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Abstract. We show that in a generic finite-dimensional real-analytic family
of real-analytic multimodal maps, the subset of parameters on which the cor-
responding map has a solenoidal attractor with bounded combinatorics is a
set with zero Lebesgue measure.
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1. Introduction.

A multimodal map f : I → I is a smooth map defined in an interval I, with a
finite number of critical points ci, all of them local maximum or local minimum,
and such that f(∂I) ⊂ ∂I. We are going to assume that f is real-analytic.

For unimodal maps with a quadratic critical point, the understanding of the
typical behaviour is very satisfactory. Lyubich [26] and Graczyk and Światek [18]
proved the density of hyperbolic parameters in the quadratic family. But this was
not enough to understand the typical behaviour at almost every parameter of the
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quadratic family. Indeed earlier Jakobson [20] proved that in the complement of
the hyperbolic parameters there is a subset of parameters with positive measure
for which the dynamics admits an absolutely continuous invariant probability (the
map is stochastic). Finally Lyubich [29] proved that for almost every parameter
in the quadratic family the map is either regular (a hyperbolic map) or stochastic.
Avila, Lyubich and de Melo [3] generalised this result for a non degenerate real
analytic family of quadratic real analytic unimodal maps and Avila and Moreira
[5] improved this, proving that in a non degenerate family the map is either regular
or Collet-Eckmann at almost every parameter. There are similar results for real-
analytic unimodal maps with higher order by Clark [11]. See also Bruin, Shen and
van Strien [10], Avila, Lyubich and Shen [4] and Shen [38] for related results.

Similar studies for multimodal maps (or even unimodal maps with higher order)
pose new difficulties. New phenomena appear, as non-renormalizable maps with-
out decay of geometry (see Bruin, Keller, Nowicki and van Strien [8], Keller and
Nowicki [22] ). Decay of geometry was an essential tool in the study of unimodal
quadratic maps. This was a major difficulty in the study of the so-called Fibonacci
renormalization for unimodal maps with higher order in Smania [42] and the proof
of the density of hyperbolicity for polynomials in Kozlovski, Shen, van Strien [24]
[23]. Moreover the lack of decay of geometry allows additional metric behaviours,
as the existence of wild attractors. See Milnor [33], Bruin, Keller, Nowicki and van
Strien [8] and Bruin, Keller and St. Pierre [9].

Another issue is that for families of polynomials with more than one critical point
(as in the cubic family) the parameter space has dimension larger than one. That
implies that the parapuzzle approach as used in the unimodal case (see Lyubich
[28], Avila, Lyubich and de Melo [3]) does not seem to be easily adaptable here,
since the fact that holomorphic maps with one-variable are conformal was used in
a crucial way.

So as a consequence there are a lot of unanswered questions concerning the
typical behaviour in the measure-theoretical sense in families of polynomials and/or
multimodal maps.

One of them is how often maps with solenoidal attractors appear in these families.
We say that a set Λ ⊂ I is a solenoidal attractor of a multimodal map f if there
exists an increasing sequence of positive intergers nk, k ∈ N, and a family of closed
intervals Ikj ⊂ I, k ∈ N and 0 ≤ j < nk, such that

A. For each k the intervals in the family {Ikj }j<nk
has pairwise disjoint interior.

B. We have f(Ikj ) ⊂ Ikj+1 mod nk
.

C. For every k

{ci}i ∩ ∪j<nk
Ikj 6= ∅.

and

∪j<nk+1
Ik+1
j ⊂ ∪j<nk

Ikj .

D. We have

Λ = ∩k ∪j<nk
Ikj .

See Blokh and Lyubich [6] [7] for more information on attractors for multimodal
maps. The solenoidal attractor Λ has bounded combinatorics if

sup
k

nk+1

nk
<∞.
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One important step in previous results about the typical behaviour in families
of unimodal maps is to prove that at a typical parameter the map does not have
solenoidal attractors. This was done in the quadratic family by Lyubich [28] and
for no degenerate families of unimodal maps by Avila, Lyubich and de Melo [3].
An important tool in many of these results on unimodal maps is the fact that the
topological classes of unimodal maps extend to an analytic, codimension one lami-
nation (except a few combinatorial types). This implies that the holonomy of this
lamination is quite regular. Our goal is to prove that

Theorem A. On a generic real-analytic finite-dimensional family of real-analytic
multimodal maps with quadratic critical points and negative schwarzian derivative
the set of parameters whose corresponding maps have a solenoidal attractor with
bounded combinatorics has zero Lebesgue measure.

The precise statement is given in Theorem 7. We also have an analogous result for
families with finite smoothness and continuous families. The method used in the
unimodal case in Avila, Lyubich and de Melo [3] no longer works in the multimodal
case, once the lamination of topological classes has higher codimension, so we are
going to use a quite different approach. If a map f has a solenoidal attractor with
bounded combinatorics, one can find an induced map F of f that is a composition of
unimodal maps and it is infinitely renormalizable as defined in [40]. In particular
the iterations of the renormalization operator R for multimodal maps are well-
defined for F . Using the universality property proved in [40] one can prove that F
belongs to the stable lamination of the omega-limit set Ω ofR. The renormalization
operator is a real-analytic, compact and non-linear operator acting on a Banach
space of real analytic multimodal maps.

Our main technical result is that

Theorem B. Consider the renormalization operator R acting on real-analytic mul-
timodal maps which are renormalizable with combinatorics bounded by some p > 0.
Then the omega-limit set Ω of R is a hyperbolic set.

The precise statement is given in Section 5. Lyubich[27] proved the hyperbolicity of
the omega-limit set in the unimodal case using the so-called Small Orbits Theorem.
We use a different approach, reducing the study of the hyperbolicity of Ω to the
study of the existence and regularity of solutions for a certain linear cohomological
equation. This new method allows us to deal only with real-analytic maps and its
complex analytic extensions.

The relationship between renormalization and cohomological equations appears
in many contexts, as for instance in the study of rigidity of circle diffeomorphisms
and generalized interval exchange transformations. Closer to our setting we have the
introduction by Lyubich [27] of the concept of horizontal direction in the study of
the renormalization operator for unimodal maps and the study of the hyperbolicity
of the fixed point of the action of a pseudo-Anosov map on certain character variety
by Kapovich [21].

The final ingredient is a very recent result on partially hyperbolic invariant sets
on Banach spaces [43]. The result we use is, roughly speaking, the following (see [43,
Theorem 1]). Suppose that a “regular” real-analytic operator R has a hyperbolic
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set Ω, and its stable lamination W s(Ω) satisfies the “Transversal Empty Interior
property”: every regular manifoldM that is transversal toW s(Ω) intersectsW s(Ω)
in a subset of empty interior (in the topology of M). Then a generic real-analytic
finite-dimensional family intersectsW s(Ω) on a subset with zero Lebesgue measure.
This will give us our main result. The Transversal Empty Interior property for
the renormalization operator (see Corollary 9.1) is closely related with the fact
that maps F that are infinitely renormalizable with bounded combinatorics can be
approximated by hyperbolic maps.

Some of the most classical families of one-dimensional dynamical systems are
families of polynomials. The cubic family is the two parameter family

fa,b(z) = z3 − 3a2z + b

The critical points of fa,b are a,−a. We also have

Theorem C. The set of of parameters (a, b) ∈ R2 such that fa,b is infinitely renor-
malizable with bounded combinatorics has zero 2-dimensional Lebesgue measure.

The study of the renormalization operator has a long history. It was first dis-
covered in the unimodal case by Feigenbaum [15][16] and Coullet and Tresser [45].
They conjectured that the period-doubling renormalization operator has a unique
fixed point in a space of quadratic unimodal maps, that this fixed point is hyper-
bolic and its codimension one stable manifold contains all Feigenbaum maps. Such
conjectures could explain certain intriguing universal features of the bifurcation
diagram of families of unimodal maps. The existence and hyperbolicity of such
fixed point was proven by Lanford [25]. Such conjectures were later extended for
arbitrary bounded combinatorial types, when the fixed point need to be replaced
by an omega-limit set that is hyperbolic (see Derrida, Gervois and Pomeau [14]
and Gol’berg, Sinăı and Khanin [17]). Sullivan [44] proved that the orbit by the
renormalization operator of a map that is infinitely renormalizable with bounded
combinatorics converges to the orbit of a map on the omega limit set and such orbit
is determined by the combinatorics of the map. This Sullivan’s result in particular
implies that uniqueness of the fixed point to the period-doubling renormalization
operator and that it attracts all Feigenbaum maps. McMullen[32] proved that the
rate of convergence is indeed exponential. Finally Lyubich [27] proved that the
omega-limit set of the renormalization operator for unimodal maps is hyperbolic.
In particular Lyubich found a suitable space where the renormalization operator is
a complex-analytic non-linear operator. See also de Faria, de Melo and Pinto [12]
for the proof of the conjectures in the Cr case.

The renormalization operator for bimodal maps was first considered in MacKay
and van Zeijts [30] and Hu [19]. The general multimodal case, with a precise com-
binatorial description, was described in [39], as well the so-called real and complex
a priori bounds for bounded combinatorics. In [41] it was proved the phase space
universality in the bounded combinatorics case.

It is natural to ask if results as Theorems A., B. and C. holds for the full renor-
malization operator, that is, considering unbounded combinatorial type as well.
We believe that recent results by Avila and Lyubich [2] on the contraction of the
renormalization operator in the hybrid class of infinitely renormalizable unimodal
maps with unbounded combinatorics can be carried out for multimodal maps. So
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Figure 1. Renormalization of an extended map of type 3.

the main difficulty seems to be to understand the dynamics of the renormalization
operator in the directions transversal to the horizontal spaces, as in the proof of
Theorem B. New difficulties arise in the unbounded case, once the omega-limit set
of the renormalization operator has not a simple structure anymore. However we
are confident that a version of the Key Lemma (Theorem 4) can be obtained in
this setting and it will be useful to understand the dynamics of the renormalization
operator and the generic behavior in families of multimodal maps.

2. Renormalization of extended maps.

To study the renormalisation of multimodal maps, it is more convenient to de-
compose the dynamics of f in its unimodal parts. Let Ii = [−1, ai], with ai > 0,
be intervals and

(1) fi : Ii → Ii+1 mod n

be C1 maps such that ci is its unique critical point, that is a maximum and fi(∂Ii) ⊂
∂Ii+1 mod n. An extended map F is defined by a finite sequence (f1, . . . , fn) of maps
is the map defined on InF = {(x, i) : x ∈ Ii, 1 ≤ i ≤ n} as

(2) F (x, i) = (fi(x), i + 1 mod n)
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We say that f is a multimodal map of type n if it can be written as a composition
of n unimodal maps: to be more precise, if there exist maps f1, . . . , fn as above
satisfying

(1) f = fn ◦ · · · ◦ f1.
(2) We have fi(ci) ≥ ci+1 mod n.

The n-uple (f1, ..., fn) is a decomposition of f . In this paper, we will assume that
the unimodal maps are analytic and the critical points of fi are quadratic. Clearly
f has many decompositions.

In [39], we proved that deep renormalizations of infinitely renormalizable multi-
modal maps are multimodal maps of type n.

2.1. Renormalization of extended maps. We say that J is a k-periodic interval,
k ≥ 2, of the extended map F if

• (c1, 1) ∈ J ((ci, i) are the critical points of F ),
• {J, F (J), . . . , F k−1(J)} is a collection of intervals with disjoint interiors,
• The union of intervals in the above family contains {(ci, i)},
• F k(J) ⊂ J .

We will call k the period of J . If F has a k-periodic interval, for some k, we say
that F is renormalizable.

Suppose that there exists a k-periodic interval for F . Let P ⊂ I1 × {1} be the
maximal interval which is a k-periodic interval for F . Then F k(∂P ) ⊂ ∂P . We

say that P is a restrictive interval for F of period k. Note that if P and P̃ are,
respectively, restrictive intervals for F of period k and k̃, k < k̃, then P̃ ⊂ P . Let
P be a restrictive interval and let 0 = ℓ1 < · · · < ℓn be the iterations such that
(ci, i) ∈ F ℓj(P ) for some i. Let Pj be the symmetrization of F ℓj (P ) in relation to
(ci, i). Observe that Pj contains a periodic point in its boundary. If (ci, i) ∈ Pj Let

APj
: C× {i} → C× {j}

be the affine map which maps (ci, i) to (0, j) and this periodic point to −1. Let
[−1, bj]× {j} = APj

(Pj). Then

gj : [−1, bj]× {j} → [−1, bj+1]× {j + 1}

defined by gj = APj+1 ◦ F ℓj+1−ℓj ◦ A−1
Pj

is a unimodal map. The extended map

G(x, j) = gj(x, j) is called a renormalization of the extended map F . An extended
map may have many renormalizations, but at most one with a given period. The
renormalization with minimal period k is called the first renormalization of F , and
it is denoted R(F ).

Following the notation in [40], the primitive marked combinational data (prim-
itive m.c.d) associated with the first renormalization of F is σ =< A,≺, Ac >
where

• A = {1, 2, . . . , k},
• The relation ≺ is a partial order on A defined in the following way i ≺ ℓ if
F iJ and F ℓJ belongs to the same interval in InF and F iJ is on the left side
of F ℓJ ,

• The set Ac is a subset of A and i ∈ Ac if F iJ intersects {(ci, i)}.

The extended map R(F ) can be renormalizable again and so on. If this process
can be continued indefinitely, we say that F is infinitely renormalizable. If F is
infinitely renormalizable then all of its renormalizations can be obtained iterating
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the operator R. Denote by P k
0 the restrictive interval associated to the k-th renor-

malization Rk(F ). If q ∈ C(F ) := {(ci, i)}, denote by the corresponding capital
letter Qk

0 the symmetrization of the interval F ℓ(P k
0 ) which contains q. We reserve

the letter p for (c1, 1). The critical point r for F will be the successor of the critical
point q at level k if r ∈ F ℓ(Qk

0), for the minimal ℓ so that F ℓ(Qk
0) contains a critical

point. Define nk
r = ℓ. Then, for any r ∈ C(F ), k ∈ N and i < nk

r , there exists an
interval Rk

−i so that

• F i is monotone in Rk
−i,

• F i(Rk
−i) = Rk

0 ,

• The interval Fnk
r−i(Qk

0) is contained in Rk
−i.

For details, see [39].
Denote by Nk the period of the restrictive interval P k

0 . We say that F has
C-bounded combinatorics if Nk+1/Nk ≤ C for every k.

For (x, i), (y, j) ∈ InF , we say that (x, i) < (y, j) if i = j and x < y. The intervals
of InF are the sets J × {i}, for some interval J ⊂ Ii and 1 ≤ i ≤ n. If ci is the
critical point of fi, denote C(F ) = {(i, ci)}i.

Let F and G be two infinitely renormalizable extended maps. We say that F
and G have same combinatorics if F i(ck) < F j(cℓ) if and only if Gi(ck) < Gj(cℓ),
for any i,j ≥ 0 and k and ℓ < n.

Let σi be the primitive m.c.d. of the (first) renormalization of Ri(F ) and σ̃i
be the primitive m.c.d. of the (first) renomalization of Ri(G). It turns out that
F and G has the same combinatorics if and only if σi = σ̃i for every i. So we
say that F has combinatorics (σ1, σ2, σ3, . . . ). Moreover, let Cp,n be the set of all
primitive m.c.d. that appears as the first renormalization of an extended map with
n intervals and it has period either smaller or equal to p. By Corollary 2.3 in [40]
for every given sequence σi ∈ ∪pCp,n, i ≥ 1, there exists a real analytic extended
map (with, say, quadratic critical points) whose i-th renormalization has primitive
m.c.d. σi.

2.2. Polynomial-like extended maps. Denote Cn = {(x, i) : x ∈ C, 1 ≤ i ≤ n}
(in other words, Cn is a disjoint union of n copies of C). Given an open set O ⊂ Cn,
denote

Oi = O ∩ (C× {i}).

A polynomial-like extended map is a map F : U → V , where

• U and V are open sets of Cn, where U ⊂ V ,
• for each i, F (Ui) = Vi+1 mod n. Moreover F : Ui → Vi+1 mod n is a proper
map with a unique critical point.

• for each i we have that Ui and Vi are simply connected domains.

We define

mod (V \ U) = min
i

mod (Vi \ Ui).

The filled-in Julia set K(F ) of a polynomial-like extended map F is defined as

K(F ) = ∩i≥0F
−i(V ).

Note that K(F ) is connected if and only if all the critical points of F belongs to
K(F ).
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A real analytic extended map F : InF → InF has a polynomial-like extension if

there is a polynomial-like extend map F̃ : U → V such that I × {i} ⊂ Ui and

F = F̃ on InF .

2.3. Polynomial-like renormalization of real analytic extended maps. Let
U ⊂ Cn be an open set. Given an analytic function F : U → Cn, define the open
set

Dn
U (F ) :=

n−1
⋂

i=0

F−iU.

In other words, Dn
U (F ) is the domain contained in Cn where Fn is defined.

Let F : U → V be a complex-analytic extension of an extended map. Note that F
does not need to be a polynomial-like extension. Suppose that the extended map F
is r-times renormalizable, and let Pj and ℓj be the intervals and integers associated
with the rth renormalization, as defined in Section 2.1. Define nk = ℓk+1 mod n−ℓk.

Suppose we can find a sequence ik, k = 1, . . . , n, with i1 = 1, simply connected
domains Ûk and V̂k ⊂ C× {ik}, such that

1. We have {ik}k = {1, 2, . . . , n},

2. We have Pk ⊂ Ûk and Ûk ⊂ V̂k,

3. The domains Ûk and V̂k satisfies Ûk ⊂ Dnk

U (F ), Fnk Ûk = V̂k+1 mod n.
4. The map

Fnk : Ûk → V̂k+1 mod n

is a proper map for which (0, ik) is the unique critical point.

Let Aj : C → C be the affine maps defined in Section 2.1. Define A : Cn → Cn

as A(x, i) = (Ai(x), i). Then we can define

gi : A(Ûj) → A(V̂j+1)

as gj = A ◦ Fnk ◦A−1. If

Û =
⋃

i

A(Ûi)× {i}, V̂ =
⋃

i

A(V̂i)× {i},

then the map

Rr(F ) : Û → V̂

defined by Rr(F )(x, i) = (gi(x), i + 1) is a polynomial-like extension of the real
renormalization Rr(F ) and it is called a polynomial-like rth renormalization of

F . Note that Ûk and V̂k are not uniquely defined, however any polynomial-like
extension of Rr(F ) does coincide on InRr(F ).

Lemma 2.1. Let x1, . . . , xn ∈ C, and Ui ⊂ C be open sets such that xi ∈ Uik and

fi,k : Ui,k → C, k = 1, 2,

be holomorphic functions such that

i. fi,k(xi) = xi+1 mod n.
ii. We have |λ1λ2 · · ·λn| > 1, where λi = f ′

i,1(xi) = f ′
i,2(xi).

iii. Let

gi,k = f(i+n−1)modn, k ◦ · · · ◦ f(i+1)modn, k ◦ fi,k.

There is q ≥ 1 such that gqi,1 = gqi,2 for every i.

Then fi,1(x) = fi,2(x) for every i and for every x close to xi.



SOLENOIDAL ATTRACTORS WITH BOUNDED COMBINATORICS ARE SHY 9

Proof. Due iii. we have that xi is a repelling fixed point of gi,k and its multiplier
is λ1λ2 · · ·λn. By the Kœnigs linearization theorem (see for instance Milnor [34,
Theorem 8.2]) there is a unique germ of holomorphic function hi at xi such that
h′i(xi) = 1 and

(3) hi ◦ gi,1(x) = gi,2 ◦ hi(x)

for x close to xi. Note that the uniqueness of hi and ii. implies

(4) hi+1 ◦ fi,1(x) = fi,2 ◦ hi(x).

for x close to xi. Note also that

(5) hi ◦ g
q
i,1(x) = gqi,2 ◦ hi(x)

But since gqi,1 = gqi,2 this implies (due the uniqueness of the solution of the Schröder’s

equation in the Kœnigs linearization theorem) that hi(x) = x, so by (4) we have
fi,1 = fi,2 for every i. �

Proposition 2.2 (Injectivity of Renormalization). Let F1, F2 be real-analytic ex-
tended maps of type n with polynomial-like extensions of type n. Suppose that Fk,
k = 1, 2 are renormalizable and R(Fk), k = 1, 2, also have polynomial-like exten-
sions of type n. Additionally assume that

(6) r ∈ {F ℓ
k(s), ℓ ≥ 0}, every r, s ∈ C(Fk), k = 1, 2,

Then R(F1) = R(F2) implies F1 = F2.

Proof. We use an argument similar to de Melo and van Strien [13, Chapter VI,
Proposition 1.1]. To simplify the notation we assume that Fk(x, i) = Fk(−x, i).
Let pk be the period of the first renormalization of Fk and qk = pk/n. Using the
notation of Section 2.1, we have ci = 0, ai = 1 and bi = 1, for every i ≤ n. Let P1,k

be the interval of the first renormalization of Fk such that that (0, 1) ∈ P1,k. Let

0 = ℓ1,k < · · · < ℓn,k be the iterations such that (0, ij,k) ∈ F
ℓj,k
k (P1,k) for some ij,k.

Let Pj,k = [−βj,k, βj,k] be the symmetrization of F
ℓj,k
k (Pj,k), where βj,k is periodic.

Let

Yj,k = [−
1

βj,k
,

1

βj,k
].

