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JACOBI MATRICES AND TRANSVERSALITY 

G.Fusco and W.M.Oliva 

0. INTRODUCTION 

In the theory of Dynamical Systems, transversality 

of stable and unstable manifolds of critical elements plays_ 

a central role in connection with generic theory and 

structural stability (see, for instance, [7] for the finite 

dimensional case and [3] ,[41 for infinite dimensions). In 

spite of this fact there is no general available method in 

order to check if transversality holds for a given system, 

although the property is true, generically, by the Kupka-Smale 

theorem. 

Recently, · D. Henry [ 5J has proved that 

transversality holds for the dynamical system in the Sobolev 
, 1 

space a0 
(O,w). Generated by the scalar parabolic equation 

(1) ut .. _uxx + ).f(u) 

provided that f is a smooth function such that f (0) "' o, 

f' (0) = 1, tf'' (t) < O if t ; o and ). > o 
l 

with the property 

that ).T is not a positive integer. 

His nice proof is based on some results on the 

asymptotic behavior of solutions of linear n~n 

equations, which have a fearly general validity, 

property which is specific of linear scalar 

autonomous 

and on a 

parabolic 

equations, that is, the number of zeros of the solutions does 

not increases with time, 

We may also consider the number of zeros as 
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a functional N0 :M+Z defined on some subset M of the space 
el 

0 
the properties of N

0 
which are essential for proving 

transversality are: 

(a) the eigenvectors of the linearization of (1) 

equilibria are in Mand N0 (wk) = k - 1 if wk 

eigenvector corresponding to .the k-th eigenvalue; 

around 

is an 

(B) . N0 is not increasing along trajectories of the linear 

variational equation of (1) around a solution of (1); 

(y) N0 is continuous with respect to some topology stronger 

than the topology of et 
Once the number of zeros is considered as a functional with 
the three above properties, it seems natural to · conjecture 

that the existence of a functional like N0 should not be a vary 

special property of Sturm-Liouville operators but that other 

class of self-adjoint operators should be connected with some 

other functional. Here we talk about class of operators rather 
than about single operators because in connection with the 

above functional N0 we find the whole class of Sturm-Liouville 

operators and this is important in proving (Bl and for 

defining the kind of allowed non linearities, which must have 

the property that the linear variational equation is always of 

Sturm-Liouville type. This, for instance, is not true if in 

(1) we replace f(u) by a non linearity likelg1K(x,y)f(u(y))dy. 

In connection with the above conjecture 

natural to ask the following questions: 

(a) What abstract properties should a functional N 

it 

have 

is 

in 
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order that we can associate to N a family sl of self adjoint 

operators which have, with respect to N, the same properties 

that the Sturm-Liouville ones have with respect to N
0

• 

(b) Given a generic self adjoint operator .sf with a 

spectrum containing only eigenvalues, can we 

simple 

always 

embedd it in a class corresponding to some functional N? 

If this is possible, in how many different ways 

be done. 

it can· 

(c) What are the implications of (a) and (b) for non linear 

problems, i.e., what is the class of non linear problems 

which is naturally associated to a given functional N in 

the sense that transversality holds. 

The aim of the present paper is to examine 

these questions in the finite dimensional setting. In section 

I is introduced a functional N related with the class .$'of. all 

symmetric operators of an Euclidean space E and Theorem 1 

gives a ,necessary and sufficient condition in order that N is 

not increasing along the solutions o; a non autonomous system 

x .. A(t)x A(t) £ 9', beside other important properties 

of N. The condition states that, with respect to an 

orthonormal basis of E, A(t) has a positive Jacobi matrix, 

that is, a matrix aij = aij (t) such that aij • 0, j > i+l and 

a > O. In section II a class of smooth autonomous system 
i'i+l 

x = f(x) is considered in E, with the property that the 

derivative f'(x) has a matrix representation of 

Jacobi type for all x £ E, and Theorem 2 proves that 

positive 

if e 
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and e+ are hyperbolic equilibria of x ~ f(x) and there exists 
+ 

a solution ~(t) connecting e- and e+, that is lim ~(t) z e as 

t+!~ then the unstable manifold of e- is transversal to the 

stable manifold of e+; under the same hypothesis, Theorem 3 

shows that the non wandering set is the set of all equilibria. 

The section II finishes then with the construction of a class 

of Morse-Smale systems. Section III° shows the relationships 

between symmetric operators with simple eigenvalues 

the functional N. It is proved that such an operator 

and 

has 

always a matrix representation of positive Jacobi type and one 

can see that, in finite dimension, lt · is given an answer for 

the above question (b), that is, to any symmetric 

with simple eigenvalues, one can associated a class 

operator 

of non 

linear perturbations for which transversality holds (Theorem 

5). 

I. JACOBI MATRICES 

As we said above, the Jacobi matrices will be one 

of the most important tools in the present paper. A 

matrix 

Jacobi 

matrix (aij ), is a .(n x n) •symmetric, tridiagonal 

that bi• a1 ~a, i • 1,2, •.• n-l. (Positive 
'i+l --------

addition we have bi>.O). 

