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ABSTRACT

We study the relations among the parameters of the hybrid Lagrangian bias expansion model, fitting biased auto and cross power
spectra up to ke = 0.7 4 Mpc~!. We consider ~8000 halo and galaxy samples, with different halo masses, redshifts, galaxy
number densities, and varying the parameters of the galaxy formation model. Galaxy samples are obtained through state-of-the-
art extended subhalo abundance matching techniques and include both stellar mass and star formation rate selected galaxies. All
of these synthetic galaxy samples are publicly available. We find that the hybrid Lagrangian bias model provides accurate fits
to all of our halo and galaxy samples. The coevolution relations between galaxy bias parameters, although roughly compatible
with those obtained for haloes, show systematic shifts and larger scatter. We explore possible sources of this difference in terms
of dependence on halo occupation and assembly bias of each sample. The bias parameter relations displayed in this work can be
used as a prior for future Bayesian analyses employing the hybrid Lagrangian bias expansion model.

Key words: methods: statistical —large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

The coming years will be marked by the first light of many
astronomical instruments, which are expected to produce the most
precise observations of the clustering of galaxies to date. These
observational campaigns will include spectroscopic and photometric
data, covering unprecedented cosmological volumes, unlocking, at
the same time, information at the smallest scales ever observed in
cosmology.

Along with this incredible advance on the observational side, the
modelling of the clustering of galaxies from a theoretical standpoint
is also being pushed to its limits. As a matter of fact, even assuming
to know the non-linear growth of dark matter, a worrisome unknown
is represented by galaxy formation.

However, one can try to directly model galaxy formation processes
in simulations, solving hydrodynamical equations that represent
the evolution of gas and stars, and adding a number of subgrid
processes to model the main drivers of galaxy evolution, dynamics,
and quenching (see Dubois et al. 2014; Vogelsberger et al. 2014;
Schaye et al. 2015; Davé et al. 2019). This process is of course quite
computationally expensive, and is therefore used for relatively small-
sized simulations, run assuming few, very sensible, cosmologies.
Semi-analytical models (e.g. Henriques et al. 2015; Croton et al.
2016; Lacey et al. 2016; Stevens, Croton & Mutch 2016; Lagos et al.
2018) can partially alleviate the overall computational cost by adding
gas and stars in post-production, following a number of empirical
and semi-empirical relations. This could still be quite expensive if
the goal is efficiently creating fully non-linear galaxy catalogues
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that could be directly compared to observations. One of the most
promising methods in this sense is the so-called sub-halo abundance
matching (Conroy, Wechsler & Kravtsov 2006; Reddick et al. 2013;
Chaves-Montero et al. 2016; Lehmann et al. 2017; Dragomir et al.
2018), which exploits the substructures identified in gravity-only
simulations, matching their abundance to an observed stellar mass
(SM) or luminosity functions. Recent improvements to this tech-
nique, such as the SHAMe model proposed by Contreras, Angulo &
Zennaro (2021b), have proven particularly reliable in reproducing
hydrodynamical results at a fraction of the computational cost.

A completely different approach is to model galaxy clustering in
a way that is agnostic of the galaxy formation model (see the review
on bias by Desjacques, Jeong & Schmidt 2018). In this respect,
the only assumption is that the galaxy field is a function of the
underlying matter density and velocity distribution. The accuracy
of this model will depend on the quality of the description of the
underlying matter field, and the robustness of the chosen biasing
function. There are many possible choices to describe the biasing
scheme: it can be described in the final Eulerian coordinates or
in the Lagrangian coordinates corresponding to the initial state of
the matter field; it can include expansions of the density field in
powers; it can account for the effect of the tidal field and other non-
local quantities; it can account for derivatives of the density field.
While directly modelling galaxy formation can put constraints on
the physical processes at play, it requires us to develop a model
of those physical processes, i.e. a different model for each type of
biased tracers. The more agnostic approach has the advantage of
being very flexible, so the same model can describe biased tracers
with extremely different properties.

In particular, approaches in the context of perturbation theory and
effective field theory allow us to describe the clustering of matter

220z +equisydag ¢ uo Jasn v LNID YOI LOIT9I9/dHING Ad 60S6099/€ 7S/ v/v | G/oI0IE/SBIUW/WOD dNO"DlWapede//:Sdjy WOl papeojumoq


http://orcid.org/0000-0002-4458-1754
http://orcid.org/0000-0003-2953-3970
http://orcid.org/0000-0001-7511-7025
http://orcid.org/0000-0002-0937-0644
mailto:matteo.zennaro90@gmail.com

5444 M. Zennaro et al.

and galaxies down to scales around kyax ~ 0.2 7 Mpc’1 (Baumann
et al. 2012; Baldauf, Schaan & Zaldarriaga 2016; Vlah, Castorina &
White 2016; Chen, Vlah & White 2020; Colas et al. 2020; d’ Amico
et al. 2020; Ivanov, Simonovié & Zaldarriaga 2020; Nishimichi et al.
2020), which can be pushed to kypy, ~ 0.3 2 Mpc™~! when combining
2- and 3-points statistics while including 1-loop corrections (see
e.g. Eggemeier et al. 2021; Pezzotta et al. 2021). Cosmological
simulations, on the other hand, can capture the gravitational growth
of structure in the universe down to very small scales; however,
they can quickly become prohibitively expensive, especially when
we want to resolve very small scales while keeping the probed
volume large enough to neglect sample variance. Finally, some
approaches have been proposed to create hybrid descriptions of the
non-linear galaxy density fields that rely on perturbation theory to
describe large scales (avoiding finite-volume problems present in
simulations), but describe smaller, non-linear scales using numerical
N-body solutions (Modi, Chen & White 2020). One preliminary
but very promising application of this method was presented in
Hadzhiyska et al. (2021), where the authors successfully employed
it to describe DES Y1 lensing shear and projected galaxy clustering,
including non-linear scales until kpax = 0.5 A Mpc", and shrinking
by 35 percent the uncertainty on 2, with respect to previous
analyses.

In this more agnostic approach, one problem is the increase of
free parameters in the model, which could translate into lower
constraining power. However, bias parameters are not fully unrelated.
In particular, many works studying samples of mass-selected haloes
found that higher order bias parameters can be related to the linear
bias. These relations can be purely empirical (Tinker et al. 2010;
Lazeyras et al. 2016; Lazeyras & Schmidt 2018), or rely on some
model of structure collapse (Sheth, Chan & Scoccimarro 2013). We
note that all these relations are obtained considering the large-scale
limit of these bias parameters.

