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Abstract

We present a procedure to calculate quite accurately double-folding potentials
involving deformed densities. The calculations are performed in the context
of the generalized rotation-vibration model, which is a general approach to
describe rotations and vibrations of nuclear densities for heavy nuclei. The
present method is appropriate for obtaining the coupling potentials intended
for future applications in coupled-channel calculations. We compare our results
with those obtained from other models usually assumed in coupled-channel
analyses.
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1. Introduction

There are many phenomena of nuclear structure that can be understood by considering the
collective movement of the nucleons in the nucleus. The idea behind several collective models
implies treating the nucleus as an incompressible drop that can be deformed. There are two
extreme approaches in this context: in the rotational model (RM) the nucleus has a fixed
deformed shape, while in the vibrational model (VM) it can vibrate around the spherical
shape. Many nuclei present low-lying level schemes quite similar to those predicted by the
RM or VM. Eisenberg and Greiner proposed the rotation-vibration model [1], in which small
amplitudes of vibration around an average deformation are allowed. The case where there
is no restriction between the amplitude of vibration and the average deformation values was
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recently proposed in [2]. We refer to this approach as the generalized rotation-vibration
model (GRVM). The scope of the GRVM includes the cases of the quadrupole and octupole
deformations for even-even nuclei. It also takes into account the effects of the diffuseness of
the nuclear densities, which is usually neglected in other models.

Due to their internal structure, the collision between heavy-ions results in many different
processes, such as elastic and inelastic scattering, transfer reactions and nuclear fusion. A
fundamental approach to this kind of problem is through coupled-channel (CC) calculations
(see e.g. [3, 4]), where a few channels are explicitly considered in the solution of the
corresponding coupled equations, while the effect of the others should be simulated by
the optical potential. Many works have demonstrated that the couplings have an important
effect on the calculation of cross sections for several processes (for review see e.g. [4—10]).
In particular, it was discovered in the late 1970s [11-13] and confirmed in many works
[4-10] that, at sub-Coulomb energy region, the couplings can represent an enhancement of
several orders of magnitude of the fusion cross sections in comparison with results obtained
from the unidimensional barrier penetration model. For most of systems, this enhancement is
associated with the inelastic couplings related to the states of the quadrupole and octupole bands
[14-16]. As already commented, these bands are described in the context of the GRVM. On the
other hand, CC calculations have not accounted for the experimental fusion cross sections at
extreme sub-barrier energies (e.g. [17]). Furthermore, a lack of consistence between potentials
assumed to describe the fusion and elastic scattering processes has been found (e.g. [18]). It
was suggested in [19] that the disagreement between the data and theoretical results could
be related to some approximations and/or modeling commonly assumed in CC calculations,
which may result in inaccurate cross sections, especially in the case of systems involving
highly deformed nuclei. Taking this case into account, a method to obtain deformed potentials
with a high degree of precision would be of importance to test the accuracy of the results
currently obtained from the usual numerical CC calculations. This is, indeed, the main goal of
the present work.

The calculation of double-folding potentials involves a six-dimensional integral that,
in the case of spherical densities, can be easily performed through the Fourier transform
method [20]. In the case of deformed densities, the six-dimensional integral can also be
calculated without any approximation, directly from numerical integration as well as through
the Fourier transform method, although both procedures require considerable computation
time. Even so, these methods are not appropriate for application in CC calculations. In fact,
the corresponding coupling potentials involve the folding of the deformed potential with the
wave-functions that describe the states of the nucleus. In general, these wave-functions depend
on several coordinates (of deformation) and, therefore, the calculation of coupling potentials
generally involve multi-dimensional integrals that, in practice, cannot be solved numerically.
Thus, methods to solve these multi-dimensional integrals analytically, at least in part, are
very important to practical applications in CC calculations. A possible form to obtain this
result is to express the deformed potential as an explicit function of the deformations, as
performed, for example, in [21, 22] for the case of the Coulomb interaction. We point out that,
due to the corresponding simplicity for calculation, coupling-potentials usually assumed for
the Coulomb interaction in CC calculations arise from models where the sharp cutoff shape
(vanishing diffuseness) is adopted for the charge distributions (see e.g. [7, 21, 23]).

