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Neonatal mortality poses a critical challenge in global health, particularly in low- and middle-income 
countries. Leveraging advancements in technology, such as machine learning (ML) algorithms, offers 
the potential to improve neonatal care by enabling precise prediction and prevention of mortality 
risks. This study utilized the Maternal and Neonatal Health Registry (MNHR) dataset from the National 
Institutes of Health (NIH), encompassing multicentric neonatal data across various countries, to 
evaluate the effectiveness of ML in predicting neonatal mortality risk. We compared three training 
approaches: a generalized model applicable across all countries, country-specific models tailored to 
local healthcare characteristics, and a model derived from the largest single-country dataset. Utilizing 
data from 2010 to 2016 for training and validation from 2017 to 2019, our analysis included 575,664 
pregnancies and assessed five ML algorithms based on key neonatal health indicators recommended 
by the World Health Organization. Notably, the generalized model demonstrated the highest 
predictive performance, achieving an Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) of 0.816, highlighting the benefits of leveraging a diverse dataset. Our findings advocate for the 
integration of generalized ML models into healthcare strategies to improve neonatal health outcomes 
and emphasize the importance of data diversity in reducing neonatal mortality rates.
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Enhancing maternal and child health is a critical objective in global health initiatives. An estimated 810 women 
and over 15,000 children die each day from pregnancy-related causes and preventable diseases, respectively1. 
While notable progress has been made in reducing child mortality, the Millennium Development Goal 
(MDG) target of a two-thirds reduction by 2015 was not fully achieved2. With the transition to the Sustainable 
Development Goals (SDGs), global efforts now focus on achieving SDG 3.2, which aims to end preventable 
deaths of newborns and children under five years of age. This includes reducing neonatal mortality to at least as 
low as 12 per 1,000 live births and under-five mortality to at least as low as 25 per 1,000 live births in all countries. 
Recent data indicate mixed progress, with some regions on track while others face persistent challenges in 
reaching these targets3.

Artificial intelligence (AI) techniques hold significant promise for enhancing maternal and child health 
outcomes, particularly in low-resource environments4. AI encompasses a broad range of computational 
methods, including machine learning (ML), which allows models to automatically learn patterns from data 
and make predictions without being explicitly programmed5. Unlike traditional regression models, which rely 
on predefined equations and assumptions about relationships between variables, ML techniques can capture 
complex, nonlinear patterns and interactions within large, high-dimensional datasets. This capability is 
particularly valuable in maternal and child health, where multiple biological, environmental, and socioeconomic 
factors interact in ways that traditional statistical models may not fully capture. The increasing availability of 
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maternal and child health data presents an opportunity to leverage ML-driven insights for improved healthcare 
decision-making, particularly in settings with limited specialized healthcare professionals.

Neonatal mortality remains a pressing public health challenge in low- and middle-income countries, driven 
by barriers such as restricted access to quality prenatal care, insufficient healthcare infrastructure, and a lack 
of specialized medical professionals6. Preventing neonatal mortality is crucial for improving collective health 
indicators and has a profound impact on families and communities. ML algorithms can analyze large volumes 
of data, identify patterns and risk factors, and provide valuable insights for healthcare professionals, enabling 
proactive and targeted interventions7. Deploying machine learning models offers significant potential to 
decrease neonatal mortality rates and enhance public health outcomes in low- and middle-income countries. In 
this context, multicentric studies emerge as pivotal in producing strong findings across varying socio-economic 
and geographical landscapes.

This study employs multicentric neonatal data from low- and middle-income countries to assess and compare 
various ML training strategies, aiming to identify the optimal method for neonatal mortality prediction. It 
specifically evaluates the efficacy of generalized models, country-specific models, and models based on the 
largest single-country dataset. Our goal is to improve neonatal mortality predictions, thereby advancing neonatal 
healthcare in settings with limited resources.

Materials and methods
Ethics and consent to participate declarations
All data used in this work were obtained from secondary sources. This research did not involve interaction with 
human participants, nor did it collect or generate any original human data. The original data8 were collected 
by the Global Network for Women’s and Children’s Health Research (Global Network) under the supervision 
and guidance of ethics committees. The dataset was obtained through a formal request submitted to the Eunice 
Kennedy Shriver National Institute of Child Health and Human Development (NICHD), part of the National 
Institutes of Health (NIH).