Following [2] pag 105, let us consider the 

/0 c: Rn such that u • (ul ,u2' ••. ,un) £ /o if and only if 

Jacobi 

such 

if in 

set 

u1io, . 
u I- o, and ui • 0 (l<i<n) implies ui-l'ui+l < 01 consider also n 
the function u&Jo .....,s (u) in which S(u) is the number of sign 

changes in the components ui of u. 
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Proposition 1, Let J be a positive Jacobi matrix, Then 

1. 

2. 

J has simple eigenvalues >. >>.
2 

> • .. >>. 
l n 

for 11 1 eigenvector corresponding to >.i one has 

and SC11 1
l • 1-1, 1.1.2 , • •• ,n • 

3 • . .!.f. ch , ch+ 1 , ••• , ck _a_r_e_ r_e_a_l_ n_u_m_b_e_r_s_ w_h_i_c_h_ar_e:........cn.:..;o;...;t;....::ac:lc:l _e.:.:q:i;u;.;a:.:l:...:t::::.o 
n 

zero and 11 • r c 1n1 i•h 
then: either n £/4 and 

~ S(11J ~ k-1, orq t)~ and there is a neighborhood U 

n· such that h-1 ~ 5(11') ~ k-1 for~ 11' e: U "/o· 

h-1 ~ 

of 

Proof. For P >O sufficiently large and I the identity matrix, 

all the entries of J + P.I are positive together with all its 

principal minors. Since J + PI and J have the same 

eigenvectors, the result follows from theorem 13, pag 105 of 

c21. a 
Let Ebe an Euclidean space, dim Ea n, with inner 

product ). A functional N can be introduced in the 

following way: 

Definition 1 - L~!. {e 1 } be an orthonormal basis in E and 
n 

x • E x
1

e
1 

be the representation of x £ E in that basis. Let 
1-1 

.J(c Ebe the set of vectors such that either x1 J 0, 1•1,2, .•. 

•.• ,n, or x1 _1xi ~l < 0 whenever x1 ~ 0 [we define x0.xn+l •DI. 

For x £/. N[x)-1 is the number of times x1 changes sign when 

1 goes from 1 ton, that is, N[x)-1 • S[x 1 , • .• ,xnl. 

we note that / is an open set and that 

+{l, ••• ,n} is a step function which is constant on each one of 

the connected components of/. Therefore N ia continuous in 
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The next theorem says that the class of 

functionals sa~isfying the previous definition is in fact a 

good class from the point of view we have outlined in the 

introduction. 

Let S' be the set of all sy.:metric operators in E. 

Theorem 1. Given a smooth function t E (a,b) + A(t) ES'. a 

necessary and sufficient condition ·1n ordei that: 

Cf) the flow ~(x,a,t) of the differential equation~. A(tlx 

satisfies the condition 

whenever t 2 ~ t 1 and both sides of (2) are defined, 

(11) the eigenvectors of A(t) belong to Ni 

is that:i'or eech t, the matrix represAnteti'on in {e1} of the operator Alt) 

be a positive Jacobi matrix, that is, if aij " Cei' A(t)ejl' 

~ aij • □• j > 1+1 and ai,'i+l > □• Moreover, if this 

condition is satisfied and x I 0, then the instants t 

such that t(x,s,t) f/ /are· isolated. 

Proof. Let i & Ebe a vector such that xi-l = 

l<i<n or such that x1 • x2 = 0 if is 1, xn-l :a X • 0 n • 
i • n; assume all other xj are non zero. Let i be x•x+aei-l + 

+l:!ei+l if l<i<n, i = x +8e2 if i E 1 and x = x+aen-1 if l = n~ 
The definition of N implies that if a, Bare positive, then 

& > O sufficiently small and t such that ( t,ei) = 0 imply 

N(x + £ (e 1+t)) N(i - &(ei+ t)). 

It follows that a necessary condition in order that N is not . 
increasing along the trajectory of x = A(t)x which goes 
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through x at time tis that the vector field A(t)x satisfies 

the condition IA(t)x, ei) ~ 0. By using the definition 

we have the condition 

of x 

a, B >O, ¥ i. 