In addition, a recent work by Barreira, Lazeyras & Schmidt
(2021) has shown, employing a forward modelling of galaxies
in the context of a Eulerian bias expansion, that these relations
also hold (to good approximation) in the case of galaxies selected
from the TNG hydrodynamical simulation. The authors notice
slight deviations from the results obtained from haloes, that they
interpret in the context of the halo model and galaxy assembly
bias.

In this work, we study the relations between bias parameters
considering a Lagrangian bias expansion up to second order. In
particular, to model the auto and cross power spectra of the biased
tracers we adopt the hybrid approach described in Zennaro et al.
(2021), thus pushing the determination of the bias parameters to
scales as small as k., ~ 0.7 h Mpc_'. We consider as biased tracers
haloes and galaxies from N-body simulations in four cosmologies.
For galaxies, we adopt an extended subhalo abundance matching
technique that allows us to vary the galaxy formation parameters
exploring a wide variety of models, both selecting galaxies by SM
and by star formation rate (SFR).

Furthermore, we create ad hoc galaxy mock catalogues using a
halo occupation distribution (HOD) technique to separately study
the effect of different halo occupations and of galaxy assembly bias
(GAB) on the bias relations.

This paper is organized as follows: in Section 2, we present
our simulations and galaxy mocks; in Section 3, we review the
hybrid Lagrangian bias expansion model; in Section 4, we illustrate
the details of our fitting procedures and address its accuracy and
limitations; we present our results for haloes, and SM- and SFR-
selected galaxies in Section 5, and we discuss these results and
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Table 1. Cosmological parameters of the four main cosmologies of the
BACCO project. All of them assume a flat geometry, no massive neutrinos
(M, = 0 eV), a dark energy equation of state with wg = —1 and w, =
0, an amplitude of cold matter fluctuations og = 0.9, and optical depth at
recombination T = 0.0952.

Cosmology Qedm Qp h ng

Nenya 0.265 0.050 0.60 1.01
Narya 0.310 0.050 0.70 1.01
Vilya 0.210 0.060 0.65 0.92
TheOne 0.259 0.048 0.68 0.96

their interpretation in Section 6; finally, in Section 7 we present our
conclusions.

2 SIMULATIONS AND GALAXY MOCKS

In this section, we will introduce the dark matter simulations
employed in this work. Moreover, we will describe the procedure
we followed to obtain galaxy samples from these simulations, as
well as the characteristics of the galaxy mocks.

2.1 Dark matter simulations

In this work, we use the eight BACCO simulations presented for the
first time in Angulo et al. (2021). These are four pairs of simulations,
each pair assuming one of the main BACCO cosmologies (Narya,
Nenya, Vilya, and TheOne, see Table 1). The two realizations
composing each pair are characterized by same fixed-amplitude
initial fields with opposite phases, employing the ‘Fixed & Paired’
technique (Angulo & Pontzen 2016), that allows us to suppress
cosmic variance by at least two orders of magnitudes on scales
k < 0.1 hMpc™'.

Each simulation follows the evolution of 4320° cold matter
particles in a comoving cubical box of side Ly, = 14402~ Mpc.
The particle mass is roughly 3 x 10°4~! M. The initial positions and
velocities are set at z =49 with second-order Lagrangian perturbation
theory.

Both the set up of the initial conditions and the gravitational
evolution of these simulations are performed using the code L-
GADGET3 (Angulo et al. 2012, 2021), a lean version of GADGET
(Springel 2005). The Plummer-equivalent softening length and the
other precision parameters of the code have been set in accordance to
Angulo et al. (2021), in order to achieve a convergence of the matter
power spectrum at 2 per cent level at k ~ 102 Mpc~".

A key aspect of L-GADGET3 is that it features an improved version
of the substructure finding algorithm SUBFIND (Davis et al. 1985).
In particular, L-GADGET3 is able to find haloes and subhaloes on the
fly, storing as well a number of (sub)halo properties that are non-local
in time (such as the peak mass or circular velocity ever attained by
each substructure). This is particularly useful for efficiently building
mock catalogues of galaxies.

Besides our main simulations, we also use a set of smaller
volume simulations. We will employ them in Section 6 to explore
some possible origins of the difference between galaxy and halo
coevolution relations, with galaxy samples of more manageable size.
These simulations have the same cosmologies and mass resolutions
as their larger counterparts. In this case, the side of each comoving
box is 5122~ Mpc, and each samples the dark matter distribution
with 15363 particles.
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2.2 Galaxy catalogues

We create our galaxy catalogues applying the SubHalo Abundance
Matching extended algorithm (SHAMe), presented in Contreras et al.
(2021b). We refer the reader to the SHAMe presentation paper for
a more detailed discussion of its features, while we limit ourselves
to underline the parts relevant to this work. In particular, within the
SHAMe context, we are able to create two types of galaxy catalogues.
By matching the abundance of haloes selected according to their
peak circular velocity vy to the SM (M) function of the TNG-
300 hydrodynamical simulation (Marinacci et al. 2018; Naiman
et al. 2018; Nelson et al. 2018; Pillepich et al. 2018; Springel et al.
2018), we obtain SM-selected galaxy samples. We remark that, by
construction, the galaxy clustering obtained with the SHAMe model
does not depend on the choice of SM function, as long as the subhalo
rank ordering is preserved. In this case, we have control on three
aspects of the model (corresponding to three free parameters):

(i) the scatter in the vpea—M, relation, oy, ;

(ii) the survival time of orphan subhaloes #perger before we consider
them completely merged with their host halo;

(iii) the fraction of the peak mass f; of a subhalo at which we
consider it dynamically disrupted.

While the former parameter mostly shuffles haloes among
bias/mass bins, the latter two affect mostly the satellite fraction of
the sample.

The second kind of galaxy sample we can obtain with SHAMe is
SFR selected galaxies. To this purpose, we match the peak mass 77e.x
of each subhaloes to the SFR predicted for each structure according
to the empirical prescriptions of the SHAMe model. In this case,
there are five free parameters:

(i) the slopes B and y of the broken power law describing the star
formation efficiency;

(ii) the mass of peak star formation efficiency, M;;

(iii) the time-scale of the star formation quenching after a given
halo has been accreted by a larger halo, governed by the parameters
Tg and T.

