ij)]1—y.~j,

i=1 j=1

and

\Ile(a,é) = H <I>(a,~ + figgijylij [1 _ ‘I’(Oli + figgfinl—yfi

4 An Example
In table 1, we have the captures (yij = 1 for captured; yij = O for not captured) of

peromyscus maniculatus collected by V, Reid at East Stuart Gulch, Colorado (data set

introduced by Huggins, 1991). The columns represent the sex (m or f), the ages (y: young,
sa: semi-adult, a: adult), the weights in grams, and the capture histories of 36 individuals

over 6 trapping occasions.

For the data set of table 1, we first assume the logistic regression model (1), that is,

P{Y,—,~ = yijlai’fipfiz’fiv fir} = P?“ — Pay—y“ (21)

where

p-~ =
6XP{ai + xijifiij + xijzfizj + mijBflSj}

” 1 + exp{a,~ + xijlfllj + $ij2fl2j + $ij3133j}
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i=1,..,36, j=17m167 g1=(fl117'-‘1fl16); é2=(1821;'-'11826)i

£3 = (,831, . .. ,fias); mm = 1(0) for m(f); - 23,72 = 1(y), 2(sa) or 3(a); $113 = weight-—

14.

Table 1: Huggins Data

Captures of peromyscus maniculatus

my12111111fy10100100fy15100111fa23010010my15110011fy7011001my15110111my8010001my13111111ma19010101my13011010fa22001111fy5010101fy10001011ma20010001fy14001111my12010011fa19001000fy6001000fa20000100ma21110111msa16000111my11111110fy11000110msa15111001my14000010my14111111fy11000010my13110111ma24000010fa22111011my9000001my14111111msa16000001my11101110fa19000001
Assuming a fixed, maximum likelihood estimators for a,£1,£3_2 and £3 are given by

a=1ma

E = (1.3060, 0.9334, —0.6831, 0.0606, 1.3575, 0.4252),

E; = (—1.9722,—1.2288,—1.0135,—1.0931,—1.3414,—0.7094),

E3 = (0.3256, 0.1863, 0.0876, 0.1560, 0.3142, 0.1114).

Also assuming a fixed for a Bayesian analysis of model (21) with prior densities (19)

with N0 = 1.6, 00 = 0.2, b11 = 1.3, b12 = 0.9, b13 = —0.6, b14 = 0.06, b15 = 1.3,

016 = 0.4, 021 = —1.9, by = —1.2, b23 = —1.0, b24 = —1.0, b25 = —1.3, b26 = —0.7,

b31 = 0.3, by = 0.1, b33 = 0.08, b34 = 0.1, b35 = 0.3, b36 = 0.1 and Clj = 0.2, l = 1,2, 3;

j = 1, 2, . . . ,6, we generated 5 separate Gibbs chains, each of which ran for 2000 iterations.

We monitored the convergence of the Gibbs samples using the Gelman and Rubin (1992)



method, which utilizes the analysis of variance technique to determine if further iterations

are needed. For each parameter, we discarded the 500 first iterations (”burn-in-samples”)

and we considered the 10th, 20th, . .. iterations.

Monte Carlo estimates for the posterior means for a, ,[_31, £2’ and £3 aproximated from

the generated Gibbs samples (see (20)) are given by,

a = 1.6255,

~£1 = (1.3177, 0.9018, —0.5956, 0.0629, 1.3072, 0.3999),

3; = (—1.9060, —1.2081, —0.9963, —1.0933, —1.3101,—0.7078), and

~6 = (0.3057, 0.1807, 0.0766, 0.1471, 0.3076, 0.1057).1.
For a Bayesian analysis of the logistic regression model (21) assuming random effects

a,, i = 1, 2, . . . ,36 with a normal distribution N (0, 02) and prior distributions (16) with

a z 4, b = 1/3 and the same values for the parameters of the prior distributions (19) with

a fixed, we also generated 5 separate Gibbs chains, each of which ran for 6000 iterations.

Monte Carlo estimates for the posterior means of 02, gl, éz and £3 approximated from

the generated Gibbs Samples (see (17)) are given by,

$2 = 0.3267,

= (1.3715, 0.9660, —0.5516, 0.1321, 1.3635, 0.4574),LE

£2 = (—1.2067, —0.4186, —0.2174, —0.3053, —0.4614, 0.1390), and

£3 = (0.2272, 0.0785, —0.0480, 0.0550, 0.2052, 0.0056).