This inequality implies (A(t)x,e1) ·., 0 Y i because, other-

wise, by replacing x with yx, Y ~ o, in (3) we see ' that 

there is a Y such that (3) is violated. Now one obtains 

(4) a(A(t)ei-l'ei)+ B(A(t)ei+l'ei) ~ 0 1i a, a > o. 

which clea·rly implies (A(t)ei_1 ,e1 ) ~ 0, (A(t)ei+l'ei)~0, that 

is, ai,i+l ~ 0. On the other hand, we have seen that 

(A(t)i,ei) = E xj(A(t)ej,ei) 
j#,i+l,i-1 

.. 0 • 

that is, aij = (A(t)ej,ei) = 0 for j > 1+1. In particular this 

shows that the matrix of A(t) is tridiagonal. When one of the 

elements ai,i+l is zero, . the eigenvalue problem for (a1 j) 

splits in the eigenvalue problems for two submatrices and 

therefore there ar_e eigenvectors of laij) which have two zero 

consecutive components and it is obvious that 

eigenvectors are not in ...A~ then ai,i+l > 0. This 

necessity. 

these 

concludes 

To prove sufficiency let Z(t) = , ♦ (x,s,t) and 

assume there exists t £ ct1 ,t21 such that Z • Z('£) t/; then 

Z IO because otherwise Z(t) • 0 Vt£ [t~t2J in contradiction 

with the hypothesi.s Z(t1)e/. Since Z IO, and if ii• 0, then 

one of the three following situations holds: 
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zh_110, Zh= ••• =Zi•··••Zn= O for some h>l; 

Zh_1#o, Zh= ••• •Zi= •••• zk,. O, ik+l•O for some i<h~i~k<n~ 

We will discuss only the last case under the assumption 

Zh-l < O, Zk+l > O. The other cases can be discussed in 

similar way. Then, if we set b1 = ai,i+l, a1 • a11 we 

for t • t 

(5) zi • bi-l~i-1 + aizi + biZi+l • O, h<i<k; 

zk • bk_lzk-1 +• akzk + bkZk+l • bk1k+l > o. 
From (5) , if h<i-1 and k>i+l, it fo1lows fort - t: 

• . 
Zh+l • bhZh + ah+lzh+l + bh+lzh+2 + . 

bhZh + ah+lzh+l + bh+lzh~2 · • bhbh-l"'Zh-1 

zh-1 • bk-2zk-2 + ak_lzk-1 + bk-lzk + 

< 0 

a 

have 

bk-2zk-2 + ak_lzk-1 + bk-lzk • bk-lbk~k+l > o. 
If h < i-2 and k > 1+2 we obtain in a similar fashion that for ... 
t .. t , zh+2 < o and zk_2 > o. 
If k-h+l is even this process ends with the computation of the 

derivatives of order 1/2 (k-h+l) and we have Zh+i-l (t +£) • 
• 1.

1.
1 

z'1> ,-t) E1 + o(Ei> < o f £ > o 11 di 1 k-h+l or sma an • , ••• ,--2-
- 1 and also zk-i+l(t + £) • 11 Z (i) (t) £ i + o(Ei) > o for £ > O 

k-h+l small and 1•~•••••----i-. Therefore, the number of changing 

of sign between h and k is well defined for £ I O and is 

exactly 1 for£ >0 while is clearly larger than 1 for£< O. 
' . The discussion of the case in which k-h+l is odd is similar 
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aI)d yields to the same conclusion. This proves that if 

(ai.) = (A(t)e ,e.) is a positive Jacobi matrix then we have 
J i J 

(1). The fact that if (a1j) is positive Jacobi implies (ii) 

follows from Proposition 1. The proof of Theorem 1 is complete. □ 

Remark that in proving Theorem 1 we have also 

proved the following result that we need for later reference: 

Pro position 2: Assume there is an orthornomal basis {Bil in E ---
such that a1/ t) . {A[t)ei,ej) is a positive Jacobi matrix for 

each t E (a,b) and let N be as in Definition 1 with respect to 

{ei, then 

( i) If x IO the instan~s T such 

1solated, 

that ♦ (x,s,t) t. / are 

(11) If ♦Cx,s,t) t/and Nm' NM' are the minimum and the 

maximum of Nin a small neighborhood of ♦ Cx,s,t), then 

for E > O small Nm• N(f(x,s,t+e-;JJ < NC ♦ Cx,s,t~ )) • NM, 

An obvious extension of Theorem 1 is ' the fol-

lowing: 

· Pro posit'ion 3: If f:O c ExR+E, '1 open, is a function such that 

there exists a smooth function A(.J:'1 + .;I' such that f(x,tl 

A(x,t)x, (x,tl E '1 , and the matrix representation of A(x,tl 

with respect to some fixed orthornomal basis lei} is positive 

Jacobi for each (x,t) E n, then if N is the functional as-

sociated to {ai} ~ ♦Cx,s,t) is the solution ' operator of X• 

f(x,tl we h8ve that ♦Cx,s,tl E: /except possibly for t in 8 

discrete set and 

N( ♦ (x,s,t2 )) ~ N( ♦ (x,s,t1 ll 
whenever t 2 ~ t 1 and both sides are defined. 
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II. A CLASS OF MORSE-SMALE SYSTEMS 

The results in the previous section allow us to . 

formulate a sufficient condition in order that for a 

class of systems the stable and unstable manifolds 

hyperbolic equilibria intersect transversally. In fact: · 

special 

of 

Theorem 2 . If f : Sl c: E +E • Sl open , _i_s _ _ a _ _ s_m_o_o_t_h _ _ _ f _u_n_c_t _1_o_n __ s_u_c_h 

that for all x £ n the matrix representation of the derivative 

, f'(x) with respect to some fixed orthonormal basis ~i} _1_n ___ E 

if of positive Jacobi typ~, then if e-, e+ £ 0 are hyperbolic - - -------
equilibria of 