The map
gj,k : Yj,k → Yj,k

defined by

gj,k(x) =
−1

βj,k
π1(F

n
k (−βj,kx, ijk)).

is a multimodal map with a polynomial-like extension of degree 2n and the real
trace of its filled-in Julia set is [−1/βj,k, 1/βj,k]. Then R(F1) = R(F2) implies
that gq1j,1 = gq2j,2 on [−1, 1] and for every j. Moreover gqkj,k has a polynomial-like

extension of degree 2n whose real trace of its filled-in Julia set is [−1, 1]. Note
that if |βj,1| < |βj,2| then Yj,2 is invariant by gq1j,1, that implies that Yj,2 would be

a restricted interval of gj,1, which is not possible since gq1j,1 on [−1, 1] is the first
renormalization of gj,1. So

(7) βj,1 = βj,2 and Yj,1 = Yj,2 for every j

Counting the number of restricted intervals associated to [−βj,k, βj,k] in Y2,k we
obtain p1 = p2.
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Note that ℓ1,k is the number of critical values of F
ℓj,k
k in [−1, 1]× {1}, which is

equal to the number of critical values of R(Fk) in Y1,k ×{1}. Since R(F1) = R(F2)
and Y1,2 = Y1,2 we conclude that ℓ1,1 = ℓ1,2 and i2,k = 1+ℓ1,1 for k = 1, 2. Suppose
by induction that ij,1 = ij,2. Then ℓj,k is the number of critical values of R(Fk) in
Yj,k × {j}, so ℓj,1 = ℓj,2 and consequently ij+1,k = ij+1,1 + ℓj,1. So

(8) ij,1 = ij,2 and ℓj,1 = ℓj,2 for every j.

Finally due (7), (8) and R(F1) = R(F2) we have that

(9) F
ℓj+1,1−ℓj,1
1 = F

ℓj+1,2−ℓj,2
2

in a neighborhood of the point (−1, ij,1) and F
ℓj+1,1−ℓj,1
1 (−1, ij,1) = (−1, ij+1,1) for

every j.

Let λi,k = DFk(−1, i) > 0. We claim that λi,1 = λi,2 for every i. Indeed, let
p = p1 = p2, q = q1 = q2 and ℓi = ℓi,1 = ℓi,2. So gqj,1 = gqj,2 and (7) implies that

F qn
1 = F qn

2 in a neighborhood of [−1, 1]× {1, . . . , n}. In particular

(λ1,1 · · ·λn,1)
q = (λ1,2 · · ·λn,2)

q,

so

(10) λ1,1 · · ·λn,1 = λ1,2 · · ·λn,2.

There is exactly one j ≤ n such that (0, 1) ∈ F
ℓj
1 (P1,1), that is the unique i1

satisfying ℓi1 = w1n+ 1, for some w1 ∈ N. In particular

DF
ℓi1
k (−1, 0) = (λ1,k · · ·λn,k)

w1λ1,k.

Due (9) we have DF
ℓi1
1 (−1, 0) = DF

ℓi1
2 (−1, 0), so it follows from (10) that λ1,1 =

λ1,2. Suppose by induction that λj,1 = λj,2 for j < j0 < n. Then there is a unique
ℓij0 such that ℓij0 = wj0n+ j0 for some wj0 ∈ N and consequently

DF
ℓij0
k (−1, 0) = (λ1,k · · ·λn,k)

wj0λ1,kλ2,k · · ·λj0−1,kλj0,k.

It follows from the induction assumption, DF
ℓij0
1 (−1, 0) = DF

ℓij0
2 (−1, 0) and (10)

that λj0,1 = λj0,2. So λj,1 = λj,2 for every j ≤ n− q. We conclude that λn,1 = λn,2
due (10). This concludes the proof of the claim.

Define fi,k(x) = π1(Fk(x, i)) and xi = −1. By Lemma 2.1 we have that fi,1(x) =
fi,2(x) for every i and x close to −1, so F1 = F2.

�

2.4. Complex bounds and rigidity of real analytic, infinitely renormal-
izable extended maps with bounded combinatorics. Here we summarize
results in [40].

Theorem 1. Let σ = (σi)i∈Z ∈ CZ
p,n. Then there exists a unique sequence of real

analytic maps Fσ,i, i ∈ Z, satisfying the following conditions

1. The map Fσ,i is renormalizable and R(Fσ,i) = Fσ,i+1.
2. The first renormalization of Fσ,i has combinatorics σi.
3. There exist polynomial-like extensions Fσ,i : U

i
σ → V i

σ, where

inf
i

mod (V i
σ \ U i

σ) > 0.
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If U ⊂ C is a bounded open set such that 0 ∈ U , denote by B(U) the Banach
space of all holomorphic functions g : U → C that has a continuous extension to U
and a critical point at 0, with the sup norm. If −1 ∈ U let Bnor(U) be the affine
subspace of maps g ∈ B(U) such that g(−1) = −1.

In an analogous way, let U ⊂ Cn be a bounded open set such that

Ui = (C × {i}) ∩ U 6= ∅

and (0, i) ∈ U , for every i and consider the set B(U) of all holomophic functions
G : U → Cn with the following properties:

1. G has a continuous extension to U .
2. G has critical points at (0, i), for every i.
3. G(Ui) ⊂ C× {i+ 1 mod n}.

Theorem 2. (Complex Bounds [39][40]) There exists ǫ0 > 0 with the following
property. If F is a real analytic extended map that is infinitely renormalizable with
combinatorics in CN

p,n and with a complex analytic (but not necessarily polynomial-
like) extension F ∈ B(U) then there exist a neighbourhood VF ⊂ B(U) of F and k0
with the following property. For every k ≥ k0 and every real analytic and infinitely
renormalizable G ∈ VF with combinatorics in CN

p,n the map G has a polynomial-like
kth renormalization

Rk(G) : Uk → V k

such that

mod(V k \ Uk) > ǫ0.

If (−1, i) ∈ U for every i, we can also consider the subset Bnor(U) of all maps
G ∈ B(U) such that G(−1, i) = (−1, i+ 1 mod n) for every i.

Denote π(x, i) = x. We identify B(U) with the Banach space

(11) B(π(U1))× B(π(U2))× · · · × B(π(Un))

in the following way. For each G ∈ B(U) there is a unique decomposition

(12) (g1, . . . , gn) ∈ B(π(U1))× B(π(U2))× · · · × B(π(Un)),

where gi is defined by gi(x) = π ◦ G(x, i) and for each n-uple as in (12) we can
associate G ∈ B(U) defined by G(x, i) = (gi(x), i + 1 mod n). With this identifica-
tion Bnor(U) turns out to be an affine subspace of B(U). So given F ∈ Bnor(U) we
can consider the tangent space of Bnor(U) at F , denoted by TFBnor(U). using the
identification (11) then TFBnor(U) is the subspace of

(v1, . . . , vn) ∈ B(π(U1))× B(π(U2))× · · · × B(π(Un))

such that vi(−1) = 0 for i = 1, . . . , n. In particular TFBnor(U) does not depend on
F , so sometimes we will write TBnor(U).

Given δ > 0 and θ > 0, let Dδ,θ be the set

{x ∈ C : dist(x, [−1, 1]) < δ and |Im(x)| < θ(Re(x) + 1)} × {1, . . . , n}

Define

Ωp,n = {Fσ,0}σ∈CZ
p,n

Indeed, due Theorem 1 we have that

Ωp,n = {Fσ,i}σ∈CZ
p,n
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for every i. Using Theorem 2 and Theorem 1 one can show that there exists ǫ0 such
that for every Fσ,0 ∈ Ωp,n there exists a polynomial-like extension Fσ0 : U

0
σ → V 0

σ

such that mod(V 0
σ \U0

σ) > ǫ0. There exists δ0 such that for every simply connected
domains Q ⊃W ⊃ [−1, 1] such that mod(Q \W ) ≥ ǫ0/2 we have

(13) {x ∈ C : dist(x, [−1, 1]) ≤ δ0} ⊂ Q.

In particular
Dδ0,θ ⊂ U0

σ

for every θ > 0 and for every σ ∈ Cp,n. In particular Ωp,n ⊂ Bnor(Dδ0,θ).
Consider the shift operator on CZ

p,n, that is, if σ = (σi)i∈Z then S(σ) = σ′, where
σ′
i = σi+1.

Corollary 2.3. The set Ωp,n ⊂ Bnor(Dδ0,θ) is a Cantor set. Indeed the map
H : CZ

p,n → Ωp,n given by

H(σ) = Fσ,0,

is a homeomorphism. Moreover R(Fσ,0) = FS(σ),0.

Proof. The map H is continuous and onto due [40, Section 7.1]. The injectivity of
H follows from Proposition 2.2.

�

3. Complexification of the renormalization operator R.

Given θ0 > 0, by Theorem 2 for each F ∈ Ωp,n there exist a neighbourhood
VF ⊂ Bnor(Dδ0,θ0) of F and kF such that for every real map G ∈ VF that is
infinitely renormalizable with combinatorics in Cp,n and for every k ≥ kF we have

a polynomial-like kth renormalization Rk(G) : Û → V̂ with mod(V̂ \ Û) > ǫ0. In
particular Rk(G) ∈ Bnor(Dδ0,θ0). Since Ωp,n is a compact set, choose a finite sub
cover {VFi

}i≤ℓ of Ωp,n. Let k0 = maxi≤ℓ kFi
and V = ∪i≤ℓVFi

.
LetH be the homeomorphism defined in Corollary 2.3. For every γ = (γ1, . . . , γk0) ∈

Ck0
p,n define the compact set

Ωp,n(γ) = H({σ ∈ CZ

p,n : σi = γi for 1 ≤ i ≤ k0}).

We have

d1 = inf{distBnor(Dδ0,θ0
)(G1, G2) : G1 ∈ Ωp,n(γ̂), G2 ∈ Ωp,n(γ̃), γ̂ 6= γ̃} > 0.

Given F ∈ Ωp,n, consider the intervals PF,j , j = 1, . . . , n, integers nj , corre-
ponding the restrictive intervals of the k0th renormalization of F , as in Section
2.3. Each interval PF,j contains a unique repelling periodic point (βF,j, ij) in its
boundary. These repelling periodic points have a complex analytic continuation
(βG,j, ij) for every G in a connected neighbourhood W̃F of F in Bnor(Dδ0,θ0) that
is also a repelling periodic point for G. Note that for a real map G the point βG,j

is real and we can assume that it has the same combinatorics as βF,j. We can also

assume that W̃F ⊂ V and that the diameter of W̃F is smaller than d1/2.

Let d2 < d1 be a Lebesgue number of the cover {W̃F }F∈Ωp,n
of Ωp,n. For every

F ∈ Ωp,n choose a connected neighbourhood WF ⊂ W̃F of F so that

diamBnor(Dδ0,θ0
) WF < d2/4.

Let F1, F2 ∈ Ωp,n and consider the complex analytic continuations (β1
G,j, i

1
j),

(β2
G,j, i

2
j) of (βF1,j , i

1
j) and (βF2,j , i

2
j) defined for every G ∈ WF1 and G ∈ WF2
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respectively. Suppose that WF1 ∩WF2 6= ∅. We claim that i1j = i2j and β1
G,j = β2

G,j

for every G ∈ WF1 ∩WF2 and j. Since the diameter of WF1 ∪WF2 is smaller than

d2 we have that WF1 ∪WF2 ⊂ W̃F3 , for some F3 ∈ Ωp,n. Note that the distance
between two maps in {F1, F2, F3} is smaller than d1. In particular the combinatorics
of their k0th renormalizations are the same, so i1j = i2j = i3j for every j. Consider the

complex analytic continuation (β3
G,j, ij) of (βF3,j , ij) defined for G ∈ W̃F3 . Then

(β3
F1,j

, ij) and (βF1,j, ij) are repelling periodic points with the same combinatorics.
Since F1 has negative schwarzian derivative, the minimal principle implies that
β3
F1,j

= βF1,j . In an analogous way β3
F2,j

= βF2,j. The uniqueness of the analytic

continuation of a repelling periodic point implies that β3
G,j = β1

G,j for G ∈WF1 and

β3
G,j = β2

G,j for G ∈WF2 . This concludes the proof of the claim.
In particular the function

G 7→ (βG,j , ij)

is well defined and complex analytic in W = ∪F∈Ωp,n
WF . There is a small abuse

of notation here since ij depends on G, but it is a locally constant function.
Fix G ∈ WF . Let AG,j : C × {ij} → C × {j} be the affine transformation that

maps (βG,j, ij) to (−1, j) and (0, ij) to (0, j), and AG : Cn → Cn as AG(x, i) =
(AG,i(x), i). Let D

F,j be the set

A−1
F,j({z ∈ C : dist(z, [−1, 1]) < δ0 and |Im(z)| < θ0(Re(z) + 1)} × {j}).

Since mod(V̂ \ Û) > ǫ0 we have that

DF,j ⊂ Ûj ⊂ D
nj

Dδ0,θ0
(F ),

Moreover, due the complex bounds, reducing θ0 and δ0 we can assume that the
interior of the sets in the family

{Fm(DF,j)}m<nj

are pairwise disjoint, and the intersection of the closure of every two of those sets
is contained in

{Fm(βF,j, ij)}m<nj
.

Let G ∈WF and define the set DG,j as

A−1
G,j({z ∈ C : dist(z, [−1, 1]) < δ0 and |Im(z)| < θ0(Re(z) + 1)} × {j}).

Reducing the neighbourhood WF of F and θ0 we can assume that

DG,j ⊂ D
nj

Dδ0,θ0
(G),

for every G ∈ WF and furthermore the interior of the sets in the family

{Gm(DG,j)}m<nj

are pairwise disjoint, and the intersection of the closure of every two of those sets
is contained in

{Gm(βG,j , ij)}m<nj
.

Define the complexification of the renormalization operator

R : W → Bnor(Dδ0,θ0)

as

(14) R(G)(x, j) = AG,j+1 ◦G
nj ◦A−1

G,j(x, j)
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if G ∈ WF . The operator R is a compact complex analytic map. From now on
denote U = Dδ0,θ0 .

Remark 3.1. Let Ũ be a little larger complex open domain that contains U . Con-
sider the complex analytic transformation

R̃ : W → Bnor(Ũ).

defined exactly as in (14). Let

i : Bnor(Ũ) → Bnor(U)

be the compact linear inclusion between these spaces. Then R = i ◦ R̃, so the
complexification of the renormalization operator is a strongly compact operator as
defined in [43].

Let v ∈ TGBnor(U). If z ∈ U and Gj(z) ∈ U for every j < i then (G + tv)i is
defined in a neighbourhood of z and we can define

(15) ai(z) =
∂

∂t
(G+ tv)i|t=0(z) =

i−1
∑

j=0

DGi−j−1(Gj+1(z))v(Gj(z)).

Given F ∈ Ωp,n and G ∈WF . For each v ∈ TGBnor(U) and z ∈ Uj we have

(DRG · v)(x, j) =
∂

∂t
AG+tv,j+1 ◦ (G+ tv)nj ◦A−1

G+tv,j(x, j)|t=0

= −
∂GβG,j+1 · v

βG,j+1
· AG,j+1 ◦G

nj ◦A−1
G,j(x, j)

−
1

βG,j+1

(

anj
◦A−1

G,j(x, j) + (∂xG
nj ) ◦A−1

G,j(x, j) · (−∂GβG,j · v x, j)
)

.

Theorem 3. Let F ∈ W. Then DFR(TFBnor(U)) is dense in TRFBnor(U).

Proof. The proof is quite similar to the proof of the analogous statement in [3]. Let
w ∈ TRFBnor(U). Then w(−1, k) = 0 and w′(0, k) = 0 for every k. We are going
to define a function

v̂ : ∪j ∪m<nj
Gm(DG,j) → C

in the following way. Define the function v̂ as 0 on

∪j ∪0<m<nj
Gm(DG,j),

and
v̂(z) = [DGnj−1(G(z))]−1 · w ◦AG,j(z)

for z ∈ DG,j . Also define v̂(−1, k) = 0 for every k. Then v̂ is well defined, it is
continuous on

Λ = ∪j ∪m<nj
Gm(DG,j) ∪ {(−1, k)}k,

and it is complex analytic in the interior of Λ.
Moreover v̂ vanishes on the orbit of the periodic points {βG,j}j. Since C×{i}\Λ

is a connected set, by Mergelyan’s Theorem for each given ǫ > 0 and i we can find
a polynomial qi such that |v̂(z)− qi(z)| < ǫ for z ∈ Λi = Λ ∩ C× {i}. Define

q̂i(z) = qi(z)− q′i(0, i)z − qi(−1, i)− q′i(0, i)

Note that q̂′i(0, i) = 0 and q̂i(−1, i) = 0. Define q(x, i) = q̂i(x). We have that
q ∈ TGBnor(U) and

|DGR · q − w|B(U) →ǫ→0 0.
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�

4. Action of DR on horizontal directions.

4.1. Horizontal direction. Let F : InF → InF be a real analytic extended map
that is either infinitely renormalizable with bounded combinatorics in Cp,n or whose
critical points belongs to the same periodic orbit. A continuous function

v : InF → TCn

is a horizontal direction of F if

1. For each x ∈ InF we have v(x) ∈ TF (x)Cn.
2. The function v is real analytic in the interior of InF .
3. There is a quasiconformal vector field

α : W → TCn,

defined in a complex neighbourhood W of the post critical set of F , such
that

(16) v(x) = α(F (x)) −DF (x) · α(x)

for every x in the post critical set.
4. We have α(c) = 0 for every critical point c of F .

Denote by Eh
F the set of v ∈ TFBnor(U) such that v is horizontal. Of course Eh

F

is a linear subspace of TFBnor(U).

Proposition 4.1 (Infinitesimal pullback argument. Avila, Lyubich and de Melo
[3]). Let F ∈ Ωn,p. Let

F : W → V

be a polynomial-like extension of F and v ∈ B(W )∩TFBnor(U) such that there exists
a quasiconformal vector field α, defined in a neighbourhood of the post critical set
of F , such that

(17) v(x) = α ◦ F (x)−DF (x) · α(x)

for every x ∈ P (F ). In particular v ∈ Eh
F . Reducing a little bit the domain W ,

there exists a quasiconformal vector field extension α : W → C such that (17) holds
for every x ∈ W .

Proposition 4.2 (Invariance). Let F ∈ Ωn,p. Then

(18) DFR(Eh
F ) ⊂ Eh

RF ,

(19) (DFR)−1(Eh
RF ) ⊂ Eh

F .

Proof. The proof of (18) is quite similar to the proof of a similar statement in [41].
Indeed, consider ai as in (15). Note that

ai(z) = v(F i−1) +DF (F i−1(z))ai−1(z).

By an inductive argument one can show that

ai = α ◦ F i −DF i · α

on P (F ). Denote

α(βF,j+1) = ∂FβF,j+1 · v
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then if z = (x, j) ∈ P (F ) we have

(DRF · v)(x, j)

= −
∂FβF,j+1 · v

βF,j+1
· AF,j+1 ◦ F

nj ◦A−1
F,j(x, j)

−
1

βF,j+1

(

anj
◦A−1

F,j(x, j) + (DFnj ) ◦A−1
F,j(x, j) · (−∂FβF,j · v x, j)

)

= −
α(βF,j+1)

βF,j+1
· (RF )(z)

−
1

βF,j+1
α ◦A−1

F,j+1 ◦AF,j+1 ◦ F
nj ◦A−1

F,j(x, j) +
βF,j

βF,j+1
DFnj ◦A−1

F,j(x, j) ·
1

βF,j
α ◦A−1

F,j(x, j)

+Dz(RF ) · (
α(βF,j)

βF,j
x, j)

= −
α(βF,j+1)

βF,j+1
· (RF )(z)

−
1

βF,j+1
α ◦A−1

F,j+1 ◦ (RF )(z) +Dz(RF ) ·
1

βF,j
α ◦A−1

F,j(x, j)

+Dz(RF ) · (
α(βF,j)

βF,j
x, j).

Define the vector field r(α) as

(20) r(α)(x, j) = −
1

βF,j
α ◦A−1

F,j(x, j) − (
α(βF,j)

βF,j
· x, j)

for z = (x, j) ∈ Uj . Then

(21) (DRF · v)(z) = r(α) ◦ (RF )(z)−Dz(RF ) · r(α)(z)

for z in the postcritical set of RF . Note that r(α) is a quasiconformal vector field
in a neighbourhood of the post critical set of RF . So DRF · v ∈ Eh

RF .
Now suppose that v ∈ (DFR)−1(Eh

RF ). Then DRF · v ∈ Eh
RF , so there exists a

quasiconformal vector field γ : Cn → C such that

(22) (DRF · v)(z) = γ ◦ (RF )(z)−Dz(RF ) · γ(z).

for every z in a neighbourhood of the post critical set of RF . Define

δj = ∂tβF+tv,j

∣

∣

t=0
= ∂FβF,j · v

Define α in AF,j(U) as

α(z) = βF,jγ ◦A−1
F,j(z) + δjA

−1
F,j(z).

Let z be a point very close to the post critical set of F . Then

{k ≥ 0 s.t. F k(z) ∈ ∪j≤nAF,j(U)} 6= ∅

Let k(z) be a minimal element of the above set. Not hat z 7→ k(z) is locally
constant. We define α(z) for z close to the post critical set of F by induction of
k(z). We already defined α(z) when k(z) = 0. If k(z) > 0 then k(F (z)) = k(z)− 1
and we define

α(z) =
v(z) + α(F (z))

DF (z)
.
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One can check that α is a quasiconformal vector field and

v = α(F (z))−DF (z)α(z)

in a neighbourhood of the post critical set of F , so v ∈ Eh
F . �

Proposition 4.3. Let F ∈ Ωn,p. Then DRF is injective.