Study design
This study encompassed a diverse international sample with training data drawn from the Democratic Republic 
of Congo, Guatemala, Zambia, India-Belagavi, India-Nagpur, Pakistan, Kenya and Argentina. We developed 
and assessed predictive models for neonatal death, including a general model applicable to all countries, specific 
models for each participating country, and a model optimized for the largest subset of training data. A synthetic 
flowchart is presented in Fig. 1.

Data source
We utilized data from the Maternal Newborn Health Registry (MNHR) of the Global Network, a longitudinal, 
population-based study designed to track and analyze pregnancy outcomes in defined low-resource settings9. 
The study collected data from approximately 500,000 pregnancies between 2010 and 2019, in three phases. 
Data were collected in eight different countries: Argentina, Zambia, Guatemala, Kenya, Pakistan, India, the 
Democratic Republic of the Congo (DRC), and Bangladesh. The variables collected included gestational 

Fig. 1.  Workflow development for neonatal risk of death prediction using machine learning algorithms and 
MNHR data.
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information, delivery details, and a 42-day follow-up after delivery, encompassing the five minimum indicators 
suggested by the World Health Organization. The input data structure includes maternal age in years, place of 
delivery (hospital, clinic/health center, or home/other), mode of delivery (vaginal, assisted vaginal, c-section, 
miscarriage, medical termination of pregnancy), birth weight in grams, gestational age in weeks, and region 
(Argentina, DRC, Zambia, Guatemala, Bangladesh, India-Belagavi, Pakistan, India-Nagpur, Kenya).

Machine learning techniques
In the process of developing the ML algorithm for neonatal mortality prediction, several steps were undertaken 
to ensure data preparation10. Categorical features were encoded using one-hot encoding. In order to address 
missing values within continuous variables, a mean imputation method was applied, wherein missing data points 
were replaced with the mean value of the respective features. Furthermore, for continuous features like maternal 
age, birth weight, and gestational age, a Z-score standardization was performed. This standardization technique 
normalized the values of these variables to a standard normal distribution by subtracting the mean and dividing 
by the standard deviation, ensuring uniformity and comparability in the dataset. To assess multicollinearity 
among the continuous predictors, a Variance Inflation Factor (VIF) analysis was conducted.

We tested the predictive performance of popular ML algorithms, such as Adaboost11, XGBoost12, CatBoost13, 
LightGBM14, Random Forest15, and Logistic Regression. These algorithms have been carefully selected to ensure 
comprehensive evaluation and comparison of performance. The training strategy followed a time-period hold-
out approach, where the training set was comprised of data collected from 2010 to 2016, and the test set consisted 
of data collected from 2017 to 2019. This approach enables the assessment of algorithm performance on different 
time periods, providing insights into their effectiveness in predicting neonatal risk of death across multiple years.

Hyperparameters for the algorithms were tuned using random search, which involves sampling random 
combinations of hyperparameters to find its optimal configuration. Model performance in the training set 
was assessed using a 10-fold stratified cross-validation approach, which divides the data into 10 subsets while 
ensuring proportional representation of different classes. This process was further repeated for 50 iterations.

Three general approaches were tested for algorithm construction: general algorithms for all countries, 
country-specific algorithms, and an algorithm based on the country with the largest sample in the training 
set. These approaches were designed to evaluate the best training strategies for the specific dataset and the 
generalizability capabilities of the algorithms across different countries.

Different metrics were used to evaluate the performance, robustness, and general characteristics of the AI 
algorithms, such as AUC-ROC (Area Under the Receiver Operating Characteristic curve), precision, recall, 
accuracy, and F1-score. The AUC-ROC metric is particularly significant for comparing different approaches, as 
it provides an overall assessment of the model’s ability to distinguish between the positive and negative classes, 
making it a suitable criterion for decision-making. Additionally, precision measures the proportion of true 
positive predictions out of all positive predictions, recall evaluates the proportion of true positive predictions 
out of the actual positive instances, accuracy determines the overall correctness of the predictions, and the F1-
score combines precision and recall assessing the model’s overall performance. By employing these metrics, 
a comprehensive evaluation of the AI systems can be achieved, by comparing distinct countries and training 
strategies. ​In addition to evaluating performance metrics, we also assessed the calibration of the general 
model using calibration plots. The complete methodological process is summarized in Fig. 1. The analysis was 
performed using Python 3.9.21. We followed Transparent Reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis – Artificial Intelligence extension (TRIPDO + AI)16 guidelines for developing 
and reporting the predictive models (checklist available in the supplementary appendix – Table A.9).