(5) X • f(X) 

~Ct l solution ( 5 J such that lim ~Ctl ± then .!?..!!..!:!. is 1!11 of . e 

(e-Jin W9 
t+±a, 

Wu I e+J. . 
For the proof of this 1;heorem we need some 

notation and two lemmas. Given an integer 0 < - h < n - we let 

Kh be the set of x £ E such that one of the following is true: 

a.) X • 0 
~ 

b) X & /and N(x) ~ h 

c) X t )rand there is a neighborhood U of x such that N(x')~h 

for x' £ u n /. 

Similarly we define Kb to be the set of x £ E such that ~) or 

b') or c') holds where b') and c') are like b) and c) with ~ h 

replaced by> h. The sets Kh,xh so defined are cones. Moreover 
~ \ {O}, Kh \ {O} are open sets and ~ n Kha {O}, Kh U Kh .. E ; 
Lemme l. Let a < O < b and (a,bl•t+A(t) £ 9' be a amo·oth 
function such that for each t £ (a,p) _t _h~e-"m=a~t~r~i~x'--'r~e~p~r~e~a~e=..:..:.n~t~a~t ;i ;o~n 

of A(tl with res pect to some fixed orthonormal basie {e1} . of 
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Eis of positive Jacobi type and let be the 

corresponding function end cones. Then: 

( 1l if ED c Kh is a linear subspace and Et _i_s ___ t _h_e ___ i_m_a~g_e 

of ED at the time t under the equation 

(61 :9' = A(t)y 

then dim tt = dim ED and for t !0 it results Et c Kh 

{ 11) if Eo c · Kh is a linear subspace and Et is the image_ 

of Eo under ( 6). then dim Et . dim ro and fort < 0 it ... 
results Et 

C Kh. 

Proof. We only prove (i)1 the proof for (ii) is similar. The 

linea~ity of (6) implies dim Et = dim EO• To prove that t.?, O 

implies Etc Kh, we note that from the assumptions and 

Theorem 1 it follows that, if y £ Et and t>O, then either y i/ 

or N(y) ~ h. In the later case y £ ~- If y t .,(' , 

Propo_sition 2 yields N(!(y,t,t-£)) • NM where we have 

then 

let 

t (y,s,tl be the solution map of (6). Define y0 • T(y,t,O) if 

'f (y,t,O) £ /or y
0 

= , (y,t,o) for some small o ~ O if 

'f (y,t,O) t / and let t' = t-£ in the first case, t' = t-o-£ 

in the second case. By definition of~ and Proposition 2 we 

have y0 £.,A~and N(y0 ) ~ h. Therefore,by Theorem 1 it follows 

NM= N(T(y,t,t-£)) • N('f(y0 , □ ,t')) ~ h, 

that shows y £ ~- 0 

Lemma 2. Let (-"", +""l~ ti+A(t) £ g'be a smooth ,function as in 

Lemma land moreover assume there exist A-, A+ such that lim 

+ _.. . Then if y JO there exi~ts Um Y(y,s,tl/ 

l l 'fcy,s,tlll est +!oo and it is equal to one of the 
+ ----------------------

e i gen vectors of A-. 
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~- Let p: (-m,+~)+(-1,+1) be a smooth function such that 

dp > 0 + 
dt 't £ (-m,+m), lim p(t) • 1 as t+!m. Then equation 

(6) is equivalent to the system 

(?)j~ • O(s) 

1 y • B (s)y 

where o(s) = t<P-1<sl}, B(s) = A(p-¾s)). By setting cr(:!:1) = O, 
+ 

B(!11 = A-, we can assume the right hand sides of (7) are 

defined also for s = !1. This fact and the linearity of ( 7) 2 

imply that (7) induces a smooth vector field X on the 

fibration F = [-1 +1] x (Sn-l/r), sn-l being the (n-1)-dimen­

sional unit sphere in E and (Sn-l/r) the corresponding 

projective space. Since 0(!1) .. 0 the fibers {!1} x (Sn-l/r) are 

invariant under X and no other fiber of Fis invariant because 

o(s) ~ 0 for s £ (-1,+1). The flow on the fibers {!1}x(Sn-l/r) 

is easy to describe. We consider the case{+l}x(Sn-l/r); the 

properties of the flow on {-llx (Sn-l/r) is analogous. There 

are exactly ·n equilibria defined by (1, Wi), l~i~n, where the 

Wi is a mitary eigenvector of ·_ A+ which corresponds to the i~ 

eigenvalue, and all orbits in U} x (Sn-l/r) connect two of 

these equilibria. It follows that any compact invariant set 

in {l} x (Sn-l/r) which does not reduce to a single equilibrium 

contains at least two equilibria. Now let Y be an orbit of X 

which is not contained in {l} x (Sn-l/r) and let (s(t),u(t)), 

s(t) £ 10,1), u(t) £ sn-l be a representation of Y. Since F 

is compact, thew-limit set w(l) of Y is non empty and by the 

above discussion is co~tained in {l} x (sn-l/r). If w(Y) 