Assuming a mixture of K = 2 normal distributions (5) for the random effects a,, z' =
1, 2, . .. ,36 and prior distribution (7) with dl = —0.4, dz = 0.4, el = 62 = 0.2, a1 = 02 =
4, bl =b2 = 1/3, f = 9 =1 and the same values for bl,- and cfj, l = 1,2,3; j =1,2,... ,6
considered for the prior distributions (16) and (19), we also generated 5 separated Gibbs

chains, each of which ran for 6000 iterations.

In table 2, we have the posterior summaries obtained for the parameters.
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Table 2: Posterior Summaries (mixture of two normal

distributions for a,) - LOGIT LINK

Parameter Mean s.d. 95 % credible interval ft

111 -O.6478 0.3881 (-1.4215;O.1078) 1.0287
,12 1.0367 0.2925 (O.5044;1.6452) 1.0366
of 0.1317 0.1172 (0.0380;O.4470) 1.0147
03 0.1317 0.1172 (0.0380;0.4470) 1.0147
p, 0.3586 0.1477 (0.0890;0.6551) 1.0289
611 1.2975 0.1948 (0.9284;1.6791) 1.0014
flu 0.8999 0.1990 (0.5140;1.2726) 1.0010
613 -0.6039 0.2042 (-1.0033;-0.2117) 1.0011
flu 0.0577 0.1934 (-0.3100;0.4333) 1.0007
915 1.2930 0.1964 (0.9037;1.6887) 0.9999
flu; 0.3962 0.2001 (-0.0247;0.7842) 1.0011
fl21 -1.2995 0.2061 (-1.7026;-0.8977) 1.0000
fi22 05030 0.2001 (—0.8949;-0.1181) 1.0016
fi23 -0.3006 0.2015 (-0.7041;0.0911) 1.0052
924 -0.3952 0.2032 (-O.7832;-0.0161) 1.0017
[325 05020 0.1972 (—O.8984;-0.0960) 1.0045
,326 0.0599 0.1961 (-0.3277;0.4368) 1.0045
[331 0.3047 0.2019 (-0.0871;0.7049) 1.0019
fl32 0.1725 0.2024 (-0.2293;0.5590) 1.0022
933 -0.0824 0.2047 (-0.4873;0.3255) 1.0033
934 0.1416 0.1938 (—0.2369;0.5188) 1.0018
flas 0.3078 0.1909 (-0.0688;0.7014) 1.0024
figs 0.1159 0.2024 (-0.2681;0.5214) 1.0031

We also have in table 2, the estimated potential scale reductions Ii (see Gelman and

Rubin, 1992) for all the parameters. In this case, the number of iterations considered was

sufficient for approximate convergence (Vfi < 1.1 for all the parameters).

In table 2, we observe from 95% credible intervals for the regression parameters fl”,

l = 1,2, 3; j = 1,2, . .. ,6 that the covariates 151 (sex) and x2 (ages) present significative

effects on the probabilities of captures for most times J = 1,2, . .. ,6, but the covariate

3:3 (weight) does not present a significative effect (the 95% credible intervals for fig],

j: 1, 2, . .. ,6 include zero).

In table 3, we have a summary of the Monte Carlo estimates for the posterior means

of fit], I = 1, 2, 3; j = 1, 2, . . . , 6 based on the Gibbs samples and considering the different

models.
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Table 3: Posterior means for flu (l = 1,2,3; j = 1, 2, . .. ,6) - LOGIT LINK

Parameter MLE a Fixed a, N N (0, 02) a, ~ Mixture of Normals

flu 1.3060 1.3177 1.3715 1.2975
[312 0.9334 0.9018 0.9660 0.8999
,513 —0.6831 -O.5956 -0.5516 -0.6039
,314 0.0606 0.0629 0.1321 0.0577
[315 1.3575 1.3072 1.3635 1.2930
,816 0.4252 0.3999 0.4574 0.3962
,321 19722 -1.9060 -1.2067 4.2995
fl22 -1.2288 -1.2081 -0.4186 -0.5030
623 -1.0135 -0.9963 -0.2174 -0.3006
flu -1.0931 4.0933 0.3053 0.3952
flzs 4.3414 -1.3101 -0.4614 -0.5020
026 -0.7094 -0.7078 0.1390 0.0599
[331 0.3256 0.3057 0.2272 0.3047
[332 0.1863 0.1807 0.0785 0.1725
633 0.0876 0.0766 -0.0480 -0.0324
[334 0.1560 0.1471 0.0550 0.1416
835 0.3142 0.3076 0.2052 0.3078
336 0.1114 0.1057 0.0056 0.1159

If we assume a fixed with probit link p25 = <I>(a,~+x,~j1fl1j +$ij2fl2j +xij3fl3j), i = 1, . . . , 36;

j = 1, . .. ,6 in (21), maximum likelihood estimators for a, £1, Q2 and £3 are given by ,

a = 1.0629,

E = (0.7799, 0.5650, —0.4330, 0.0336, 0.8677, 0.2403),

2: = (—1.2116,—0.7623,~0.6351,—0.6830,—0.8444,—0.4452),

A
23 = (0.2012, 0.1129, 0.0549, 0.0973, 0.1968, 0.0698).