In both cases, after building the rank-ordered galaxy catalogue,
we apply a cut to select a given number density. This means that
the method does not heavily depend neither on the specific SM
function nor on the SFR model adopted, as long as the resulting rank
ordering is not changed. We consider galaxy samples with four, very
different, number density cuts, namely 7 = {0.01, 0.00316, 0.001,
0.0003} #* Mpc=. The different number densities and selection
criteria allow us to explore samples whose characteristics realistically
span the variety expected from current and upcoming galaxy surveys.
While the densest SM-selected sample could represent a SPHEREX-
like survey at low redshift, the intermediate SM-selected sample
is more similar to the CMASS sample of BOSS, and the sparsest
SFR-selected samples reflect a Euclid-like survey (Doré et al. 2014;
Rodriguez-Torres et al. 2016; Euclid Collaboration 2020).

One interesting feature of SHAM methods is that galaxies obtained
with these techniques present a certain amount of galaxy assembly
bias, that is the dependence of galaxy clustering on properties other
than the host halo mass. In Chaves-Montero et al. (2016), the authors
showed that SHAM galaxies could reproduce a significative fraction
of the total assembly bias signal present in the EAGLE hydrodynam-
ical simulations (specifically they find a 20 per cent assembly bias
signal in the EAGLE galaxy sample and the same signal appears at
15 percent level in the SHAM sample). In principle, the extended
SHAM version adopted in this work allows for mimicking any
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desired amount of galaxy assembly bias signal, fudging two extra
free parameters (Contreras, Angulo & Zennaro 2021a). However,
since we are not trying to reproduce any specific observation, we
will not take advantage of this possibility, and we will just note
that our samples do present a galaxy assembly bias contribution,
which is different in each case depending on the galaxy formation
parameters.

In Fig. 1, we present a visualization of two of our galaxy
samples. On the left, we show how SM-selected galaxies populate
a 128 h~! Mpc wide region of a simulation at z = 0. In particular
it is possible to appreciate how galaxies with large SM are more
clustered than their underlying dark matter distribution and tend
to preferentially be located in haloes and filaments. In the smaller
panels, we also show a zoom-in on the largest halo of the simulation,
varying some free parameters of the SHAMe model. In particular,
we show how by increasing f; we decrease the satellite fraction
depopulating preferentially the outer parts of the halo, while a shorter
merger time fyerger decreases the satellite fraction depleting also the
innermost region of the halo.

In the right-hand part of Fig. 1, we show the same visualization for
star-forming galaxies. In this case, galaxies are mostly found outside
of dark matter haloes, either in lower density filaments or even in
isolation (see e.g. Orsi & Angulo 2018). For this reason changing
the star formation efficiency and even the dynamical quenching time
affects less the satellite fraction of host haloes, as shown in the lower
panels.

For each of the four cosmologies considered, we created 125
SM-selected and 125 SFR-selected galaxy samples. Each galaxy
mock assumes a set of SHAMe parameters drawn from a three-
dimensional latin hypercube for the SM-selected sample, and from a
five-dimensional latin hypercube for the SFR-selected sample. The
parameter space of the two latin hypercubes is reported in Table 2. It
corresponds to the choice presented in Contreras et al. (2021b), where
these values were specifically designed to span a significantly larger
parameter space than what is currently allowed by hydrodynamic
simulations. We repeat this procedure at redshifts z = 0 and z = 1.
From each galaxy mock, we extract four subsamples with our fiducial
number densities.

Finally, we measure the galaxy—galaxy auto power spectrum and
the galaxy—matter cross power spectrum assigning each of these
distributions to a grid with Nyq = 1080° with a cloud-in-cell mass
assignment scheme. To represent each field, we use two interlaced
grids to reduce the effect of aliasing (Sefusatti et al. 2016).

With four cosmologies, two redshifts, 250 galaxy formation
models, and four number densities, we have access to 8000 auto
and cross power spectra that capture the vast diversity of possible
realistic galaxy samples.

3 BIASING MODEL

To describe our galaxy auto and cross power spectra, we adopt a
second-order Lagrangian bias expansion (Matsubara 2008). In this
context, the galaxy overdensity field at the Eulerian coordinates x is
expressed as a weighted advection of all contributions from initial
(Lagrangian) coordinates ¢ that end up in x, that is

L+ 8,(x) = / Fqu(@)p(x —q — V), M
where we have introduced the weighting function w(q). This function

can be computed at second order as the superposition of five fields
(homogeneous, linear density, squared density, tidal, and laplacian
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Figure 1. A 128 h~! Mpc wide view of the distribution of dark matter and galaxies around a massive halo at z = 0. In all cases, a galaxy sample with number
density n = 0.014*Mpc 3 has been selected. The dark matter field is coloured from blue to red for increasing density. Galaxy positions are marked with green
points. On the left, galaxies have been selected according to their SM. In the lower panels, we show how the central halo is populated differently when we
change fierger (With low values, orphan subhaloes are quickly suppressed, see two leftmost sub-panels), or when we modify f; (with low f; subhaloes are never
dynamically disrupted, while high values cause the satellite fraction to drastically decrease, see rightmost two sub-panels). On the right, the galaxy SFR is the
selection criterion. In this case, in the two leftmost lower panels we show the effect of varying B and y (when both approach 0, the start formation efficiency is
smooth, while when they are both large it is very peaked at the host mass M), while in the two rightmost panels we show the effect of 7 and ts (which regulate

the rapidness of the SF quenching in satellite galaxies).

Table 2. The hypervolume covered by the two latin hypercubes used to select
125 random sets of parameters for SM-selected galaxies, and 125 random sets
of parameters for star-forming galaxies.

SM-selected samples

oM, € [0, 0.4]
Tmerger € [0.01, 3]
fs € [0, 0.4]
SFR-selected samples

B € [0.1, 12]
y € [0.1, 12]
10g10M1 S [1 1.5, 1345]
70 € [0, 16]
Ty S [-1, 0]

of the density), each weighted by its corresponding bias parameter,

w(g) = 1+ bY8(q) + bL [5%(q) — (6%)]
+b5 [s7(q) — (s*)] + b2 V?8(q), )

where s7(q) is the traceless contracted tidal field, and by, b}, b'5,
and bgz 5 are the Lagrangian bias parameters, assumed to be scale
independent in Lagrangian space.