Proof. Let v be such that DRF ·v = 0. By Proposition 4.2 we have that v ∈ Eh
F . By

Proposition 4.1 there is a quasiconformal vector field α, defined in a neighborhood
of the Julia set of F , satisfying (17) for every x on its Julia set. Let r(α) be the
quasiconformal vector field defined by (20). Then by (21) we have that r(α) satisfies

0 = r(α) ◦ (RF )(z)−Dz(RF ) · r(α)(z).

for every z in the Julia set of RF . We can easily conclude that r(α)(z) = 0 at
every repelling periodic point z of RF and consequently at every point of its Julia
set. By (20) we have that α is zero at every point of the small Julia sets of F
corresponding to this renormalization and, by (17) we have that v vanishes in these
small Julia sets as well. So v = 0 everywhere. �

Proposition 4.4 (Closedness). Let Fk ∈ Ωn,p and vk ∈ Eh
Fk

⊂ TBnor(U) be
sequences such that (Fk, vk) converges to (F, v) ∈ Bnor(U) × TBnor(U). Then
F ∈ Ωp,n and v ∈ Eh

F . In particular Eh
F is Banach subspace of TFBnor(U).

Proof. Due the definition of the operator R, the map RF has a polynomial-like
extension

RF : W → V,

with U ⊂W . Reducing V a little bit, we can assume ∂V is a finite union of analytic
curves and that for k large enough the map

RFk : Wk → V,

whereWk ⊂ Cn, U ⊂Wk, is the set whose connected components are the connected
components of

(RFk)
−1V

that intersect {(0, j)}j, is a polynomial-like extension of RFk. Since vk ∈ Eh
Fk

we

have that DFk
R · vk ∈ Eh

RFk
, so there exists a quasiconformal vector field γ̃k such

that
(DRFk

· vk)(z) = γ̃k ◦ (RFk)(z)−Dz(RFk) · γ̃
k(z).

holds for z in a neighbourhood of the post critical set of RFk.
Now we use the infinitesimal pullback argument in Avila, Lyubich and de Melo

[3]. For each k, there exist C > 0 and a quasiconformal vector field γk0 : Cn → C

with the following properties

1. The vector field γk0 vanishes outside V . Moreover γk0 (−1) = γk0 (0) = 0.
2. It satisfies

(DRFk
· vk)(z) = γk0 ◦ (RFk)(z)−Dz(RFk) · γ

k
0 (z).

for every z ∈ ∂Wk.
3. The vector field γk0 is C∞ in a neighbourhood of

V \Wk

and
|∂γk0 | ≤ C
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on this set.
4. We have γk0 = γ̃k in a neighbourhood of the post critical set of RFk.

Define by induction γkj as 0 outside V and

γkj+1(z) =
γkj ◦ (RFk)(z)− (DRFk

· vk)(z)

Dz(RFk)

on V \ {(0,m)}m, and γkj+1(0,m) = 0.
Using the McMullen compactness criterion for quasiconformal vectors fields [32,

Corollary A.11], one can prove that for each k the sequence

γ̂kj =
1

j

j−1
∑

t=0

γkt

has a convergent subsequence, uniform on compact subsets of Cn. Moreover such
limits are quasiconformal vectors fields. Let γk∞ be one of theses limits. Since the
filled-in Julia sets of the polynomial-like extensions of RFk do not support invariant
line fields [40] we conclude that |∂γk∞| ≤ C on Cn. Note that

(23) (DRFk
· vk)(z) = γk∞ ◦ (RFk)(z)−Dz(RFk) · γ

k
∞(z), z ∈ U.

By the compactness criterion for quasiconformal vectors fields in McMullen [32] we
can consider a convergent subsequence γkt∞ →t γ, where γ is a quasiconformal
vector field on Cn and the convergence is uniform on compact subsets of Cn . By
(23) we have

(24) (DRF · v)(z) = γ ◦ (RF )(z)−Dz(RF ) · γ(z), z ∈ U,

so DRF · v ∈ Eh
RF , so by (19) we have v ∈ Eh

F . �

Proposition 4.5 (Contraction on the horizontal directions). There exist K and
θ1 > 1 such that for every F ∈ Ωn,p and v ∈ Eh

F we have

|DFR
i · v|TBnor(U) ≤ Kθ1

−i|v|TBnor(U).

We do not provide a proof for Proposition 4.5 since it can be proven in exactly the
same way it is done in the unimodal setting. One can use the argument by Lyubich
[27, Theorem 6.3] using the Schwarz’s lemma and the rigidity of McMullen’s towers
[32]. An infinitesimal argument using the rigidity of McMullen’s towers and the
compactness of the renormalization operator is given in [41, Proposition 3.9] (in
the case of the fixed point of the period doubling renormalization) can be also
applied here. We also cite the new methods by Avila and Lyubich [2] to prove
the contraction in the horizontal directions in the case of unimodal unbounded
combinatorics.

Proposition 4.6 (Contraction on the hybrid classes). There exists λ1 ∈ (0, 1)
with the following property. Let F be a real-analytic polynomial-like map of type n
that is infinitely renormalizable with combinatorics bounded by p. Then there exist
G ∈ Ωn,p and k0 = k0(F ) and C = C(F ) such that RkF ∈ B(U) for every k ≥ k0
and

|RkF −RkG|Bnor(U) ≤ Cλk1 for k ≥ k0.

Proof. One can prove this in a quite similar way to the proof of the main result in
[40]. An alternative proof is obtained using Proposition 4.5 and the same argument
as in the proof of Theorem 1 in [41]. �



SOLENOIDAL ATTRACTORS WITH BOUNDED COMBINATORICS ARE SHY 19

Next we show that every map in Ωp,n can be approximated the hyperbolic
polynomial-like maps of type n.

Proposition 4.7. Let G ∈ W be such that there exist domains Û and V̂ , whose
boundaries are analytic Jordan curves, such that mod V̂ \ Û > ǫ0/2 and

G : Û → V̂

is a real polynomial-like map of type n that is infinitely renormalizable with combi-
natorics bounded by p. Then there exist polynomial-like maps of type n

Gi : Û
i → V̂ i

such that

A. we have mod V̂ i \ Û i ≥ ǫ0/2 and Gi ∈ Bnor(U),
B. all critical points of Gi belong to the same periodic orbit,
C. we have

lim
i
|Gi −G|Bnor(U) = 0.

Proof. We will use the notation introduced in [40]. Let σ = (σ1, σ2, . . . ) be the
combinatorics of G. By Proposition 2.2 in [40], there exists a sequence of polyno-
mial Pi of type n with combinatorics σi ⋆ · · · ⋆ σ1. By Corollary 2.3 in [40] any
accumulation point of this sequence is a polynomial P of type n that is infinitely
renormalizable with combinatorics σ. By the proof of Theorem 2 in [40] there is
only one polynomial of type n with combinatorics σ, so the sequence Pi indeed con-
verges to P . Indeed there are now far more general rigidity results for polynomials.
See Kozlovski, Shen and van Strien [24][23].

Since Pi is a convergent sequence of polynomials of type n with connected Julia
sets, it is possible to choose domains Û i and V̂ i such that

- infi mod V̂ i \ Û i > 0,

- Pi : Û
i → V̂ i is a polynomial-like map of type n.

and furthermore for some K > 0 there are K-quasiconformal maps

φi : Cn → Cn

such that

- φi(Û
i) = Û and φi(V̂

i) = V̂ ,

- φi(z) = φi(z),

- Pi : Û
i → V̂ i is a polynomial-like map of type n,

- G ◦ φi = φi ◦ Pi on ∂Û
i.

- The sequence φi converges to a K-quasiconformal map φ.
- If Û∞ = φ−1(Û) and V̂∞ = φ−1(V̂ ) then P : Û∞ → V̂∞ is a polynomial-
like map of type n.

Let µi be the Beltrami field that coincides with µi = ∂φi/∂φi on Cn \ Û i, that
is invariant under Pi, and µi = 0 on K(Pi). Let ψi : Cn → Cn be the unique
quasiconformal map such that ψi(−1, j) = (−1, j) and ψi(0, j) = (0, j) for every j,

and µi = ∂ψi/∂ψi on Cn. Define

Gi = ψi ◦ Pi ◦ ψ
−1
i .

Then

Gi : ψi(Û
i) → ψi(V̂

i)
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is a polynomial-like map of type n. Note that

inf
i

mod ψi(V̂
i) \ ψi(Û

i) > 0.

Every subsequence of Gi has a convergent subsequence. Let F be one these ac-
cumulation points. We claim that F = G. Note that every accumulation point
is of the form F = ψ ◦ P ◦ ψ−1, where ψ is a K-quasiconformal map that is an
accumulation point of the sequence ψi. We can assume, without loss of generality,
that φi converges to a K-quasiconformal map φ.

Notice that

φi ◦ ψ
−1
i ◦Gi ◦ ψi ◦ φ

−1
i (z) = φi ◦ Pi ◦ φ

−1
i (z) = G(z)

for z ∈ φi(∂Û
i) = ∂Û . Taking the limit on i we obtain

φ ◦ ψ−1 ◦ F ◦ ψ ◦ φ−1(z) = G(z)

for z ∈ ∂Û . Moreover since ψi ◦φ
−1
i is conformal in Cn \ Û we conclude that ψ◦φ−1

is conformal in Cn \ Û . Since F and G are both infinitely renormalizable with the
same combinatorics, one can use the Sullivan’s pullback argument to conclude that
there is quasiconformal conjugacy H between F : Û∞ → V̂∞ and G : Û → V̂ such
that H is conformal in Cn\K(F ). Since there are not invariant line fields supported
of K(F ) we conclude that H in conformal on Cn, so H is affine on each connected
component of Cn. Since H(−1, j) = (−1, j) and H(0, j) = (0, j) for every j, we
conclude that H is the identity. So F = G and Gi converges to G. Itens A., B. and
C. of Proposition 4.7 follows easily from this. �

4.2. Vertical directions, codimension of Eh and vector bundles. Let f : V1 →
V2 be a polynomial-like map. Let Bf be the vector space of the germs of holomor-
phic functions defined in a neighborhood of K(f). We say that v ∈ Bf is a vertical

vector if there exists a holomorphic vector field α defined on C \K(f) such that

(25) v(x) = α ◦ f(x)−Df(x)α(x)

for every x close to K(f) and in the domain of α, and additionally

(26) lim
z→0

z2α(1/z) = 0.

We have an analogous definition for polynomial-like extended maps of type n.
Denote the set of vertical directions of f as Êv

f . Recall that v ∈ Bf is a horizontal

vector (v ∈ Êh
f ) if there is quasiconformal vector field on C such that (25) holds in

a neighborhood of K(f) and ∂α = 0 on K(f). Lyubich [27] proved that

(27) Bf = Êh
f + Êv

f .

The same statement holds for polynomial-like extended maps of type n. Note that
if F ∈ W has an extension that is a real polynomial-like extended map of type
n and F is either infinitely renormalizable with bounded combinatorics in Cp,n or

whose critical points belongs to the same periodic orbit then Eh
F = Êh

F ∩TBnor(U).
Here Eh

F is as defined in Section 4.1.
Due the infinitesimal pullback argument, if f does not have invariant line fields

on its Julia set J(f) then Êh
f ∩ Êv

f is exactly the space of vectors v such that there
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exists a vector field α(z) = az + b on C that satisfies (25) in a neighborhood of
K(f). In particular if F ∈ Ωn,p we have

TBnor(U) = Eh
F ⊕ Ev

F .

Proposition 4.8. If f : V1 → V2 is a polynomial-like of degree d generated by
the restriction of a polynomial of degree d then Êv

f is exactly the linear space of
polynomials of degree d. If f is a polynomial-like extended map of type n such that
on each C × {i} the map f coincides with a quadratic polynomial then Êv

f is the

space of vectors that coincides with quadratic polynomials on each C× {i}.

Proof. Suppose that f is a polynomial of degree d and let v ∈ Êv
f . Then the r.h.s.

of (25) implies that v extends to an entire holomorphic function. Of course (26)
implies that

|α(y)| ≤ C|y|

for some C, provided y ∈ C has large modulus. Since Df is a polynomial of degree
d− 1 it follows from (25) that

|v(x)| ≤ C̃|x|d,

for some C̃, provided |x| is large. So v is a polynomial whose degree is at most d.
On the other hand, if v is a polynomial of degree at most d we have that ft = f+ tv
is a polynomial of degree d for every small t. Every ft have the very same external
class (see Lyubich [27]). This implies that v = ∂tft|t=0 ∈ Êv

f . The proof in the case
of a polynomial-like extended map of type n is analogous. �

The following is similar to Lyubich [27, Lemma 4.10], but for the sake of com-
pleteness we provide details.

Proposition 4.9. Let F : W → V be a polynomial-like map of type n with con-
nected Julia set satisfying

i. 0 < ǫ0 < mod(V \W ) < ǫ1,
ii. diam K(F ) ∩ (C× {i}) ≥ 1 for every i,
iii. diam V ∩ (C× {i}) ≤ C1 for every i.

Let v ∈ Ev
F ∩ B(W ). Consider the holomorphic vector field

α : Cn \K(F ) → C

such that limz→0 z
2α(1/z) = 0 and

v(z) = α(F (z))−DF (z)α(z)

for every z ∈ W \K(F ). Then there is C2 > 0, that depends only on ǫ0, ǫ1 and C1,
such that

|α|sph Cn\F−1W ≤ C2|v|B(W ).

Here | · |sph Q denotes the sup norm on Q considering the spherical metric on each
component of Cn.

Proof. Define Ki(F ) = K(F ) ∩ (C× {i}), 1 ≤ 1 ≤ n. Let

φi : (C× {i}) \Ki(F ) → D× {i}

be conformal maps such that φi(∞, i) = (0, i). Define the conformal maps

φ : Cn \K(F ) → D× {1, . . . , n}
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as φ(z, i) = φi(z, i). Define

W̃ = φ(W \K(F )), Ṽ = φ(V \K(F ))

and
F̃ : W̃ → Ṽ

as
F̃ (z, i) = φ ◦ F ◦ φ−1(z, i).

Let ψ(x, i) = (z/|z|2, i), Ŵ = W̃ ∪ ψ(W̃ ) and V̂ = Ṽ ∪ ψ(Ṽ ). Then F̃ has a
analytic extension to a covering

F̂ : Ŵ → V̂

satisfying F̂ (S×{1, . . . , n}) = S×{1, . . . , n}. Note that each connected component
of

V̂ \ Ŵ

is an annulus with modulus larger than ǫ0. This implies that there is k (that
depends only on ǫ0, ǫ1, C1 and n) such that

|DF̂ kn(z, i)| ≥ 2

for every (z, i) ∈ F̂−(kn+1)Ŵ . Note that there is C3 > 1, that depends only on ǫ0,
ǫ1, C1, such that

- |Dφ(z, i)| ∈ [1/C3, C3] for every (z, i) ∈ W \ F−(kn+1)W ,
- |DF (z, i)| ∈ [1/C3, C3] for every (z, i) ∈ F−1W \ F−(kn+1)W ,

- |DF̂ (z, i)| ∈ [1/C3, C3] for every (z, i) ∈ F̂−1Ŵ \ F̂−(kn+1)Ŵ .
- We have 1/C3 ≤ |z| ≤ C3 for every z ∈ ∂F−1W.

Define
α̂ : D× {1, . . . , n} → C

as
α̂(z, i) = Dφ(φ−1(z, i)α(φ−1(z, i))

and
v̂(z, i) = Dφ(F (φ−1(z, i)))v(φ−1(z, i)).

Then α̂(0) = 0,

v̂ = α̂ ◦ F̂ −DF̂ · α̂,

and consequently

nk
∑

j=0

DF̂nk−j(F̂ j+1(z, i))v̂(F̂ j(z, i)) = α̂ ◦ F̂nk(z, i)−DF̂nk(z, i) · α̂(z, i).

for (z, i) ∈ ∂F̂−(kn+1)Ŵ . Let (z0, i0) be such that

|α̂(z0, i0)| = max
(z,i)∈∂F̂−(kn+1)W̃

|α̂(z, i)|.

Then

|
nk
∑

j=0

DF̂nk−j(F̂ j+1(z, i))v̂(F̂ j(z0, i0))| ≥ 2 max
(z,i)∈∂F̂−(kn+1)W̃

|α̂(z, i)|− max
(z,i)∈∂F̂−1W̃

|α̂(z, i)|.

Since α̂ is holomorphic the maximum principle implies

max
(z,i)∈∂F̂−(kn+1)W̃

|α̂(z, i)| ≥ max
(z,i)∈∂F̂−1W̃

|α̂(z, i)|,
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so

max
(z,i)∈∂F̂−(kn+1)W̃

|α̂(z, i)| ≤ C4 sup
(z,i)∈F̂−1W̃\F̂−(kn+1)W̃

|v̂(z, i)|.

Here C4 = nkCnk
3 . Consequently

max
(z,i)∈∂F−1W

|α(z, i)| ≤ C3 max
(z,i)∈∂F̂−1W̃

|α̂(z, i)|

≤ C3 max
(z,i)∈∂F̂−(kn+1)W̃

|α̂(z, i)|

≤ C3C4 max
(z,i)∈F̂−1W̃\F̂−(kn+1)W̃

|v̂(z, i)|

≤ C2
3C4 max

(z,i)∈F−1W\F−(kn+1)W
|v(z, i)|

≤ C2
3C4 max

(z,i)∈F−1W
|v(z, i)|.

Note that

sup
(z,i)∈Cn\F−1W

|α(z, i)|sph C
= sup

(z,i)∈Cn\F−1W

2|α(z, i)|

1 + |z|2

≤ sup
(z,i)∈Cn\F−1W

∣

∣

2α(z, i)

z2
∣

∣

≤ max
(z,i)∈∂F−1W

∣

∣

2α(z, i)

z2

∣

∣

≤ C2
3 max
(z,i)∈∂F−1W

|α(z, i)|.

�

Proposition 4.10 (Codimension of Eh
G). For every G ∈ Ωn,p the codimension of

Eh
G is n.

Proof. By Proposition 4.7 for every G ∈ Ωn,p one can find a polynomial-like exten-

sion G : Ũ → Ṽ of type n and a sequence of polynomial-like maps Gi : Û
i → V̂ i

of type n whose periodic points belongs to the same critical orbit and such that
U is compactly contained in Û i and Û i is compactly contained in Ũ . Denote
Ej

Gi
(Ũ) = Êj

Gi
∩ TBnor(Ũ), where j ∈ {v, h}. We claim that codim Eh

Gi
(Ũ) = n.

Indeed for each q ∈ C(Gi), let m
i
q > 0 be such that G

mi
q

i (q) ∈ C(Gi) and G
k
i (q) 6∈

C(Gi) for every 0 < k < mi
q. Given v ∈ TBnor(U), let vq,k = v(Gk

i (q)). Then there
is a unique solution {αq,k}q∈C(Gi),1≤k≤mi

q
for the homogeneous system of linear

equations

vq,k = αq,k+1 −DGi(G
k
i (q)) · αq,k, 1 ≤ k < mi

q, q ∈ C(Gi),

vq,0 = αq,1, q ∈ C(Gi).

In particular

(vq,k)q∈C(Gi),0≤k<mi
q
7→ (αq,k)q∈C(Gi),1≤k≤mi

q

is a linear bijection. Note that v ∈ Eh
Gi

if and only if αq,mi
q
= 0 for every q ∈ C(Gi),

that is, if and only if v belongs to the kernel of the linear map

v 7→ (αq,mi
q
)q∈C(Gi).
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Since

v 7→ (vq,k)q∈C(Gi),0≤k<mi
q

and

(vq,k)q∈C(Gi),0≤k<mi
q
7→ (αq,mi

q
)q∈C(Gi)

are onto continuous linear maps it follows that codim Eh
Gi
(Ũ) = n (Recall that Gi

has n critical points). So dim Ev
Gi
(Ũ) = n. Since Ũ is compatible with G, we have

that [42, Propositon 10.4] implies dim Ev
G(Ũ) = codim Eh

G(Ũ) = n.
Unfortunatelly U is not compatible with G (the repelling fixed point −1 of G

does not belong to the interior of U), so we need to be a little more careful to
conclude that codim Eh

G = n. Consider the natural affine inclusion

π : Bnor(Ũ) → Bnor(U)

Then Dπ is continuous, injective map, it has dense image and moreover

(Dπ)−1Eh
G = Eh

G(Ũ).

Note that if codim Eh
G ≥ k then there is a bounded linear onto map ψ : TGBnor(U) →

Rk such that Eh
G ⊂ Ker ψ. Since Dπ have dense image we have that ψ ◦Dπ is also

a bounded linear onto map such that Eh
G(Ũ) ⊂ Ker ψ ◦ Dπ, so codim Eh

G(Ũ) ≥

codim Ker ψ ◦Dπ = k. So codim Eh
G ≤ codim Eh

G(Ũ) = n.

On the other hand, since π is injective we have that dimπ(Ev
G(Ũ)) = n. If

v ∈ π(Ev
G(Ũ)) ∩ Eh

G then v ∈ Ev
G(Ũ) ∩ Eh

G(Ũ) = {0}. So codim Eh
G ≥ n. �

The following lemma is elementary. We included it here for the sake of com-
pleteness.