contains two equilibria defined by (1, wh), 11,wk) with h ~ k, 
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then one can construct a sequence {tj} , tj + m as 

such that lim u(t2j) • wh and lim u(t2j+l) • wk as 

j + m, 

This and the continuity of N imply that for • j sufficiently 

large it results h • N(u(t2j)) ~ N(u(t2 j+ll) •kin contradic­

tion with the fact that N is not increasing along solutions of 

(6). Then w(y) reduces to a single equilibrium. From this and 

an analogous argument concerning the a-limit set of Y, the 

lemma follows. □ 

Proof of Theorem 2. From lemma 2 it follows that ♦ (tl/ll,<tl ll 
-approaches an eigenvector wh of f'(e-) as t + - ao 

eigenvector- w; of f'(e+) as t + ~ w. 

to a positive eigenvalue of f'(e-) 

eigenvalue off' (e•). This and the 

Clearly wh 
+ and wk 

fact that 

to 

- u -imply that if m ~his the dimension of W (e I, 

and an 

corresponds 

a negative 

then the 

dimension m• of Wu(e+) satisfies m• < m•-1. It follows that -- + ♦ I + . S ♦, n-m -+:l eigenvectors w _, •• , ,w of f (e ) are in T + W (e and m n e , 
Proposltionl (3,) implies that I• span {w•- 1 , ... ,w•} is m+ n 
contained in ~. Since 'Yfl- \ {o} is open and W8 (e+) is a 

smooth manifold, for any fixed t £ (-ao, +ao), there is a t 0 ~ t 
s + such that T+(t ,w (e) contains an n-m dimensional linear 

0 
subspace I 0 which is contained in 'Y!11. Let It 

0

be the image 

of I' under the linear equation . 
(8) y • f' ( ♦ (t))y 

Then It c · T♦ (t)Ws(e+) and Lemma l implies dim It• n-m and 

shows for 
. 0 

t ~ t • A completely similar argument 
u - -that T♦ (t)W (e I contains an m -dimensional linear subspace 

It which is contained in Km-. Since dim It+ dim It• n and 
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Kmn i11 ={O}, we have E =Et@ Et and therefore the theorem is 

is proved. O 

Pro position 5. Let f satisfy the condition in Theorem 2 and 

let e £ 0 be a hyperbolic equilibrium of (SJ. Then the ~table 

and unstable manifolds Wu(e) and Ws(el of e are imbedded sub-----------
manifolds of E. In fact, if P:E+T Wu(el is the orthogonal 

e ----------=---. u 
projection onto the tangent space to W (el ate, then the 

restriction Plwu(e) is a diffeomorphism of Wu(el onto an open 

subset V of T Wu[e), and a similar statement holds for Ws(el, 
e 

Proof. By proposition 1 (3.), the tangent space T Wu(e) is 
e 

contained in Km-• Take an x £ Wu(e); by definition of Wu(e) we· 

have ~(x,t) +east+ -m. This and the smoothness of 

together with the openess of Km-\{O}, imply that there is a 

u 
t 0 < o such that T~ (x,t

0
)w (e) c Km- · . By Lemma 1 it follows 

that TxW (e) c Km- • Since xis generic we see that if! is an 

(n - m- )-dimensional linear subspace in Km , then ! fl T Wu (e) = 
X 

{o}, Y x £ wu(e). This equation implies that the restriction 

the to TxWu(e) of the orthogonal projection P:E + !.L, 

orthogonal complement of !, is one to one. Therefore from 

the implicit function theorem it follows that the restriction 

PjWu(e) is a diffeomorphism of w1(e) onto an open subset V of 

!.L. This proves that Wu(e) is a graph over V and therefore an 

imh:dded submanifold of E. In particular we may assume ! .= 

TeWs(e) and therefore r.1. TeWu(e). □ 

The condition imposed by Theorem 2 on the 

derivative f' (x) implies that if f(x) = 
n 

where x • ! x1e 1 , then f 1 depends at 
i=l 

n 
i~lfi(x1,x2,••·•xn)ei, 

most on x1 _ 1 ,x1 ,xi+r 
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A very simple example of a function f such that 

f'(x) has a matrix representation of positive Jacoby type in 

some {e
1

} is 

(9) 

f (x 1 ,x) • a (x )+b 1x 
1 n n- n n n n- n-

where the a1 (x1) are arbitrary smooth functions of one 

variable and the bi are positive constants. 

real 

Suppose that each function ai(xi) 

condition (ai (xi)/xi)+-..,as x
1 +±"'. Since 

satisfies the 

(x,f(x)) = x 1 .a
1 (x

1
)+x2 .a2 (x

2 )+ •.. +xna
0

(x
0

)+ 

+2b1x1x2+2b2x2x3+ ••• +2bn-lxn-lxn 

we see that in the sphere Ix j .. p > 0 for p big enough, one has 

(x, f (X)) < 0. This means that on the sphere Ix I• P , p suf-

ficiently big the vector field on Rn defined by (9) 

inward. Using the Theorem UO of (6] we conclude that 

time one map t associated to that vector field has a 

points 

the 

compact 

attractor A(t). It is clear that if the functions ai(xi) are 

polynomials of odd ( ~3) degree and negative coeficients 

in the highest degree term we also obtain a compact attractor. 

