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Abstract
We give a new and intrinsic proof of the transitivity of the braid group action on the set of
full exceptional sequences of coherent sheaves on a weighted projective line. We do not use
the corresponding result of Crawley-Boevey for modules over hereditary algebras. As an
application we prove that the strongest global dimension of the category of coherent sheaves
on a weighted projective lineX does not depend on the parameters ofX. Finally we prove that
the determinant of the matrix obtained by taking the values of n Z-linear functions defined
on the Grothendieck group K0(X) � Z

n of the elements of a full exceptional sequence is an
invariant, up to sign.

Keywords Braid group · Exceptional sheaf · Exceptional sequence · Weighted projective
line · Tilting sheaf · Tilting complex · Strong global dimension · Grothendieck group ·
Diophantine equation
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1 Introduction

LetX be aweighted projective line in the sense of Geigle and Lenzing [6]. The braid groupBn

on n strings acts on the set of full exceptional sequences in the category coh(X) of coherent
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sheaves on X, where n denotes the rank of the Grothendieck group K0(X) of coh(X). This
action is given by mutations in the sense of Gorodentsev and Rudakov [8]. The following
result was proved in [15].

Theorem 1.1 The action of the braid group on the set of full exceptional sequences in the
category of coherent sheaves on a weighted projective line X is transitive.

The proof was based on induction on the rank of the Grothendieck group of coh(X) and
on the rather strong result of Crawley-Boevey [5] which states that the braid group acts
transitively on the set of full exceptional sequences in the category of finitely generated
modules over a hereditary algebra over an algebraically closed field.

It is desirable to have in the geometric situation a purely sheaf-theoretical proof for the
transitivity of the braid group operation. In this short notewe show that this in fact can be done
using perpendicular calculus of exceptional pairs. For this we calculate the left perpendicular
category of the sum of two line bundles L ⊕ L(�c) formed in the sheaf category, where L is
a line bundle and �c the canonical element of the grading group of X. For the convenience of
the reader we also state the unchanged parts of the original proof.

Furthermore, we give two applications of the transitivity of the braid group action. First
we show that the strong global dimension of a weighted projective line X is independent
of the parameters of X. This means that if X = X(p, λ) and X

′ = X(p, λ′), are weighted
projective lines with the same weight sequence p and different parameter sequences λ and
λ′ then the strong global dimensions for X and X′ are the same.

Second we prove that the determinant of the matrix obtained by applying n additive
functions defined on the Grothendieck group of coh(X) to the sheaves of a full exceptional
sequence on X is independent of the exceptional sequence, up to sign. Finally, we calculate
this invariant for taking the rank function, the degree function and n − 2 Euler forms with
respect to simple exceptional sheaves.

2 Preliminaries

2.1 Weighted projective lines were introduced by Geigle and Lenzing in 1987 in order to
give a geometric approach to Ringel’s canonical algebras [17]. We recall some of the basic
facts and refer for details to [6].

Let k be an algebraically closed field. A weight sequence p = (p1, . . . , pt ) is a sequence
of natural numbers pi with pi ≥ 2. For a weight sequence p denote by L(p) the abelian
group with generators �x1, . . . , �xt and relations p1 �x1 = · · · = pt �xt := �c. The element �c
is called the canonical element. L(p) is an ordered group with

∑t
i=1 N�xi as cone of non-

negative elements. Furthermore, each element �x can be written in normal form �x = l�c +∑t
i=1 li �xiwith l ∈ Z and 0 ≤ li < pi . Consider further a sequence of parameters λ =

(λ3, . . . , λt ), that is the λi are non-zero and pairwise distinct elements from k. We denote
S = S(p, λ) = K[X1, . . . ,Xt]/(Xpi

i + Xp1
1 + λiX

p2
2 , i = 3, . . . , t). The algebra S(p, λ) is

L(p)-graded by defining deg (Xi ) = �xi . Then the weighted projective line X = X(p, λ) is
defined to be the L(p)-graded projective scheme ProjL(p)(S(p, λ)) and the category coh(X)

of coherent sheaves on X is the quotient of the category of finitely generated L(p)-graded
S modules modulo the L(p)-graded S modules of finite length. The category coh(X) is
abelian, hereditary, that is Exti (A, B) = 0 for all A and B in coh(X) and i ≥ 2, and it has
finite dimensional Hom and Ext1 spaces. Moreover, coh(X) admits Serre duality in the form
Ext1(A, B) � DHom(B, A( �ω)), where �ω denotes the dualizing element (t−2)�c−∑t

i=1 �xi ,
and consequently coh(X) has Auslander-Reiten sequences.