Also assuming a fixed and probit link (3) for a Bayesian analysis of model (21) with

prior densities (19) with no = 1, 00 = 0.4, bu = 0.7, bu = 0.5, b13 = —0.4, b14 = 0.03,
b15 = 0.8, bm = 0.2, b21 = —1.2, b22 = —0.7, by, = —0.6, b24 = —O.6, b25 = —0.8,

626 = —0.4, b31 = 0.2, 632 = 0.1, b33 = 0.05, b34 = 0.09, b35 = 0.19, by; = 0.06 and

cl, = 0.4, l = 1,2,3; j = 1,2, . .. ,6, we also generated 5 separate Gibbs chains, each of
which ran for 6000 iterations. Taking the 3010th, 3020th, . . . iterations, we have in table
4, Monte Carlo estimates for the posterior means of ,Blj; l = 1, 2, 3; j = 1, 2, . . . ,6 based

on the Gibbs samples.

Also assuming probit link (3) and random effects a,, i = 1, . .. ,36 with a normal

distribution N (0, 03) and prior distribution (16) with a = 3, b = 0.1 and same values

12



for the parameters of the prior distributions (19), we also have in table 4, Monte Carlo

estimates for fit], based on the generated Gibbs samples.

Assuming a mixture of k = 2 normal distributions (5) for the random effects a,, i =
1, . .. , 36 and prior distributions (7) with dl = —0.1, dz = 0.3, 61 = 62 = 0.2; 01 = a2 = 4;

b1= bg =1/3; f = g = 1 and fixed values for bu, Clj; l = 1,2,3; j = 1,2,... ,6, we

generated 5 separated Gibbs chains, each of which ran for 6000 iterations.

In table 4, we have the posterior summaries obtained for all parameters. Convergence
for the Gibbs algorithm was verified using the Gelman and Rubin (1992) criteriun.

Table 4: Posterior means for 130 (l = 1, 2,3; j = 1, 2, . .. ,6)
PROBIT LINK

Parameter MLE a fixed a, N N (O, oi) oz,- Mixture of Normals

,311 0.7799 0.7328 1.1736 1.1476
,312 0.5650 0.5383 1.0833 1.0615
flu 0.4330 0.4261 0.1336 0.1067
fi14 0.0336 0.0426 0.5907 0.5789
firs 0.8677 0.8219 1.5074 1.5021
flu; 0.2403 0.2355 0.6974 0.6976
fi21 -1.2116 -1.1880 0.7696 -0.8815
fizz 0.7623 0.7160 0.3106 0.4126
flzs 0.6351 0.6065 0.2505 0.3726
[324 -0.6830 0.6385 —0.2780 0.4006
fi25 0.8444 0.8069 0.3539 0.4473
fizs 0.4452 0.3769 0.0688 0.0157
flsi 0.2012 0.1983 0.1317 0.0930
[332 0.1129 0.1103 0.0485 0.0574
figs 0.0549 0.0462 0.0093 0.0040
,334 0.0973 0.0897 0.0342 0.0552
fl35 0.1968 0.1934 0.1321 0.1493
,336 0.0698 0.0691 -0.0082 0.0013

In table 5, we have the Pearson residuals (1,5 for the random effect logistic regression model

with a mixture of two normal distributions for a, to measure the discrepancy between the

data and the model, which are given by

_ yij _§ij (22)dz” — ——~":—,1
\/pijQij



where 5,7- is given in (21) with the Bayes estimates for the parameters and EU = 1 — 513“,

¢=1,... ,36;j= 1,2,... ,6.