Outcome definition
The target variable of interest was neonatal status between 0 and 28 days after birth, which is categorized as 
either “live” or “death.” As a binary feature, it consists of two distinct categories. During the training of the AI 
models, the focus was on predicting the risk of the neonate experiencing the specified outcome in the future. 
This prediction is represented as a probabilistic measure. By establishing an initial threshold, typically set at 0.5, 
the expected outcome for the neonate is determined based on the interaction with this measure.

Additional models
From the overall best-performing model, we developed new models to evaluate types of variations that could 
further enhance performance. For this purpose, we also disaggregated the outcome temporally, considering two 
extra categories: death within 0–7 days from birth, i.e., within the first week of the baby’s life, and death within 
0–42 days from birth, in addition to the neonatal postpartum period, presented in the original model of 0–28 
days.

Beyond variations by time to outcome, we tested a model that included new variables, such as ultrasound 
methods, the mother’s educational background, prenatal visits, tetanus vaccination during pregnancy, the sex of 
the baby, and the trimester of pregnancy at the first prenatal visit. The purpose of including these new variables 
was to determine whether there is an improvement beyond the simpler model that used the five minimum 
indicators recommended by the WHO.

Results
Descriptive data analysis
After data preprocessing, the study included a total of 575,664 pregnancies. The analysis of patient distribution 
based on delivery location revealed that 31.3% of the births occurred in clinics or health centers, 24.2% at home 
or other locations, and 44.4% in hospitals. Regarding the type of delivery, 14.4% of neonates were delivered via 
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C-section, 84.7% through vaginal delivery, and 0.9% through vaginal-assisted delivery. Similar to the delivery 
location data, there were very few missing values concerning the type of delivery.

The dataset included deliveries from various countries, each contributing with different proportions of 
neonatal patients. Specifically, Argentina accounted for 1.7% of the cases, Bangladesh 0.2%, the Democratic 
Republic of Congo 6.3%, Guatemala 15.0%, India-Belagavi 21.4%, India-Nagpur 14.6%, Kenya 13.5%, Pakistan 
15.8%, and Zambia 11.6%. For the training set, India-Belagavi had the largest sample size (n = 107,076) and was 
selected as a reference model to assess performance in other countries.

In terms of outcomes, 2.5% of newborns experienced neonatal death. When splitting the dataset for training 
and testing, the ratios were maintained similarly, at 2.6% and 2.2%, respectively. A comprehensive analysis of 
neonatal patient characteristics, categorized by delivery location, delivery type, country of delivery, and outcome, 
is presented in Table 1.

The VIF analysis was conducted on the training set to assess multicollinearity among the predictor variables. 
The results indicate that all variables—Maternal Age (VIF = 1.012), Gestational Age (VIF = 1.008), and Birth 
Weight (VIF = 1.016)—have VIF values close to 1, suggesting negligible multicollinearity. Furthermore, the 
correlation plot in Figure A.1 (Supplementary Appendix) confirms a low correlation between these three 
variables, reinforcing their independence in the dataset.

Algorithmic performance
The performance of different ML algorithms was evaluated within each country, considering three different 
model approaches: General, Country-specific, and largest train size. The models were trained using lightgbm 
(LGBM), xgboost (XGB), adaboost, catboost and random forest, with hyperparameters optimized through 
random search.

In the case of Kenya (Table 2), the LGBM Tuned algorithm achieved an AUC-ROC of 0.808 [0.777, 0.839] 
when using the General model approach. Comparatively, the Country-specific approach with the same XGB 
Tuned algorithm yielded a slightly lower AUC-ROC of 0.805 [0.774, 0.836]. These results suggest that the general 
algorithm is the more effective approach for achieving better predictive results in Kenya. Similar trends were 
observed for other countries. In the Democratic Republic of the Congo (DRC), the General model (LGBM 
Tuned) achieved a 0.797 [0.77, 0.825] AUC-ROC and 0.793 [0.765, 0.819] for the Country-specific approach 
(XGB Tuned). Although the difference is marginal, the General model approach tended to outperform the 
Country-specific approach.