123



On the braid group action on exceptional sequences... 899

We denote the structure sheaf on X by O. It is well known that the group of line bundles
on X is isomorphic to the group L(p) via the map �x 	→ O(�x) where O(�x) is the twisted
by �x structure sheaf. Moreover, the homomorphism space between two line bundles can be
calculated by the formula Hom(O(�x),O(�y)) � S�y−�x and if �z = l�c+∑t

j=1 li �xi is in normal
form, then dim S�z = l +1 provided l ≥ −1. For coherent sheaves onXwe have the rank and
the degree function. The sheaves of rank 0 are those of finite length. One of the key results
in [6] is that the sheaf

⊕
0≤�x≤�c O(�x) is a tilting sheaf such that its endomorphism algebra is

a canonical algebra.
2.2 Recall that an object in a hereditary k-categoryH is called exceptional if End(E) = k

and Ext1(E, E) = 0. Moreover, a sequence of exceptional objects ε = (E1, . . . , Er ) is
called an exceptional sequence if Hom(E j , Ei ) = 0 = Ext1(E j , Ei ) for all j > i . If r = 2
then ε is called an exceptional pair and if r equals the rank of the Grothendieck group K0(H)

then ε is called a full exceptional sequence.
Gorodentsev and Rudakov defined mutations of exceptional sequences on P

n which
give rise to an operation of the braid group Br = 〈σ1, . . . σr−1|σiσj = σjσi for i − j ≥
2 and σiσi+1σi = σi+1σiσi+1〉 on the set of (isomorphism classes) of exceptional sequences
of length r [8]. For a categorical treatment we refer to [4].

We will study the action of the braid group Bn on the set of full exceptional sequences
in coh(X). In this case each line bundle is exceptional. Moreover, the simple exceptional
sheaves of rank 0 fit in exact sequences

0−→O( j �xi )−→O(( j + 1)�xi )−→Si, j−→0.

For an exceptional pair (A, B) in coh(X) we have Hom(A, B) = 0 or Ext1(A, B) = 0
([16, Lemma 3.2.4]). Furthermore, if the space Hom(A, B) is non-zero then the canonical
map can : Hom(A, B) ⊗k A−→B is surjective or injective but not bijective, the proof for
this fact is similar as the proof of [10, Lemma 4.1].

Then the left mutation of (A, B) is the exceptional pair (LAB, A), where LAB is given
by one of the following three exact sequences: if Hom(A, B) �= 0 then

0−→LAB−→Hom(A, B) ⊗k A
can−→ B−→0,

0−→Hom(A, B) ⊗k A
can−→ B−→LAB−→0,

and if Ext1(A, B) �= 0 then

0−→B−→LAB−→Ext1(A, B) ⊗k A−→0,

where the third sequence is a universal extension. If Hom(A, B) = 0 = Ext1(A, B) then
LAB = B and the leftmutation of the pair (A, B) is called a transposition.Now, the generators
of Br act on the set of full exceptional sequences in coh(X) as follows

σi · (E1, . . . Ei−1, Ei , Ei+1, Ei+2, . . . , Er ) = (E1, . . . Ei−1, LEi Ei+1, Ei , Ei+2, . . . , Er ).

Further the right mutation of an exceptional pair (A, B) is the exceptional pair (B,RB A),
where RB A is given by one of the following three exact sequences

0−→A
cocan−→ DHom(A, B) ⊗k B−→RB A−→0,

0−→RB A−→A
cocan−→ DHom(A, B) ⊗k B−→0,

0−→DExt1(A, B) ⊗k B−→RB A−→A−→0,
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where D = Homk(−, k), cocan denotes the co-canonical map and the third sequence is a
universal extension. Then σ−1

i acts in the following way:

σ−1
i ·(E1, . . .Ei−1, Ei , Ei+1, Ei+2, . . . ,Er )=(E1, . . . Ei−1, Ei+1,REi+1Ei ,Ei+2, . . . ,Er ).

Lemma 2.1 We have

(i) σ1 . . . σn−1(E1, E2, . . . , En) = (En( �ω), E1, E2, . . . , En−1).
(ii) σn−1 . . . σ1(E1, E2, . . . , En) = (E2, . . . , En−1, E1(−�ω)).
(iii) In the orbit of an exceptional sequence (E1, . . . Ea, Ea+1, . . . ) there is an exceptional

sequence of the form (Ea, Ea+1, . . . ).

The proof for (i) and (ii) is given in [15, Proposition 2.4] and (iii) is a consequence of (i)
and (ii).

2.3 Recall that for an object X in a hereditary category H the left perpendicular category
with respect to X is defined as the full subcategory of all objects Y satisfyingHom(Y , X) = 0
and Ext1(Y , X) = 0 [7]. The right perpendicular category is defined dually.

3 Proof of Theorem 1.1

In this section we will prove Theorem 1.1. LetX be a weighted projective line of weight type
p = (p1, . . . , pt ) and rank of K0(X) equals n. The item (a) of the next Proposition can be
seen as a consequence of [1]. We give a proof, for the sake of completeness.