In the present paper, we present a general procedure to calculate quite accurately double-
folding potentials involving deformed densities. The method is a generalization of that reported
in [21, 22] and is based on the expansion of the nuclear densities up to second order in the
deformation. In the present work, we apply the procedure to the calculation of both, the nuclear
and Coulomb, interactions in the particular context of the GRVM, but the method can also
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be easily applied to different models. With the purpose of testing the corresponding accuracy,
we compare our results with those from common approximations usually assumed in CC
calculations, and also with exact results from the numerical calculation of the six-dimensional
integral. We also study the effect of assuming a finite value for the nuclear diffuseness on the
deformed Coulomb potential.

In section 2 we present a brief review of nuclear densities and of the GRVM. The methods
to calculate deformed potentials without approximation are described in section 3. Section 4
presents models usually assumed for the Coulomb and nuclear potentials, while section 5
describes the present method of calculation. In section 6, we discuss the results of the different
approximations in the case of a system involving quite deformed nuclei. Section 7 contains
our main conclusions.

2. Nuclear densities and GRVM

In this section we present a brief description of nuclear distributions in the context of the
GRVM [2]. In a totally general basis, the nuclear density can be described, in a frame whose
origin coincides with the center of mass of the nucleus, by a function p(¥), where 7 is the
position vector of a point in space in the direction 2, = (6, ¢). In the present work, we only
consider deformed densities that can be expressed as a function of » and A, where A is the
deformation in the direction (6, ¢), which can be expanded in multipoles:

p(F) = p(r, A), ey
oo A

AG.¢) =) o}, Yiu(0.9). )
A=0 pu=—A~

In (2), Y, are the spherical harmonics and o, are the coordinates of deformation. Since the
deformation must be a real number, one obtains:

= (D', 3)

If the frame of reference is rotated by a set of Euler angles (0, 0, 03), the coordinates of
deformation are transformed as:

ayy = ZD,XJL (61,602, 03)as,., 4)
w

where D;\L L are the Wigner rotation functions (we follow here the conventions of [1, 2]).
The calculations of the Coulomb and nuclear potentials involve, respectively, the charge
and matter distributions. These distributions should be normalized as follows:

/ p(r, A)dr'= A (matter) or Z (charge) 5

where A and Z are the numbers of mass and protons of the nucleus, respectively. We define
the spherical density pg(r) associated to the deformed one through:

po(r) = p(r,0). (6)
In this context, the nuclear incompressibility can be expressed by the invariance of the volume
relative to the deformation, i.e.:

/ p(r, A)dF = 4n [ po(r) 2 dr. (7)
Since the center of mass must coincide with the origin of the frame of reference, we have:
/p(r, A)rdr=0. ()
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(7) and (8) represent links among the coordinates of deformation. Through them, the monopole
and dipole (aqp and «,,) parameters can be considered as functions of the coordinates of the
higher orders.

Within the GRVM, the Fermi distribution is assumed to represent the deformed shape of
the nucleus, by expanding the nuclear radius in multipoles:

p(r A) = 2 ,

I +exp{lr—Ro(1 + A)l/a}
where € is the normalization constant and a is the nuclear diffuseness. Furthermore, only
terms up to octupole are considered in the expansion (2). The quadrupole and octupole modes
are totally independent. The corresponding intrinsic frames of reference are defined as those
where the coordinates of deformation can be written as:

)

B .
ax = Prcosy; ay =ar_1=0; an=a_,=—=siny, (10)

V2
azp = B3; a3, =0(u #0). (11)

Since we have considered only terms up to the octupole order in (2), a fixed shape of a
deformed nucleus can be expressed, in the laboratory frame of reference, through the 16 o,
complex coordinates. On the other hand, these coordinates are related by equations (3) to (8),
(10) and (11), and, therefore, they are functions of only 9 (real) coordinates: ,, y, B3 and the
two sets of Euler angles for A = 2 and 3.