Lemma 4.11. Let (Bi, | · |i), i = 1, 2, be Banach spaces. Let Ω be a compact metric
space and suppose that for every f ∈ Ω we associate vector subspaces Ev

f ⊂ B2 ⊂ B1,

Eh
f,i ⊂ Bi satisfying

A. For every f ∈ Ω we have B2 = Ev
f ⊕ Eh

f,2 and Ev
f ∩Eh

f,1 = {0}.
B. The set

{(f, v) : f ∈ Ω, v ∈ Eh
f,i}

is a closed subset of Ω× Bi.
C. We have that

{(f, v) : f ∈ Ω, v ∈ Ev
f , |v|i ≤ 1}

is a compact subset of Ω× Bi, i = 1, 2.
D. There exists n ∈ N such that dimEv

f = n for every f ∈ Ω.
E. The inclusion ı : B2 → B1 is a compact linear operator and

ı−1(Eh
f,1) = Eh

f,2.

Then

I. The set

Ev = {(f, v) : f ∈ Ω, v ∈ Ev
f},

with the topology induced by Ω×B2, is a topological vector bundle (with the
obvious linear structure on the fibers Ev

f ) with fibers of dimension n.
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II. Let ∼ be the equivalent relation on Ω×B2 defined by (f, v) ∼ (g, w) if and
only if f = g and v − w ∈ Eh

f . Then the quotient topological space

E = {(f, [v]) s.t. f ∈ Ω and [v] ∈ B/Eh
f,2}.

is a topological vector bundle with fibers of dimension n.
III. Define

|(f, [v])| = distB2(v, E
h
f,2) = inf{|v − w|2 : w ∈ Eh

f,2}.

then
(f, [v]) ∈ E 7→ |(f, [v])|2

is continuous.

Proof of I. All limits in the proof of I. and II are in the topology of (B2, | · |2). Let
u ∈ B2. Then for every g ∈ Ω there are unique vectors vg,u ∈ Ev

g and wg,u ∈ Eh
g,2

such that
u = vg,u + wg,u.

First note that

(28) sup {|vg,u|2, g ∈ Ω, |u|2 ≤ 1} ∪ {|wg,u|2, g ∈ Ω, |u|2 ≤ 1} <∞.

Otherwise there is a sequence gi ∈ Ω, |ui| ≤ 1 such that

ri = max{|vgi,ui |2, |w
gi,ui |2} →i ∞.

Since Ω is compact, without loss of generality we can assume that

lim
i
gi = g ∈ Ω

and C. implies that we can assume

lim
i

vgi,ui

ri
= v ∈ Ev

g .

and consequently

(29) lim
i

wgi,ui

ri
= −v.

On the other hand by (29) and B. we have v ∈ Eh
g , so by A. we conclude v = 0.

This is a contradiction with the definition of ri. So (28) holds. We claim that the
map

S : Ω× B2 → Ω× B2

defined by
S(g, u) = (g, vg,u) ∈ B2

is a continuous linear map. Indeed suppose limi gi = g and limi ui = u. By
assumption C. and (28), taking a subsequence we may assume that

lim
i
vgi,ui = v ∈ Ev

g

and consequently by B.

lim
i
wgi,ui = lim

i
ui − lim

i
vgi,ui = u− v ∈ Eh

g,2

By A. we conclude that v = vg,u and u − v = wg,u. This proves the claim.
Let f ∈ Ω and choose a basis v1, . . . , vn ∈ Ev

f . Let vgi = S(g, vi) ∈ Ev
g and

wg
i = vi − S(g, vi) ∈ Eh

g,2, with g ∈ Ω. Of course

vi = vgi + wg
i .
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So for every i we have that g 7→ vgi is continuous and moreover vfi = vi and w
f
i = 0.

In particular there exists an open neighborhood O1 of f in Ω such that {vgi }i is a
basis of Ev

g for every g ∈ O.

Reducing the neighborhood O, we may assume that Eh
g,2 ∩ E

v
f = {0} for every

g ∈ O. Otherwise it would exists a sequence gi →i f and wi ∈ Eh
gi,2 ∩E

v
f satisfying

|wi| = 1. By D. we may assume limiwi = w ∈ Ev
f . By B. we have w ∈ Eh

f,2, which
contradicts A.

Define the map

H : O × Ev
f → {(g, v) : g ∈ O, v ∈ Ev

g}

as

H(g,
∑

i

civi) = (g,
∑

i

civ
g
i ).

We have that H is a continuous and bijective map. Note that

H−1(g, u) = (g, v),

where v is the only vector in Eh
f,2 such that v − u ∈ Eh

g,2.

We claim that H−1 is continuous. Indeed, suppose that limi(gi, ui) = (g, u),
withg, gi ∈ O and u, ui ∈ Ev

gi . If H−1(gi, ui) = (gi, vi) then wi = vi − ui ∈ Eh
gi,2

and vi ∈ Ev
f . Let ri = max{|vi|2, |wi|2}. We claim that

(30) sup
i
ri <∞.

Otherwise without loss of generality we may assume limi ri = ∞. By D. we may
assume that limi vi/ri = ṽ ∈ Ev

f and consequently limi wi/ri = ṽ. By B. we have

ṽ ∈ Eh
g,2. So ṽ = 0, in contradiction with the definition of ri. This proves (30).

In particular without loss of generality we can assume limi vi = v̂ ∈ Ev
f and conse-

quently by B. we have limiwi = ŵ = v̂−u ∈ Eh
f,2. In particular H−1(g, u) = (g, v̂).

So H−1 is continuous. So

Ĥ : O × R
n → {(g, v) : g ∈ O, v ∈ Ev

g}

defined by

Ĥ(g, (ci)i) = (g,
∑

i

civ
g
i )

is a local trivialization of the vector bundle Ev in the open set {(g, v) : g ∈ O, v ∈
Ev

g}. �

Proof of II. Let π : Ω× B2 → E be a natural projection

(f, v) 7→ (f, [v]f ),

where [v]f represents the equivalent class of v in B/Eh
f,2. We will define a homeo-

morphism

T : Ev → E

that is a vector bundle homeomorphism. Indeed let T be the restriction of π to
Ev. Of course T is a continuous map that preserves the linear structure in the
fibers. It is also a bijection, since T (f, v) = T (g, w) implies f = g, with v, w ∈ Ev

f

and v − w ∈ Eh
f,2, so by A. we have v = w. Note that T−1(f, [u]f ) = (f, v),

where v is the unique vector that satisfies v ∈ Ev
f and u − v ∈ Eh

f,2. Note that
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T−1(f, [u]f ) = S(f, u), where S was defined in the proof of I. Consequently T−1 is
continuous, since S descends to the quotient space E as T−1. �

Proof of III. We claim that

(31) (f, v) ∈ Ω× B2 → distB2(v, E
h
f )

is continuous. Indeed suppose that limk(fk, vk) = (f, v). We have

|distB2(vk, E
h
fk,2

)− distB2(v, E
h
fk,2

)| ≤ distB2(vk − v, Eh
fk,2

) ≤ |v − vk|2 →k 0,

in particular

lim
k
distB2(vk, E

h
fk,2)− distB2(v, E

h
fk,2) = 0,

so to prove the claim it is enough to show that

(32) lim
k
distB2(v, E

h
fk,2

) = distB2(v, E
h
f,2).

Fix ǫ > 0 and let w ∈ Eh
f,2 be such that

|v − w|2 < distB2(v, E
h
f,2) + ǫ.

Then limk S(fk, w) = 0, where S is as defined in the proof of I. In particular
wk = w − S(fk, w) ∈ Eh

fk,2
and for large k we have |v − wk| < distB2(v, E

h
f,2) + 2ǫ.

Since ǫ > 0 is arbitrary

lim sup
k

distB2(v, E
h
fk ,2) ≤ distB2(v, E

h
f,2).

On the other hand, if

lim inf
k

distB2(v, E
h
fk ,2

) ≤ distB2(v, E
h
f,2)− 2ǫ

then we can assume (taking a subsequence) that there is wk ∈ Eh
fk,2

such that

|v − wk|2 ≤ distB2(v, E
h
f,2)− ǫ.

Let uk = S(f, wk) ∈ Ev
f,2. Note that supk |wk|2 <∞, which implies supk |uk|2 <

∞ and consequently yk = wk − uk ∈ Eh
f,2 satisfies

sup
k

|yk|2 <∞.

By B. and E. we can find y ∈ Eh
f,1 and a subsequence of yk such that yk converges

to y in B1. Taking a subsequence we can assume that limk uk = u ∈ Ev
f (in the

topologies of Bi, i = 1, 2). So wk converges to u + y in B1. By A., B. and E. we
have u = 0. We conclude that

distB2(v, E
h
f,2) ≤ lim inf

k
|v − yk|2 ≤ distB2(v, E

h
f,2)− ǫ,

which is a contradiction. So (32) holds. This proves the claim. Since (f, v) ∼ (g, ṽ)
implies distB2(v, E

h
f ) = distB2(ṽ, E

h
g ) the function (31) descends to the quotient

topological space E as a continuous function.
�

Proposition 4.4 implies that

{(F, v), F ∈ Ωn,p and v ∈ Eh
F }

is a closed subset of Ωn,p × TBnor(U). We also have
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Lemma 4.12. The set

(33) E = {(F, v), F ∈ Ωn,p and v ∈ Ev
F , |v|TBnor(U) ≤ 1}

is a compact subset of Ωn,p × TBnor(U).

Proof. Let (Fk, vk) be a sequence in the set E . Due the complex bounds there exist
domains Wk, Vk ∈ Cn such that Wk ⊂ Vk and

Fk : Wk → Vk

are polynomial-like maps of type n satisfying

mod(Vk \Wk) ≥ ǫ0.

Using the same argument as McMullen [31, Theorem 5.8] there is a polynomial-like
map of type n F : W → V with mod(V \W ) ≥ ǫ0 such that limk Fk = F in the
topology defined by McMullen. In particular limkWk =W and limk Vk = V in the
Carathéodory topology and Fk converges to F uniformly on compact subsets ofW .
Consequently limk Fk = F in Bnor(U) and we can find Ṽ compactly contained in
V such that

Fk : F
−1
k Ṽ → Ṽ

are polynomial-like maps of type n satisfying

mod(Ṽ \ F−1
k Ṽ ) ≥ ǫ0/2.

Let W̃ = F−1Ṽ . Since vk ∈ Ev
Fk

there exist holomorphic vectors fields

αk : Cn \K(Fk) → C

such that αk(∞) = 0 and

vk(z) = αk(Fk(z))−DFk(z)αk(z)

for every z ∈ Wk \K(Fk).
Finally, for every large j > 0 it is possible to find a domain V j such that

K(F ) ⊂ V j ⊂ {z ∈ Cn : dist(z,K(F )) < 1/j} ⊂ Ṽ

and
F : F−1V j → V j

is a polynomial-like map of type n. Consequently there is k0 = k0(j) such that for
every k ≥ k0 we have that

Fk : F
−1
k V j → V j

is a polynomial-like map of type n. Note that F−1
k V j ⊂ W̃ for large k. Due

Proposition 4.9 we have that

|αk|sph Cn\F
−2
k

V j ≤ Cj |vk|B(V j) ≤ Cj |vk|B(W̃ ).

for large k. We claim that

(34) sup
k

|vk|B(W̃ ) <∞.

Indeed, otherwise we may assume that rk = |vk|B(W̃ ) diverges to infinity. Then

α̂k = αk/rk satisfies

|α̂k|sph Cn\F
−2
k

V j ≤ Cj

This implies that a subsequence of α̂k converges uniformly on compact subsets of
Cn \K(F ) to a holomorphic vector field α̂ : Cn \K(F ) → C and the corresponding
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subsequence of v̂k = vk/rk converges uniformly on compact subsets of W \K(F )
to

v̂ = α̂ ◦ F −DF · α̂.

By the maximum principle we have that v̂k is a uniform Cauchy sequence on com-
pact subsets of W , so v̂ extends to a holomorphic function on W and limk v̂k = v̂
uniformly on compact subsets of W . Since |v̂k|B(W̃ ) = 1 for every k we have

|v̂|B(W̃ ) = 1. On the other hand

|v̂|B(U) = lim
k

|v̂k|B(U) = lim
k

1/rk = 0,

so v̂ = 0 everywhere, in contradiction with |v̂|B(W̃ ) = 1. This proves the claim.

Now we can use the same argument as in the previous paragraph to conclude
that there is a subsequence of αk that converges uniformly on compact subsets of
Cn \K(F ) to a holomorphic vector field α : Cn \K(F ) → C and the corresponding

subsequence of vk converges in B(W̃ ) (and in particular in B(U)) so a vector v that
satisfies

v = α ◦ F −Df · α

on W \K(F ). This concludes the proof. �

As an immediate consequence of Lemmas 4.11 and 4.12 we have

Proposition 4.13. The quotient topological space

E = {(F, [v]) s.t. F ∈ Ωn,p and [v] ∈ TBnor(U)/Eh
F }.

is a topological vector bundle with fibers of dimension n. Moreover

(35) (F, [v]) 7→ |(F, [v])| = distTBnor(U)(v, E
h
F )

is a continuous function.

Proof. Let Û be a symmetric domain with respect to the real trace of Cn, that is
compactly contained in the interior of U , such that the Û ∩ R is an interval that
contain in its interior the convex closure of the postcritical set of every F ∈ Ωn,p.

Let B2 = TBnor(U), B1 = B(Û), Eh
F,2 = Eh

F and Eh
F,1 be the set of horizontal

vectors of B(Û). Apply Lemma 4.11. �

5. Hyperbolicity of the ω-limit set Ωn,p of R.

Given F ∈ Ωn,p, denote

B+(F ) = {v ∈ TFBnor(U) s.t. sup
i∈N

|DRi
f · vi| <∞}.

Recall we choose U = Dδ0,θ0 . The goal of this section is to prove

Proposition 5.1. Suppose that for every F ∈ Ωn,p we have

(36) B+(F ) ⊂ Eh
F .

Then Ωn,p is a hyperbolic set. Moreover its stable direction is exactly Eh.

Proposition 5.1 reduces the study of the hyperbolicity of Ωn,p to the study of
the existence and regularity of the solutions α of the cohomological equation (16).
So to show that Ωn,p is a hyperbolic set it remains to prove

Theorem 4 (Key Lemma). If F ∈ Ωn,p then

(37) B+(F ) ⊂ Eh
F .
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We will prove Theorem 4 in Section 8. As an immediate consequence of Propo-
sition 5.1 and Theorem 4 we have

Theorem 5 (Theorem B). Ωn,p is a hyperbolic set. Moreover its stable direction
is exactly Eh.

5.1. A criterium for hyperbolicity of cocycles. Let E be a topological vector
bundle with base Ω and fiber Rn and projection p : E → Ω. We denote elements
of E by (x, v), where x ∈ Ω and v ∈ p−1(x). We also assume that Ω is compact.
Additionally, assume that | · | is a continuous function

(x, v) ∈ E 7→ |(x, v)| ∈ R

so that | · | is a norm on each fiber p−1(x). We will abuse the notation writing |v|
instead of (x, v).

Let L : E → E be a fiber-preserving homeomorphism that is linear on the fibers.
The map L is called a linear cocycle on E. Define

B+ = {(x, v) ∈ E s.t. sup
i∈N

|vi| <∞, where Li(x, v) = (xi, vi)}.

B = {(x, v) ∈ E s.t. sup
i∈Z

|vi| <∞, where Li(x, v) = (xi, vi)}.

S = {(x, v) ∈ E s.t. lim
i→+∞

|vi| = 0, where Li(x, v) = (xi, vi)}.

U = {(x, v) ∈ E s.t. lim
i→−∞

|vi| = 0, where Li(x, v) = (xi, vi)}.

and the zero section

E0 = {(x, 0) ∈ E}.

We say that the cocycle L is uniformly expanding if there exist K > 0 and θ > 1
such that for every (x, v) ∈ E we have

(38) |vi| ≥ Kθi|v|

for every i ≥ 0, where Li(x, v) = (xn, vn).

Proposition 5.2. The cocycle L : E → E is uniformly expanding if and only if

(39) B+ = E0.

Proof. Of course if L : E → E is uniformly expanding then (39) holds. To prove
the reverse implication, note that (39) implies S = B = E0. By Theorem 2 in
Sacker and Sell [35] (see also Section 7 there) we have that L : E → E is uniformly
expanding. �

One can also prove Proposition 5.2 applying Sacker and Sell’s results in [36,
Lemma 9 and Theorem 2]. We just refer to that because the proof of these results
in [36] seems to be more elementary than the proof of Theorem 2 in [35].
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5.2. Unstable invariant cones. Let F ∈ Ωn,p, Denote

B+(F ) = {v ∈ TFBnor(U) s.t. sup
i∈N

|DRi
f · vi| <∞}.

Consider the topological vector bundle E (see Proposition 4.13)

E = {(F, [v]) s.t. F ∈ Ωn,p and [v] ∈ TFBnor(U)/Eh
F }.

with the continuous function (35) that restriced to each TFBnor(U)/Eh
F is the usual

quotient norm. Recall that due Proposition 4.13 we have that

dimTFBnor(U)/Eh
F = n.

By Proposition 4.2 the linear transformation

(40) DRF : TFBnor(U) → TRFBnor(U)

induces a bounded linear transformation

LF : TFBnor/E
h
F → TRFBnor(U)/Eh

RF .

Lemma 5.3. The map

L(F, v) = (RF,LF · v)

is a vector bundle isomorphism in the vector bundle E, that is, it is a homeomor-
phism of E onto itself that preserves the linear structure on the fibers.

Proof. Let π : Ωn,p × TBnor(U) → E be a natural projection

(F, v) 7→ (F, [v]F ),

where [v]F represents the equivalent class of v in TBnor(U)/Eh
F . Of course

L̃ : Ωn,p × TBnor(U) → E

defined by L̃(F, v) = π(RF,DRF · v) is continuous. Then by Proposition 4.2 the

map L̃ descends to the topological quotient space E as the continuous map L.
By Theorem 3 we have that the linear transformation (40) has dense image in

TRFBnor(U). This implies that for every F the linear map LF is invertible. By
Corollary 2.3 we have that R : Ωn,p → Ωn,p is a homeomorphism. We conclude
that L is invertible. It remains to show that its inverse is continuous. Since

E1 = {(F, [v]F ) : F ∈ Ωn,p and |[v]F | = 1}

is compact, L is invertible, and the function

ψ : E1 → R
+

defined by ψ(F, [v]F ) = |L(F, [v]F )| is continuous, we have that

(41) C = min
(F,[v]F )∈E1

ψ(F, [v]F ) > 0.

So suppose limk(Fk, [vk]Fk
) = (F, [v]F ) and

L−1(Fk, [vk]Fk
) = (R−1Fk, [wk]R−1Fk

)

Then limk R−1Fk = R−1F and by (41) we have supk |[wk]R−1Fk
| ≤ Ĉ for some

constant Ĉ. Taking a subsequence we can assume that limk[wk]R−1Fk
= [w̃]R−1F .

Since L is continuous

(F, [v]F ) = lim
k
L(R−1Fk, [wk]R−1Fk

) = (F,LF [w̃]R−1F ).
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From the injectivity of L we conclude that [w̃]R−1F = L−1
F [v]F . So L

−1 is continu-
ous. �

Proposition 5.4. Suppose that for every F ∈ Ωn,p we have

(42) B+(F ) ⊂ Eh
F .

Then the cocycle L is uniformly expanding, that is, there is C > 0 and θ2 > 1 such
that for every v ∈ Bnor(U) and F ∈ Ωn,p we have

(43) d(DRi
F · v, Eh

RiF ) ≥ Cθ2
id(v, Eh

F ).

Proof. Indeed, suppose that [v] ∈ TFBnor/E
h
F satisfies

sup
i

|Li
F · [v]| <∞.

By Propostion 5.2, it is enough to show that [v] = 0, that is, v ∈ Eh
F . Firstly note

that DRi
F · v = ui + wi, where supi |ui| = C <∞ and wi ∈ Eh

RiF . Note that

DRRiF · (ui + wi) = ui+1 + wi+1,

so
wi+1 = DRRiF · ui − ui+1 +DRRiF · wi.

So
wi+j = DRj

RiF · ui − ui+j +DRj
RiF · wi,

in particular
|wi+j | ≤ C(1 +Kθ−j) +Kθ−j|wi|,

where K and θ > 1 are as in Proposition 4.5. This implies that supi |wi| <∞ and
consequently

sup
i

|DRi
F · v| <∞.

By (37) we have that v ∈ Eh
F . So L is uniformly expanding. �

Let C > 0 and θ > 1 be as in (43). Choose j0 > 0 such that

Cθj0 > 1.

If ǫ > 0 is small enough we have that

θ̃ = Ce−ǫθj0 > 1.

Denote
C̃ = sup

F∈Ωn,p

|DRj0
F |.

Define the cone Cu
F (K) as the set of all v ∈ TBnor(U) that can be written as

v = u+ w, where

A. |u| ≤ eǫd(v, Eh
F ),

B. w ∈ Eh
F and

C. |w| ≤ K|u|.

Note that

(44)
⋃

K>0

Cu
F (K) =

(

TBnor(U) \ Eh
F

)

∪ {0}.

Our goal is to show that if (43) holds then there is K > 0 such that

F ∈ Ωn,p 7→ Cu
F (K)

is a field of unstable R-invariant cones on Ωn,p.
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Proposition 5.5. Assume that (43) holds. Then for ǫ > 0 small enough the
following holds. Let F ∈ Ωn,p. If v0 = u0 + w0, with

0 < |u0| ≤ eǫd(v0, E
h
F ) and w0 ∈ Eh

F .

then for every w1 ∈ Eh
Rj0F and u1 satisfying DRj0

F · v0 = u1 + w1 we have

(45)
|w1|

|u1|
≤ C̃θ̃−1 + 1 + θ̃−2 |w0|

|u0|
.