Proposition 3.1 (a) Let (L, L ′) be an exceptional pair of line bundles in coh(X) with
dimk Hom(L, L ′) ≥ 2. Then L ′ � L(�c)) and dimHom(L, L ′) = 2.

(b) The left perpendicular category with respect to L ⊕ L(�c) for a line bundle L, formed
in coh(X), consists only of finite length sheaves. Moreover, this perpendicular category
is equivalent to the category of finite dimensional modules over the path algebra of the
disjoint union of linearly oriented quivers of type Api−1, i = 1, . . . , t .

Proof (a) We have L ′ = L(�x) for some �x . We can assume that �x is in normal form and,
after renumbering if necessary the indices, �x = l�c + ∑r

j=1 l j �x j , where l1 �= 0, . . . , lr �= 0
for some r . Since dimHomk(L, L ′) ≥ 2 we have l ≥ 1. Using Serre duality and the fact
that (L, L(�x)) is an exceptional pair we have 0 = Ext1(L(�x), L) � Hom(L, L(�x + �ω)) �
Hom(O,O(�x + �ω)). Now �x + �ω = l�c+ ∑r

j=1 l j �x j + (t − 2)�c− ∑t
i=1 �xi = (l − 2+ r)�c+

∑r
j=1(l j − 1)�x j + ∑t

i=r+1(pi − 1)�xi . This element is in normal form and it follows that
l − 2 + r < 0, hence l = 1 and r = 0. Consequently �x = �c.

(b) After renumbering, if necessary, the indices for the simple exceptional sheaves in
the tubes we can assume that Ext1(Si,0, L) �= 0 for i = 1, . . . , t . Denote by [ j]Si,1 the
indecomposable sheaf in the tubes with socle Si,1 and quasi-length j . Following a similar

argument as in [3, 8.2], we conclude that L ⊕ L(�c)⊕t
i=1

⊕p j−1
j=1

[ j]Si,1 is a tilting object

in coh(X). Then
⊕t

i=1
⊕p j−1

j=1
[ j]Si,1 is a tilting object in the left perpendicular category

H = ⊥(L ⊕ L(�c)) and consists of n − 2 indecomposable direct summands. It is well-known
that H is an hereditary category [12]. Therefore T is a tilting sheaf in H and consequently
H consists of the objects of the wings for [ j]Si,pi−1, i = 1, . . . t . This also shows that the
endomorphism algebra of T is the disjoint union of linear quivers of type Api−1, i = 1, . . . , t .

��
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On the braid group action on exceptional sequences... 901

3.2 We will use the following three results of [15]

Lemma 3.2 [15, Lemma 2.7] If (E1, ...En) and (F1, ..., Fn) are complete exceptional
sequences in coh(X) which differ in at most one place, say E j ∼= Fj for j �= i , then
also Ei ∼= Fi .

3.3 An exceptional sequence (E1, ..., En) in coh(X) is called orthogonal if HomA(Ei ,

E j ) = 0 for all i �= j .

Proposition 3.3 [15, Proposition 2.8] There are no orthogonal complete exceptional sequen-
ces in coh(X).

Lemma 3.4 [15, Lemma 3.1] Let E1, . . . , En be an exceptional sequence in coh(X) such
that dimk HomX(E1, E2) ≥ 2.

(i) Suppose that LE2 = LE1E2 is defined by an exact sequence

0 → LE2 → HomX(E1, E2) ⊗ E1 → E2 → 0.

Then morphisms 0 �= h ∈ HomX(LE2, E1) and 0 �= f ∈ HomX(E1, E2) are either
both monomorphisms or both epimorphisms.

(ii) Suppose that RE1 = RE2E1 is defined by an exact sequence

0 → E1 → DHomX(E1, E2) ⊗ E2 → RE1 → 0.

Then morphisms 0 �= h ∈ HomX(E2,RE1) and 0 �= f ∈ HomX(E1, E2) are either
both monomorphisms or both epimorphisms.

3.5Remark: TheMeltzer’s proof of the Theorem 1.1 is contained in [15, Proposition 4.3.6,
Lemma 4.3.7, Proposition 4.3.8]. We follow the philosophy of that proof and briefly blended
them.Moreoverwe give the necessary arguments,without using the result ofCrawley-Boevey
[5].

For an exceptional sequence ε = E1, . . . , En we define

‖ε‖ = (rk (Eπ(1)), ..., rk (Eπ(n))),

where π is a permutation of 1, ..., n such that rk (Eπ(1)) ≥ ... ≥ rk (Eπ(n)) .

Proposition 3.5 Let X be a weighted projective line with at least one weight, i.e. X �= P
1.

Then in each orbit under the braid group action there is a complete exceptional sequence
containing a simple sheaf of rank 0.

Proof We show first that if ε is a complete exceptional sequence in coh(X) with rk Ei ≥ 1
for all i then there exists σ ∈ Bn such that ‖σ · ε‖ < ‖ε‖ or that σ · ε contains a rank zero
sheaf.