Variable Full Dataset Death Non-death Train Test

Place of Delivery

Clinic or Health Center 180,180 (31.3%) 3,648 (25.6%) 176,532 (31.4%) 128,603 (29.1%) 51,577 (38.5%)

Home or Other 139,580 (24.2%) 3,704 (26.0%) 135,876 (24.2%) 115,469 (26.1%) 24,111 (18.0%)

Hospital 255,779 (44.4%) 6,907 (48.4%) 248,872 (44.3%) 197,460 (44.7%) 58,319 (43.5%)

Missing value 125 (0.0%) 7 (0.0%) 118 (0.0%) 125 (0.0%) 0 (0.0%)

Type of Delivery

C-section 82,900 (14.4%) 2,262 (15.9%) 80,638 (14.4%) 59,631 (13.5%) 23,269 (17.4%)

Vaginal 487,631 (84.7%) 11,708 (82.1%) 475,923 (84.8%) 377,215 (85.4%) 110,416 (82.4%)

Vaginal Assisted 5,108 (0.9%) 293 (2.1%) 4,815 (0.9%) 4,786 (1.1%) 322 (0.2%)

Missing value 25 (0.0%) 3 (0.0%) 22 (0.0%) 25 (0.0%) 0 (0.0%)

Country of Delivery

Argentina 9,753 (1.7%) 103 (0.7%) 9,650 (1.7%) 9,753 (2.2%) 0 (0.0%)

Bangladesh 1,089 (0.2%) 32 (0.2%) 1,057 (0.2%) 0 (0.0%) 1,089 (0.8%)

Democratic Republic of Congo 36,542 (6.3%) 884 (6.2%) 35,658 (6.4%) 17,974 (4.1%) 18,568 (13.9%)

Guatemala 86,298 (15.0%) 2,050 (14.4%) 84,248 (15.0%) 61,131 (13.8%) 25,167 (18.8%)

India-Belagavi 123,146 (21.4%) 2,832 (19.9%) 120,314 (21.4%) 107,076 (24.2%) 16,070 (12.0%)

India-Nagpur 84,046 (14.6%) 1,760 (12.3%) 82,286 (14.7%) 65,768 (14.9%) 18,278 (13.6%)

Kenya 77,640 (13.5%) 1,094 (7.7%) 76,546 (13.6%) 58,003 (13.1%) 19,637 (14.7%)

Pakistan 90,543 (15.7%) 4,501 (31.6%) 86,042 (15.3%) 74,022 (16.8%) 16,521 (12.3%)

Zambia 66,607 (11.6%) 1,010 (7.1%) 65,597 (11.7%) 47,930 (10.9%) 18,677 (13.9%)

Quantitative predictors

Maternal Age [mean (standard deviation)] 24.855 (5.344) 25.449 (5.725) 24.838 (5.332) 24.743 (5.218) 25.220 (5.721)

Gestational Age [mean (standard deviation)] 37.516 (5.541) 34.339 (6.560) 37.605 (5.481) 37.223 (6.044) 38.482 (3.202)

Birth Weight [mean (standard deviation)] 2,911.647 (491.778) 2,270.323 (778.100) 2,926.885 (471.973) 2,913.343 (493.174) 2,906.103 (487.149)

Outcome

Neonatal Death 14,266 (2.5%) - - 11,281 (2.6%) 2,985 (2.2%)

Neonatal non-death 561,398 (97.5%) - - 430,376 (97.4%) 131,022 (97.8%)

Table 1.  Descriptive summary of full, train and test datasets.
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For Guatemala, the LGBM Tuned algorithm achieved AUC-ROC of 0.795 [0.772, 0.819] for the General 
model and a 0.796 [0.774, 0.820] AUC-ROC performance for the Country-specific model. In the case of Zambia, 
the General model approach with the LGBM Tuned algorithm achieved an AUC-ROC of 0.785 [0.745, 0.826], 
while the Country-specific approach with the XGB Tuned algorithm outperformed with an AUC-ROC of 0.801 
[0.761, 0.839]. Nonetheless, we observed a better recall for the general model.

In India-Belagavi, both the General and Country-specific models, using the LGBM Tuned and LGBM 
algorithms, yielded comparable AUC-ROCs of 0.784 [0.751, 0.814] and 0.781 [0.75, 0.811], respectively. These 
findings suggest that the choice between algorithms did not significantly affect the predictive performance. 
Overall, the results highlight that the choice of algorithm and model approach can influence the predictive 
performance within each country (Fig.  2). While the General model approach generally yielded favorable 
results, there are instances where the Country-specific approach or a different algorithm were more effective. It 
is important to carefully consider the specific context and data characteristics when selecting the most suitable 
algorithm and model approach for each country.