Proof. Let v1 = DRj0
F · v0. In particular

|u1|

|u0|
≥ e−ǫ d(DRj0

F · v0, Eh
Rj0F

)

d(v0, Eh
F )

≥ Ce−ǫθj0 = θ̃ > 1.

Then

DRj0
F v0 = DRj0

F u0 +DRj0
F w0 = u1 + w1.

So

DRj0
F

u0
|u1|

+DRj0
F

w0

|u1|
=

u1
|u1|

+
w1

|u1|

and

|w1|

|u1|
≤ |DRj0

F |
|u0|

|u1|
+ 1 + |DRj0

F

w0

|u1|
|

≤ C̃θ̃−1 + 1 + Cθ−j0
|w0|

|u1|

≤ C̃θ̃−1 + 1 + θ̃−1Cθ−j0
|w0|

|u0|

≤ C̃θ̃−1 + 1 + θ̃−2 |w0|

|u0|
.(46)

�

Corollary 5.6 (Invariant Cones). Assume that (43) holds. If v0 ∈ Cu
F (K0) then

v1 = DRj0
F · v0 ∈ Cu

RF (K1), where

K1 = C̃θ̃−1 + 1 + θ̃−2K0.

Proof. We can assume that v0 6= 0. Since v0 ∈ Cu
F (K0) there exist w0 ∈ Eh

F and
u0 such that v0 = u0 + w0 and

0 < |u0| ≤ eǫd(v0, E
h
F ) and |w0| ≤ K0|u0|.

Moreover there exist w1 ∈ Eh
Rj0F and u1 satisfying v1 = u1 + w1, with

|u1| ≤ eǫd(v1, E
h
Rj0F ).

By Proposition 5.5 we have that |w1| ≤ K1|u1|, so v1 ∈ Cu
Rj0F

(K1). �

To simplify the notation, we will replace the operator R by its iteration Rj0 .
The following two corollaries are an immediate consequence of Corollary 5.6.

Corollary 5.7 (Forward Invariant Cones). Assume that (43) holds. If

K ≥
C̃θ̃−1 + 1

1− θ̃−2
.
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then for every F ∈ Ωn,p

(47) DRFC
u
F (K) ⊂ Cu

RF (K).

Corollary 5.8 (Absorbing Cones). Assume that (43) holds. For each

K0 >
C̃θ̃−1 + 1

1− θ̃−2

the following holds: for every K > 0 there exists i such that for all F ∈ Ωn,p

(48) DRi
FC

u
F (K) ⊂ Cu

RiF (K0).

Corollary 5.9 (Unstable Cones). Assume that (43) holds. For each K0 > 0 there
exists C > 0 such that for all F ∈ Ωn,p, v ∈ Cu

F (K0) and i ≥ 0

(49) |DRi
F v| ≥ Cθi|v|.

Proof. If v ∈ Cu
F (K0) then v = u+ w, with w ∈ Eh

F ,

|u| ≤ eǫd(v, Eh
F )

and

|w| ≤ K0|u|.

So

|v| ≤ |u|+ |w| ≤ (1 +K0)e
ǫd(v, Eh

F ).

By (43) we have

|DRi
F · v| ≥ d(DRi

F · v, Eh
RiF ) ≥ Cθid(v, Eh

F ) ≥
C

(1 +K0)eǫ
θi|v|.

�

Now fix

K0 >
C̃θ̃−1 + 1

1− θ̃−2
.

Choose i > 0 such that

θ1 =
C

(1 +K0)eǫ
θi > 1.

Replace (once again) the operator R by its iteration Ri.

Corollary 5.10 (Unstable Invariant Cones near Ωn,p). Assume that (43) holds.
For each

(50) K0 >
C̃θ̃−1 + 1

1− θ̃−2
.

and θ̂ ∈ (1, θ1) there exists δ > 0 such that if

dist(F,G0) < δ

for some G0 ∈ Ωn,p then

DRFC
u
G0

(K0) ⊂ Cu
RG0

(K0)

and

(51) |DRF · v| ≥ θ̂|v|.

for every v ∈ Cu
G0

(K0).
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Proof. Define K1 = C̃θ̃−1 + 1 + θ̃−2K0. Then

C̃θ̃−1 + 1

1− θ̃−2
< K1 < K0.

Choose γ ∈ (0, ǫ) small enough such that

K1e
γ < K0.

Let v ∈ Cu
G0

(K0). Then there exist w0 ∈ Eh
G0

and u0 such that v = u0 + w0 and

|u0| ≤ eǫd(v0, E
h
G0

) and |w0| ≤ K0|u0|.

Moreover there exist w1 ∈ Eh
RG0

and u1 satisfying

|u1| ≤ eγ/3d(DRG0 · v, E
h
RG0

)

and DRG0 · v = u1 + w1. By Proposition 5.5

|w1| ≤ K1|u1|.

Then

(52) DRF · v = u1 + (DRG0 −DRF ) · v + w1.

Note that

d((DRG0 −DRF ) · v, E
h
RG0

)

≤ |(DRG0 −DRF ) · v|

≤ |DRG0 −DRF |e
ǫ(1 +K0)d(v, E

h
G0

)

≤ |DRG0 −DRF |
eǫ(1 +K0)

θ
d(DRG0 · v, E

h
RG0

)(53)

Let δ1 > 0 be such that |F −G0| < δ1 implies

1− |DRG0 −DRF |
eǫ(1 +K0)

θ
≥ e−γ/3,

eγ/3 + |DRG0 −DRF |
eǫ(1 +K0)

θ
≤ e2γ/3,

and

θ̃ = θ1 − |DRG0 −DRF | > θ̂ > 1.

Then

d(DRF · v, Eh
RG0

)

≥ d(DRG0 · v, E
h
RG0

)− d((DRG0 −DRF ) · v, E
h
RG0

)

≥ e−γ/3d(DRG0 · v, E
h
RG0

)(54)

so

|u1 + (DRG0 −DRF ) · v| ≤ eγ/3d(DRG0 · v, E
h
RG0

) + |(DRG0 −DRF ) · v|

≤ e2γ/3d(DRG0 · v, E
h
RG0

)

≤ eγd(DRF · v, Eh
RG0

)

≤ eǫd(DRF · v, Eh
RG0

),(55)
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and moreover

|u1 + (DRG0 −DRF ) · v| ≥ |u1| − |(DRG0 −DRF ) · v|

≥ d(DRG0 · v, E
h
RG0

)− |(DRG0 −DRF ) · v|

≥ e−γ/3d(DRG0 · v, E
h
RG0

).(56)

Finally

|w1| ≤ K1|u1|

≤ K1e
γ/3d(DRG0 · v, E

h
RG0

)

≤ K1e
2γ/3|u1 + (DRG0 −DRF ) · v|.

≤ K0|u1 + (DRG0 −DRF ) · v|.(57)

So (52), (55) and (57) implies that DRF · v ∈ Cu
RG0

(K0). Furthermore

|DRF · v| ≥ |DRG · v| − |(DRG0 −DRF ) · v|

≥ θ1|v| − |DRG0 −DRF ||v|

≥ θ̂|v|.(58)

�

Proof of Proposition 5.1. Let K0 be as in Corollary 5.10. We claim that every cone
Cu

F (K0), with F ∈ Ωn,p, contains a subspace SF of dimension n. Indeed, since
Eh

G, G ∈ Ωn,p, has finite codimension n there is a subspace EG ⊂ TBnor(U) of
dimension n such that

EG ⊕ Eh
G = TBnor(U).

Since Ωn,p is a Cantor set and G 7→ Eh
G is a continuous distribution, it is easy to see

that we can find a finite covering {Oj}j by compact subsets of Ωn,p and subspaces
Ej with dimension n such that

Ej ⊕ Eh
G = TBnor(U)

for every G ∈ Oj . By (44), Proposition 5.5 and Corollary 5.8 there exists i0 such
that

DRi0
GEj ⊂ Cu

Ri0G(K0).

for every G ∈ Oj . Moreover R is invertible on Ωn,p, so we can choose G such
that Ri0G = F . Since DRG is injective for every G ∈ Ωn.p we conclude that

SF = DRi0
GEj is a subspace of dimension n in Cu

F (K0). This concludes the proof
of the claim. Note that

SF ⊕ Eh
F = TBnor(U).

Let G ∈ Ωn,p. Since R is invertible on Ωn,p there is a unique sequence Gi ∈ Ωn,p

such that RGi+1 = Gi and G0 = G. Let S′
i be an arbritrary subspace of dimension

n contained in Cu
Gi
(K0), Then DRi

Gi
(S′

i) is a subspace of dimension n contained
in Cu

G(K0). Since

(59) Cu
G(K0) ∩ E

h
G = {0}

we have that there is a linear function

Hi : SG → Eh
G
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such that {v + Hi(v), v ∈ SG} = DRi
Gi
(S′

i). Since v +Hi(v) ∈ Cu
G(K0) we have

v +Hi(v) = u1 + w1, with w1 ∈ Eh
G and

|u1| ≤ eǫd(v +Hi(v), E
h
G) = eǫd(v, Eh

G) < eǫ|v|.

and |w1| ≤ K0|u1|. In particular

|Hi(v)| = |u1 + w1 − v| ≤ (1 + eǫ(1 +K0))|v|,

So the family of functions Hi is an equicontinuous family of functions. By the
strong compactness of the operator R and Arzela-Ascoli Theorem there exists a
subsequence that converges to a bounded linear function HG : SG → Eh

G satisfying

{v +HG(v), v ∈ SG} ⊂
∞
⋂

i=0

DRi
Gi
Cu

Gi
(K0) ⊂ Cu

G(K0).

Due (59) and the contraction in the horizontal directions we have that there is only
one possible accumulation point HG for sequences as (Hi)i. Let

Eu
G = {v +HG(v), v ∈ SG}.

Then we can easily conclude that DRG(E
u
G) = Eu

RG. Then G 7→ Eu
G is the unstable

direction of R. �

6. Induced expanding maps.

Let F ∈ Ωn,p. We are going to define a real induced map GR : D → R for F
whose domain D is the union of intervals Rk

−i, k ≥ 0 and 0 < i < nk
r , r ∈ C(F ),

satisfying

Rk
−i ⊂

⋃

q∈C(F )

Qk−1
0 .

If Rk
−i ⊂ Qk−1

0 and s ∈ C(F ) is the sucessor of q at the k − 1 level we define

GR(x) = Fnk−1
s (x) for every x ∈ Rk

−i. Note that

GR : R
k
−i → Rk

−i+nk−1
s

is a diffeomorphism. Due the real bounds there exists ǫ0 such that

(60) 0 < ǫ0 < inf
r∈C(F ),k

2dist(P (F ), ∂Rk
0)

|Rk
0 |

.

We will now define a complex-analytic extension G of GR that is a conformal
iterated dynamical system. Suppose that Rk

−i ⊂ Qk−1
0 . Let Rk

0 be the ball B(r, dkr ),
where

(61) dkr = (1 −
ǫ0
16

)
|Rk

0 |

2
.

Since F belongs to the Epstein class, there exists a simply connected domain Rk
−i

such that Rk
−i∩R ⊂ Rk

−i and Rk
−i is contained in the ball whose diameter is Rk

−i∩R
and moreover

F i : R
k
−i → R

k
0

is univalent. Due the real bounds, we can reduce ǫ0 if necessary in such way that

R
k
−i ⊂ Qk−1

0
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0
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0
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0 Qk

−ℓ1

Figure 2. How G acts on the domains Rk
−i ⊂ ∪q∈C(F )Q

k−1
0 if

the combinatorics of the k-th renormalization is the same as the
combinatorics of the renormalization R(F ) in Fig. 1. At level k−1
we have that s is the sucessor of q, r is the sucessor of s and q is
the sucessor of r. At level k we have that r is the sucessor of q, s
is the sucessor of r and q is the sucessor of s. Moreover ℓ1, j1 > 0
and 0 < i1 < i2 < i3 < i4.

for every Rk
−i ⊂ Qk−1

0 and

inf
k

inf
{q,r}⊂C(F )

Rk
−i⊂Qk−1

0

dist(Rk
−i, ∂Q

k−1
0 ) > 0

We define G on

D =
⋃

k

⋃

r,q∈C(F )

⋃

Rk
−i⊂Qk−1

0

R
k
−i

as G(z) = Fnk−1
s (z) for every z ∈ Rk

−i, where R
k
−i ⊂ Qk−1

0 and s ∈ C(F ) is the
sucessor of q at level k − 1. Note that P (F ) \ C(F ) ⊂ D and

G(P (F ) \ C(F )) = P (F ).

Lemma 6.1 (Markovian property of the induced map). Let rj ∈ C(F ), mi ∈ N

and 0 ≤ ij < nmi
rj , j ≤ ℓ be such that

A. either we have that mj+1 = mj, ij+1 < ij, rj+1 = rj = r for some r ∈ C(F )
and moreover

R
mj

−ij
, R

mj

−ij+1
⊂

⋃

q∈C(F )

Q
mj−1
0 .

and

R
mj

−i 6∈
⋃

q∈C(F )

Q
mj−1
0

for every i satisfying ij+1 < i < ij. In particular

GR : R
mj

−ij
7→ R

mj+1

−ij+1
.

is a diffeomorphism.
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B. or

mj+1 > mj ,

with

R
mj

−ij
⊂

⋃

q∈C(F )

Q
mj−1
0 ,

and

R
mj

−i 6∈
⋃

q∈C(F )

Q
mj−1
0

for every i satisfying 0 < i < ij. Here r = rj. In particular

G : R
mj

−ij
7→ R

mj

0 .

is a diffeomorphism. Moreover ij+1 > 0 and

S
mj+1

−ij+1
⊂ R

mj+1−1
0 ,

where s = rj+1. In particular

GR : R
mj

−ij
7→ R

mj

0 .

is a diffeomorphism and

S
mj+1

−ij+1
⊂ R

mj

0 = GR(R
mj

−ij
).

Then there exists a unique interval W such that

Gℓ
R : W → Rmℓ

−iℓ

is a diffeomorphism and W is the set of points z such that for every j ≤ ℓ we have
Gj

R
(z) ∈ Q

mj

−ij
, where q = rj. Moreover W = Rmℓ

−i , for some i, where r = rℓ.

Proof. If ℓ = 0, there is nothing to prove, since W = Rm0

−i0
, with r = r0. Suppose

by induction on ℓ that Lemma 6.1 holds for ℓ. Let rj ∈ C(F ), mi ∈ N and
0 < ij < nmi

rj , j ≤ ℓ + 1 be as in the statement of the lemma. By the induction
assumption there exists b such that

Gℓ
R : R

mℓ+1

−b → R
mℓ+1

−iℓ+1

is a diffeomorfism and for every j ≤ ℓ we have Gj
R
R

mℓ+1

−b ⊂ Q
mj+1

−ij+1
, where q = rj+1.

In particular R
mℓ+1

−b ⊂ Sm1

−i1
, with s = r1. There are two cases. If m0 = m1 then

Sm0

−i0
= Sm1

−i0
, i0 > i1, and

GR : S
m1

−i0
→ Sm1

−i1

is a diffeomorphism, and W = Rmℓ

−(b+i0−i1)
is the unique interval W ⊂ Sm1

−i0
such

that GR(W ) = Rmℓ

−b . If m1 > m0 then Sm1

−i1
⊂ Qm0

0 , with q = m0, and

G : Qm0

−i0
→ Qm0

0

is a diffeomorphism. Then W = Rmℓ

−(b+i0)
is the unique interval W ⊂ Qm0

−i0
such

that G(W ) = Rmℓ

−b . �

The next proposition says that the postcritical set P (F ) of F is the maximal
invariant set of the induced map G.

Proposition 6.2. Given (z, j) ∈ D we have that (z, j) belongs to D \ P (F ) if
and only if there exists k0 ≥ 0 such that Gk(z, j) ∈ D for every k < k0 and
Gk0(z, j) 6∈ D .
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q
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R
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Figure 3. The domain D of G close to a critical point q (the
point in the center). It contains infinitely many topological disks
accumulating on the critical point q.

Proof. Let rj ∈ C(F ), mi ∈ N and 0 < ij < nmi
rj such that either

mj+1 > mj

and
R

mj+1

−ij+1
⊂ Q

mj

0 .

where r = rj+1 and q = rj , or mj+1 = mj and ij+1 = ij − 1. We claim that there
exists a unique z ∈ Cn such that

(62) Gj(z) ∈ R
mj

−ij

for every j ≥ 0. Indeed, for each ℓ, let Dℓ be the set of points such that (62)
holds for every j ≤ ℓ. Of course Dℓ+1 ⊂ Dℓ. If mℓ+1 = mℓ then Dℓ+1 = Dℓ. If
mℓ+1 > mℓ then

Gℓ+1 : Dℓ → Qmℓ

0 ,

with q = rℓ and
Gℓ+1 : Dℓ+1 → R

mℓ+1

−iℓ+1
,

with r = rℓ+1, are univalent (and onto). By the definition of G

M = inf
m

inf
Rm+1

−i ⊂Qm
0

mod (Qm
0 \ Rm+1

−i ) > 0,

so
mod (Dℓ \Dℓ+1) = mod (Qmℓ

0 \ R
mℓ+1

−iℓ+1
) ≥M,
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in particular, since there exists infinitely many ℓ such that mℓ+1 > mℓ we have that

lim
ℓ

diam(Dℓ) = 0

and

∩ℓDℓ = {z0}

for some z0 ∈ D . This completes the proof of the claim. Note that since Dℓ are
symmetric with respect to the R we have that z0 ∈ R and by (62)

(63) Gj(z0) ∈ R
mj

−ij
∩ R ⊂ R

mj

−ij
,

where r = rj , for every j. By Lemma 6.1 there exists bj such that

z0 ∈ R
mj

−bj
,

where r = rj , for every j ≥ 0. In particular z0 ∈ P (F ). �

7. Induced problem.

Let ai be as in (15). Define the function

V : D → C

as

V (z) = ai(z) =
∂

∂t
(Ft)

nk−1
s (z)

∣

∣

t=0

for every z ∈ Rk
−i ⊂ D , provided Rk

−i ⊂ Qk−1
0 and s is the sucessor of q at the k−1

level. Here Ft = F + tv.

Lemma 7.1. Suppose that α is a continuous vector field in a neighbourhood of
P (F ), such that

A1. α(c) = 0 for every c ∈ C(F ), and

A2. We have

(64) V (z) = α ◦G(z)−DG(z) · α(z)

for every z ∈ P (F ) \ C(F ).

Let x ∈ P (F ) and ℓ > 0 such that Gj(x) 6∈ C(F ) for every 0 ≤ j < ℓ. Then for

each j < ℓ there is r, q ∈ C(F ), with bj > 0 such that Gj(x) ∈ R
kj

−bj
⊂ Q

kj−1
0 .

Define ij = n
kj−1
s , where s ∈ C(F ) is the sucessor of q at level k− 1. Note that the

critical points q, s, r may depend on x and j. Let

m =
ℓ−1
∑

j=0

ij .

Then

B1. For every z ∈ C close enough to x we have that Gℓ(z) is well defined and
Gℓ(z) = Fm(z).

B2. For every z ∈ P (F ) close enough to x we have that α(Gℓ(z)) is well defined
and

α(z) =
α(Gℓ(z))

DGℓ(z)
−

m
∑

a=1

v(F a−1(z))

DF a(z)
.
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B3. In particular for every z ∈ P (F ) close enough to x such that Gℓ(x) ∈ C(F )
we have

α(x) = −
m
∑

a=1

v(F a−1(x))

DF a(x)
.

Proof. We let to the reader to show that Gℓ(z) = Fm(z) for z close enough to x.
By (64) we get

α(x) =
α(Gℓ(z))

DGℓ(z)
−

ℓ
∑

j=1

V (Gj−1(x))

DGj(z)
.

So
ℓ

∑

j=1

V (Gj−1(x))

DGj(z)
=

ℓ
∑

j=1

(∂t(Ft)
ij )(F i0+i1+···+ij−1 (z))

DF i0+i1+···+ij (z)

=

ℓ
∑

j=1

ij−1
∑

b=0

DF ij−b−1(F b+1(F i0+i1+···+ij−1 (z)))v(F b(F i0+i1+···+ij−1 (z)))

DF i0+i1+···+ij (z)

=

ℓ
∑

j=1

ij−1
∑

b=0

DF ij−b−1(F b+1(F i0+i1+···+ij−1 (z)))v(F i0+i1+···+ij−1+b(z))

DF ij−b−1(F b+1(F i0+i1+···+ij−1(z)))DF i0+i1+···+ij−1+b+1(z)

=
ℓ

∑

j=1

ij−1
∑

b=0

v(F i0+i1+···+ij−1+b(z))

DF i0+i1+···+ij−1+b+1(z)
=

m
∑

a=1

v(F a−1(z))

DF a(z)
.

�

Proposition 7.2. Suppose that α is a continuous vector field in a neighbourhood
of P (F ), such that α(r) = 0 for every r ∈ C(F ) and

(65) V (z) = α ◦G(z)−DG(z) · α(z).

for every z ∈ P (F ) \ C(F ). Then

(66) v(z) = α ◦ F (z)−DF (z) · α(z)

for every z ∈ P (F ).

Proof. For each Rk
−m, with r ∈ C(F ) and 0 < m < nk

r , there exists a unique

rk−m ∈ Rk
−m such that

Fm(rk−m) = r.

The set

Γ = {rk−m}r∈C(F ),0<m<nk
r
⊂ P (F )

is dense on P (F ) and

F (Γ) = Γ ∪ C(F ).