Let ε be a complete exceptional sequence in coh(X). We know from (3.3) that ε is not
orthogonal. Choose a < b such that Hom(Ea, Eb) �= 0, but Hom(Ei , E j ) = 0 for the
remaining a ≤ i < j ≤ b.

Let f : Ea → Eb a nonzero morphism. We know that f is a monomorphism or an
epimorphism, thus we distinguish two cases.

Case 1: f is a monomorphism.
Then f induces epimorphisms Ext1(Eb, Ei ) � Ext1(Ea, Ei ) for all i . Since the first Ext-
group is zero for i ≤ b the second Ext-group also vanishes for these i . We see that both
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HomX(Ea, Ei ) = 0, and Ext1(Ea, Ei ) = 0 for all a < i < b, therefore applying transposi-
tions we obtain that

σ−1
b−2...σ

−1
a+1σ

−1
a ε = (E1, ..., Ea−1, Ea+1, ..., Eb−1, Ea, Eb, ..., En).

Moreover, using Lemma 2.1, we can assume that a = 1 and b = 2.
Now, the left mutation LE2 = LE1E2 is defined by an exact sequence being of the form

(i) 0 → HomX(E1, E2) ⊗ E1 → E2 → LE2 → 0

or
(ii) 0 → LE2 → HomX(E1, E2) ⊗ E1 → E2 → 0.

In the case (i) we have rk (LE2) < rk (E2), hence ‖σ1ε‖ < ‖ε‖ and we are done.
In the case (ii) there exists a nonzero morphism h : LE2 → E1. Again, h is

a monomorphism or an epimorphism. Because f is a monomorphism we infer that
dimk HomX(E1, E2) ≥ 2. But then, in view of Lemma 3.4, h is a monomorphism. Thus

rk (LE2) ≤ rk (E1) ≤ rk (E2).

If rk (LE2) < rk (E2) we apply σ−1
1 as before and obtain ‖σ1ε‖ < ‖ε‖.

Assume otherwise that rk (LE2) = rk (E2). Then also rk (E1) = rk (E2) and therefore
dimk HomX(E1, E2) = 2.

Consider an exact sequence

0 → E1
f→ E2 → C → 0

where C = coker(f). Clearly rk (C) = 0. Furthermore, applying the functor HomX(Ei ,−)

we conclude that dimk HomX(Ei ,C) = 1, for i = 1, 2. Finally, applying the functor
HomX(−,C) we obtain Hom(C,C) = k and Ext1(C,C) = k, in particular C is inde-
composable.

We have to consider two cases. First assume that C is a finite length sheaf concentrated
at an ordinary point. Now End(C)) = k which implies that C is a simple sheaf. The Rie-
mann Roch formula yields HomX(L,C) = k for each line bundle L . Thus using a line
bundle filtration for E1 we obtain dimk HomX(E1,C) = rk (E1). We have shown before
that dimk HomX(E1,C) = 1. Thus we obtain rk (E1) = rk (E2) = 1 and we have also
dimHom(E1, E2) = 2. But then we have rk (Ei ) = 0 for i > 2 by Lemma 3.1.

Now, assume that C is a sheaf of finite length concentrated at an exceptional point, say λi
of weight pi . It follows from Hom(C,C) = k and Ext1(C,C) = k that the length of C is pi ,
and therefore for the classes in the Grothendieck group K0(X) we have [C] = ∑pi−1

j=0 [Si, j ]
where Si, j are the objects on the mouth of the tube. From the exact sequences stated in
2.1. we infer that [Si, j ] = [O( j + 1)�xi )] − [O( j)�xi ] for i = 1, · · · , t, j = 1, · · · , pi .

Hence
∑pi−1

j=0 [Si, j ] = [O(�c)] − [O]. On the other hand there is an exact sequence
0−→O−→O(�c)−→S−→0 where S is a simple finite length sheaf concentrated in an ordi-
nary point and consequently [C] = [S]. We conclude that 1 = dimk HomX(E1,C) =
χ([E1], [C]) = χ([E1], [S]) = dimk HomX(E1, S) = rk (E1), where χ is the Euler form.
Then we have rk (E1) = rk (E2) = 1 and again dimHom(E1, E2) = 2, and consequently
rk (Ei ) = 0 for i > 2 by Lemma 3.1.

Case 2 f is an epimorphism.
Then f induces epimorphisms Ext1(Ei , Ea) � Ext1(Ei , Eb). The first Ext-group is

zero for i ≥ a, thus also the second Ext-group vanishes for these i . We see that both
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HomX(Ei , Eb) = 0 and Ext1(Ei , Eb) = 0 for all a < i < b, and again applying transposi-
tions we have

σ−1
a+1...σ

−1
b−1ε = (E1, ..., Ea−1, Ea, Eb, Ea+1, ..., En).