Considering only contributions to second order, as well as an approximation to the Fermi
distribution [24], (7) and (8) result in [2]:

1 2, g2
woo ~ — % , (12)
A/ 47 1 + ng
0
71d*
27 (1 + 24R2) * *
o R — - [Beaagerzo + V810, + o ta)
1407'[ <1+E+ “a3)
8R2 24R3
+ \/5(0522“;2 + a5a3)], (13)
714>
[27 (1 + W)
oy~ . (v/3 az0a1 — V600031 + o0y
1407 <1 + Lﬂz + 1133)
82 T 4R}
— 100[;10632 — VvV 150{;20633). (14)

Following the systematics reported in [2], the diffuseness values of the densities are taken
to be:

a =0.5040.00018 A (fm). (15)
The radius of the spherical nucleus is obtained for charge distributions from:
Ry = 1.67Z'3 +0.57(N'? — Z'/3) — 0.97(fm), (16)

where N is the number of neutrons of the nucleus. For matter distributions we have:
_ N x Rneutron +Z x Rproton
0= 1 )
where Rpot0n 18 the Ry of the charge distribution and Rpeygron is obtained from (16) by exchanging
N and Z. The €, parameter can be found from the normalization of the densities (5).

a7
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T Z; Oy ZLab
R-1+7,

S
Il

Figure 1. Schematic representation of the collision between two nuclei. The solid and
dashed lines represent the deformed and spherical radii of the nuclei, respectively. Zj .,
and Z; represent the laboratory frame of reference and the intrinsic frame of nucleus 2.
In this case, 6 represents the set of Euler angles for nucleus 2. R connects the centers of
mass of both nuclei. The figure indicates the radius of the associated spherical nucleus
1 (Ro1) and the radii of the two deformed nuclei in_the direction of R (R; and R»). S
is the distance between surfaces in the direction of R and &, and §, are the differences
between deformed and spherical radii in this same direction.

3. Exact methods of calculation of double-folding potentials

Figure 1 presents a scheme of a nuclear collision. The solid and dashed curves represent the
radii of the deformed and associated spherical nuclei, respectively. Z; ,, and Z; represent the
laboratory frame of reference and the intrinsic frame of nucleus 2, and, thus, 6 represents
the set of Euler angles for nucleus 2. R is the vector that connects the centers of mass of both
nuclei. The double-folding potential between these nuclei can be written as [20]:

V(R) = /pl (F)p2(R)u(R — i + 73) dFy d7. (18)

For the Coulomb interaction: u(7) = ¢?/r. In the case of the nuclear potential, u(¥) represents
the effective nucleon—nucleon interaction. In our present calculations, we assume the Sdo
Paulo potential [24] where, for low energies, we have u(7) = Vy §(¥), with V) = —456 MeV
fm3. Due to the Dirac delta function, in this case we can rewrite (18) as:

V@R =V0//01(71)/02(71 — Ry dF. (19)

We point out, however, that the methods presented in this work can be easily adapted to other
models of the nuclear interaction.
The Fourier transform of a function u(#) and its inverse are given by:

(k) = / u(7) e d7, (20)
1 R
u(@) = — | ack)e *"dk. (2]
83
Thus, (18) can be written as:
>3 1 ~ 7 - S\ ik (R+AH—F) A7 A7 2
VR = / G(E) pr (71) pa () e FFH-0) 4R 7, i 22)
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where
ii(k) = 4e?/k*  Coulomb potential, (23)

(k) = Vg Sao Paulo potential. (24)
Following [21], we use the plane-wave expansion:
= dm Y i (k) Y () Yoy (),
Al

e =4 3 i (k) V() Y1, (20), (25)

Ap

where j, (kr) are the spherical Bessel functions. According to (23) and (24), IZ(E) does not
in fact depend on the direction €2; in the cases of the Coulomb and Sao Paulo potentials.
Considering this fact as well as (25), (22) can be rewritten as:

VR =) Viu(R) Y (Qr) = D Vi, (R) Y3, (), (26)
AL Ap

Vin(R) =8 { D i [ / (k) jo. kRYMS) (M), (k) k2 dk}

Apr  dape

x [ / Y (0], (QOY (20 dszk} } 27

MW = [ 7)) 3,02 07 o8

The integral of the three spherical harmonics of (27) can be expressed through Clebsch—
Gordan coefficients (again we follow the conventions of [1]):

Crr+D@RA+ 1) 55 i
gy Canen Q000 @

/Y,\M(Q)Y;M(Q)YZM(Q) dQ :\/

where Cﬁ'l sz’\u is the Clebsch—Gordan coefficient that couples the A; and A, angular momenta
producing a total A angular momentum. Thus, the sum of (27) is limited to the terms with
Ho = p—ppand |A; —A| < Ay < Ap 4 A. If the Z; , axis of the laboratory frame of reference
coincides with ﬁ, the nonvanishing terms of (26) are only those with u© = 0 and, for these,
Yio(Q2r) = /Cr+1)/4m.

For spherical densities, all M, of (28) are equal to zero, except that with A = & = 0
which is given by Mo (k) = JVar 0o(k), where:

po(k) = f Jo(kr) po(r) * dr. (30)

The six-dimensional integral of (18) can be calculated without approximation, directly by
numerical integration as well as by making use of the Fourier transform method through (26)
to (28). However, these procedures are not appropriated for calculating coupling potentials
because the latter involve the folding of the deformed potential with the wave-functions of the
nuclear states. For instance, consider the case of two deformed nuclei, each with 9 coordinates
of deformation (8,, y, B3 and the two sets of Euler angles for A = 2 and 3). This would imply the
calculation of the six-dimensional integral, represented by (18), folded into a 18-dimensional
integral involving the deformation coordinates, resulting in an integral of dimension 24! Of
course, such an integral cannot be calculated using common numerical procedures and, thus,
methods to solve it, at least partially, within an analytical form are indispensable.

6



J. Phys. G: Nucl. Part. Phys. 41 (2014) 055114 D F M Botero et al

4. Common approximations to calculate the deformed potential

There are several computer programs that have been successfully used in the CC data analyses
of many works, such as CCFULL [25], FRESCO [26], ECIS [27], etc. Some of them have
options of reading the diagonal and coupling potentials from external files. In this context,
the CC calculations are quite general and any model for the couplings can be implemented.
Nevertheless, in this case the user has the responsibility of calculating these potentials within
that hypothetical model. For this reason, most works performed with those codes assume
options in which the potentials have standard shapes like the Woods-Saxon, Gaussian, etc.
In the case of the inelastic couplings, the deformation of the densities, which results in the
deformed potentials, is not taken into account through the double-folding procedure, and
commonly the coupling potentials are obtained from some procedure involving the bare
diagonal interaction. Thus, before proceeding with the description of the present method to
calculate deformed potentials, we first present other models often assumed in CC calculations,
with the purpose of comparing the corresponding results with those of the present model.

Hereafter, we indicate the double-folding potential obtained with the associated spherical
densities (undeformed potential) by Vy(R), and that obtained with the deformed densities
(deformed potential) as Vp (ﬁ). The difference between these two potentials is referred as the
correction potential Vo, (I?) =W (I?) —Vu(R). We focus our attention on V¢, since the effects
of the deformation are contained there.

Due to the short-range of the nuclear interaction, the nuclear potential should be reasonably
well described by a function of the distance between the surfaces of the nuclei, represented
by S in figure 1. On the other hand, this distance can be written in terms of the radii of the
deformed and spherical nuclei as:

S=R—R —R,=R—Ro1 —Rpp — 6, (31)

where § = §; + §, (see figure 1). Therefore, the nuclear potential can be represented by a
function of argument R — §, Vp (R — §). For small deformation values, it can be expanded as:

, 1 9 , (—1)" d"V;
VoR) ~ Vu(R) + ) — aaf? 8 %VU(R)+ZTde

With this, we can write the difference between deformed and undeformed nuclear potentials
as:

5" (32)

=0

. (=" d'y ,
Ve (R) ~ ) 3 == " (33)

When the Z; o axis of the laboratory frame of reference coincides with the vector 1?, we
can write the deformations of the two nuclei as:

3 A 3
R
51 =R01 X Z Z a;‘:ulY)\M(e :0,¢) = 2\;% X ZVZ)\-F 10[)\()1, (34)
A=0 p=—A2 A=0
Roz

30
8 = Ry x ;M;A%MYM(Q =7,¢) = Wi
Observe that the «;,, of these equations are first order terms for A = 2 and 3, and correspond
to second order terms for A = 0 and 1. This should be taken into account when calculating
the potential in first or second order through (32). We point out that the calculation of the
deformed potential from (33) does not involve the double-folding calculation with the deformed
densities, since it depends only on the derivatives of the undeformed (bare) potential. Due to
its simplicity, this approximation has been widely applied in usual CC calculations.

3
x Z(—1)R/2/\ + 1a;0,. (35)
A=0
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In the case of the Coulomb interaction, it is usual to expand the potential in multipoles,
where the sharp cutoff shape is assumed to describe the densities, with some model to correct
the shape of the potential in the region where there is superposition of densities (see e.g. [21]).
For instance, within the uniform charge model we have, to first order:

L Z\Zye? R R
%meéﬁg{iﬁwan(£>+w—an@§)“, (36)

RL/RM for R > Rc
/on+1 |RY/R:T for R<Rc

where Rc = Ro; + R In this expression, it is assumed that the laboratory Z; op axis is in the
direction of R.

FE(R) = 37

5. Calculating the potential in the context of the GRVM

We turn now to the present method of calculation of deformed potentials. We expand the
densities of (1) to second order in the deformation:

A3 32,0
p(F) ~ BA 7 987, (38)
3 A
= Z Z V(). (39)
A=2 p=—
A
- Z LY (Q0), (40)

A=0 p=—2

Z Z Z oG, & Yo (S20) Y (S2,). (41)

A=2 u=—AXN=2 ==\

In these equations, A is a first order term in the deformations, while A, and A3 are terms of
second order. Substituting these equations into (28) and making use of the properties of the
spherical harmonics, we obtain:

My (k) = 830 10 (k) + a3, IV (k) + (=M1 (k)

* * CV+DRA +1D) 0, A A
X2 “*’ﬂ’“*”””\/ ot e Gno @
M A
19(k) = 4m po(k), (43)
1Y k) = kr) — 2d 44
A = | ji( r) BA redr, (44)
A=0
1 8%p
12 (k) = 3 / 5 (k) el 2 dr. (45)

The sums in (42) are performed only over A’ = 2, 3 and A" = 2, 3. Thus, taking into account
the properties of the Clebsch—Gordan coefficients in (42) and that oy, = 0 for A > 3, all
M,,, (k) elements vanish for A > 6, and the sum in (28) is performed only up to A = 12.

8
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In order to be consistent, since we have adopted (38) to describe the densities, this equation
should also be used in expressions (7) and (8) that connect the deformation parameters. With

this, we obtain:
52

(B |
aoo__<4ﬁ> [

2dr
2=t , (46)
r2dr

‘A:O

3 f g%’; P dr
a0 = =/ £=0 [Bazporzp + \/g(azlaékl + o3 a31)
1407 / 8_/)‘ Adr

dA A=0

+ \/5(0522“;2 + aja3)], (47)

/T S|
o1 = -
1407 f o

A A

A=0
(v/3 azoaar — V600031 + nay,
r3dr
=0

00[210l32 V1 0(22(133) (48)

For heavy-ions the results of these equations are indeed similar to those of (12)—(14). Even so,
(46)—(48) should be used when (38) is assumed to describe the densities.
Assuming now (9) as the explicit form for the density of the GRVM, we obtain:

| _eoRy  exp(5P) (49)
Alaco @ [14exp(=ho R°)]2

o amew (=) few(52) - 1] -
0A2 A a2 [1 +exp(r Ro)]3

The deformed potential can then be calculated with (26), (27), (29), (42) to (45), (49)
and (50). In this case, the dependence of the potential on the deformations is explicit through
(42). This form allows the calculation of coupling-potentials analytically, which is the goal
of the present method. This is not the case of the exact calculation through (28), where the
dependence of M, , (k) on the coordinates of deformation is not explicit.