After advecting to Eulerian coordinates and Fourier transforming

the fields, the corresponding galaxy auto power spectrum reads

Pyg(k) = Z

i.je(1,8,62,52,V25)

bib' Pyj(k), 3)
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where Pj; is the cross spectrum of the different fields. Note that by
definition the bias parameter associated with the homogeneous field
is 1, b; = = 1, the parameter associated with the linear density field
is b; — s = by, and the one associated with the squared density field is
b;—s> = b,. Moreover, the galaxy—matter cross power spectrum will
be simply given by

Pmk)=

i€f(1,8,82,52,V25)}

bt Pyi (k). “®

The model depends on the 15 cross-field Lagrangian terms ad-
vected to Eulerian coordinates P;. One approach to obtain them is to
predict these terms using Lagrangian perturbation theory (McEwen
et al. 2016; Fang et al. 2017; Chen et al. 2020; Zennaro et al. 2021).
Another possibility is to measure them directly in simulations, and
possibly combine the measurements with the perturbative solutions
to suppress the noise that might be present on large scales. The latter
approach was proposed initially by Modi et al. (2020), and advanced
by Kokron et al. (2021) and Zennaro et al. (2021), as both works
presented an emulator for this basis of 15 spectra.

In this work, we measure the 15 Lagrangian fields directly in
our four paired simulations and we match them on large scales with
their corresponding perturbative solution. Lagrangian fields are more
affected by exclusion effects than their Eulerian counterparts, since
the Lagrangian volume occupied by collapsed objects is significantly
larger than its corresponding Eulerian volume. We alleviate this prob-
lem by smoothing our Lagrangian fields. Unless otherwise stated, we
always assume a smoothing scale kg = 0.75 h Mpc ™!, applied to the
linear power spectrum employed to create the Lagrangian fields. We
remark that the chosen smoothing scales also sets a hard limit to the
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smallest scales that can be included in our analysis, since we need to
ensure that k.« < kg at all times.

4 FITTING BIAS PARAMETERS

To infer the values assumed by the bias parameters in the different
galaxy populations, we use as our data the measurements of the auto
and cross galaxy power spectra P (k) = {Pyg(k), Pym(k)}. Our model
Prodel(k) = {Psg.model (K), Pam mode1(k)} is given by a modified version
of equations (3) and (4), where we add a free parameter accounting
for the contribution of shot noise,

A%n
ng,model(k) = Z szb?Pl/(k) + I’_l ’
i,je{1,8,62,52,V25)
Pammoda k)= > biPyu(k). ©)

ie(1,8,62,52,V25)

This means that in the Eulerian auto power spectrum we assume that
the shot noise contribution comes from a Poissonian distribution,
with amplitude given by Ag,. The five free parameter therefore are

# = {b}, by, b, bhay, An } (6)
We vary these parameters in the hypervolume defined by

bt € [-5, 20], by € [-5, 10],

b €[-10,20],  bL,, € [—20,30],

Aq € [0,2].

We assume that the likelihood of observing a particular set of power
spectra given the model parameters is given by a multivariate normal
distribution with

. 1
InplPRB] =53 @)

i

2
Ok

- - 2
{P(lm - Pmodel(k»}
— = 4o,
where we treat the data covariance as diagonal. In particular, in this
work we do not consider any cross-covariance between auto and
Cross power spectra.

We include errors corresponding to the quadrature sum of three
contributions: the cosmic variance associated with biased tracers in
a ‘Fixed & Paired’ simulation with our box size, the Poisson noise
associated with the considered number density of biased tracers, and
an extra error corresponding to the 1 per cent of the power spectrum
signal at each scale. For the former, we use the expressions derived in
Maion, Angulo & Zennaro (2022), weighting each contribution by a
rough estimate of the corresponding bias parameter. For the Poisson
contribution, for a sample with number density 77, we compute

, 21 ®

Opoisson Fk ﬁ ’
where N, = V/(27)*4mk*dk is the number of wavemodes falling in
each k bin. Finally, we find the latter contribution to the error to be
required to account for other sources of noise that are not captured
in the ‘Fixed & Paired’ predictions.

We sample the posterior probability

pLP(K)|#]plD]
pLP(K)]

using the optimized simultaneous ellipsoidal nested sampler algo-
rithm MULTINEST (Feroz, Hobson & Bridges 2009) with its PYTHON
wrapper PYMULTINEST (Buchner et al. 2014). The sampling is consid-
ered converged when the precision on the log-evidence determined
by MULTINEST falls below 0.5 dex. Upon visual inspection of the

pI#IP(K)] = ©)
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Figure 2. The 1o and 20 contours corresponding to the parameters fitted
to our fiducial SFR-selected galaxy sample at z = 0 with number density
n = 1073h* Mpc—3. The model corresponding to the best-fitting parameters
is shown in Fig. 4. Different colours mark different values of kp,yx, from 0.1
to 0.7 h Mpc~!. The Lagrangian fields used for the model are smoothed at
kg =0.75hMpc~'.

results, we discard the initial 65 percent of each chain as burn-in,
and estimate our 2D and 1D projections of the posterior with the
remaining points of each run.

In Fig. 2, we present an example of the fitting procedure applied to
areference case of SFR-selected galaxies at z = 0. This sample, from
the Nenya simulation, has a number density of 7 = 0.001/*Mpc >
and assumes the SHAMe parameters found to reproduce the SFR-
selected galaxy clustering of the TNG-300 simulation, taken from
table 1 of Contreras et al. (2021b). In particular, Fig. 2 shows the
posterior obtained fitting the galaxy power spectrum including pro-
gressively smaller scales. Using ky, = 0.1,0.3,0.5, O.7hMpc‘I
we find that, while the contours shrink as k. increases, the best-
fitting parameters remain compatible along all this range of scales.

To further investigate the optimal configuration to adopt for our
fitting procedure, we present in Fig. 3 the dependence of our best-
fitting bias parameters on k., this time additionally focusing on the
difference induced by choosing a different smoothing scale for the
Lagrangian fields used to compute the model. In particular, besides
our fiducial value of kg = 0.75h Mpc™", we also consider the case
of kg =0.5hMpc~'. We find that our best-fitting parameters are
robustly constrained as we vary kp,, showing no significant scale
dependence all the way down to the smaller scale allowed by our
smoothing, namely kp, = 0.7hMpc". Our results are also not
strongly affected by the smoothing scale we adopt in the model.

Therefore, we limit our fits to k., values corresponding to scales
larger than the smoothing scale, since we expect the model to
eventually break down on smaller scales. We choose as our damping
scale kg = 0.75 h Mpc™', to be consistent with the choice of Zennaro
et al. (2021). Therefore, we will limit our fits to k. = 0.7 h Mpc’1
in the remainder of this work.