We claim that (66) holds for every z ∈ Γ. Indeed, given rk−m ∈ Γ, there exists

ℓ > 0 such that Gℓ(rk−m) = 0. Moreover by Lemma 7.1 we have that Gℓ = Fm in

a neighbourhood of rk−m and

(67) α(rk−m) = −
m
∑

a=1

v(F a−1(rk−m))

DF a(rk−m)
.
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Suppose that m = 1. Then ℓ = 1, G = F in a neighbourhood of rk−1, V (rk−1) =

v(rk−1) and G(r
k
−1) ∈ C(F ). By (65) it follows that

v(rk−1) = α ◦G(rk−1)−DG(rk−1) · α(r
k
−1) = α ◦ F (rk−1)−DF (rk−1) · α(r

k
−1).

If m > 1 then F (rk−m) = rk−(m−1) ∈ Γ, so by (67) we have

α(F (rk−m))−DF (rk−m)α(rk−m)

= −
m−1
∑

a=1

v(F a−1(rk−(m−1)))

DF a(rk−(m−1))
+DF (rk−m)

m
∑

b=1

v(F b−1(rk−m))

DF b(rk−m)

= −
m−1
∑

a=1

v(F a−1(rk−(m−1)))

DF a(rk−(m−1))
+

m
∑

b=1

v(F b−1(rk−m))

DF b−1(rk−(m−1))

= −
m−1
∑

a=1

v(F a−1(rk−(m−1)))

DF a(rk−(m−1))
+ v(rk−m) +

m
∑

b=2

v(F b−2(rk−(m−1)))

DF b−1(rk−(m−1))

= −
m−1
∑

a=1

v(F a−1(rk−(m−1)))

DF a(rk−(m−1))
+ v(rk−m) +

m−1
∑

a=1

v(F a−1(rk−(m−1)))

DF a(rk−(m−1))

= v(rk−m).

So (66) holds for every z ∈ Γ. Since v, α and F are continuous in a neighbourhood
of P (F ) and Γ is dense in P (F ), it follows that (66) holds for every z ∈ P (F ).

�

Corollary 7.3 (Induced problem). Let F ∈ Ωn,p and v ∈ B+(F ). If there exists
a quasiconformal vector field α, defined in a neighbourhood of P (F ), such that
α(r) = 0 for every r ∈ C(F ) and

(68) V (z) = α ◦G(z)−DG(z) · α(z)

for every z ∈ P (F ) \ C(F ), then v ∈ Eh(F ).

Proof. This is an immediate consequence of Proposition 4.1 and Proposition 7.2.
�

8. Solving the induced problem.

We are going to change a little bit the notation. Let P k
i , i = 1, . . . , n be the set

of restrictive intervals for F associated to the renomalization RkF , that is

A. These intervals are pairwise disjoint, C(F ) ∩ P k
i 6= ∅ and

C(F ) ⊂ ∪iP
k
i .

B. There are integers nk
i such that

Fnk
i : P k

i → P k
i+1 mod n

is an unimodal map.
C. The have that P k

i = [δki , b
k
i ], where δki is a µ(k)-periodic repelling fixed

point, with

µ(k) =
∑

i

nk
i ,

and Fnk
i (δki ) = Fnk

i (bki ).
D. The renormalization associated to the restrictive interval P k

1 is RkF .
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If t is small enough then Ft = F + tv is close to F and δki has an analytic
continuation δki (t). Denote by ∂tδ

k
i the derivative of this continuation with respect

to t at t = 0. Consider {qki } = C(F )∩P k
i . Then q

k
i+1 is the successor of qki at level

k. Let jki ∈ {1, . . . , n} be such that qki ∈ Ijki , and

Ak
i : C× {jki } → C× {i}

be the only affine transformation such that Ak
i (δ

k
i ) = (−1, i) and Ak

i (q
k
i ) = (0, i).

Lemma 8.1. We have V = V1 + V2, where

(69) V1(z, j
k
i ) = −δki+1v

k ◦Ak
i (z, j

k
i ),

and

(70) V2(z, j
k
i ) =

∂tδ
k
i+1

δki+1

Fnk
i (z, jki )−DFnk

i (z, jki ) ·
∂tδ

k
i

δki
(z, jki )

for every (z, jki ) ∈ R
k+1
−ℓ , with Rk+1

−ℓ ⊂ Qk
0 , q = qki .

Proof. Note that

vk(x, i) = ∂t(R
k(Ft))

∣

∣

t=0
(x, i) = (DRk

F · v)(x, i)

= −
∂tδ

k
i+1

δki+1

·Ak
i+1 ◦ F

nk
i ◦ (Ak

i )
−1(x, i)

−
1

δki+1

(

ank
i
◦ (Ak

i )
−1(x, i) + (DFnk

i ) ◦ (Ak
i )

−1(x, i) · (−∂tδ
k
i x, i)

)

,

So if (x, i) = Ak
i (z, j

k
i ), with (z, jki ) ∈ R

k+1
−ℓ , with Rk+1

−ℓ ⊂ Qk
0 we have that

V (z, ji) = ank
i
(z, jki )

= −δki+1v
k ◦Ak

i (z, j
k
i ) +

∂tδ
k
i+1

δki+1

Fnk
i (z, jki )−DFnk

i (z, jki ) ·
∂tδ

k
i

δki
(z, jki ).

�

Lemma 8.2. Let v ∈ B+(F ). There exists C3 > 0 such that for every k and every

ik, ik+1 such that qkik = qk+1
ik+1

we have

(71)
∣

∣

∂tδ
k+1
ik+1

δk+1
ik+1

−
∂tδ

k
ik

δkik

∣

∣ ≤ C3

Proof. Let q = qkik = qk+1
ik+1

and ij be such that qjij = q. Note that βk+1
q = Ak

i (δ
k+1
ik+1

)

is a periodic point for RkF with period yk = µ(k+1)/µ(k). Indeed

βk+1
q = (

δk+1
ik+1

δkik
, ik).

If t is small enough then there is an analytic continuation βk+1
q (t) for βk+1

q , that is

a periodic point for RkFt. Since

∂t(R
k(Ft))

∣

∣

t=0
(x, i) = (DRk

F · v)(x, i) = vk(x, i),

by the Implicit Function Theorem we have that

∂t(R
k(Ft))

yk ∣

∣

t=0
(βk+1

q ) +D(RkF )y
k

(βk+1
q )∂tβ

k+1
q = ∂tβ

k+1
q .
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So

∂tβ
k+1
q

=
1

1−D(RkF )yk(βk+1
q )

yk−1
∑

j=0

D(RkF )y
k−j−1((RkF )j+1(βk+1

q ))vk((RkF )j(βk+1
q ))

=

∞
∑

ℓ=1

−1

D(RkF )ykℓ(βk+1
q )

yk−1
∑

j=0

D(RkF )y
k−j−1((RkF )j+1(βk+1

q ))vk((RkF )j(βk+1
q ))

=

∞
∑

ℓ=1

yk−1
∑

j=0

−
vk((RkF )y

k(ℓ−1)+j(βk+1
q ))

D(RkF )yk(ℓ−1)+j+1(βk+1
q )

=

∞
∑

a=0

−
vk((RkF )a(βk+1

q ))

D(RkF )a+1(βk+1
q )

Due the real bounds and v ∈ B+(F ) there exist C1, C2 such that

sup
k
{|D(RkF )|B(V ), |β

k
q |,

1

|βk
q |
, |vk|B(V )} ≤ C1

and

1 < C2 < inf
k,q

|D(RkF )y
k

(βk+1
q )|.

So

(72) sup
k,q

|
∂tβ

k+1
q

βk+1
q

| = C3 <∞.

If ij satisfies qjij = q then

δk+1
ik+1

(t) =

k
∏

j=0

δj+1
ij+1

(t)

δjij (t)
=

k+1
∏

j=1

βj
q(t),

if we derive with respect to t at t = 0 we obtain

∂tδ
k+1
ik+1

=

k+1
∑

j=1

∂tβ
j
q

∏

ℓ 6=j

βℓ
q

and we conclude that

(73)
∂tδ

k+1
ik+1

δk+1
ik+1

=

k+1
∑

j=1

∂tβ
j
q

βj
q

and

(74)
∣

∣

∂tδ
k+1
ik+1

δk+1
ik+1

−
∂tδ

k
ik

δkik

∣

∣ =
∣

∣

∂tβ
k+1
q

βk+1
q

∣

∣ ≤ C3

�
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Lemma 8.3. For every (z, jki ) ∈ R
k+1
−ℓ , with Rk+1

−ℓ ⊂ Qk
0 , q = qki we have

(75) |V1(z, j
k
i )| ≤ |δki+1| sup

k
|vk|,

and

(76) |V2(z, j
k
i )| ≤ C3k|δ

k
i+1|+ C3k|δ

k
i | sup |DG|

In particular

lim
w→C(F )

V (w) = 0.

Proof. It follows from Lemma 8.1 and Lemma 8.2. �

Lemma 8.4. Let ψ : R⋆
+ → R be a C∞ function. Define γ : C \ {0} → C as

γ(z) = ψ(|z|)z.

Then

|∂γ(z)| =
|zDψ(|z|)|

2
.

If |Dψ(t)| ≤ Ct−1 then γ can be extended as a quasiconformal vector field on C

such that γ(0) = 0.

Proof. If z = x+ iy, x, y ∈ R then

ψ(|z|) = ψ(
√

x2 + y2),

In particular

∂(ψ(|z|)) =
2xDψ(

√

x2 + y2)

4
√

x2 + y2
+ i

2yDψ(
√

x2 + y2)

4
√

x2 + y2
,

and

|∂(ψ(|z|))| =
|Dψ(|z|)|

2
.

In particular

|∂(ψ(|z|)z)| =
|zDψ(|z|)|

2
.

Let ǫ ∈ (0, 1). Note that

|ψ(1)− ψ(ǫ)| = |

∫ 1

ǫ

Dψ(t) dt| ≤

∫ 1

ǫ

1

t
dt = − ln ǫ.

|ψ(ǫ)| ≤ − ln ǫ+ |ψ(1)|.

In particular

(77) lim
z→0

zψ(|z|) = 0,

so defining γ(0) = 0 we obtain a continuous extension to C of γ. To show that γ is
a quasiconformal vector field, note that

|∂γ(z)| =
|zDψ(|z|)

2
≤
C

2

for every z ∈ C \ {0}. By [1, Lemma 3, page 53] there exists a quasiconformal
vector field γ̃ on C such that its distributional derivative belongs to L2(C), it

satisfies ∂γ̃(z) = 0 if |z| ≥ 1 and

∂γ̃(z) = ∂γ(z)
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for almost every z satisfying |z| < 1. So γ − γ̃ is continuous on {z ∈ C : |z| < 1}
and (by Weyl’s Lemma) holomorphic on {z ∈ C : 0 < |z| < 1}. By Riemann’s
Theorem on removable singularities we have that 0 is a removable singularity, so
γ − γ̃ is holomorphic on |z| < 1, and therefore γ is quasiconformal on C. �

An illustrative example of application of Lemma 8.4 is obtained considering
ψ(x) = log(x).

Proposition 8.5. Let v ∈ B+(F ). There exists a quasiconformal vector field
α2 : Cn → C such that

(78) V2(z, j) = α2 ◦G(z, j)−DG(z, j) · α2(z, j)

for every (z, j) ∈ ∂D and moreover α2(0, j) = 0 for every j.

Proof. Due the real bounds we have that

(79) inf
q∈C(F )

inf
k

min
Rk+1

−ℓ
⊂Qk

0

dist(Rk+1
−ℓ , ∂Q

k
0)

|Qk
0 |

= ǫ1 > 0.

Without loss of generality we can choose ǫ0 in (60) satisfiying ǫ0 < ǫ1/4. Let
φ : R → R be a C∞ function such that

i. φ(x) ∈ [0, 1] for every x ∈ R.
ii. If |x| < 1− ǫ1/4 then φ(x) = 1.
iii. If |x| > 1− ǫ1/8 then φ(x) = 0.

Given q ∈ C(F ), let ij be such that qjij = q and δjij and βj
q , j ∈ N, be as in the

proof of Lemma 8.2. For every x ∈ R⋆ define

ψq(x) =

∞
∑

j=1

∂tβ
j
q

βj
q

· φ(
x

δjij
)

The function ψq is well defined in R \ {0}, it is C∞ on R \ {0} and if

(80) (1− ǫ1/8)|δ
k+1
ik+1

| ≤ |x| ≤ (1− ǫ1/2)|δ
k
ik
|

then

(81) ψq(x) =

k
∑

j=1

∂tβ
j
q

βj
q

· φ(
x

δjij
) =

k
∑

j=1

∂tβ
j
q

βj
q

=
∂tδ

k
ik

δkik
.

Moreover, notice that if

(82) |δk+1
ik+1

| ≤ |x| ≤ |δkik |

then

ψq(x) =
∂tβ

k
q

βk
q

· φ(
x

δkik
) +

k−1
∑

j=1

∂tβ
j
q

βj
q

,

so

Dψq(x) =
∂tβ

k
q

δkikβ
k
q

·Dφ(
x

δkik
),

and by (72) and (82)

(83) |Dψq(x)| ≤
1

|δkik |
C3 max |Dφ| ≤

C3 max |Dφ|

|x|
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If q = (0, j), define

(84) α2(z, j) = ψq(|z|)z.

By (83) and Lemma 8.4 we conclude that α2 is a quasiconformal vector field
with α2(0, j) = 0 for every j.

It remains to show that α2 satisfies (78). Indeed, let (z, j) ∈ ∂R
k+1
−ℓ , with

Rk+1
−ℓ ⊂ Qk

0 and ℓ > 0. Since R
k+1
−ℓ belongs to a disc with diameter given by the

interval Rk+1
−ℓ and it does not intercept Qk+1

0 , we have

(85) (1− ǫ1/64)|δ
k+1
ik+1

| ≤ dk+1
q ≤ |z| ≤ (1 − ǫ1)|δ

k
ik
|.

for every (z, j) ∈ ∂R
k+1
−ℓ . Here dk+1

q is as defined in (61). By (81) we have that

α2(z, j) =
∂tδ

k
ik

δkik
z

for every

(z, j) ∈ ∂R
k+1
−ℓ .

Indeed, let (z, ̃) ∈ R
k+1
−ℓ , with Rk+1

−ℓ ⊂ Sk
0 , with ℓ > 0 and such that q is the

sucessor of s at level k. Then

G(Rk+1
−ℓ ) ⊂ Qk

0 .

If G(Rk+1
−ℓ ) = R

k+1
−a , for some a > 0, then the points in this image also satisfies

(85). Otherwise r = q and G(Rk+1
−ℓ ) = Qk+1

0 , so if (w, j) ∈ G(∂R
k+1
−ℓ ) then

(86) (1− ǫ1/64)|δ
k+1
ik+1

| ≤ |dk+1
q | = |w| ≤ |δk+1

ik+1
| ≤ (1− ǫ1)|δ

k
ik |.

By (81) we have that

α2(w, j) =
∂tδ

k
ik

δkik
w

for every

(w, j) ∈ G(∂R
k+1
−ℓ ),

Since these estimates holds for every q ∈ C(F ) we have that for every (z, j) ∈
∂R

k+1
−ℓ , with Rk+1

−ℓ ⊂ Qk
0 and ℓ > 0 we have

α2 ◦G(z, j)−DG(z, j) · α2(z, j) =
∂tδ

k
ik+1

δkik+1

G(z, j)−DG(z, j)
∂tδ

k
ik

δkik
(z, j)

=
∂tδ

k
ik+1

δkik+1

Fnk
ik (z, j)−DFnk

ik (z, j)
∂tδ

k
ik

δkik
(z, j)

= V2(z, j).(87)

�

Proposition 8.6. Let v ∈ B+(F ). There exists a quasiconformal vector field
α1 : Cn → C such that

(88) V1(z, j) = α1 ◦G(z, j)−DG(z, j) · α1(z, j)

for every (z, j) ∈ ∂D and moreover α1(q) = 0 for every q ∈ C(F ).

Proof. Let ǫ1 > 0 be as in (79). Let φ : C → R be a C∞ function such that

i. φ(x) ∈ [0, 1] for every x ∈ C.
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ii. If |x| = 1− ǫ0/16 and then φ(x) = 1.
iii. If either |x| > 1− ǫ0/32, |x| < 1− ǫ1/2 then φ(x) = 0.

Given r ∈ C(F ), let

i0 = 0 < i1 < · · · < iℓkr < nk
r

be the sequence of integers i < nk
r such that

Rk
i ⊂

⋃

q∈C(F )

Qk−1
0 .

Denote by δkr the periodic point in the boundary of Rk
0 . There is an onto univalent

extension

Gj : Dk
r,−j → B(r, |δkr |),

where Dk
r,−j ∩ R = Rk

−ij . Note that Rk
−ij ⊂ Dk

r,−j and

(89) Gj(Rk
−ij ) = B(r, (1 − ǫ0/16)|δ

k
r |) = R

k
0 .

Let qj ∈ C(F ) such that qj and Rk
−ij belongs to the same connected component of

InF . Define a function

ψk
r,−j : Cn → C

in the following way. Let

ψk
r,0(z, a) = 0

for every (z, a) ∈ Cn, and define by induction on j

(90) ψk
r,−(j+1)(z, a) = φ

(Gj+1(z, a)

δkr

)ψk
r,−j(G(z, a))− δk−1

qj vk−1 ◦Ak−1
qj+1

(z, a)

DG(z, a)

for every (z, a) ∈ Dk
r,−(j+1). Note that ψk

r,−(j+1)(z, a) = 0 for (z, a) in a neighbour-

hood of ∂Dk
r,−(j+1), so we can extend ψk

r,−(j+1) to a C∞ function on Cn defining

ψk
r,−(j+1)(z, a) = 0 for (z, a) 6∈ Dk

r,−(j+1). Finally note that by (89)

φ
(Gj+1(z, a)

δkr

)

= 1

for every (z, a) ∈ ∂Rk
−ij+1

, so by (90)

(91) −V1(z, a) = δk−1
qj vk−1◦Ak−1

qj+1
(z, a) = ψk

r,−j(G(z, a))−DG(z, a)ψ
k
r,−(j+1)(z, a)

for every (z, a) ∈ ∂Rk
−ij

. Note that given (z, a) ∈ Cn \ C(F ), there exists an open

neighbourhood of (z, a) that intersects only one of the supports of a function in the
family

F = {ψk
r,−j}k, r∈C(F ),j≤ℓkr

.

In particular the function

α1(z, a) = −
∑

k

∑

r∈C(F )

ℓkr
∑

j=0

ψk
r,−j(z, a)

is well defined and it is C∞ on Cn \C(F ). Moreover given Rk
−ij

, the function ψk
r,−j

is the unique function in this family whose support intersects ∂Rk
−ij

. By (91), this

implies that

V1(z, a) = α1 ◦G(z, a))−DG(z, a)α1(z, a).
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for every (z, a) ∈ ∂D . It is easy to prove by induction that

(92) |ψk
r,−j(z, a)| ≤ sup

k
|vk−1|

j−1
∑

ℓ=0

|δk−1
qj−1−ℓ

|

|DG|ℓ+1(z, a)
,

in particular

(93) |ψk
r,−j| ≤ max

q∈C(F )
|δk−1

q | sup
k

|vk−1|

supk

pk
pk−1

∑

j=0

1

(inf |DG|)j
.

Due the real bounds

(94) |ψk
r,−j | ≤ Cθ−k

If (z, a) ∈ Qk−1
0 \ {q}, for some q ∈ C(F ) then either α1(z, a) = 0 or (z, a) belongs

to the support of a unique function ψb
r,−j , with b ≥ k. We conclude that

(95) lim
(z,a)→q

α1(z, a) = 0,

so we can extend α1 as a continuous function on Cn. Note that

∂ψk
r,−(j+1)(z, a)

= ∂φ
(Gj+1(z, a)

δkr

)DGj+1(z, a)

δkr

ψk
r,−j(G(z, a))− δk−1

qj vk−1 ◦Ak−1
qj+1

(z, a)

DG(z, a)

+ φ
(Gj+1(z, a)

δkr

)

∂ψk
r,−j(G(z, a))

DG(z, a)

DG(z, a)
(96)

By the real bounds there exists C > 0 such that

|DGj−ℓ|(Gℓ+1(z, a))

|δkr |
≤

C

|Rk
−ij−ℓ

|

for every r ∈ C(F ), K and j and (z, a) ∈ Dk
r,−(j+1). In particular

|DGj+1|(z, a)

|δkr |

|ψk
r,−j(G(z, a))− δk−1

qj vk−1 ◦Ak−1
qj+1

(z, a)|

|DG(z, a)|

≤
|DGj+1|(z, a)

|δkr |

(

j−1
∑

ℓ=0

|δk−1
qj−1−ℓ

|

|DG|ℓ+2(z, a)
+

|δk−1
qj |

|DG|(z, a)

)

≤
|DGj+1|(z, a)

|δkr |

j
∑

ℓ=0

|δk−1
qj−ℓ

|

|DG|ℓ+1(z, a)

≤

j
∑

ℓ=0

|DGj−ℓ|(Gℓ+1(z, a))|δk−1
qj−ℓ

|

|δkr |
≤ C

j
∑

ℓ=0

|δk−1
qj−ℓ

|

|Rk
−ij−ℓ

|

≤ C sup
k

µ(k)

µ(k−1)
.(97)

The last inequality follows from the fact that Rk
−ij−ℓ

⊂ Qk−1
0 , with q = qj−ℓ, and

2δk−1
qj−ℓ

= |Qk−1
0 | and by the real bounds there exists C > 0 such that

|Qk−1
0 |

|Rk
−i|

≤ C
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for every Rk
−i ⊂ Qk−1

0 . So by (97)

(98) sup |∂ψk
r,−(j+1)| ≤ C sup |∂φ| sup

k

µ(k)

µ(k−1)
+ sup |∂ψk

r,−j |.