It is also possible to construct examples where 

the bi do not . reduce to constants, for instance - the -condition 

on f'(x) is still satisfied when ~e set in (9) 

bi• i .B1 x~j x!~1 , 

that is, 
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(10) i 
00 

Sl x2j 2j +l 
fl = al (xl)+ I: x2 

j.O j l 
00 2j (Si-1 2j+l Bi 2j+l) 

fi = ai(xi)+ r xi j xi-1 + jxi+l ' 
J• □ 

00 

s" x2J+lx2J f • a (xn)+ I: n n J• □ j n-1 n 

with S1' >0 Q I 
a1 
J 
~ 0 and the series converge. 

The condition that the matrix representation of 

f'(x) in {ei} is positive Jacobi not only put severe 

restriction on the functions fi but ~lso implies that the non 

wandering set is very simple. In fact: 
0 

Theorem 3. If f:0CE+E, n • n, is a smooth -function such that 

for all x En the matrix representation of f'(xl with res pect 

to some orthonormal basis {ei} is of positive Jacobi t ype then 

the non wanderLng set of the dynamical s ystem defined by the 

equation x. f(xl coincides with the set of equilibria. 

Proof: Let x be a non wandering point which is not an 
n 

equilibrium and let ~(x,t) • r ~i(x,t)ei be the 
, i• l 

solution 

map. We can assume ~(x,O) E /because by Proposition 2 if 

~ (x,O) t .;l"'we have ~ (x,E) e: -~'-for £ > 0 small and therefore 

since the nonwandering set is invariant we replace X with 

y = t(x,t). Since N is a continuous step function there is a 

flow box B containing x such that x £ B implies · N(~(x,O)) = 

= N(~(x,O)). It is easy to see that ~(x,O)e:.;l'implies i 1 (x,O)~O 

because N is not defined on vectors with the first or the last 

components equal to zero. We can choose B so that ♦ 1 (x,O) I 0 

for x £ B. Let n
1 

be the hyperplane n
1 

= {x i (x,e
1

) = i
1

} and 

let K • n
1

n B. Since ♦ 1 (x,0) = O, &
1

(x,O) is not parallel to 

•1• therefore by reducing the cross section of B if necessary 
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we can ensure that the orbit through any point x £ B crosses 

K transversally. Let To be an upper bound for the time that 

solutions spend in Band choose T > To , then i nonwandering 

implies there is an x EB such that ~(x,T) EB and T > To 

implies that ~(x,t) must leave the box B through one of its 

basis at saoo ti.me and enter again in B from the other basis 

before T. It follows that we can assume that x and ♦ (x,T) 

belong to Kand therefore that x1 = ¢1 (x,T) = i 1 • This and 

the fact that ♦1 (x,O). ♦1 (x,T) > 0 because ♦1 iy,O) I- 0 for 

y EB imply ~1 (x,T) has at least two extreme . points in (0 T); 

therefore tnere is t E (0,T) such that ♦1 (x,t) • O. It follows 

that ~(x,t)J.)~but then Proposition 2 implies N( ♦ (x,t +&)) < 

<N(t(x,t-c)) for c ~ O small. From this and the fact that N-is 

not incr~asing along solutions of the linear variational 

equati~n x = f' (~(x,t))x it follows N(~(x,t)) < N(~(x,O)) whic:h 

is a contradiction. □ 

Remark1 In view of Theorems 2 and 3 above, if for all x En 
- # the matrix representation off' (x) with respect to some ~•is 

{e·i} is of positive Jacobi type, the dynamical system defined . 
by x • f(x) is a Morse-Smale system if and only if there is 

I 

only a finite number of hyperbolic equilibria (this is the 

case for the systems with a compact 'attractor and hyperbolic 

equilibria). 

As a special case of system (7) one con■ider the 

polynomial system in R1
: 

r ~l • b{lx2-x1 ) + x1 11-x~) 

2 
(11)1 x2 • b2(x3-x2) + bl(xl-:2) + x2(1-x2) 

x3 • b2 (x2-x3) + x3 (1-x3 ) 

-- -
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where 
. 2 

-b1+1-Jx1 b~ 0 

bl 
. 2 

b2 f I (X) = 
-b2-b1 +1-3x2 

0 b2 
2 -b2+1-3x3 

If we try to compute the equilibria we easily obtain a 

polynomial in x1 of degree 27, that. means, we always have at 

leas~ one equilibrium and at most 27. If we make b1 • b2 = O 

one obtains exactly 27 hyperbolic equilibria; this implies 

that for b1 ,b2 > 0 and sufficiently small we are able to apply 

Theorems 2,3 and conclude that for b
1

,b2 > 0 small · enough, 

system (11) is Morse-Smale with 27 hyperbolic equilibria a~d 

has a compact attractor. 