However, we also enforce a limitation of the scales included in the
fit. To ensure that the signal of the galaxy auto power spectrum is not
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Figure 3. The values of the free parameters of the model fitted to the same
data as in Fig. 2 as we vary the minimum scale included in the fit. Blue lines
refer to smoothing the Lagrangian fields at a scale kg = 0.75 h Mpc™!, while
orange lines represent kg = 0.5 h Mpc™!. The shaded areas represent the 1o
credibility level inferred from the nested sampling chains.

dominated by shot noise, we define a shot noise dependent kg, max,
corresponding to the scale at which the power spectrum is 1.5 times
the level of the poisson noise. We then consider ky,,x = min (0.7,
ksn, max)- There are two reasons for this: the first one is that there is
no additional information to be extracted from shot noise dominated
scales and the second one is that the shot noise model considered is
not accurate on the transition between signal-dominated and noise-
dominated scales. We explicitly checked that this extra 1.5-factor is
enough to ensure that we always consider signal-dominated scales.
However different in the details of the implementation, this approach
is similar to the one adopted in Barreira et al. (2021), where the
authors compute a phase-correlation coefficient between galaxies
and matter to establish the scale at which the noise makes eftectively
meaningless the bias formalism.

Fig. 4 shows the best-fitting model for our SFR-selected galaxies
down to kpax = 0.7h Mpc_1 . The model describes the measured auto
and cross galaxy power spectrum within the considered error bars,
corresponding to a per cent level agreement.

While we have shown this analysis with our fiducial sample of
SFR-selected galaxies, we have explicitly checked that these value
of kq and kp,x are well suited also for analysing SM-selected galaxies.
Moreover, we have repeated these tests for a population of haloes as
well.

Finally, to check that all our fits resulted in sensible bias parame-
ters, we show in Fig. 5 the distribution of the values of the reduced

2 of each fitted bias set. The vertical dashed lines mark the g =
0.9 percentile of each distribution. We remind the reader that our
data vector is composed of a measurement of the galaxy auto power
spectrum (in 50 k-bins), one measurement of the galaxy—matter cross
power spectrum (also in 50 k-bins), while we leave five parameters
free. This would result in 95 degrees of freedom. However, after
imposing cuts in kyax and kg, max, We are left with fewer degrees of
freedom, the exact amount being different for each model.

Considering the ¢ = 0.9 quantile, 90 per cent of our reduced x>
values fall below ~0.6 for haloes and SM-selected galaxies, and
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Figure 4. The galaxy auto and cross power spectrum for our fiducial SFR-
selected sample with number density n = 1073 43 Mpc=> at z = 0 (red
triangles and circles, respectively), and our model computed with the best-
fitting set of parameters (blue solid lines). For reference, we also plot the
linear theory prediction for the matter power spectrum as a green dashed line.
The x2/v corresponding to this fit (with 81 degrees of freedom) is 0.14. The
middle panel shows the difference between measures and best-fitting model
in units of the error at each wavenumber, with dashed lines representing the
galaxy auto power spectrum, and solid lines the galaxy—matter cross power
spectrum. The same convention applies to the lower panel, showing the ratio
between the measured spectra and the best-fitting model. The fit includes
scales down to kyax = 0.7 h Mpc*l (marked with a vertical line).
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Figure 5. The distribution of reduced x? values for the best-fitting parame-
ters. The vertical lines mark the 0.9 quantile of each distribution. In general,
we fit 50 k-bins for the auto power spectrum and 50 for the cross spectrum,
with five free parameters, corresponding to 95 degrees of freedom; however,
after enforcing our kg, max criterion, the exact number of degrees of freedom
can vary for some of the samples.

below ~0.7 for SFR-selected galaxies. Please note that these values
of reduced x2 below 1 do not necessarily indicate any problems with
our computation of the errors, but are justified by the fact that our
data and model are not independent, but are both drawn from the
same simulations.
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As a consequence, we conclude that the hybrid Lagrangian bias
expansion model in real space is very well suited to describe the auto
and cross power spectra of biased tracers, including extremely small
scales (kmax = 0.7 hMpc™') as long as they are not dominated by
shot noise. We remark that halo and galaxy samples with extremely
different bias properties have been considered.

5 RESULTS

In this section, we will present the bias parameters obtained from
fitting a variety of mass tracers. In particular, we will first test the
reliability of our model and fitting procedure with haloes, comparing
our results to the findings of a number of previous works. We will
then proceed to separately present the same bias relations obtained
for SM-selected and SFR-selected galaxies at z = 0. Finally, we
will summarize our results comparing, at the same time, all tracers,
cosmologies, number densities, and redshifts.

5.1 The bias—mass relation for haloes

Before focusing on galaxies, we begin by using our model to infer the
bias parameters of populations of haloes of different masses. In this
case, a number of approaches are already commonly used to make
predictions. Depending on the bias parameter considered, predictions
can be obtained both from theories and from fitting functions
typically calibrated with haloes in high-resolution simulations.

Lagrangian bias parameters of arbitrary order can be predicted in
the context of the peak-background split (PBS) formalism (see review
in Desjacques et al. 2018, and references therein). This means that,
for a given mass function and background density, the n-th order
derivative of that mass function can be related to the n-th order
Lagrangian bias parameter through

-1 1Y 1 d"wF)l
o(R(M))} vf(w) dV

by(M) = [ (10)
where f(v) is an analytical parametrization of the halo mass function
and v = d.(a)/o(M, a) is the peak height. Here, §.(a) is the
time-dependent threshold for the collapse of matter overdensities.
We use the value obtained assuming spherical collapse, which,
albeit somewhat simplistic, is accurate enough for our case. The
denominator comes from o2(R), the variance of the linear density
field smoothed on a scale R, such that spheres of radius R would on
average contain the mass M. For our predictions, we employ the halo
mass function fit proposed by Ondaro-Mallea et al. (2022). Please
note that, unlike other proposed halo mass function models, the
one of Ondaro-Mallea et al. (2022) explicitly accounts for the non-
universality of the mass functions and therefore it is in principle
cosmology and redshift dependent. We disregard this important
feature here, plotting only the predictions obtained for one cosmology
at one redshift (Nenya at z = 0).

For the linear bias parameter b’;(M ), we obtain predictions using
the PBS approach (equation 10), and using the fitting function
presented in Tinker et al. (2010). This fitting function predicts the
value of the Eulerian linear bias, which we convert to Lagrangian
adopting b} = by — 1.

