350

ALGUNS RESULTADOS SOBRE O “FORCING” DE
FRAISSE — A M. Serte, credenciado pelo Académico
Cuamm S. HONIG — Instituto de Matemdtica e Estatistica,
Universidade de Sao Paulo, Sdo Paule, SP — O método do
“forcing” teve origem com os trabalhos de P. Cohen sobre
a independéncia do axioma da escolha e da hipdtese do
continuo (1963). O desenvolvimento deste método na teoria
dos modelos & recente e teve inicio com os estudos de A.
Robinson (Forcing in model theory, Symposia Mathema-
tica. 5, 1970, 64-82) e R. Fraissé (Course of mathematical
logi, vol. 2, D. Reidel Publishing Company. A edi¢io fran-
cesa & de 1972), Apesar de terem tido a mesma motivagdo,
tais “‘forcings™ diferem consideravelmente.

Fixando uma linguagem (de 1.* ordem) L, um con-
junto A de constantes, distintas das de L, ¢ uma teoria
T(em L). Robinson define indutivamente a meta-relagio
P Ik (leia-se “P forga @) entre condigdes (ie., entre
conjuntos finitos P de sentengas atomicas ou negagoes
de atdmicas, tais que T P seja consistente) e sentengas
¢ de L(A). Com isto, & possivel associar-se a cada teoria
T (fixada de inicio) o conjunto de sentengas T' = [¢ :¢p
¢ uma sentenga de L ¢ & IF11¢). Mostra-se que T'
¢é fechado pela dedugio e consistente.

Surpreendentemente, verificou-se que o vperador T
» T' estende o operador T~ T* que a certas teorias
T associa seu “companheiro semintico” T* A impor-
tancia disto reside no fato de ser a teoria T* o anélogo
formal da teoria dos corpos algebricamente fechados,
no caso de ser T a teoria dos corpos.

Fraissé parte de uma estrutura M = {|M|,R1,...,R«)
e de uma linguagem L tendo como predicados os sim-
bolos Ri,...,R«,S1.....8:. Uma condigio (segundo Fraissc)
¢ um conjunto finito e consistente de sentengas de
um dos seguintes tipos. Siay....am) ou  Sjlai,...ans)
com ij=1,..,n e ae|Ml Indutivamente, define-se
as metas-relagoes P+ . g e P F - @ (leia-se “P for¢a( +)¢”
e “P forca (—)”, respectivamente) entre condig¢des ¢
sentencas de L(M). Mostra-se que o conjunto M®.=f =
= {@ ¢ é uma senten¢a de L(M) tal que nenhuma con-
digio P forga( — ) ¢] € fechado pela dedugdo e consistente.
Fica, portanto, definido um operador que a cada estrutura
M (e predicados S;.....S,) associa a teoria M®i¥,

Numa primeira tentativa de comparar estes dois
conceitos somos tentadoes a considerar ¢ “cperador” que
a cada teoria Th(M) = {@ :M|= @} associa M>i5
No entanto, como ficou provado por um aluno de Fraissé,
pode-se ter My=M; e MBS 2 MY % ou
seja, Th(M)r> MSv=%  nio define uma fun¢do. Por
outro lado, MSi5 ¢ em geral, diferente de (Th(M))".
Se, no entanto, considerarmos o forcing de Robinson
relativamente a L(M|) ¢ aoconjunto A = tem-se
que:

TEOREMA | — M58 = (Th(M)©.

Um outro resultado interessante se pode obter fi-
xando-se (no forcing de Fraissé) uma teoria T na qual
ocorrem apenas os predicados  8;,....8, e exigindo-se
que as condigdes (segundo Fraissé) sejam consistentes
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com T. Nesie caso, mosira-s¢ ainda que o conjunto
(M, T)%=% = lp: ¢ & uma sentenga de L tal que
nenhuma condi¢ao forga(—)p} ¢ fechado pela dedugdo
e consistente. Além disto, tem-se:

TEOREMA 2 (M, T)% % =ThM) UT"U Cut
onde Cyy ¢ o conjunto de sentengas na qual ocorrem
predicados R; e S,

Como corolério, decorre que no caso de M se re-
duzir a umconjunto, i.e, M = |[M|, tem-se (M, T)% 1% =
=T' ese T= . ousea, nocasoem que T ¢ uma
uma teoria sem axiomas ndo logicos. (M.T)% 1% =
= M%i-%,  Obtemos, assim, os “forcings” de Robinson
e de Fraiss¢ como casos particulares ¢ extremos deste
altimo.