The method can easily be generalized to other models, in which the density can be
expressed according to (1), just by considering the corresponding derivatives with respect to
A, as performed above in the context of the GRVM. In the case of the Coulomb potential, as
already commented, several approaches assume the sharp cutoff shape for the charge densities
(see e.g. [21]). In [22], the effect of the finite diffuseness value was taken into account, but
within a more restrict model than that presented here. Within the sharp cutoff approach, the
Coulomb potential can also be calculated through (26), (27), (29) and (42), with:

1(0)(k):%j1£/;1§0) 51)
3Z

LYKy = = i (kRy), (52)
3Z kRy 0, (x)

®) _ 2z Ko 0 Jx

L7 (k) = y [Jx(kRo) R x_kRo] (53)
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0.2;

0.1}

p (fm”)

r (fm)

Figure 2. Matter density of the 28Si nucleus for different spatial directions in the intrinsic
frame of reference (for the quadrupole and octupole modes). The solid black lines
correspond to the exact results of (9). The dotted blue and dashed red lines correspond
to the results of (38), to first and second orders respectively.

Table 1. Average (B, v and B3) and amplitude of vibration (b, and b3) values for the
quadrupole and octupole modes of the 28Si and '*Sm nuclei. The table also provides
the B,, y and B; values assumed in our calculations of deformed potentials.

Nucleus B, 1) by B b; B 4 B3

BSi 049 =n/3 0.15 0 0.24 051 =#/3 024
134Sm 033 0 0.056 0.076 0.032 033 0 0.082

6. Example of an application

In our calculations, we have chosen the 28Si + '3*Sm system as an example because it involves
two quite deformed nuclei. In table 1, we provide the average deformation parameter values
(B2, vo and fB3) as well as the amplitudes of vibration (b, and b3) for the quadrupole and
octupole modes of these nuclei [2]. Within the GRVM, the nucleus can assume different
shapes due to the vibration. We consider that a typical value for the deformation parameter
can be obtained from 8 = /4% + b2. Table 1 also provides the 8,, y and B3 values assumed
in our calculations for the 28Si and '>*Sm nuclei.

Before presenting the calculations of potentials, we show the degree of precision of the
expansion of the density to second order. The dashed lines in figures 2 and 3 represent the
results of (38) for 28Si and >*Sm, while the solid lines correspond to the exact results of (9).
For the purpose of comparison, also the expansion to first order is presented in the figures
through dotted lines. These figures show the matter density as a function of the distance to the
origin of the frame of reference, for different spatial directions (6, ¢). The laboratory frame
of reference was chosen to coincide with the intrinsic frames of A = 2 and 3, since all Euler
angles were assumed to be zero. Considering that the nuclei are very deformed, the expansion
(38) to second order describes the exact density reasonably well. As discussed below, this
expansion is precise enough to provide quite accurate results in the calculation of potential
strengths.
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0.2

£ 0.1

0.0
0.2

e 0.1
-

0.0

r (fm) r (fm)

Figure 3. The same as figure 2, but for '>Sm.

z A

Configuration 1

; Configuration 2
% Configuration 3 %

X Y

Figure 4. Shape of the deformed nuclei of the 2Si + '**Sm system for the three
configurations of the Euler angles of table 2. The left side of the figure shows a section
of the nuclei in the xz plane, while the right side corresponds to the yz plane. The arrows
in the figure represent the separation R

Since we are interested only in studying the precision of the present method to calculate
potential strengths, at the moment, we assume without loss of generality that the Z; ,, axis is
in the direction of R. We have considered three different configurations of the Euler angles to
calculate the potentials. These configurations differ only by the 8, angles, because we set all

11
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)
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= -200; g o= 27 (a=0) O\ Nuclear 10°
— 5 i \\\ \
8 "\ Nuclear O
> 4000 N N 10"
0 5 10 15 20 2512 13 14 15 16 17
R (fm) R (fm)

Figure 5. Coulomb (top) and nuclear (bottom) correction potentials for configuration
1 of the 2Si + *Sm system. The lines represent the results of exact (section 3) and
approximate (section 5) calculations to first or second order. In the Coulomb case, the
approximate calculations were performed with a finite or vanishing value of the nuclear
diffuseness. The right side of the figure corresponds to an expansion of the scales in the
surface region. In the nuclear case, a logarithmic scale of the modulus of the potential
was adopted.
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Figure 6. The same as figure 5, but for configuration 2 of table 2.