For the quadratic bias parameter b5(M), we employ predictions
obtained with the PBS (equation 10). Moreover, we compare to the
fitting formula presented in Lazeyras et al. (2016). Note that in this
paper a fit to the relation between the Eulerian bias parameters b,(b,)
is presented, with by(b;) = 0.412 — 2.143b; + 0.929b7 + 0.008b3.
As a consequence, first we use the fitting function of Tinker
et al. (2010) to obtain b;(M), which we use to obtain b,(b;).
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Finally, we convert the Eulerian squared bias parameter to its
Lagrangian counterpart adopting the (approximated) relation b% =
[b, —8/21 (b — 1)]/2, as in Sheth et al. (2013) (note the factor two
difference from the published formula to account for the different
definition of b,).

The tidal bias parameter can be predicted, in the context of
the ‘Lagrangian Local In Matter Density’ (LLIMD) by assuming
it is exactly zero, bSL2 = 0. This is an approximation expected to
break down. In particular, in Modi, Castorina & Seljak (2017) the
authors showed that, indeed, they found a non-zero signal for the
Lagrangian tidal bias, and proposed a fitting function for b2 (M). A
subsequent work by Lazeyras & Schmidt (2018) could not confirm
the results of Modi et al. (2017) but still found a slight departure
from zero. We consider the fitting formula of Modi et al. (2017) for
b2(by). Moreover, we consider the prediction of b (by) obtained
from applying the excursion set formalism (Sheth et al. 2013),
by (by) = 0.524 — 0.547b; + 0.046b7. Both formulas predict the
tidal bias in Eulerian space, which we convert to its Lagrangian
counterpart assuming bst =bp +2/7(by — 1) (Desjacques et al.
2018).

Finally, for b%z ; we can think that it scales as the squared
Lagrangian radius of the tracers, bk, , ~ —2R} (see e.g. Lazeyras &
Schmidt 2019, and references therein for a review of different models
for the Eulerian higher derivative bias parameter). Another prediction
(known to break down for lower mass haloes) comes from the so-
called peak theory; in this context (Elia, Ludlow & Porciani 2012;
Baldauf, Desjacques & Seljak 2015), the scale dependent peak bias
bo;(v) is expected to be the driving contribution to béz s+ Therefore
we use the approximation b%la ~ —bg;. This prediction is already
referred to Lagrangian bias parameters, the Eulerian counterpart
being impossible to obtain without assuming a model for velocity
bias.

For each cosmology and redshift of our simulation set, we select
haloes by splitting them into 10 logarithmically spaced mass bins,
spanning 10" < Mygo./[h~'"Mg] < 10", Since we are dealing with
very different cosmologies and redshifts and the bias function is only
supposed to be universal when expressed in terms of peak height, we
convert our masses into the peak height v.

Fig. 6 shows the marginalized bias parameters that best fit our
halo data. To each point we associate an error bar along the x-axis,
marking the width of the mass bin once transformed into peak height.
Moreover, we plot the 68 per cent CL of the marginalized pdf as an
error bar along the y-axis.

For all bias parameters, the b,—v relation is confirmed to be
universal to very good degree, considering how tightly they describe
a univocal relation although coming from four different cosmologies
at two different redshifts. Moreover, the value of the bias parameters
we obtain are in very good agreement with all the predictions
considered. Some discrepancies appear in the best-fitting values
of b, at v > 1. However, these are still compatible with all the
considered predictions within 1o. We note that these discrepancies
can be originated by different factors. One is that the actual value of
all bias parameters (and of quadratic bias parameters in particular)
depends on the smoothing performed on the original density field,
especially for extreme choices of the smoothing scales (way different
from the difference considered in this work in Fig. 3). A second
reason is that we do not expect that bias parameters in our model
(including fairly small scales and not including resummation terms)
exactly coincide with the large-scale limit typically quoted in the
literature. Finally, because comparisons between Lagrangian and
Eluerian bias parameters rely on approximated formulas connecting
the two different formalisms. None the less, we stress that such
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Figure 6. The Lagrangian bias parameters that best fit the halo auto and cross power spectrum in 10 mass bins at redshifts z = 0, 1, and 1.5, for our four
cosmologies. Fits include scales k < min(0.7 h Mpc’l, ksn,max) and always assume a smoothing scale kg = 0.75 h Mpc’l. Points coloured in blue correspond
to z = 0, orange points correspond to z = 1, and red ones to z = 1.5. Black solid lines show our best-fitting functions, while non-solid lines show predictions

available in the literature for the bias—mass relations.

differences (whose exact origin would be interesting to investigate)
are not statistically significative. We use this result to support the
reliability of the bias parameters we infer using our model.

5.2 Bias relations

We now present the relation of the higher order bias parameters
with the linear bias. We do so focusing first on haloes, and then on
SM-selected and SFR-selected galaxies. For galaxies, we start by
analysing our results at z = 0, exploring possible correlations of
bias parameters with the galaxy formation parameters. Finally, we
then combine all of our halo and galaxy catalogues (also including
those at z = 1).

5.2.1 Coevolution relations for haloes

We present in Fig. 7 the relations between Lagrangian bias parameters
that we obtain considering our halo samples. In particular, for clarity,
we show here polynomial fitting functions that capture the mean
and lo dispersion of our best-fitting bias parameters. We repeat
here some state-of-the-art relations available in the literature for
comparison, including the b, (b ) fit from Lazeyras et al. (2016), the
LLIMD and excursion set predictions for bYL2 and the scale-dependent
peak bias by, for bgz 5+ All these relations have been presented in

Section 5.1.
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The different lines in Fig. 7 correspond to different choices of
kmax, spanning the interval [0.1, 0.7] h Mpc’l. All these cases share
the same smoothing scale kq = 0.75 h Mpc~'. Moreover, we also
show one case with different smoothing, namely kq = 0.3 # Mpc™";
in this case we assume k. = 0.3 2 Mpc~!. We can see that for
both the b%(blL) and bSL2 (b%) relations we do not find any significant
dependence on ky,x nor kg, the main difference being larger scatter
for lower kyax values. This is compatible with the fact that for low
values of kn,y the free parameters of our model become more and
more unconstrained (see also Figs 2 and 3). On the contrary, the
bgz s(blf) relation seems to depend more heavily on the choice of kyax
and smoothing scale.