Since ψk
0 = 0 we obtain

sup |∂ψk
r,−j| ≤ C sup

k

µ(k)

µ(k−1)

Since for every (z, a) ∈ Cn\C(F ), there exists an open neighbourhood of (z, a) that
intersects only one of the supports of the functions in the family F , we conclude
that α1 is a quasiconformal vector field on Cn \ C(F ). Since α1 is continuous at
C(F ), we can use the argument in the end of the proof of Lemma 8.4 to conclude
that α1 is a quasiconformal vector field on Cn. �

Proof of Theorem 4. Let v ∈ B+(F ). Let α1 and α2 as in Proposition 8.5 and 8.6.
Define α0 = α1 + α2. Then by Lemma 8.1

(99) V (z, j) = α0 ◦G(z, j)−DG(z, j) · α0(z, j)

for every (z, j) ∈ ∂D \ C(F ) and moreover α0(q) = 0 for every q ∈ C(F ). Now we
will use an argument similar to the infinitesimal pullback argument for polynomial-
like maps [3]. We define by induction on m a sequence of quasiconformal vector
fields

αm : Cn → C

such that αm(q) = 0 for every q ∈ C(F ),

(100) V (z, j) = αm ◦G(z, j)−DG(z, j) · αm(z, j)

for every (z, j) ∈ ∂D and moreover

(101) V (z, j) = αm−1 ◦G(z, j)−DG(z, j) · αm(z, j)

for every (z, j) ∈ D , m ≥ 1 and

sup
Cn

|∂αm+1| ≤ sup
Cn

|∂αm|.

Indeed, suppose by induction we have defined αk. Define αk+1(z, j) = αk(z, j) for
every (z, j) 6∈ D and

(102) αk+1(z, j) =
αk(G(z, j))− V (z, j)

DG(z, j)

for every (z, j) ∈ D . Note that

|∂αk+1(z, j)| = |∂αk(z, j)|,

for every (z, j) 6∈ D and

|∂αk+1(z, j)| = |∂αk(G(z, j))|

for (z, j) ∈ D . So αk+1 is a quasiconformal vector field in Cn \ ∂D . Moreover
(101) holds for m = k + 1 and due (100) with m = k we have that αk+1 = αk on
∂D \ C(F ), so αk+1 is continuous at points in

∂D \ C(F ).
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If (z, j) ∈ ∂D \ C(F ) then (z, j) ∈ ∂Rn
−i, for some r ∈ C(F ). In particular there

exists a neighbourhood W of (z, j) such that αk+1 is continuous on W and a qua-
siconformal vector field on W \ ∂Rn

−i. Since ∂Rn
−i is an analytic curve we conclude

that αk+1 is a quasiconformal vector field on W . So αk+1 is a quasiconformal vec-
tor field on Cn \ C(F ). Finally notice that αk+1 is continuous at points in C(F ).
Indeed, suppose that

(zℓ, i) →ℓ (0, i).

If (zℓ, i) 6∈ D for every ℓ then

lim
ℓ→∞

αk+1(zℓ, i) = lim
ℓ→∞

αk(zℓ, i) = 0.

If (zℓ, i) ∈ D for every ℓ then

(103) lim
ℓ→∞

αk+1(zℓ, i) = lim
ℓ→∞

αk(G(zℓ, i))− V (zℓ, i)

DG(zℓ, i)
.

Since the accumulation points of the sequence G(zℓ, i) belongs to C(F ) we have

lim
ℓ→∞

αk(G(zℓ, i)) = 0.

By Lemma 8.3 it follows that

lim
ℓ→∞

V (zℓ, i) = 0.

Since by the complex bounds we have that

inf
(z,j)∈D

|DG(z, j)| > 0

we conclude by (103) that

lim
ℓ→∞

αk+1(zℓ, i) = 0.

so αk+1 is continuous at points in C(F ). By the same argument in the end of the
proof of Lemma 8.4 we conclude that αk+1 is a quasiconformal vector field on Cn

and

(104) sup
Cn

|∂αk+1| ≤ sup
Cn

|∂αk|.

Given a point (z, j) ∈ Cn such that there exists k0 ≥ 0 such that Gk(z, j) ∈ D

for every k < k0 and Gk0(z, j) 6∈ D , we claim that αk(z, j) = αk0(z, j) for every
k ≥ k0. Note that αk(z, j) = α0(z, j) for every (z, j) 6∈ D , so the claim holds for
k0 = 0. Suppose by induction on k0 that the claim hold for k0. If G

i(z, j) ∈ D for
i ≤ k0 and Gk0+1(z, j) 6∈ D then Gi(G(z, j)) ∈ D for i < k0 and Gk0(G(z, j)) 6∈ D ,
so by the induction assumption αk(G(z, j)) = αk0(G(z, j)) for every k ≥ k0. Since
G(z, j) ∈ D we have by (102) that

αk+1(z, j) =
αk(G(z, j))− V (z, j)

DG(z, j)
=
αk0(G(z, j))− V (z, j)

DG(z, j)
= αk0+1(z, j),

for every k ≥ k0, which proves the claim.
By Proposition 6.2 the sequence αk converges almost everywhere. By (104) and
McMullen [32] we have that every subsequence αk has a subsequence that converges
uniformly to some quasiconformal vector field. So αk converges uniformly to a
quasiconformal vector field α. Taking m→ ∞ in (101) we conclude that

(105) V (z, j) = α ◦G(z, j)−DG(z, j) · α(z, j),
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for every (z, j) ∈ D and in particular for every (z, j) ∈ P (F )\C(F ). Since α(q) = 0
for every q ∈ C(F ), by Corollary 7.3 we conclude that v ∈ Eh(F ). �

9. Transversal families have hyperbolic parameters.

From now on we will consider only real maps. In particular BR
nor(U) will now

denote the real Banach space of all F ∈ Bnor(U) which are real on the real line.
Since Ωn,p is a hyperbolic set we can define the stable

G 7→ Eh
G

and unstable

G 7→ Eu
G

subspace distributions defined for G ∈ Ωn,p, and the corresponding projections on
the spaces

πh
G : TBR

nor(U) → Eh
G

and

πu
G : TBR

nor(U) → Eu
G.

Recall that U = Dδ0,θ0 . As defined in [43] we also have the adapted norms | · |G,0

that satisfy

|v|G,0 = |πh
G(v)|G,0 + |πu

G(v)|G,0,

and the family of cones Cu
ǫ (G), with ǫ > 0, for which v ∈ Cu

ǫ (G) if and only if

|πh
G(v)|G,0 ≤ ǫ|πu

G(v)|G,0.

Those cones are unstable and forward-invariant for the action ofR on Ωn,p provided
ǫ is small enough. In particular if ǫ is small there is θ > 1 such that for every
F ∈ BR

nor(U) close enough to some G ∈ Ωn,p, and v ∈ Cu
2ǫ(G)

|DRF · v|RG,0 ≥ θ|v|G,0.

and moreover there is ǫ′ ∈ (0, ǫ) such that

|πh
RG(DRF · v)|RG,0 ≤ 2ǫ′|πu

RG(DRF · v)|RG,0.

Furthermore there is λ ∈ (0, 1) such that for every G ∈ Ωn,p, v ∈ Eh
G and k ∈ N

|DRk
G · v|RkG,0 ≤ λk|v|G,0.

Define the δ-shadow of G as

W s
δ (G) = {F ∈ W : distBR

nor(U)(R
kF,RkG) ≤ δ, for every k ≥ 0},

and the δ-shadow of Ωp,n as

W s
δ (Ωp,n) = ∪G∈Ωp,n

W s
δ (G).

We also define

B
u
G(v0, δ) = {v ∈ Eu

G ∩ BR(U) : |v − v0|G,0 ≤ δ},

where v0 ∈ Eu
G ∩ BR(U), and

Eh
G +G = {v +G : v ∈ Eh

G}.

Let δ3 > 0 (we will use this notation to follow [43]). Define T 1
0 (G, δ, ǫ), with

δ ∈ (0, δ3), as the set of C1 functions

H : Bu
G(v0, δ) → Eh

G +G,
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with v0 ∈ Eu
G ∩ BR(U), such that

|DH|(G,0),(G,0) ≤ ǫ.

and

F0 = v0 +H(v0) ∈W s
δ3(G).

We will call F0 the base point of H. In particular w +DxH · w ∈ Cu(G), for every
x ∈ Bu

G(v0, δ), w ∈ Eu(G), and G ∈ Ωp,n.
Denote

Ĥ = {v +H(v) : v ∈ B
u
G(v0, δ)}.

The Transversal Empty Interior assumption for the renormalization operator is
the main result of this section.

Corollary 9.1 (Transversal Empty Interior Assumption). For every small ǫ > 0 we
can choose δ3 small enough such that the following holds. For every G ∈ Ωp,n and

for every C1+Lip function H ∈ T 1
0 (G, δ

′, ǫ), with δ′ < δ3, we have that Ĥ ∩W s
δ3
(Ω)

has empty interior in Ĥ.

This property is closely related with the fact that maps F that are infinitely
renormalizable with bounded combinatorics can be approximated by hyperbolic
maps.

We are going to introduce notation from [43]. Denote by CωR([−1, 1]j,BR
nor(U))

the space of functions

γ : (−1, 1)j → BR

nor(U)

which can be extended to a complex analytic function

γ : Dj → Bnor(U),

and moreover there is a continuous extension of γ to D
j
. Endowed with the sup

norm on D
j
the space CωR([−1, 1]j,BR

nor(U)) is a real Banach space.

Endow TC = D
N

with the product topology. Let Γω(Bnor(U)) be the set of
continuous functions γ : TC 7→ Bnor(U) which are holomorphic when we fix all but
a finite number of entries of λ ∈ TC and |λi| < 1 for every i. Endowing Γω(Bnor(U))
with the sup norm we obtain a complex Banach space.

Note that since U is symmetric with respect to the real line, that is, (z, i) ∈ U
iff (z, i) ∈ U , there is a complex conjugation on the complex Banach space B(U)

defined by f(z) = f(z) for f ∈ B(U). Define ΓωR(BR
nor(U)) as the real Banach

space that consists of the restrictions to T = [−1, 1]N of functions γ ∈ Γω(Bnor(U))

satisfying γ(λ) = γ(λ).
We say that a set Θ ⊂ Bnor(U) is a ΓωR(BR

nor(U))-null set is there exists a
residual subset F ⊂ ΓωR(BR

nor(U)) such that

m(λ ∈ [−1, 1]N : γ(λ) ∈ Θ) = 0

for every γ ∈ F . Herem is the product measure obtained considering the normalised
Lebesgue measure on each copy of [−1, 1].

The Transversal Empty Interior property will allows us to apply [43, Theorem
1] to the renormalization operator. Indeed we already verified that

- R : WR → BR
nor(U) is a real analytic map. Here WR = W ∩ BR

nor(U).
- The map R is a strongly compact operator (Remark 3.1),
- Ωn,p is a hyperbolic set (Theorem 5),
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- For every F ∈ R−iW s
δ (Ωn,p), with i ∈ N and δ > 0, we have that

DFRi(TFBR
nor(U)) is dense in TRiFB

R
nor(U). This is an easy consequence

of Theorem 3.

so [43, Theorem 1] in our setting boils down to

Theorem 6. ( [43, Theorem 1]) Suppose that the renormalization operator R sat-
isfies additionally

A. There exists δ3 > 0 such that W s
δ3
(Ωn,p) satisfies the Transversal Empty

Interior assumption.

ThenW s(Ωn,p) is a ΓωR(BR
nor(U))-null set. Indeed for every j there exists a residual

set of real-analytic maps γ ∈ CωR([−1, 1]j,BR
nor(U)) such that

m(t ∈ [−1, 1]j : γ(t) ∈W s(Ωn,p)) = 0.

Here m is the Lebesgue measure on [−1, 1]j.

In particular this implies that a generic real-analytic finite-dimensional family
in WR intersects W s(Ωn,p) on a subset with zero Lebesgue measure. So we have
a version of Theorem A. for real-analytic families of extended maps that belong to
WR. Indeed the full-blown version of Theorem A. is proven in Section 10.

Proposition 9.2. For every ǫ > 0 small enough there is γ > 0 with the follow-
ing property. Suppose that F ∈ BR

nor(U), that F has a polynomial-like extension

F : V̂ 0 → V̂ 1, with U ⊂ V̂ 0, and

distBR
nor(U)(F,G) < γ,

for some G ∈ Ωp,n. If

v ∈ Êh
F ∩ Cu

2ǫ(G)

and v ∈ BR(V̂ 0) ∩ BR(U) then v = 0.

Proof. Suppose by contradiction that there exist sequencesGi ∈ Ωp,n, Fi ∈ BR
nor(U)

and vi ∈ BR(V̂ 0
i ) such that

- We have
distBR

nor(U)(Fi, Gi) →i 0,

- The maps Fi have a polynomial-like of type n extension Fi : V̂
0
i → V̂ 1

i and

U ⊂ V̂ 0
i .

- The vectors satisfy vi ∈ Êh
Fi

∩ Cu
2ǫ(Gi), |vi|BR(U) 6= 0 and vi ∈ BR(V̂ 0

i ).

In particular for large i the critical points of Fi belongs to K(Fi) and Fi is renormal-
izable. Without loss of generality we can assume that |vi|B(U) = 1 for every i. Since

vi ∈ Êh(Fi) and Fi are very close to Ωn,p we have that RFi has a polynomial-like
extension of type n

RFi : V
0
i → V 1

i

with mod V 1
i \V 0

i > ǫ0 . Moreover DFi
R·vi ∈ Êh

RFi
∩BR(V 0

i ) and there is C > 0
such that

|DFi
R · vi|BR(V 0

i ) ≤ C

for every large i. Note that RFi : V
0
i → V 1

i is real on the real line and consequently
it is hybrid conjugate with a real polynomial of type n (see the Straightening
lemma in [40, Proposition 4.1]). It follows from Shen [37] that RFi does not have
invariant line fields on its Julia set. So one can use the infinitesimal pullback
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argument to conclude that there exist quasiconformal vector fields αi : Cn → C

with supi |∂αi|∞ <∞ such that

(106) DFi
R · vi = αi ◦ RFi −D(RFi) · αi

on a domain a little bit smaller than V 0
i , and in particular on U = Dδ0,θ0 . By

a compactness argument [32] the sequence αi has a convergent subsequence that
converges to a quasiconformal vector field α. Let

Dδ = {x ∈ C : dist(x, [−1, 1]) < δ} × {1, . . . , n}.

Note that by (13) there exists δ′ > δ0 such that U ⊂ Dδ′ ⊂ V 0
i for every i. Since

|DFi
R · vi|B(Dδ′ )

≤ C,

there exists a subsequence of DFi
R·vi that converges to some v on BR(U) satisfying

|v|B(U) ≤ C. Since Ωp,n is compact, without loss of generality we can assume that
RGi (and so RFi) converges to some G ∈ Ωp,n. By (106) we obtain

v = α ◦G−DG · α

on the pos-critical set of G. Since there are not invariant line fields supported in
the Julia set of G, by the infinitesimal pullback argument we conclude that v ∈ Eh

G.
In particular

(107) |DRk
G · v|Rk(G),0 ≤ λk|v|G,0 ≤ C1λ

k.

On the other hand since vi ∈ Cu
2ǫ(Gi) and ǫ is small we have

|DGi
R · vi|R(Gi),0 ≥ θ|vi|Gi,0 ≥ C2θ|vi|BR(U) = C2θ > 0,

The compactness of Ωp,n gives limiDGi
R· vi = v and consequently for every k ≥ 1

lim
i
DRk

Gi
· vi = DRk−1

G · v

and we have that vi ∈ Cu
2ǫ(Gi) so for k ≥ 1

|DRk
Gi

· vi|Rk(Gi),0 ≥ θk−1|DRGi
· vi|RGi,0 ≥ C2θ

k.

Taking the limit on i we obtain

(108) |DRk
G · v|Rk(G),0 ≥ C2θ

k.

Since λ < 1 < θ we conclude that (107) and (108) give us a contradiction. �

Proposition 9.3. For ǫ > 0 small we can choose δ3 small enough such that for
every δ′ ∈ (0, δ3) the following holds. Let H be a C1+Lip function

H : Bu
G(u0, δ

′) → Eh
G +G

such that H ∈ T 1
0 (G, δ

′, 2ǫ), where G ∈ Ωp,n. Then there exists w ∈ B
u
G(u0, δ

′) such
that w +H(w) is a map whose critical points belong to the same periodic orbit.

Proof. Define

H̃ : Bu
G(u0, δ

′)× {v ∈ Eh(G) : |v| ≤ δ′} → BR

nor(U)

as H̃(u, v) = u+H(u)+ v. Let F = u0 +H(u0). Note that H̃ is a homeomorphism

on its image, which is an open neighbourhood of F . Define H̃1(u, v) = RH̃(u, v).

If δ3 is small enough there is a smooth family of domains Û(u,v) such that for every

(u, v) in the domain of H̃1 we have that

H̃1(u, v) : Û(u,v) → V̂
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is a polynomial-like map of type n such that

mod V̂ \ Û(u,v) > ǫ0.

Reducing V̂ a little bit, for every

(w, z) ∈ Eu(G)× Eh(G)

we have
DuH̃1(u, v) · w +DvH̃1(u, v) · z ∈ B(Û(u,v)).

Moreover if w ∈ Eu(G) \ {0} we have

DuH̃1(u, v) · w ∈ Cu
2ǫ(RG),

so by Proposition 9.2,

(109) DuH̃1(u, v) · w 6∈ Eh
H̃1(u,v)

,

and moreover for every (w, z) ∈ Eu(G)× Eh(G) such that

DuH̃1(u, v) · w +DvH̃1(u, v) · z ∈ Eh
H̃1(u,v)

,

we have

(110) DuH̃1(u, v) · w +DvH̃1(u, v) · z 6∈ Cu
2ǫ(RG).

The image of H̃ is an open neighbourhood of u0 + H(u0) ∈ W s
δ3
(G), with G ∈

Ωn,p, in particular by Proposition 4.7 there exists (u1, v1) such that H̃(u1, v1) is
a map whose critical points belong to the same periodic orbit, and consequently
H̃1(u1, v1) = RH̃(u1, v1) is also a map whose critical points belong to the same
periodic orbit. Furthermore one can choose (u1, v1) arbitrarily close to (u0, 0). If
v1 = 0 choose w = u1 and we finished the proof in this case. Otherwise v1 6= 0 and
we consider the C1+Lip smooth map

(u, t, x) ∈ Eu(G)× R× U 7→ f(u,t)(x) := H̃1(u, tv1)(x).

The critical points of f(u1,1) belong to the same periodic orbit, so there are natural
numbers ik, k = 1, . . . , n and we can index the critical points

Crit = {(0, j)}0≤j≤n−1 = {(0, jk)}0≤k≤n−1

in such way that for every k ≤ n− 1

f ik
(u0,1)

(0, jk) = (0, jk+1 mod n) and f
i
(u0,1)

(0, jk) 6∈ Crit for i < ik.

We claim that there is a function t 7→ u(t), defined for every t ∈ [0, 1] such that

(111) f ik
(u(t),t)(0, jk) = (0, jk+1 mod n) and f

i
(u(t),t)(0, jk) 6∈ Crit for i < ik,

for every k ≤ n − 1. Indeed, let Y be the set of q ∈ [0, 1] such that there exists a
continuous function u defined on [q, 1] such that (111) holds for every t ∈ [q, 1] and
u(1) = u1. Note that 1 ∈ Y . We need to show that 0 ∈ Y . It is enough to show
that Y is a open and closed subset of [0, 1]. Indeed, suppose that (u2, t2) satisfies

(112) f ik
(u2,t2)

(0, jk) = (0, jk+1 mod n) and f
i
(u2,t2)

(0, jk) 6∈ Crit for i < ik,

for every k ≤ n− 1. Note that the linear map

w 7→ (Duf
ik
(u2,t2)

(0, jk) · w)0≤k≤n−1

is invertible, otherwise it would exists w ∈ Eu(G) \ {0} such that

Duf
ik
(u2,t2)

(0, jk) · w = 0
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for every k, so using the infinitesimal pullback argument one can conclude that

DuH̃1(u2, t2v1) · w ∈ Eh
H̃1(u2,t2v1)

,

which contradicts (109). So by the Implicit Function Theorem there exists an open
interval O with t2 ∈ O such that there is a unique continuous function u defined
on O such that (111) holds for every t ∈ O and u(t2) = u2. We conclude that Y is
an open set and that for each q ∈ Y there exists an unique continuous function U
defined on [q, 1] and satisfying and (111) and u(1) = u1. To show that Y is closed,
suppose that qn ∈ Y is a decreasing sequence converging to some q ∈ [0, 1]. Then
there exists a unique continuous function u defined in (q, 1] such that u(1) = u1
and (111) holds. We claim that u is a Lipchitz function on (q, 1], so we can extend
it to a continuous function u defined in [q, 1]. Indeed note that

∂tf(u(t),t) ∈ Eh
f(u(t),t)

,

so by (110)

(113) ∂tf(u(t),t) 6∈ Cu
2ǫ(RG).

Moreover

∂tf(u(t),t) = DRu(t)+H(u(t))+tv1 · (u
′(t) +DuHu(t) · u

′(t) + v1)(114)

Let

y = DRu(t)+H(u(t))+tv1 · (u
′(t) +DuHu(t) · u

′(t)).