In terms of calibration for the general approach (Fig. 3), we observed that the blue line, representing the 
LGBM model, follows the diagonal closely in the lower probability range (0–0.4), indicating good calibration. 
However, in the mid-range (0.4–0.7), the model slightly deviates, suggesting some overconfidence in predictions. 
In the higher probability range (0.7–1.0), the model gradually realigns with the diagonal, indicating improved 
calibration at higher confidence levels.

Figure 4 presents an analysis of the most important predictors, according to the Shapley Values, considering 
the general model. The variables Birth Weight and Gestational Age were the most relevant for predicting the risk 
of neonatal death in the general model, where the LGBM Tuned algorithm performed the best.

From Figures A.2 to A.8 (supplementary appendix), it is evident that Birth Weight was consistently the most 
important predictor in the Shapley values. Except for India-Belagavi, the second most relevant predictor was 
Gestational Age. The results from the country-specific approach support the findings of the general model.

The complete report on the performance of all tested models across different algorithms is available in the 
supplementary tables (A.2 to A.8).

Model variations
We performed further analyses to assess model performance across different outcome variations, considering the 
general model as baseline. Figure 5 illustrates the variations in mortality within 7 and 42 days postpartum. The 
models exhibit considerable variability in performance across different national contexts. This variability may 

Country Model Algorithm Support Positive Outcome CI AUC-ROC CI Recall Accuracy Precision Specificity F1-score

General1 General LGBM Tuned 134,007 2,985 0.816 [0.807, 0.825] 0.220 [0.205, 0.235] 0.980 0.642 0.997 0.328

General1 Largest train size LGBM 134,007 2,985 0.76 [0.750, 0.771] 0.998 [0.174, 0.201] 0.980 0.657 0.188 0.292

DRC General LGBM Tuned 18,568 445 0.797 [0.770, 0.825] 0.245 [0.207, 0.286] 0.980 0.752 0.998 0.369

DRC Country-specific XGB Tuned 18,568 445 0.793 [0.765, 0.819] 0.252 [0.215, 0.293] 0.98 0.762 0.998 0.378

DRC Largest train size LGBM 18,568 445 0.749 [0.722, 0.778] 0.997 [0.200, 0.277] 0.979 0.679 0.238 0.353

Guatemala General LGBM Tuned 25,167 539 0.795 [0.772, 0.819] 0.232 [0.198, 0.269] 0.982 0.772 0.998 0.357

Guatemala Country-specific LGBM Tuned 25,167 539 0.796 [0.774, 0.82] 0.232 [0.197, 0.269] 0.981 0.706 0.998 0.349

Guatemala Largest train size LGBM 25,167 539 0.71 [0.681, 0.738] 0.999 [0.123, 0.184] 0.981 0.783 0.154 0.257

Zambia General LGBM Tuned 18,677 215 0.785 [0.745, 0.826] 0.265 [0.206, 0.325] 0.990 0.679 0.999 0.381

Zambia Country-specific LGBM Tuned 18,677 215 0.801 [0.761, 0.839] 0.237 [0.181, 0.297] 0.990 0.630 0.998 0.345

Zambia Largest train size LGBM 18,677 215 0.744 [0.701, 0.789] 0.998 [0.176, 0.291] 0.989 0.575 0.233 0.331

India-Belagavi General LGBM Tuned 16,070 313 0.784 [0.751, 0.814] 0.278 [0.224, 0.328] 0.984 0.725 0.998 0.402

India-Belagavi Country-specific LGBM 16,070 313 0.781 [0.75, 0.811] 0.259 [0.206, 0.308] 0.983 0.692 0.998 0.377

India-Belagavi Largest train size LGBM 16,070 313 0.781 [0.750, 0.811] 0.998 [0.206, 0.308] 0.983 0.692 0.259 0.377

India-Nagpur General LGBM Tuned 18,278 323 0.812 [0.781, 0.84] 0.232 [0.190, 0.277] 0.983 0.568 0.997 0.330

India-Nagpur Country-specific XGB Tuned 18,278 323 0.808 [0.778, 0.836] 0.186 [0.146, 0.229] 0.983 0.571 0.997 0.28

India-Nagpur Largest train size LGBM 18,278 323 0.804 [0.774, 0.833] 0.996 [0.171, 0.258] 0.982 0.504 0.214 0.300

Pakistan General LGBM Tuned 16,521 838 0.772 [0.752, 0.790] 0.185 [0.157, 0.212] 0.950 0.515 0.991 0.272

Pakistan Country-specific LGBM Tuned 16,521 838 0.770 [0.750, 0.788] 0.189 [0.161, 0.215] 0.950 0.506 0.990 0.275