As before we can assume a = 1 and b = 2. Then RE1 = RE2E1 is defined by an exact
sequence

(i) 0 → RE1 → E1 → DHomX(E1, E2) ⊗ E2 → 0

or
(ii) 0 → E1 → DHomX(E1, E2) ⊗ E2 → RE1 → 0

In the first case we have rk (RE1) < rk (E1), and consequently ‖σ1ε‖ < ‖ε‖. In the second
case there is a nonzero map h : E2 → RE1, which again is a monomorphism or an epimor-
phism. Since f is an epimorphism we conclude that Hom(E1, E2) ≥ 2 and therefore h is an
epimorphism by Lemma 3.4.

Now, in this case,
rk (E1) > rk (E2) > rk (RE1)

and therefore again ‖σ−1ε‖ < ‖ε‖.
After successive applying the norm reduction above, if necessary, we can shift by a braid

group element any full exceptional sequence to a sequence containing an exceptional sheaf
of rank 0.

Now by the same arguments as in [15] it follows that the orbit contains an exceptional
sequence with a simple sheaf and we refer to that paper.

Now let s be the minimal number with the property that the orbit of ε contains an excep-
tional sequence with a rank 0 sheaf F of length s. By Lemma 2.1 we can assume that this
exceptional sequence is of the form (E1, ..., En−1, F).

We have to show that s = 1. Assume contrary that F is not simple and denote by S the
socle of F . We claim that (E1, ..., En−1, S) is an exceptional sequence, too. Indeed, we have
Ext(S, Ei ) = 0 for 1 ≤ i ≤ n − 1, because the embedding S ↪→ F induces epimorphisms
Ext(F, Ei ) � Ext(S, Ei ) and the first Ext-group vanishes by assumption. On the other
hand, Hom(S, Ei ) = 0 for 1 ≤ i ≤ n − 1, because the existence of a nonzero morphism
from S to some Ei implies that Ei also has finite length, and equals therefore [r ]S, for some
r , the unique indecomposable finite length sheaf with socle S and length r . Then r ≥ s by
minimality of s. But this implies Hom(F, Ei ) �= 0, contrary to the fact that (E1, ..., En−1, F)

is an exceptional sequence. Thus we have two exceptional sequences which coincide in the
first n − 1 terms but are different in the last one. By Lemma 3.2 this is impossible. ��

3.6 Proof of Theorem 1.1 The proof is by induction on the rank n of K0(X) and it is
similar to the arguments in [15, 4.3.9]. ��

4 The strong global dimension of coh(X)

The strong global dimension of a finite dimensional algebra Awas introduced by Skowroński
and is by definition the maximum of the width of indecomposable bounded differential com-
plexes of finite dimensional projective A-modules (see [20]). The strong global dimension
of A will be denoted by s.gl.dim. A. Happel-Zacharia have shown that s.gl.dim. A < ∞ if
and only if A is piecewise hereditary. An algebra A is said to be piecewise hereditary, if there
exists a hereditary, abelian categoryH, such that the bounded derived categories Db(A) and
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904 E.R. Alvares et al.

Db(H) are equivalent, as triangulated categories. The categoriesH occurring in this situation
have been described by Happel and Happel-Reiten in [11, 12]. They proved the following:
H is derived equivalent to mod H for some finite dimensional hereditary k-algebra H or
derived equivalent to coh(X) for some weighted projective line X.

Hence, when Db(A) � Db(H), then there exists a tilting object T ∈ Db(H) such that
A � End(T)op as k-algebras. In particular, there exists a 	 ∈ N such that T lies in the additive
closure

∨	
i=0 H[i] of the union ⋃	

i=0 H[i]. If A is a piecewise hereditary algebra which is
not an hereditary algebra, then there exist such a pair (H, 	) such that s.gl.dim. A = 	 + 2
(see [2]). An upper bound of the strong global dimension was found by Happel-Zacharia. It
is rk K0(A) + 1 where rk K0(A) is the rank of the Grothendieck group of the algebra (see
[13]). Therefore, it is natural define the maximum of the strong global dimension.

We point out that the bound given in [13] is not, in general optimal. For example, if
Db(A) � Db(coh(X)) and X has weight type (2, 2, . . . 2), (t entries) then s.gl.dim. A ≤ 3
(see [16]). For tubular weighted projective lines X, a more detailed analysis provides better
bounds of the strong global dimension. For example, if X has weight type (3, 3, 3), (2, 4, 4)
or (2, 3, 6) then, s.gl.dim. A ≤ 6, 8 and 9 respectively (see [19]).

Definition 4.1 Let X(p, λ) be a weighted projective line. The strongest global dimension is
the maximum of the strong global dimension of all algebras which are derived equivalent to
coh(X). The strongest global dimension of X will be denoted by st.gl.dim.X.

As an application of the transitivity of the braid group action in [16] it was shown that
several data are independent of the parameters of the weighted projective line. Here we are
going to study the strongest global dimension of weighted projective lines.