Table 5: Pearson Residuals (mixture of two normal

distributions for a,) - LOGIT LINK

J
1 2 3 4 5 6

0.7292 0.5234 0.7775 0.7326 0.4920 0.4802
1.0291 -1.3546 -1.3195 0.7104 0.6896 0.5731
0.6363 0.5569 -0.8247 -1.2248 0.4274 0.5561
0.5220 0.4568 -1.0054 0.6698 0.3506 0.4562
0.6319 0.4845 0.8176 0.6887 0.4257 0.4572
-1.0433 0.7350 1.2402 -0.9571 0.6457 -1.4417
-0.2121 1.7467 —1.9948 1.4402 -0.3116 1.0218
—0.3549 1.2684 -0.4972 -0.8447 —1.1849 0.6461
-0.9246 0.7763 -0.8671 -0.9203 0.7298 0.7122
-0.1507 -0.3809 0.8559 -0.4549 —0.2218 -0.6329
0.7499 0.4399 -0.5949 0.6354 0.2248 0.2966
0.9131 0.6135 0.8023 0.8455 0.6171 -1.8279
1.0799 0.6346 1.2488 -1.1343 -2.0543 0.4783
0.5442 0.4458 0.8546 0.6436 0.3661 0.4328
0.6951 0.5330 ~1.1118 0.7577 0.4683 0.5030
1.2183 0.6259 1.2808 -1.6596 0.3638 0.3374
0.5427 0.4446 0.8522 0.6419 0.3651 0.4316
1.0104 -1.4732 0.8877 0.9356 0.6828 -1.6519
2.8697 -0.6760 -1.2454 1.3177 -0.5160 -1.0031
-0.4908 1.1184 -0.3847 -0.9146 0.6075 -1.6124
-0.2847 1.4847 0.5498 -0.7920 -0.4197 0.9191
-0.4560 1.2084 -0.9275 -0.6289 -0.6716 0.9900
-0.6897 0.7453 -0.4531 1.0436 -2.2939 0.4748
-0.7434 -1.4469 1.4143 0.6653 0.4017 0.3726
-0.4361 —0.8460 0.6416 -0.9498 1.5486 0.7966
-0.8355 -1.2442 0.7264 0.7615 0.8033 0.6066
-0.2595 -0.6159 2.2669 -0.6701 -0.8650 —1.2437
—0.2682 -0.5959 -0.3757 1.5664 —0.8955 -1.1698
—0.8469 -1.3490 -0.6035 1.0459 0.5314 0.5748
—0.4004 -0.7270 -1.1790 1.2443 1.6842 -1.0486
—0.7195 -0.8784 -0.4582 -0.6084 0.9349 -0.9047
—0.2882 -0.5233 -0.8487 -0.5785 2.3399 «0.7548
-0.8582 -1.1996 -0.2l42 -0.7930 0.3477 -1.6348
-0.4268 -0.7251 -0.7154 -0.5426 -0.6296 1.1622
—0.5324 -0.8479 —0.3793 —0.6010 -1.1828 0.9144
-0.2380 -0.5648 -O.4045 -0.6145 -0.7933 0.8768

In figure 1, we have the plots of the Pearson residuals dij against i for each value of

j = 1, 2, . . . ,6. We observe good fit of the random effect logistic regression model with a

mixture of two normal distributions for a,- considering the data set of table 1.
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Figure 1. Pearson Residuals (mixture of two normal distributions for a,) - LOGIT LINK
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To check the overall performance for a model, we can consider the total Pearson

residual discrepancy measure which is given by

J
13:2”: _y_____(ij—p’vij)2

(23)
fiijq~ij

i=1j=1

For the random effect logistic regression model with a mixture of two normal dis-

tributions for a,-, we have D = 183.3444. Considering a normal distribution N (0, 02)

for the random effects a,, we have D = 185.7211 and considering a fixed a, we have

D = 207.5838. That is, we have better fit of the data set of table 1 for the random effect

model with a mixture of two normal distribution for a,, i = 1, 2, . . . ,n.
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In figure 2, we have plots of the Pearson residuals dij against i for each value of

j = 1, 2, . .. ,6 considering the random effect probit regression model with a mixture of

two normal distributions for ai.

Figure 1. Pearson Residuals (mixture of two normal distributions for ai) - PROBIT

LINK
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For the random effect probit regression model with a mixture of two normal distribu-

tions for ai, we have (see(23)) D = 191.9622. Considering a normal distribution N (0, 03)
for the random effects ai with probit link (3) we have D = 192.7197 and considering a
fixed a, we have D = 209.4069.
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That is, the smallest value for D is given by the random effect logistic regression model
with a mixture of two normal distributions for a, (D = 183.3444) which indicates the best

model for the data set of table 1.

5 Concluding Remarks
The use of mixture of normal distributions for random effect models for correlated binary

data with logit or probit links gives a great flexibility of fit to real data. Usually, these data
have the presence of many covariates and the use of Markov Chain Monte Carlo methods

for a Bayesian analysis is a suitable way to get the posterior summaries of interest.
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