Finally, consistently with our findings in Fig. 6, we find that
our fits systematically describe a slightly different b% (b)) relation
when compared to the fitting function of Lazeyras et al. (2016), even
though the two are compatible within the given errors. Once again,
we do not expect our bias values to coincide with the corresponding
large-scale bias parameters presented in that work. We also find
that our haloes present bSLZ(blL) relations roughly compatible with
both the LLIMD approximation and the excursion set prediction.
Lastly, we notice that for the b, (b}) relation, only considering
large scales produces results closer to the prediction of by;. We
conclude that it is important to consistently choose smoothing scale
and fit limits in order to be able to compare results. In the remainder
of this paper, we will always compare to the coevolution relations
of haloes with kpya = 0.7 hMpc™! and kg =0.75 hMpc™!. In
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Figure 7. The Lagrangian bias relations for haloes selected in 10 mass
bins in 100 < Mogoc/[h Mg ] < 10'3. Different colours refer to the same
bias relations obtained fitting the halo auto and cross power spectra up to
kmax = [0.1,0.3,0.5,0.7]1h Mpc_I .Inall cases, we keep our smoothing fixed
to kg = 0.75 h Mpc~!. Shaded areas have been obtained fitting a polynomial
to our best-fitting parameters increased or decreased by their corresponding
marginalized 1o C.L.. Black lines represent fitting formulae and predictions
available in the literature, as described in Section 5.1.

Table 3. The polynomial fitting functions obtained for haloes and galaxies
from our simulations in the context of the hybrid Lagrangian bias expansion
model. We consider our fiducial choice of smoothing kg = 0.75 h Mpc~! and
kmax = 0.7 hMpc™!.

Haloes, kg = 0.75h Mpc_', kmax = 0.7h Mpc_I

PR = —0.09143(b%)* + 0.7093(b})* — 0.2607b% — 0.3469
bl (by) = 0.02278(b})* — 0.005503(b})* — 0.5904b} — 0.1174
bl (b1 = —0.6971(b})* +0.7892(b])* + 0.5882b} — 0.1072

Galaxies, kg = 0.75 h Mpc™!, kpmax = 0.7 h Mpc™!
by = 0.01677(b})* — 0.005116(b1)* + 0.4279b — 0.1635
bh(b) = —0.3605(b})* + 0.5649(b})* — 0.1412b} — 0.01318
by, (by) = 0.2298(b))* — 2.096(b})* 4 0.7816b} — 0.1545

Table 3, we present the polynomial fitting function corresponding to
this case.

5.2.2 SM-selected galaxies at z = 0

We now move to investigate these coevolution relations for samples
of galaxies. In Fig. 8, we show the bias relations obtained for our
sample of SM selected galaxies at redshift z = 0, for all four
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cosmologies considered. In particular, we focus on the relation of
each higher order bias parameter with b;. We repeat our results
several times, colour coding each point according to a different
property. In the first three columns, we colour code each point based
on the three free parameters of the galaxy formation model for SM-
selected galaxies, thus addressing the possible dependence of the
Lagrangian bias relations on the galaxy model. In the following
columns, we assign colours according to the satellite fraction of the
sample, cosmology, and, finally, the number density.

First of all, we notice that, at a fixed cosmology, each of the higher
order bias parameters exhibits a quite tight correlation with b, up
to by < 0.2 — 0.4. For larger values of by, the relations are more
scattered. This more scattered behaviour corresponds to samples
with lowest number density, where higher order bias parameters are
determined with the least precision. Moreover, we do not find a strong
dependence of the bias relations on oy, and #erer, €venif oy, seems
to slightly anticorrelate with b; at fixed cosmology. We notice that
higher values of f; correlate with low by, low by, and b> > 0. Galaxy
samples with high f; destroy relatively early their satellite galaxies
(as also shown by the fourth column in Fig. 8), which is compatible
with a lower linear bias. Finally, we find a small, residual correlation
of these bias relations with cosmology.

In addition, in Fig. 8 we also show a selection of predictions
for the b;(b;) relations. In particular, we display the fit to the
by(by) relation presented in Lazeyras et al. (2016) and adapted to
Lagrangian bias parameters as described in Section 5.1; a fit to the
haloes of Section 5.1 using the polynomial presented in Table 3,
surrounded by a 1o region based on our data set; the local Lagrangian
prediction for the tidal bias parameter; the excursion set prediction
for b%z (b'f) presented in Section 5.1; and by25 = —by;. We notice
that the bias parameters from this galaxy sample are shifted away
from the considered predictions. In particular, b, at fixed bY, is
consistently higher than both the Lazeyras fitting function, and the
fitting function developed in this work. The tidal bias parameters
show a large scatter around both the local Lagrangian prediction and
the prediction from excursion set theory. Finally, the Laplacian bias
parameter shows a departure from the prediction from peak theory at
bY > 0.2. One important caveat here is that (for the sake of clarity)
we are not plotting error bars in Fig. 8; we will show error bars in
the summary plot at the end of this section.

5.2.3 SFR-selected galaxies at z = 0

Fig. 9 shows the relations between the bias parameters obtained from
the SFR-selected galaxy samples, once again at z = 0, and for all
the number densities considered. Once again, the colour of each
point reflects the parameters of the galaxy formation model (first five
columns), the satellite fraction of the sample (sixth column), and the
cosmology and number density of the galaxy catalogue (rightmost
columns).

In the case of SFR-selected galaxies, we find that the strongest
correlations between galaxy formation parameters is with 7y and
7, the parameter controlling the quenching of SFR. Low values of
79 and 7, imply fast quenching, especially for galaxies living in
low-mass hosts (M), < 1024~ M@). We expect these samples to be
dominated by central galaxies, which is consistent with our finding
that lower values of 7y and t correlate with lower blL and populate
a region closer to the b5 (b}) relation of haloes. Vice versa, large
values of 7y imply long quenching times, and large values of t, —
0 imply that the quenching efficiency is independent of host mass.
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Figure 8. The relations between higher order Lagrangian bias parameters and b]f for SM selected galaxies at z = 0, with number densities from 3 x 107 to
0.01 13 Mpc—3. Each row corresponds to one bias parameter (b, bI;Z, b%z s while each column shows the bl].“ - b]f relation colour coded according to one of the
free parameters of the galaxy formation model. Specifically, on the left colours from blue to red correspond to increasing values of o, in the second column
they correspond to increasing values of fyerger, and in the middle column to increasing values of the tidal stripping parameter f;. The three rightmost columns
show points colour-coded according to satellite fraction, cosmology, and number density. Fits reported in this plot consider kmax = min(0.7 i Mpc’l, Ksn.max)-
Black lines show predictions obtained for these quantities from the literature and from haloes of our simulations.

These samples, with higher satellite fraction, follow a b (b}) relation
more similar to that of SM selected galaxies.