Pakistan Largest train size LGBM 16,521 838 0.746 [0.726, 0.766] 0.997 [0.122, 0.172] 0.954 0.719 0.147 0.244

Kenya General LGBM Tuned 19,637 280 0.808 [0.777, 0.839] 0.161 [0.119, 0.204] 0.987 0.634 0.999 0.256

Kenya Country-specific XGB Tuned 19,637 280 0.805 [0.774, 0.836] 0.139 [0.102, 0.179] 0.986 0.557 0.998 0.223

Kenya Largest train size LGBM 19,637 280 0.764 [0.730, 0.797] 0.998 [0.109, 0.190] 0.986 0.583 0.150 0.239

Bangladesh2 General LGBM Tuned 1,089 32 0.854 [0.779, 0.920] 0.156 [0.038, 0.306] 0.971 0.500 0.995 0.238

Bangladesh2 Largest train size LGBM 1,089 32 0.793 [0.691, 0.896] 0.999 [0.062, 0.334] 0.975 0.857 0.188 0.308

Table 2.  Test results for predictive models of neonatal risk of death. 1The general model does not have a 
country-specific approach. 2Due to the lack of data on training set, Bangladesh does not present a country-
specific approach, since it had no data collected in the training period.
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be attributed to the characteristics of the predictors in each country. Notably, the “General” model, trained with 
all countries together, consistently shows robust performance across the three temporal variations of outcome, 
suggesting its potential baseline model for neonatal mortality. However, it does not consistently outperform 
other models, indicating that local factors significantly influence model efficacy.

The results suggest that “Country-specific” models occasionally outperform the “General” model in certain 
locales, such as India-Nagpur and Bangladesh. This superior performance can likely be linked to these models’ 
ability to accommodate localized healthcare data and demographic nuances that are not as pronounced in the 
global dataset. The findings advocate for the customization of predictive models to enhance their accuracy and 
relevance in specific regional contexts.

The stability of model performance across different time periods within the same country and model type 
is noteworthy. This consistency is important for the practical application of these models in healthcare settings, 
as it ensures reliability and predictability in their predictive capabilities over time. In general, we could see that 
the models exhibited higher AUC-ROC values for deaths occurring within 7 days postpartum. As the period 
extended, a general decline in performance was observed. The model predicting death within 42 days postpartum 
only outperformed others in the DRC and Bangladesh, both for the biggest training size strategy. In Guatemala, 
we observed the most significant discrepancy in model performances. Supplementary Table A.1 indicates that 
Guatemala had the lowest concentration of deaths in the 0–7 day period, accounting for approximately 59.3% of 
deaths during this timeframe. In the DRC, around 89% of deaths occurred within 7 days postpartum, leading to 
a more balanced model performance.

In addition to comparing different time periods, we also evaluated the impact of including additional variables 
beyond the five recommended by the WHO. This phase incorporated variables such as ultrasound methods, 
maternal educational background, prenatal visits, tetanus vaccination during pregnancy, infant sex, and the 
trimester of pregnancy at the first prenatal visit. The AUC-ROC values remained relatively similar overall.

As shown in Table 3, the most significant improvement was observed in India-Nagpur, where the AUC-ROC 
increased from 0.812 to 0.823. However, the DRC saw a reduction in its AUC-ROC.

Discussion
Our study analyzed different algorithms and approaches to assess their performance in predicting the neonatal 
risk of death. The findings support the use of generalized ML models over country-specific or single-largest-
sample models for predicting neonatal mortality. The results highlight the potential of ML in improving neonatal 
health outcomes by utilizing extensive and varied datasets to train predictive algorithms.

Another finding from this study was the confirmation of the importance of collecting the minimum five 
indicators recommended by the WHO for assessing neonatal health. These indicators provided valuable 
information for constructing predictive tools that can aid in clinical decision-making for the neonatal population, 
especially variables such as Birth Weight, Gestational Age, and Maternal Age. Additionally, factors such as the 
place of delivery and type of delivery were also found to be influential predictors. It is important to note that, 
in comparison with existing literature—including other machine learning studies on neonatal prediction4 
and meta-analyses on infant mortality evaluation17 — similar predictive factors for neonatal outcomes were 
identified. Despite incorporating new variables into our models, the enhancements in predictive performance 
were insufficient to warrant the systematic collection of additional predictors, which would entail operational 
costs in clinical practice, particularly in settings with budgetary and resource constraints. Therefore, we can 

Fig. 2.  Comparison of AUC-ROC across models and countries.
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regard the five World Health Organization Minimum Indicators as essential baseline predictors for forecasting 
neonatal mortality.