O Teorema 3, que se segue, nos di alguma informagao
a respeilo da relagio que devem satisfazer duas estrutu-
ras Mo e M; a fim de que M35 =MFi5s,

DEFINIGAO Um O-isomorfismo ou um isomorfismo
local ¢ uma bijegiio, de um subconjunto de [My| em um
subconjunto de [My|, que preserva estrutura. Dizemos
que o isomorfismo local f:Fc|Mg|— Ec|M;| ¢é um
k-isomorfismo se, dado um conjunto finito  Ac|Mo|
(B<|M,|), existe uma extensio [ de f(f™' de ') ao
conjunto FJA (ELB) que é ainda um (k—1)-iso-
morfismo.

TeorEMA 3 — Se existe um isomorfismo local f: Mg — M,
que ¢ um k-isomorfismo qualquer que seja k entdo ...
(Mg, TH8 %0 = (M, T)S 1% (em particular M+
= M7 S,

COROLARIO 1 — Se M, ¢ isomorfa a M,; entio
(Mo, TS veSa = (M, THS 15, — (10 de maio de 1977).

CAMPOS DE VETORES TANGENTES A UMA FO-
LHEACAO DE REEB EM S® — ELVIA MUREB SALLUM,
credenciada pelo académico Coane S, HosiG Instituio
de Matemdtica e Estatistica, Universidade de Sao Paulo,
Sdo Paulo, SP — Este trabalho ¢ a continuagio natural da
nossa comunicagdo: “Generic properties of vector fields
tangent to a Reeb foliation”, An. Acad. brasil. Ciénc, (a apa-
recer), que indicaremos com [17, na busca de campos genéri-
cos com respeito ao conjunto nao errante. Indicaremos com
%4(8?) o espago dos campos de vetores de classe ¢, r > 4,
na esfera S* tangentes a uma folheagio de Reeb o, com
T? afolha compactade ¢ ecom F, afolha que contém ¢
ponto peS*. .

Os principais resultados apresentados aqui referem-se
a demonstragdo de um teorema genérico do tipo G2
(Teorema 1) e 4 descrigio genérica do conjunto ndo erran-
te num aberto de 35(S?) (Teorema 2).

DEFINIGAO 1 — Seja um campo X e%4(S?). Chamaremos
de liga¢do de selas a uma orbita regular y cujos o e ©
limites sdo pontcs criticos p; ¢ p; contides na folha
que contém vy, do tipo sela ou sela-n6é para a restrigio
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)_q“’v que ndo € interior a variedade invariante bidimen-
s_lmw‘] da selané (ver: J. Sotomaycr, Generic one parameter
Ja”tm“s of vector fields on 1wo dimensional manifolds, Publi-
Cations Mathématiques n° 43, IHES, 1974, que serd indi-
cado com [2]).

DEFINIGRO 2 — [2] — Chamaremos de elementos quase
genéricos de X ezyS®) as orbitas peridicas (inclusive
Pontos criticos) quase genéricas nas respectivas folhas, as
Auto liga de selas p com trago DX|gp# 0 e as ligagdes
entre selas distintas,

TEOREMA

I — Existe um conjunto Gy, residual em

%(8%) de campos X tais que:

a) X|1: é Morse-Smale

b) as orbitas periddicas sio hiperbolicas ou quase
genéricas nay respectivas folhas

©) as ligagdes de sela sdo quase genéricas

d) aparece no maximo um elemento quase genérico
€m cada folha

A prova do teorema acima é uma consequéncia de
fesultados de [1] e dos seguintes lemas:
_LEM-" 1 Dado um inteiro m > 0, existe um con-
Ju"‘_“ Ga(m), aberto e denso em ¥X(S?), de campos cujas
éfb"ﬂs periédicas de periodo menor ou igual a m sdo
h”DCrbélicas ou quase genéricas nas respectivas folhas e
la“ls que cada folha contém no maximo uma Orbita perio-
dica quase genérica de periodo < m.

!"EM‘\ 2 — Dados inteiros m, n > 0, existe um con-
JUnto  Gi(m,n), aberto e denso em xXS*), de campos

€Gy(m) cujas ligagdes de selas de comprimento menor
OUigual a n sio elementos quase genéricos que apare-
M no maximo um em cada folha onde ndo aparecem
Orbitag periddicas quase genéricas do periodo < m.