01 = 63 = 0. The 6, values of A = 2 and 3 for both nuclei are presented in table 2. Figure 4
presents an illustration of the shapes of the nuclei for these configurations.

We have performed exact calculations, according to the methods presented in section 2,
of the Coulomb and nuclear potentials for the 28Si + 1>*Sm system. We have also calculated
the potentials through the method described in section 5, considering the expansion of the
densities to first and second orders. In the case of the Coulomb potential, the calculations
were performed by assuming both finite and vanishing values for the nuclear diffuseness. The
corresponding results for the correction potentials of the three configurations of table 2 are
presented in figures 5—7. As expected, the best approximation corresponds to that obtained
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Figure 7. The same as figure 5, but for configuration 3 of table 2.
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Figure 8. Coulomb (top) and nuclear (bottom) correction potentials for configuration
1 of the 2Si + '**Sm system. The solid black lines represent the results of the exact
calculations performed as described in section 3. The dashed red lines correspond
to the GRVM approximation (section 5), while the others represent the common
approximations presented in section 4.

Table 2. The table presents, for each configuration considered in the calculation of the
potentials, the values of the 6, Euler angles assumed for the quadrupole and octupole
modes of 28Si (nucleus 1) and >*Sm (nucleus 2).

Nucl. 1 Nucl.1 Nucl.2 Nucl.2
Config. A =2 A=3 A=2 A=3

1 0 0 T T
/2 /2 /2 /2
3 T T 0 0

considering the expansion of the density to second order in the deformations. The value
assumed for the nuclear diffuseness clearly has a quite significant effect on the Coulomb
potential.
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Figure 9. The same as figure 8, but for configuration 2 of table 2.
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Figure 10. The same as figure 8, but for configuration 3 of table 2.

We denote as the GRVM approximation the method of calculating the potentials according
to section 5, with the expansion of the density to second order and assuming the finite value
for the diffuseness. We have compared the results of the GRVM approximation with those
obtained from the common approximations discussed in section 4. The results for the three
configurations of table 2 are presented in figures 8—10. Clearly, the best results are those from
the GRVM approach, in particular, with remarkable differences at the inner distances.

7. Conclusion

We have presented a method to calculate double-folding potentials involving deformed
densities which is appropriate for future applications in coupled-channel calculations. The
present approach is an improvement of the models proposed in [21, 22] to calculate the
Coulomb potential, in which the charge distributions were assumed to have a sharp cutoff
shape. Within the present model, the results of (18) can be obtained, with quite good accuracy,
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through (20), (26), (27), (30) and (42)—(45). In this context, the method is quite general. It
can be applied for the set of densities with shape represented by (1) and (2), which includes
axially asymmetric distributions, with expansion of A to any order of the multipole modes. The
interaction u(r) of (18) can also be quite general (it is required that ﬂ(E) depends only on the
modulus of k), since our equations are all expressed as functions of its Fourier transform.
The model can also be used with different shapes (or deformations and even different
interactions u(r)) adopted for the protons and neutrons distributions, since their respective
contributions can be calculated separately and then added to obtain the total potential. In this
work, we have considered the expansion of the nuclear density only to second order in the
deformation parameters. The method can easily be generalized to higher order but this would
demand the consideration of more terms in (42).

In the present paper, the method has been developed in the particular context of the GRVM,
assuming the Fermi function for the shape of the nuclear distribution and with expansion of
the radius up to the octupole mode. Through the comparison of the numerical results obtained
in the test case, we verified that the GRVM approach provides much better results than those
of common models usually assumed in coupled-channel calculations.
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