Furthermore, by examining various temporal segments of the outcomes, we found that extending the 
prediction horizon to 42 days can result in a decline in the predictive performance of the models. Therefore, 
it may be advisable to concentrate on either the 0–7 day timeframe or the neonatal period for more accurate 
predictions.

Our findings align with previous studies that identified similar predictive factors for neonatal outcomes, 
reinforcing the value of established indicators like Birth Weight and Gestational Age4. A 2019 study used 
ML to predict postpartum hospital admission in the first 12 weeks after delivery and found a high predictive 
performance for hospitalization from hypertensive disorders (AUC = 0.879)18. Another analysis from 2020 found 
that ML was able to predict height-for-age z-scores in children from a rural area of Pakistan19. A more recent 
study from 2021 found that ML algorithms were able to predict with reasonable accuracy the risk of readmission 
for complications of hypertensive disorders of pregnancy20. When compared to different neonatal risk scores, 
this study also demonstrates good performance. Although the comparative baseline varies due to differences in 
populations, contexts, and variables, previous studies have reported neonatal mortality risk scores with AUC-
ROC values ranging between 0.75 and 0.8921. However, it is important to consider that some of these scores, such 
as the Score for Neonatal Acute Physiology (SNAP) and SNAP Perinatal Extension (SNAPE-II), incorporate 
additional clinical variables, including blood pressure, temperature, oxygen saturation, and neurological reflex 
tests, among others.

Our study offers new insights into predicting neonatal mortality across low- and middle-income countries. 
Despite the promising trajectory of AI in the medical field, our research sought to explore the unique obstacles 
encountered by medical practitioners in resource-limited environments. Our results indicate the potential of 

Fig. 3.  Calibration Plot of the Tuned LightGBM Model in the general approach.
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employing machine learning to predict neonatal mortality and examines a range of training methodologies 
using multicenter data.

The high predictive performance of neonatal mortality models provides essential clinical and managerial 
insights, potentially supporting healthcare teams to take actions. For instance, it could enable the early 
identification of neonates at risk of mortality, allowing for the prioritization of critical interventions such as 
Kangaroo Mother Care22 for preterm infants, early initiation of breastfeeding to enhance immunity, and 
targeted prophylactic measures, including neonatal resuscitation training for birth attendants and timely 
antibiotic administration for infection prevention. Neonatal mortality is primarily driven by premature birth, 
intrapartum-related events such as birth asphyxia, neonatal infections including sepsis and pneumonia, and 
congenital anomalies23. Implementing targeted prophylactic protocols to address these leading causes is 
crucial. These measures are particularly important in countries facing shortages of healthcare professionals and 
hospital beds. Scalable solutions, such as task-shifting strategies that train community health workers to provide 
essential neonatal care, telemedicine for neonatal follow-ups, and strengthening supply chains to ensure access 

Fig. 4.  Mean absolute Shapley-values barplot for predictors of neonatal risk of death using LGBM Tuned 
algorithm in the general approach.
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to neonatal resuscitation equipment, could help bridge healthcare gaps, supported by predictive models for 
targeted interventions.

The findings of this study highlight the potential of ML models to aid clinical decision-making in resource-
limited settings by accurately predicting neonatal mortality. By focusing on well-established indicators, 
healthcare providers can prioritize interventions and allocate resources more efficiently. For instance, models 
could support the implementation of targeted prophylactic protocols and nutritional interventions, especially 

Fig. 5.  Comparison of AUC-ROC across models, countries, and outcome variations.
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in environments with limited healthcare personnel and infrastructure. Although promising, the deployment 
of these ML models in clinical practice requires further validation through randomized trials to ensure their 
effectiveness and reliability in diverse clinical settings.

Future research should focus on incorporating post-pandemic data to address potential shifts in neonatal 
health outcomes and predictor associations. Moreover, studies should explore strategies for identifying and 
correcting dataset shifts, which may have implications for the long-term accuracy and applicability of predictive 
models. Conducting randomized clinical trials to evaluate the real-world impact of AI-based decision support 
systems on neonatal outcomes is also recommended to bridge the gap between research and clinical application. 
Additionally, an important avenue for future research is predicting the survival time of neonates with a predicted 
mortality outcome, providing further insights for improving neonatal care and clinical decision-making.