We have the following characterization of the strongest global dimension.

Proposition 4.2 The strongest global dimension of a weighted projective line X is one if
X = P

1 or is themaximal numberm+2 such that there exists a tilting complex T in the derived
category of coh(X) of the form

⊕m
i=0 Ti [i] with Ti ∈ coh(X), i ∈ Z and T0 �= 0 �= Tm.

Proof. See Theorem 1 in [2]. ��
It follows from the definition that if the bounded derived category of an algebra A is

triangular equivalent to the bounded derived category of coh(X), then the s.gl.dim. A ≤
st.gl.dim.X.

Before the main theorem in this section we have the following remarks and facts. Recall
that, if (A, B) is an exceptional pair in coh(X), then HomX(A, B) = 0 or Ext1(A, B) = 0.
First we assume that Hom(A, B) �= 0. We have then two cases for the left mutation to
consider:

(α) : 0−→LAB−→Hom(A, B) ⊗k A
can−→ B−→0,

(β) : 0−→Hom(A, B) ⊗k A
can−→ B−→LAB−→0.

It is important to note that the surjectivity of the canonical map depends only on rk (A),
rk (B) and on the dimension of the spaces HomX(A, B). We have that

• if rk (A) �= 0 then
can is surjective ⇐⇒ dimkHom(A, B) · rk (A) > rk (B).

• if rk (A) = 0
can is surjective ⇐⇒ dimkHom(A, B) · dimk A > dimk B.

123



On the braid group action on exceptional sequences... 905

Applying HomX( , A) in (α) we have HomX(α, A) :
0−→Hom(B, A) −→Hom(Hom(A, B) ⊗k A, A) −→Hom(LAB, A)−→

−→Ext1(B, A) −→Ext1(Hom(A, B) ⊗k A, A) −→Ext1(LAB, A)−→0

Applying HomX( , A) in (β) we have HomX(β, A) :
0−→Hom(LAB, A) −→Hom(B, A) −→Hom(Hom(A, B) ⊗k A, A)−→

−→Ext1(LAB, A) −→Ext1(B, A) −→Ext1(Hom(A, B) ⊗k A, A)−→
Now, the following remarks follows from both long exact sequences:

Remark 4.3 The mutation of (A, B) is the exceptional pair (LAB, A) and:

• In the case (α), the conditions HomX(B, A) = 0 = Ext1(B, A) imply that
dimkHom(LAB, A) = dimkHom(A, B) and dimkExt1(LAB, A) = 0.

• In the case (β), the conditions HomX(B, A) = 0 = Ext1(B, A) imply that
dimkHom(LAB, A) = 0 and dimkExt1(LAB, A) = dimkHom(A, B).

Now assume that Ext(A, B) �= 0. Then we have the universal extension

(γ ) : 0−→B−→LAB−→Ext(A, B) ⊗k A−→0.

Applying HomX( , A) in (γ ) we have HomX(γ, A) :
0−→Hom(Ext(A, B) ⊗k A, A) −→Hom(LAB, A) −→Hom(B, A)−→

−→Ext1(Ext(A, B) ⊗k A, A) −→Ext1(LAB, A) −→Ext1(B, A)−→ 0.

The mutation of (A, B) is the exceptional pair (LAB, A) and:

• In the case (γ ), the conditions HomX(B, A) = 0 = Ext1(B, A) imply that
dimkHom(LAB, A) = dimkExt1X(A, B) and dimkExt1(LAB, A) = 0.

Summarizing, from (4.3) if (A, B) is an exceptional pair, then on the mutation pair
(LAB, A) we can compute the dimensions dimkHom((LAB, A), dimkExt1(LAB, A), and
rk (LAB) without using the parameters λ.

Lemma 4.4 Let ε = (E1, . . . , En) be a complete exceptional sequences in coh(X) and σ be
the generator of the braid groupBn such thatσ ·ε = (E1, . . . ,El−1,LEl+1,El , El+2, . . . , En),
where we write shortly LEl+1 instead of LEl El+1. Then the respective dimensions
dimkHom(Ei ,LEl+1), dimkExt1(Ei ,LEl+1) for 1 ≤ i ≤ l − 1, dimkHomX(LEl+1, Ei ),
dimkExt1(LEl+1, Ei ) for i ∈ {l, l+2, . . . , n} and rk (LEl+1) depend only on the dimensions
of the Hom,Ext1 and the ranks of the elements in ε.

Proof In Remark 4.3 we have seen that the dimensions dimkHom(LEl+1, El), dimkExt1

(LEl+1, El) depend only of the dimension of HomX(El , El+1) or Ext1(El , El+1). Now we
will prove the claim for dimkHom(E j ,LEl+1), dimkExt1(E j ,LEl+1) for 1 ≤ j ≤ l − 1.