Fo~ the general ' case of system (9) one can _give, 

explicitily, conditions on the smooth functions ai(xi)ensuring 

that all equilibria are hyperbolic. In fact, we have 

Proposition 6. Let x ■ Cx
1
,x2 , : •• ,xn) be an equilibrium po i nt 

of system (91. Then, if: oither aiCx
1

)>0, a 2 Cx2 J~□, a3Cx
3

)~ □, 

.. ., !.!.:.•; ~ aiCx 1 l< □ , , a 2 Cx2 )~□ ~ a:/x3 )!,0, ••• , ~•• the 

point X is a hyperbolic equilibrium. 

Proof. The linear part of 
0

(9) at _i is the positive Jacobi 

matrix with determinant l:, • n· 

ai (xl) . bl 0 0 

bl a2<i2> b2 ...... 0 

l:, • 0 b2 a3(i
3

> 0 n 

0 ...... bn-2 a~-1 (xn-11 bn-1 

0 0 bn-1 a~(xJ 
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From this we obtain: 

' - ' - 2 A2 = a1 ix1)a2 (x2 ) - b1 
A3 = a3(x3 )A2 - b~ai(x1 ) 

2 A4 - a4(x4)A3 - b3 A2 

and, in general, for n ~ 5 we have: 

An• a~(in)An-1 - b!-1 An-2" 

A simple analysis shows, by induction, that under the 

conditions stated as hypothesis, the determinant An is never 
:.. 

zero. D • 

Remark, When the system (9) is a polynomial system in which 

ai(xi) has degree ki' it is easy to see that, looking for 

equilibria, we have to find the real roots of a polynomial in 

real roots is 

' exactly the number of equilibria, If k is odd there is 

least one equilibriums the case a
1

(x1 ) • 1, a 2 (x2 ) • a 3 (x3 ) 

..... ~- an(xn) • 0 has no equilibrium points. 

at 

.. 

Theorem 4. Let F be the aet of functions f: E+E - - which are 

bounded together with their first derivatives and have the 

property that for all x €Ethe matrix representation of f'(xl 

with respect to a given basis {ei} is of positive Jacobi type 

and let F be endowed with the c 1 _, topology. Then there is a 

residual set G c; F such that f £ G has only hyperbolic equilibria. 

Corollary . For f £ G the dynamical system defined by the 

equation x. f(x) 1a a Kupka-Smala (Morse-Smale if thare is 

only a finite number of equilibria) system, 

Proof of Theorem 4 

We quote from Eells (1) pag 781 the following: 
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lemma 3, ~ X,Y be Cr-manifolds (r~ll _m_o_d_e_l_e_d __ o_n ___ B_a_n_a_c_h 

spaces. Consider a manifold ,s/ c Cr (X,Yl such that the -----------
evaluation map av: .:-'YX X-+ Y, ev(cf,,xl • cf,Cxl, is Cr, let K be 

a subset of X, Ba Cr submanifold of Y and s((K,B) • {$E.sl:$/K 

is transversal to B} • Then if K is compact, sfCK,Bl is open 

J:!2,j/, Let dim X .• n < 1111 , codim (Y,B) • q < 00 , ~ r>max(n-q,O). 

If the evaluation ma p is transversa·l to B on K then ff(K,Bl is• 

residual. 

We will use now lemma 3; let sc1 (R,R) be 

Banach manifola of all c1 real functions defined on R 

are bounded with bounded derivative. Then the 

the 

which 

manifold 

defined in the following way: given a fixed f £ F then g £ .sr· 
. ( 1 n if and only if g"' (g1 (x1), ••• ,gn xn)) f(BC (R,R)] and 

9 Cxi • • .xn) • ( <; • • .xn) ' (~l <; • • .xn) ~ 91 <;>,.· ,•In<;•· .xn) + 9n ('b))) ' 

x = t x1ei and f(x) "' t fi {; •• ·'b)e1• We make X .. Rn, 
1-A 1.1 

Y • R x Rn, B • Rn x {O} (zero section) and apply lemma 

for r • 1. The evaluation map 

ev: .s/x Rn~ Rn x Rn is differentiable and 

Dev(g,(x1 ... xn)) (fi,(y1 ... yn)) = 

3 

• ( ( Y 1 • • • Y n) ' (hi (xi ) + g i (xi ) Yi+ f :l. ( x 1 • • • xn) ( Y 1 • • • Y n ) )) 