I:fmmﬁn 3 — Seja XeyXS?) com uma 6rbita perio-

dica ycT? 4o periodo # 0, hiperbdlica atratora para
X|12. Diremos que 7 ¢é do tipo sela se ¢ homotdpica a

%Ta3 m, ninteiros, m'n<0, m#0 ou n#0 onde
[%] sio os geradores do grupo fundamental de T? e a
Olonomia H(y;) ¢ dada por

{f;(l) <t 120

fi=t t<0 B>t t<0

Defnigio 4 — (ver: Z. Nitecki and M. Schub — Filtrations,

€Compositions, and Explosions Amer. Journal of
Math,, vol. XCVIL, n° 4, 1975). Um campo X exi(s?)
40 tem Q-explosio se dada qualquer vizinhanga U do
“onjunto ndo errante de X, Qy existe uma vizinhanca

—

* Este trabalho foi feito junto ao Departamento de

Ciéncia g Computagdo Universidade Stanford, Stanford,
Californiq, enquanto o autor encontrava-se em afastamento
d4a Universidade de Séao Paulo.
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U docampo X em XJ(S*) tal que Qy = U para todo
Yel.

TeOorREMA 2 — Seja um campo X e Gz
senta 6rbita periddica tipo sela, Entio;

que nio apre-

1) o conjunto ndo errante Qy coincide com o fecho
do conjunto das 6rbitas periddicas, que ¢ uma reunido
finita de circulos, esferas, toros, disces e cilindros.

2) X ndo tem Q-explosio.

Seja G o aberto dos campos X eyg(S?) tais que
X|r: € Morse-Smale e nio tem 6rbita periddica tipo sela.
Observamos que G €& ndo vazio.

CorOLARIO — O conjunto dos campos XeG que nido
tem Q-explosic é denso em G.

Estes resultados fazem parte do programa de douto-
ramento da autora no IME-USP sob a orientagio do

Prof. W. M. Oliva, — (10 de maio de 1977 ).

REDUTIBILIDADES SUBRECURSIVAS — Istvan Si-
mon*, credenciado pelo Académico CHAM S, HONIG —
Instituto de Matenidtica e Estatistica, Universidade de Sao
Pauio, Sao Paulo, SP — Redutibilidades subrecursivas se
obtém, em geral, de redutibilidades recursivas, impondo-se
um limite superior a priori em algum recurso computacio-
nal, tal como tempo ou espago, no procedimento de re-
dugio. Nos pressupomos, nesta nota, alguma Familiari-
dade com redutibilidades recursivas que foram amplamente
estudadas. (Veja por exemplo, H. Rogers, Theory of Recursi-
ve Functions and Effetive Computahifiny. McGraw Hill,
1967) _

De importéncia particular em Teoria da Computagdo
sio as redutibilidades polinomiais definidas por Ladner,
Lynch e Selman (A comparison of polynomial time reduci-
bilities, Theoretical Computer Science, 1, No 2, 1975, pp.
103-123). O recurso computacional neste caso ¢ tempo que
¢ superiormente limitado por um polinémio no tamanho
da entrada do procedimento de redugio. Nesta nota trata-
remos de algumas propriedades destas redutibilidades.

O modelo de computagio usado seri a Maquina de
Turing com ordculo, dispondo-se de uma fita de entrada,
uma fita de saida, e um nimero finito positivo de fitas de
trabalho. Uma das fitas de trabalho ¢ a fita do ordculo.
Uma maquina de Turing com o oraculo vazio,
&, sera designada simplesmente como uma maquina de
Turing. A ndo ser que se especifique que a maquina é
niio deterministica admiti-la-emos ser deterministica, (Para
outros pormenores e definigbes sobre o modelo veja H.
Rogers, op. cit.).

Seja X um alfabeto finito, e Z* o monoide livre
gerado por X, 1.é. ZI* & o conjunto de palavras sobre
E. O nimero de simbolos de uma palavra x, denotada
por |x|, ¢ o comprimento de x. Entenderemos por po-
linémio, no que se segue, um pelindémio sobre o anel dos
inteiros, Um algoritmo pclinomial é uma méquina de
Turing que para qualquer entrada xeX* de compri-
mento n paraem p(n) passos, onde p(n) é um poliné-
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