The study’s strengths include the use of comprehensive, multicentric datasets and a focus on established 
predictive indicators. Despite the advancements and insights provided by our study, certain limitations should 
be acknowledged. Firstly, we did not evaluate the representativeness of the samples relative to the entire 
population of the included countries. As a result, we cannot claim that the findings are broadly applicable across 
these nations. Additionally, since the data extended only through 2019, changes in outcome distribution and the 
associations among predictor variables could have occurred in subsequent years, influenced by the COVID-19 
pandemic and initiatives aimed at reducing neonatal mortality. These limitations suggest that while the findings 
are valuable, they should be interpreted with caution, particularly in the context of current clinical conditions.

Conclusions
The study provided valuable insights into predictive modeling for neonatal mortality risk. The findings indicate 
the importance of specific predictive factors and the strategic selection of algorithms and training data, 
highlighting the value of leveraging comprehensive and multicentric data for improving predictive performance. 
These results can guide the development of more accurate and effective predictive models to enhance clinical 
decision-making, ultimately improving outcomes for neonatal populations.

Data availability
The data used in this research is sourced from the Maternal and Neonatal Health Registry (MNHR) at the Na-
tional Institutes of Health (NIH). Access to the dataset can be requested through official data request procedures 
established by the institute. As authors, we are not permitted to share the data publicly. The access to the code 
used in the development of the models can be obtained upon request to Gabriel Silva (gabriel8.silva@usp.br).

Country Model Algorithm Support Positive Outcome CI AUC-ROC Comparison to neonatal baseline model

General1 General LGBM Tuned 134,007 2985 0.821 [0.812, 0.830] Superior

General1 Biggest train size Adaboost Tuned 134,007 2985 0.788 [0.779, 0.798] Superior

DRC General LGBM Tuned 18,568 445 0.794 [0.767, 0.821] Inferior

DRC Country-specific XGB Tuned 18,568 445 0.788 [0.759, 0.816] Inferior

DRC Biggest train size Adaboost Tuned 18,568 445 0.782 [0.753, 0.810] Superior

Guatemala General LGBM Tuned 25,167 539 0.802 [0.782, 0.825] Superior

Guatemala Country-specific XGB Tuned 25,167 539 0.790 [0.768, 0.813] Inferior

Guatemala Biggest train size Adaboost Tuned 25,167 539 0.736 [0.708, 0.763] Inferior

Zambia General LGBM Tuned 18,677 215 0.788 [0.747, 0.828] Superior

Zambia Country-specific XGB Tuned 18,677 215 0.809 [0.771, 0.846] Superior

Zambia Biggest train size Adaboost Tuned 18,677 215 0.760 [0.716, 0.802] Inferior

India-Belagavi General LGBM Tuned 16,070 313 0.787 [0.756, 0.816] Superior

India-Belagavi Country-specific Adaboost Tuned 16,070 313 0.785 [0.754, 0.816] Superior

India-Belagavi Biggest train size Adaboost Tuned 16,070 313 0.785 [0.754, 0.816] Superior

India-Nagpur General LGBM Tuned 18,278 323 0.823 [0.791, 0.850] Superior

India-Nagpur Country-specific Adaboost Tuned 18,278 323 0.811 [0.78, 0.84] Superior

India-Nagpur Biggest train size Adaboost Tuned 18,278 323 0.819 [0.789, 0.848] Superior

Pakistan General LGBM Tuned 16,521 838 0.777 [0.758, 0.795] Superior

Pakistan Country-specific LGBM Tuned 16,521 838 0.777 [0.756, 0.794] Superior

Pakistan Biggest train size Adaboost Tuned 16,521 838 0.750 [0.727, 0.77] Inferior

Kenya General LGBM Tuned 19,637 280 0.814 [0.783, 0.844] Superior

Kenya Country-specific LGBM Tuned 19,637 280 0.809 [0.777, 0.838] Superior

Kenya Biggest train size Adaboost Tuned 19,637 280 0.777 [0.745, 0.812] Inferior

Bangladesh2 General LGBM Tuned 1,089 32 0.860 [0.781, 0.926] Superior

Bangladesh2 Biggest train size Adaboost Tuned 1,089 32 0.822 [0.739, 0.898] Superior

Table 3.  Test results for predictive models of neonatal risk of death with the addition of new predictors. 1The 
general model does not have a country-specific approach. 2Due to the lack of data on training set, Bangladesh 
does not present a country-specific approach, since it had no data collected in the training period.
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