Note that

|y|RG,0 ≥ λ
1− 2ǫ

1 + 2ǫ
|u′(t)|G,0

Suppose that |u′(t)|G,0 ≥ L|v1|G,0. If δ′ is small enough then there is C > 0 such
that

|πu
RG,0(∂tf(u(t),t))|RG,0 ≥

(

1−
C

Lλ

1 + 2ǫ

1− 2ǫ

)

|y|RG,0,(115)

and

|πh
RG,0(∂tf(u(t),t))|RG,0 ≤

(

2ǫ′ +
C

Lλ

1 + 2ǫ

1− 2ǫ

)

|y|RG,0.(116)

If L is large enough then

2ǫ′ +
C

Lλ

1 + 2ǫ

1− 2ǫ
≤ 2ǫ(1−

C

Lλ

1 + 2ǫ

1− 2ǫ
),

which implies that ∂tf(u(t),t) ∈ Cu
2ǫ(RG). This contradicts (113). In particular

there is L satisfying |u′(t)|G,0 ≤ L|v1|G,0 for every t ∈ (q, 1] and consequently u is
a Lipchitz function. So we can extend u to a continuous map to [q, 1]. It is easy
to see that (111) also holds for t = q. We conclude that Y is closed. Since Y is an
open, closed, non empty subset of [0, 1] we conclude that Y = [0, 1], so in particular

0 ∈ Y and therefore there exists w such that f(w,0) = H̃1(w, 0) = R(w + H(w))
is a map whose critical points belong to the same periodic orbit, and consequently
w +H(w) has the same property. �

Proof of Corollary 9.1. Let ǫ be small. It is easy to see that if δ3 > 0 is small
enough then for every G ∈ Ωp,n and for every C1+Lip function H ∈ T 1

0 (G, δ
′, ǫ),

with δ′ < δ3 and for every

F ∈ Ĥ ∩W s
δ3(Ωn,p),
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there is GF ∈ Ωn,p such that F ∈ W s
δ3
(GF ) and δ

′′ > 0 such that

{w+H(w) : w ∈ B
u(v0, δ

′)}∩{u+v+GF : u ∈ B
u
GF

(πu
GF

(F −GF ), δ
′′), v ∈ Eh

GF
}

is the graph ĤF of a C1+Lip function in T 1
0 (GF , δ

′′, 2ǫ). By Proposition 9.3 there is
w ∈ Bu

GF
(πu

GF
(F −GF ), δ

′′) such that w+HF (w) is a map such that all its critical
points belong to the same periodic orbit. In particular every map close enough to
w +HF (w) is a hyperbolic map with an attracting periodic orbit that attracts all

its critical points. In particular we can find hyperbolic maps in Ĥ arbitrarily close
to F . Note that hyperbolic maps do not belong to W s

δ3
(Ωn,p), since every map in

W s
δ3
(Ωn,p) is infinitely renormalizable. �

10. Families of multimodal maps

In the beginning of Section 9 we saw that a version of Theorem A. for real-
analytic families of extended maps that belong to WR can be obtained from the
hyperbolicity of Ωn,p, the Empty Interior Transversality property and [43, Theorem
1]. This is not enough to our purposes, once Theorem A. deals with real-analytic
families of multimodal maps. Indeed a multimodal map with more than a critical
point is not an extended map.

To prove Theorem A. we will need a classic tool, inducing. We will associate
to each real-analytic multimodal map f that is close enough to an infinitely renor-
malizable multimodal map with bounded combinatorics a renormalization F of f ,
that is an extended map in WR. Indeed a renormalizable multimodal map can
be renormalizable in many ways (it can have distinct cycles of restrictive intervals
with disjoint orbits) and many times (it can have deeper and deeper renormaliza-
tions), so we need to mark f with a restrictive interval P in such way to make this
association

(f, P ) 7→ I(f, P ) = F

well-behaved. Indeed we are going to see that I can be defined in such way that
it is a real-analytic map defined in an open set of a real Banach space with image
in WR. The derivative D(f,P )I of this map has dense image at every infinitely
renormalizable marked multimodal maps (f, P ), which allows us to use Proposition
8.1 of [43] to conclude that I−1W s

δ (Ωn,p) intersects a generic real-analytic family of
multimodal maps on a set of parameters with zero Lebesgue measure. This is the
main argument of the proof of Theorem A. We provide the complete proof below.

Let V ⊂ C be a connected open set, symmetric with respect to the real line
(z ∈ V implies z ∈ V ) such that [−1, 1] ⊂ V . In this section we will denote by
BC by affine subspace of B(V ) defined by the restrictions f(−1) = f(−1) = −1.
Denote by BR the real Banach space of all functions f ∈ BC that are real on the
V ∩ R.

Given m ∈ N, let ΓωR

m (BR) be the set of all continuous functions

γ : D
m

→ BC

that are complex analytic on Dm and such that γ(λ) ∈ BR for every λ ∈ [−1, 1]m.
We can endow ΓωR

m (BR) with the sup norm.
Let Γ ⊂ BR be the open subset of multimodal maps f : [−1, 1] → [−1, 1], where

−1 is a repelling fixed point, f ′(1) 6= 0, with quadratic critical points, negative
schwarzian derivative and f(−1, 1) ⊂ (−1, 1).
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Denote by Γn ⊂ ΓωR

n (BR) the subset of all families γ such that γ(λ) ∈ Γ for every
λ ∈ [−1, 1]n. Note that Γn is an open subset of ΓωR

n (BR).

10.1. Generic families. Our main result for generic families is

Theorem 7 (Theorem A). For every γ in a generic subset of Γm, the set Λ of
parameters λ such that γ(λ) has (at least) one solenoidal attractor with bounded
combinatorics on (−1, 1) has zero Lebesgue measure.

Proof. We divide the proof in several steps.

Step I (Marking restrictive intervals). It turns out that a multimodal map may have
many disjoint cycles of restrictive intervals. To deal with that we need to ”mark”
one of those restrictive intervals. To this end fix j ∈ N∗ and q, n ∈ N \ {0, 1}. Let
Oj,q,n be the set of all pairs (f0, P0), such that

A. The map f0 ∈ Γ has j critical points in [−1, 1].
B. P0 is a restrictive interval of f0 such that each f i

0(P0) have at most one
critical point for every i, ∪if

i
0(P0) contains n critical points and P0 has a

repelling periodic point in its boundary, with period q′ < q. In particular

f q′

0 (∂P0) ⊂ ∂P0.
C. The f0-forward orbit of any critical point on the orbit of such restrictive

interval P0 does not fall in the orbit of such periodic point.

Note that the image π1(Oj,q,n) of the projection onto the first coordinate in
Oj,q,n is an open subset of Γ. Of course the countable family

{π1(Oj,q,n)}j,q,n

covers all infinitely renormalizable multimodal maps.
Fix (f0, P0) ∈ Oj,q,n. By the implicit function theorem the repelling periodic

point of f0 in the boundary of P0 has an analytic continuation that is also repelling
and it defines a restrictive interval Pg for each map g in an open connected neigh-
borhood V0 of f0 on Γ and such restrictive interval also satisfies properties A., B.
and C. In particular the family F of pairs (V , P ) where

1. V is an open and connected subset of Γ, with f0 ∈ V .
2. The real analytic function

g ∈ V 7→ P (g)

associate with each map g ∈ V a restrictive interval P (g) of g satisfying
(g, P (g)) ∈ Oj,q,n and moreover P (f0) = P0.

is non empty and consequently by Zorn’s Lemma F has a maximal element with
respect to the order (V1, P1) < (V2, P2) if and only if V1 ⊂ V2 and P2(g) = P1(g)
for every g ∈ V1. We claim that such maximal element is unique.

We claim that if (V0, P0), (V1, P1) ∈ F then P0 = P1 on V0 ∩ V1. Indeed since
f ∈ Vi, i = 0, 1, has always j critical points (moving continously with respect to
f , since they are quadratic) and a point bf,i ∈ ∂Pi(f) is a repelling periodic point
of f that is analytic continuation of bf0,0 = bf0,1, it follows that all those periodic
points have exactly the same combinatorics with respect to the symbolic dynamics
defined by partition induced by the critical points. In particular if f ∈ V0∩V1 then
bf,0, bf,1 are repelling periodic points of f with the same combinatorics. Since f
has negative schwarzian derivative, the minimal principle implies that bf,0 = bf,1.
This proves the claim.
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In particular the maximal element of F , denoted by (Vf0,P0 , Pf0,P0), can be
described by

Vf0,P0 = ∪(V,P )∈FV

and Pf0,P0(f) = P (f) for every f ∈ V satisfying (V , P ) ∈ F . Note that

G = {Vf0,P0 : (f0, P0) ∈ Oj,q,n}

is a partition of Oj,q,n. We claim that such partition has a countable number of
elements. Indeed suppose that

{(fλ, Pλ)}λ∈Λ

is an uncountable family such that

Vfλ,Pλ
6= Vfµ,Pµ

for every λ 6= µ. Choose a complex neighborhood W of [−1, 1] such that W ⊂ U .
Then there exists a sequence λk ∈ Λ, k ∈ N, such that

P1. There are n and q′ < q such that (fλk
, Pλk

) satisfies the conditions A and
B for every k.

P2. limk(fλk
, Pλk

) = (f∞, P∞) on BR(W ), where (f∞, P∞) is a multimodal
map with j quadratic critical points, negative schwarzian derivative and
f∞(−1, 1) ⊂ (−1, 1), and that also satisfies A., B. and C. for the very same
n and q′ as in P1.

P3. There is θ > 1 such that if bλk
is the repelling periodic point in the boundary

of Pλk
then |Df q′

λk
(bλk

)| > θ for every k.

P4. If k 6= k′ then λk 6= λk′ .

By the implicit function theorem there is a ball Y of BR(W ) around f∞ and a
real-analytic function P defined in Y such that for every f ∈ Y we have that P (f)
is a restrictive interval for f satisfying A and B, and additionally P (fλk

) = Pλk

for every large k. In particular, choose k0, k1 large enough and a small connected
open subset W̃ ⊂ Γ around the segment {tfλk0

+ (1− t)fλk1
, t ∈ [0, 1]}. Then the

function P is defined in W̃ , which implies that

Vfλk0
,Pλk0

= Vfλk1
,Pλk1

,

which is a contradiction. This completes the proof of our claim.

Step II. (Replacing multimodal maps by extended maps of type n) A real analytic
multimodal map does not have the nice structure of a multimodal map of type
n. Fix some open set Vf0,P0 ⊂ Oj,q,n. We will replace every g ∈ π1(Vf0,P0) by a
induced map that is an extended map of type n. Denote by Ig the extended map
of type n that is the renormalization of g associated with the restrictive interval
Pf0,P0(g). Of course Ig is a real-analytic extended map with negative schwarzian
derivative and quadratic critical points.

Step III. (Compexification). Fix p ≥ 2 Let W ⊂ Bnor(U) be the domain of the
complexification of the p-bounded renormalization operator R as defined Section
3. Note that if Ig is infinitely renormalizable with p-bounded combinatorics we
don’t necessarily have that Ig ∈ W . It may be the case that Ig is not defined
on the domain U , for instance. However by the beau complex bounds given by
Proposition 2 and the universality result in Proposition 4.6 there is k such that
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Rk′

(Ig) ∈ W for every k′ ≥ k. Again by the beau complex bounds and Proposition
4.6 we can find open subsets Vk

f0,P0
⊂ Vf0,P0 such that for

E1. For every g ∈ Vk
f0,P0

we have that Ik(g) = Rk(Ig) is well defined and it
belongs to W .

E2. For every g ∈ Vk
f0,P0

that is infinitely renormalizable with p-bounded com-

binatorics we have Rk′

(Ig) ∈ W for every k′ ≥ k.
E3. We have that

∪kV
k
f0,P0

contains all infinitely maps in Vf0,P0 which are renormalizable with p-
bounded combinatorics.

The operator Ik has a complexification (it can the proven using exactly the same
argument as in the complexification of the renormalization operator in Section 3).
From now on we restrict Ik to real maps. Note that the image of the operator DgIk
is dense in TBR

nor(U) (again, the argument is the same as with the renormalization
operator in Theorem 3).

Step IV. (Applying the hyperbolicity of Ωn,p). Due Theorem 5 we have that Ωn,p

is a hyperbolic invariant set of R. Moreover Corollary 9.1 says that W s(Ωn,p) has
transversal empty interior. Theorem 3 tells us that DFR(TFBR

nor(U)) is dense in
TRFBR

nor(U) for every F ∈ WR. So we conclude that R (restricted to real maps)
satisfies the assumptions of Theorem 1 in [43] (taking k = ωR there). Now we
can apply Proposition 8.1 of [43] taking M = Ik to conclude that for a generic
γ ∈ ΓωR

n (BR) the set of parameters λ ∈ [−1, 1]n where Ik(γ(λ)) is infinitely renor-
malizable with p-bounded combinatorics has zero Lebesgue measure. Since there is
just a countable number of choices for k, elements of G, q, p and j, we concluded
the proof. �

Indeed Proposition 8.1 of [43] implies an analogous result for finitely differentiable
families of maps in Γ. We refer the reader to [43] for additional statements and
definitions for this setting.

10.2. Transversal families of polynomial-like maps. Recall the definition of
Êh

f and Êv
f in Section 4.2.

Theorem 8 (Transversal families). Let Λ be an open subset of Cd. Let

λ ∈ Λ 7→ fλ : V
1
λ → V 2

λ

be a complex analytic family of polynomial-like maps such that for every λ ∈ Λ∩Rd

we have that V 1
λ , V

2
λ are symmetric with respect with R, its real trace is an interval,

fλ(x) ∈ R for every x ∈ R, fλ has negative Schwarzian derivative and just qua-
dratic critical points on the real line. Suppose that for every λ0 ∈ Rd such that fλ0

is infinitely renormalizable with bounded combinatorics we have that

(Transversality assumption.) Every holomorphic vector in a neighborhood of

K(fλ0) can be written as a sum of a vector in Êh
fλ0

and a vector in

Dλfλ|λ=λ0 (R
d).
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Then the set of parameters λ ∈ Λ ∩ Rd where fλ is infinitely renormalizable with
bounded combinatorics has zero d-dimensional Lebesgue measure.

Proof. We can find a countable family of domains Ui ⊂ C, symmetric with respect
to R, and open subsets Λi ⊂ Λ ∩ Rd such that ∪iΛi = Λ ∩ Rd, fλ ∈ B(Ui), for
λ ∈ Λi, with K(fλ) ∩ R ⊂ Ui ∩R, and

λ ∈ Λi 7→ fλ ∈ B(Ui)

is an real analytic family. It is enough to prove the conclusion of Theorem 8 for
each one of those families. So fix i. The proof goes as the proof of Theorem 7.
We can define the sets Oj,q,n replacing the pairs (f, P ) by pairs of the form (λ, P ),
where λ ∈ Λi and P is a restrictive interval of fλ. In a similar way we can define
(Vλ0,Pλ0

, Pλ0,Pλ0
), the sets Vk

λ0,Pλ0
⊂ Λi and the real-analytic parametrized families

λ ∈ Vk
λ0,Pλ0

→ Ik(fλ) ∈ W .

Suppose that fλ is infinitely renormalizable with p-bounded combinatorics. Then

DfλIk(E
h
fλ
) ⊂ Eh

Ik(fλ)
.

This follows exactly as the proof of Proposition 4.2. On the other hand we know
(see the proof of Theorem 7) that Im DfλIk is dense in TIk(fλ)B

R
nor(U). By the

Transversality assumption this implies that there is a subspace Sλ ⊂ Rd, with
dimSλ = n, such that

DfλIk ·Dλfλ(Sλ) ⋔ Eh
Ik(fλ)

.

Suppose that λ0 is such that fλ0 is infinitely renormalizable with p-bounded combi-
natorics. Let v1, . . . , vn, vn+1, . . . , vd be a basis of Rd such that v1, . . . , vn is a basis
for Sλ0 . Then for every γ = (γ1, . . . , γd−n) ∈ Rn−d that is small enough we have
that the family

θ = (θ1, . . . , θn) 7→ gθ = fλ0+
∑

n
i=1 θivi+

∑
d
i=n+1 γi−nvi

,

where θ is also small, satisfies

DgθIk ·Dθgθ(R
n) ⋔ Eh

Ik(gθ)
.

So by [43, Corollary 10.2] we have that for every small γ, the set of small param-
eters θ such that gθ is infinitely renormalizable with bounded combinatorics has
zero n-dimensional Lebesgue measure. By the Fubini’s Theorem it follows that
in a small neighborhood the parameter λ0 the set of parameters λ such that fλ
is infinitely renormalizable with p-bounded combinatorics has zero d-dimensional
Lebesgue measure. This completes the proof. �

Proof of Theorem C. Let fλ1,λ2(z) = z3 − 3λ21z + λ2. Note that if λ1 = 0 then
fλ1,λ2 is not infinitely renormalizable, so we assume that λ1 6= 0. Let λ0 = (a, b),
a 6= 0. Then

∂λfλ|λ=λ0(R
2) = {cz + d, c, d ∈ R}

By Proposition 4.8 we have that Êv
fλ

is the space of cubic polynomials, so dim Êv
fλ

=
4 and

∂λfλ|λ=λ0(R
2) ⊂ Êv

fλ .

We claim that

(117) {2z3 − b,−3z2 − 3a2 − 1} ⊂ Êh
fλ ∩ Êv

fλ
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Indeed, let Ht(z) = z/t. Then

2z3 − b = ∂t(Ht ◦ fa,b ◦H
−1
t (z))|t=1,

so 2z3 − b = α1(fa,b(z)) − Dfa,b(z)α1(z), where α1(z) = ∂tHt(z)|t=1 = −z. Let
St(z) = z − t. Then

3z2 − 3a2 − 1 = ∂t(St ◦ fa,b ◦ S
−1
t (z))|t=0,

so 3z2 − 3a2 − 1 = α2(fa,b(z)) −Dfa,b(z)α2(z), where α2(z) = ∂tSt(z)|t=0 = −1.

Since {1, z, 2z3− b, 3z2− 3a2 − 1} is a basis of Êv
fλ
, by (27) and (117) we have that

every holomorphic vector in a neighborhood of K(fa,b) can be written as a sum of

a vector in Êh
fa,b

and a vector in ∂λfλ|λ=λ0(R
2). Now we apply Theorem 8. �

10.3. Compositions of quadratic maps. We can say something about a specific
family of extended maps of type n. This family was introduced in [40]. Let λ =
(λi)i≤n, with λi ∈ [0, 1] and define

Fλ : C× {i}i≤n → C× {i}i≤n

as Fλ(z, i) = (−2λiz
2 + 2λi − 1, i+ 1 mod n).

It follows from the study in [40] that each possible combinatorial type of an
infinitely renormalizable extended map of type n with combinatorics bounded by
p can be realized by a unique parameter in [0, 1]n and the set of such parameters
Λp,n ⊂ [0, 1]n is a Cantor set [40, Theorem 2]. The following result answers a
conjecture in [40].

Theorem 9. We have that m(Λp,n) = 0, where m is the n-dimensional Lebesgue
measure.

Proof. Due Corollary 10.2 in [43], it is enough to show that this family is transversal
to the horizontal distribution F → Eh

F . We will give a proof similar to the proof
of the transversality of the quadratic family by Lyubich [27]. Indeed, suppose by
contradiction that there exists λ0 ∈ Λp,n and w ∈ Rn \ {0} such that

v = ∂λFλ|λ=λ0 · w ∈ Eh
Fλ0

.

So there is a quasiconformal vector field α0, defined in a neighborhood of the post-
critical set P (Fλ0) satisfying (17) on P (Fλ0 ). Since this is a family of polynomials,
the conformal dynamics outside the Julia set of Fλ0 is always the same, so v is also
a vertical direction, that is, there exists a conformal vector field α1 defined outside
the Julia set such that (17) holds outside the Julia set. Using the infinitesimal pull-
back argument we can find a quasiconformal vector field solution α that satisfies
(17) everywhere and moreover it is conformal outside the Julia set. Since Fλ0 does
not support invariant line fields on its Julia set we conclude that α is conformal
everywhere and indeed it is equal to zero, since it is zero at three points of C×{i},
for each i ≤ n. So v = 0, which implies w = 0. �

Remark 10.1. Note that Λp,n only includes the parameters where each renormal-
ization involves all n critical points, that is, each cycle of intervals covers all critical
points. If we consider infinitely renormalizable maps where fewer points are involved
then the set of parameters it is not a Cantor set anymore. However it is likely that
this larger subset of parameters also have zero Lebesgue measure.
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[17] A. I. Gol′berg, Y. G. Sinăı, and K. M. Khanin. Universal properties of sequences of period-
tripling bifurcations. Uspekhi Mat. Nauk, 38(1(229)):159–160, 1983.
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Universidade de São Paulo-Campus de São Carlos (ICMC/USP/São Carlos), Caixa Postal
668, CEP 13560-970, São Carlos-SP, Brazil

Email address: smania@icmc.usp.br

URL: http://conteudo.icmc.usp.br/pessoas/smania/

http://conteudo.icmc.usp.br/pessoas/smania/

	1. Introduction.
	2. Renormalization of extended maps.
	3. Complexification of the renormalization operator R.
	4. Action of DR on horizontal directions.
	5. Hyperbolicity of the -limit set n,p of R.
	6. Induced expanding maps.
	7. Induced problem.
	8. Solving the induced problem.
	9. Transversal families have hyperbolic parameters.
	10. Families of multimodal maps
	References