Suppose that the mutation is given by type (α), then we have the exact sequence

0−→LEl+1−→Hom(El , El+1) ⊗k El
can−→ El+1−→0,

which induces a long exact sequence

0−→Hom(E j ,LEl+1) −→Hom(E j ,Hom(El , El+1) ⊗k El) −→Hom(E j , El+1)−→
−→Ext1(E j ,LEl+1) −→Ext1(E j ,Hom(El , El+1) ⊗k El) −→Ext1(E j , El+1)−→0

for 1 ≤ j ≤ l − 1.
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Since by [15, Lemma 3.2.4] HomX(E j , El+1) = 0 or Ext1(E j , El+1) = 0 we have either

dimkHom(E j ,LEl+1) = dimkHom(E j , El) · dimkHom(El , El+1)

and

dimkExt
1(E j ,LEl+1) = dimkExt

1(E j , El) · dimkHom(El , El+1) − dimkExt
1(E j , El+1)

or
dimkHom(E j , El) · dimkHom(El , El+1) + dimkExt

1(E j ,LEk+1) =
dimkHom(E j ,LEl+1) + dimkHom(E j , El+1).

Since (E j ,LEl+1) is an exceptional pair, we have HomX(E j ,LEl+1) = 0 or
Ext1(E j ,LEl+1) = 0.

Each one gives us that dimkHom(E j ,LEl+1) and Ext1(E j ,LEl+1) depend only of the
dimensions of the Hom, Ext spaces of ε.

In the cases that the left mutation is given by type (β) or type (γ ) the proof is similar. ��

We have as a consequence of the previous discussion the following:

Corollary 4.5 Suppose that ε = (E1, . . . , En) and ε′ = (E
′
1, . . . , E

′
n) are complete excep-

tional sequences in coh(X) such that the following formulas are valid dimkHomX(E j , El) =
dimkHomX(E

′
j , E

′
l ), dimkExt1X(E j , El) = dimkExt1X(E

′
j , E

′
l ) and rk (E j ) = rk (E

′
j ) for

all 1 ≤ j, l ≤ n. Let σ ∈ Bn and σ · ε = (F1, · · · , Fn), σ · ε′ = (F
′
1, · · · , F

′
n). Then

dimkHomX(Fj , Fl) = dimkHomX(F
′
j , F

′
l ), dimkExt1X(Fj , Fl) = dimkExt1X(F

′
j , F

′
l ) and

rk (Fj ) = rk (F
′
j ) for all 1 ≤ j, l ≤ n. ��

Theorem 4.6 Let X = (p, λ) and X
′ = (p, λ′) be weighted projective lines with the same

weight type. Then st.gl.dim.X = st.gl.dim.X′.

Proof Let m be maximal such that there exists a tilting complex T of the form
⊕m

i=0 Ti [i]
with Ti ∈ coh(X). and T0 �= 0 �= Tm .Write T = ⊕

E j [n j ]with indecomposable sheaves E j

and n j ∈ Z. The E j can be ordered in such a way that they form a full exceptional sequence
ε in coh(X). By Theorem 1.1. there exists a braid group element σ ∈ Bn such that ε = σ · κ
where κ = (OX,OX(�x1), . . . ,OX((p1 − 1)�x1), . . . ,OX(�xt ), . . . ,OX((pt − 1)�xt ),OX(�c))
is the exceptional sequence obtained from the canonical tilting sheaf

⊕
0≤�x≤�c OX(�x) on X.

Now the application of the same braid group element σ to the exceptional sequence κ ′ =
(OX′ ,OX′(�x1), . . . ,OX′((p1 − 1)�x1), . . . ,OX′(�xt ), . . . ,OX′((pt − 1)�xt ),OX′(�c)) obtained
from the canonical tilting sheaf

⊕
0≤�x≤�c OX′(�x) onX′ yields a full exceptional sequence ε′ for

the weighted projective lineX′. The sequence ε′ is constructed from κ ′ using successively the
same kind of mutations as in the construction of ε from κ . Therefore the exceptional sheaves
E ′

j of ε
′ satisfy the same dimension formulas for the Hom and Ext1 spaces as the exceptional

sheaves E j of ε. Hence the E ′
j can be shifted in the derived category of coh(X′) as the E j

which yields a tilting complex
⊕m

i=0 T
′
i [i] with T ′

i ∈ coh(X′) for X′ and with T ′
0 �= 0 �= T ′

m .
Consequently st.gl.dim.X = m ≤ st.gl.dim.X′. By symmetry, st.gl.dim.X′ ≤ st.gl.dim.X

and consequently st.gl.dim.X = st.gl.dim.X′. ��

Note that from Corollary 4.5 we obtain that the ordinary quivers of the algebras End T
and End T ′ in the former theorem are the same which was already stated in [16].
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The former proof also suggests the following:
Conjecture: Let T be a tilting complex of the form

⊕m
i=0 Ti [i] with Ti ∈ coh(X) and

T0 �= 0 �= Tm and A = End T . The strong global dimension of A does not depend on the
parameters.