It is easy to see that Dev is surjective then transversal to 

the zero section B = Rn x {O} and by lemma 3 the set ..W(Rn ,B) = 

= {cf,c .;/I ¢,i':B} is residual (then dense) in the manifold sl'. But 

if B is the closed ball of E with radius n call 
n 

G • {f £ F: f ili8 Ex {O}} .G is open in F by continuity and 
n . n n 

compactness of Bn. Also F n Gn is dense in F because .N(Rn,B) 
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is dense in F; finally, since F n G is open and dense in F n I 

and 
a, 

G ==n F n Gn 
n-1 

4 it follows that G is residual in F and G has only hyperbolic 

equilibria. □ 

III. SYMMETRIC OPERATORS WITH SIMPLE SPECTRUM 

Lemma 4. If J:)"; E+E is a symmetric operator with simple 

eigenvalues, then there exists an orthonormal basis {e
1

} 

E such that the corresponding matrix representation is 

in 

a 

positive Jacobi matrix. 

Proof. Let {fi} any orthonormal basis of E 

corresponding symmetrix matrix of sf.We look 

and A 

for 

orthogo;al matrix H such that HT AH is of positive 

the 

an 

Jacobi 

type. In order to show this we lets be a- ·generic symmetric 

matrix, D a diagonal matrix and consider the system, 

(12) J HT AH• D + S 

l HT H • I 

in the unknowns Hand D. If A is the diagonal matrix of the 

eigenvalues of A and Vis the orthogonal matrix the 1.!.!!. ,. . 
column of which are the components of the unitary eigenvector 

of A corresponding to ~i we see that Hz v, D 1
• A and 

is a solution of (12). Therefore, if we show that 
~ 

S = 0 

the 

linearization of (12) around (V, A,o) can be solved uniquely, 
' the implicit function theorem will imply that (12) has a 

solution (H(S),D(S)) for S near zero. That linearization is 
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f hTA V ~ VTA h = d + s 

1 hTV + VTh = 0 

where (h,d,s) are the variations of (H,D,S). Let fi = hTV then 

the second equation (13) becomes fi + fiT • o, that is, fi is a 

skew symmetric matrix. By using the fact that AV = V A, the 

first of the equations (13) becomes 

(14) Afi • d + s. 

The generic element of the matrix on the left hand side 

(14) is given by (Aj - Ai)hij" Since Ai# Aj (for i # j) 

obtains hij = qij/(Aj - Ai) for i # j and di= -sii' ~y 

implicit function theorem we obtain the functions H(S) 

of 
. 

one 

the 

and 

D(S). Restricting these functions to the set of 

Jacobi matrices Lemma 4 is proved. D 

positive 

From Lemma 4 and Theorem 1 it follows: • 

Theorem 5. Let A:E+E be a s y mmetric o perator With sim p le 

eigenvalues A
1 

> A
2 

> >Anand corres p ondin g ei genvectors 

N is the functional associated to · {ei} =i~n:_:t~h~e~ _ _;s~e~n~s~e=---~o.a..f 

definition .l,then: 

[ il 

[11) 

C 111) • 

~(vj) • :!_ , j. 1,2, ... ,n. 

if x JO then eAt.x £/fort£ R\K where K is a 
At -- At ---------

discrete set and N(e 2 x) ~ N(e 1xl whenever t
2

- ~ t
1

, 

t 1 , t 2 ER\K. 

(iv) the basis {e 1 ) can be chosen in infinitely many dif­

ferent ways. 

This theorem and the results in II allow the 
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identification of classes of non linear perturbations for the 

linear equation 

(13) l = Ax 

for which transversality automatically holds. 

Theo rem 6 • Let A : E+E _b_e_ a_s~y_m_m_e_t_r_1_c __ o-'-p_e_r_a_t _o_r __ w_1_t_h __ s_1_m....;p_l_e 

e1ganvalues and let {e
1

} be one of the basis 1n Theorem 5. Let 

g1 :Rn+R be smooth functions with the property that l&La is Ill 
xj_ 

matrix of positive Ja~obi type and g:E+E be the function 
n 

g • I gi.ei. lh!UL 
1 ■ 1 

( 1) ! 
if e are hyperbolic equilibria of 

(16) x = A X + g (x) 

and ♦ Ct) is a solution of (14) such that lim ♦ (t) 
t+:!;a, 

then Wu ( e - ) th W 8 
( e + ) • 

(11) ' the nonwandering set of the dynamical system defined 

by (16) is equal to the set of all equilibrium points. 

In spite of its simplicity this theorem is quite 

surpris,ing because it says that at least in finite .... dimension 

we can associate to any selfadjoint operator 

spectrum a class of non-linear perturbations 

with :... simple 

for which 

transversality holds. It is reasonable to believe that some 

extension of this result to infinite dimension is possible. 

This conjecture is partially confirmed by Theorem 7.13 in 
' 

Stone (8) which states that if A is a self adjoint operator 

acting in a separable Hilbert Space Band A has 

spectrum then there is a basis {e1 } in B such that with respect 

to {ei}, A is represented by an infinite Jacobi matrix. 
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