The validity of this conjecture implies the statement of the Theorem 4.6.

5 Determinants for exceptional sequences

Let f1, . . . fn be group homomorphisms defined on the Grothendieck group K0(X) of a
weighted projective line with values in Z. For a full exceptional sequence ε = (E1, . . . , En)

on X we form the n × n matrix M(ε) whose coefficient at the place (i, j) equals fi (E j ) and
we consider the determinant of that matrix det(M(ε)). We show next that the determinant of
det(M(ε)), is invariant up to sign.

Theorem 5.1 There exists a constant c ∈ k such that det(M(ε)) = c or −c for all full
exceptional sequences ε in coh(X).

Proof We are going to show that the determinant of the matrix does not change if we apply
to the exceptional sequence in coh(X) the left mutation σi . For right mutations the proof is
analogous.

For a full exceptional sequence ε = (E1, E2, . . . En)wedenote dimk Hom(Ei , Ei+1) = h
and dimk Ext1(Ei , Ei+1) = e. Now, σi · ε equals (E1, . . . , Ei−1,LEi+1, Ei , Ei+2, . . . En)

and we have [LEi Ei+1] = h[Ei ] − [Ei+1], [LEi Ei+1] = [Ei+1] − h[Ei ] or [LEi Ei+1] =
e[Ei ]+[Ei+1]depending on the type of the leftmutation of the pair (Ei , Ei+1) (seeSection 2).
Thematrix for the exceptional sequence σi ·ε is obtained from that of ε by replacing the values
in the i-th column by f j (Ei+1) − h f j (Ei ), − f j (Ei+1) + h f j (Ei ) or f j (Ei+1) + e f j (Ei ),
j = 1, . . . , n and by replacing the values in the i + 1-th column by f j (Ei ), j = 1, . . . n.
Then the statement follows from the known rules for determinants. ��

As an example we can apply the method above to the rank function, the degree function
and the n − 2 Euler forms 〈−, Si, j 〉, j = 1, . . . pi − 1, i = 1, . . . t .

Corollary 5.2 For each full exceptional sequence ε = (E1, E2, . . . , En) in coh(X) the deter-
minant of the matrix

M(ε) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rk E1 rk E2 rk E3 . . . rk Ep1+1 . . . rk En

deg E1 deg E2 deg E3 . . . deg Ep1+1 . . . deg En

〈E1, S1,1〉 〈E2, S1,1〉 〈E3, S1,1〉 . . . 〈Ep1+1, S1,1〉 . . . 〈En, Sp1,1〉
.
.
.

〈E1, S1,p1−1〉 〈E2, S1,p1−1〉 〈E3, S1,p1−1〉 . . . 〈Ep1+1, S1,p1−1〉 . . . 〈En, S1,p1−1〉
.
.
.

〈E1, St,1〉 〈E2, St,1〉 〈E3, St,1〉 . . . 〈Ep1+1, St,1〉 . . . 〈En, St,1〉
.
.
.

〈E1, St,pt−1〉 〈E2, St,pt−1〉 〈E3, St,pt−1〉 . . . 〈Ep1+1, St,pt−1〉 . . . 〈En, St,pt−1〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

equals p or −p. Recall that p denotes the least common multiple of the weights p1, . . . , pt .
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Proof The determinant is easily calculated to be p or −p for the exceptional sequence
(O,O(�c), S1,1, . . . , S1,p1−1, . . . St,1, . . . , St,p1−1) using the block structure of thematrix and
the fact that rkO = rkO(�c) = 1, degO = 0 and degO(�c) = p. Then the statement follows
from Theorem 5.1. ��

Remark. The determinantal equation obtained in the way above can be interpreted as a
diophantine equation for the weighted projective line X. Diophantine equations expressed
for data in terms of exceptional sequences seems to be typical. So Rudakov showed that the
ranks of the vector bundles of an exceptional triple on the projective plane satisfy theMarkov
equation X2 + Y 2 + Z2 = 3XY Z [18]. Diophantine equations for partial tilting sequences
on weighted projective lines were given in [16, Chapter 10.2].

Example. For an weighted projective line and an exceptional pair (E1, E2) the equation
is

rk (E1)deg (E2) − rk (E2)deg (E1) = 1.

For an exeptional triple (E1, E2, E3) on a weighted projective line of type (2) the equation
is

rk (E1)deg (E2)〈E3, S〉 + rk (E2)deg (E3)〈E1, S〉 + rk (E3)deg (E1)〈E2, S〉
−rk (E3)deg (E2)〈E1, S〉 − rk (E1)deg (E3)〈E2, S〉 − rk (E2)deg (E1)〈E3, S〉 = 2.

Here S denotes simple exceptional sheaf of finite length.
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