The latter point is reflected also in the b (b}) relation, which
closely follows our fitting function calibrated with haloes for samples
with fast quenching, and resembles more our results for SM selected
galaxies for samples richer in satellites. Finally, we find that the
blgz B(blL) relation for SFR-selected galaxies exhibits significantly
more scatter than our fitting function obtained with haloes.

5.2.4 All halo and galaxy samples

Fig. 10 presents a summary view of the bias relations for the different
biased tracers considered, including all number densities and both z =
0 and z = 1. In this figure, we also show the error bars (corresponding
to the 68 per cent C.L. from the marginalized posterior of each fit).
Moreover, we include our fitting functions calibrated on haloes and
a fitting function calibrated using all of our galaxy samples. Both
formulae are presented in Table 3.

Especially in the b} (b}) case, we find a systematic shift of the
galaxy relation from its halo counterpart. This happens not only
when contrasting our galaxies with the fitting function from Lazeyras
et al. (2016) (which could exhibit differences due to different
assumptions about the Lagrangian—Eulerian connection, smoothing
scale, inclusion of small scales) but also when comparing with the
fitting function calibrated with haloes from the catalogues developed
for this work.

MNRAS 514, 5443-5456 (2022)

Finally, we enclose all of our galaxy samples in a hypervolume
that will serve as prior knowledge for future Bayesian analyses. We
define this hypervolume in terms of the halo and galaxy coevolution
relations presented in Table 3, which here we call bl (b}) and
bi (DY), respectively. For a given value of by, the vertices of this
hypervolume are given by

b = B, (0F) —08, bk, (b) +03],

b = B e (B) = 1. Bl g (6F) +15],

Doy = [P g (8F) =5,

VZS,gal bgz&gal (b]r) + 8:| N (11)
This region encloses 100 per cent of the galaxies in our sample and
is represented with a shaded area in Fig. 10. An interesting point
is that, even though we kept these relations quite loose (including
100 per cent of our galaxy samples, which feature very different and
extreme galaxy formation model parameters and number densities),
the resulting allowed regions are tighter than typical observational
constraints on higher order bias parameters (e.g. in Ivanov 2021,
using eBOSS emission-line galaxies quadratic bias parameters are
almost unconstrained and reflect the priors assumed in that analysis).
Moreover we notice that, considering only galaxy samples whose
parameters lie in a tight region (1/8 of the ranges reported in Table 2)
centred around the best-fitting parameters of the TNG300 simulation
found in Contreras et al. (2021b), the coevolution relations obtained
for galaxies do not become significantly tighter. Therefore, we
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the free parameters of the galaxy formation model. Specifically, in the first five columns from the left, colours from blue to red correspond to increasing values
of B, ¥, logio(M1/h~'Mp), 0, and 4. The three rightmost columns show points colour-coded according to satellite fraction, cosmology, and number density.
Fits reported in this plot consider kmax = min(0.7 i Mpc_1 , k¢n,max)- Black lines show predictions obtained for these quantities from the literature and from

haloes of our simulations.

conclude that our choice of latin hypercube boundaries does not
affect the allowed regions individuated in equation (11).

We would like to spend a word of caution on the b'@z 8(b,L) relation.
Since the values assumed by the béz B(blf) relation depend on our
choice of k. and smoothing scale kg, the fitting function for b%z S(blL)
shown in Table 3 and the allowed ranged reported in equation (11)
can only be used with k., = 0.7 h Mpc ! and kg = 0.75 h Mpc~!.

Any other fitting configuration should require leaving béz 5 free.

6 DISCUSSION

In the last part of this work, we focus on exploring potential causes for
the difference between the bias relations of galaxies and the ones of
haloes. We identify two effects, both linked to how galaxies occupy
haloes: on the one hand, we consider that, while these relations for
haloes have been obtained splitting haloes in differential mass bins,
our galaxy samples correspond to cumulative bins; these reflect the
averaged behaviour of the bias of different host mass bins and are
influenced by how different haloes host different galaxy populations
according to different halo occupation distributions (HODs). On
the other hand, even for the same HOD and the same cumulative
behaviour, we consider the effect of galaxy assembly bias (GAB),
i.e. the occupancy variation induced by the dependence of the HOD
on properties other than the host halo mass.

To assess the effect of different HODs on the resulting average
bias, we employ the concept of effective bias (Benson et al. 2000).
Supposing we know the halo mass function n,(My), the number of

galaxies in each halo of a given mass, i.e. the HOD ng(My,), and the
bias—mass relation in differential mass bins b;(M,,), then the effective
value of a given order bias parameter is

5 — J dMynn(My)ny(My)b; (My,) (12)
' J dMynn(My)ng(My)

with the integration range covering the span of available host halo

masses in the sample.

We assume the mass function to be described by the fitting formula
of Ondaro-Mallea et al. (2022). We simplify our problem assuming
a standard five-parameter model for the HOD (which is known to be
a good description of SM selected galaxies but does not reproduce
the HOD of SFR selected galaxies). The total number of galaxies in
haloes of mass M, is obtained by separately modelling the number
of centrals

| log M, — log My,
Nogy = — [1 +erf (u)} ; (13)
2 OlogM

and of satellite galaxies

(14)

M, — My1”
Nsat = Neen [7] 5

M,

being Muin, Olog,,» M1, Mo, and « the free parameters of the model.
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Figure 10. The relations between higher order Lagrangian bias parameters
and blL. Each row corresponds to one bias parameter (b%, bi‘z, b%z 5)' Black
lines show predictions obtained for these quantities from haloes of our
simulations, while red lines refer to galaxies (see Table 3). We enclose all of
our galaxy samples in a region given by equation (11), here represented as a

shaded red area.

We create a random sampling of the HOD free parameters with a
5D latin hypercube width sides

108, Mymin € [11, 13],

Olog,, € 10, 0.9],

M, /M, € [1,30],
log,, My € [11.5, 14],
« €[0.8,1.2].

In Fig. 11, we show the effect of changing the HOD parameters
(for exactly the same mass function) assuming these random HOD
parameters. The b%(bL) relation moves away from the prediction for
haloes, and scattering appears, even if we cannot reproduce entirely
the relation obtained for galaxies. Interestingly, the relations vaz 9

and b%z 5(blL) obtained considering the effective bias are extremely
tight around the fits obtained from haloes. This is probably due to the
fact that the b-(v) relations are almost constant for these parameters
(see Fig. 6) and effects other than the HOD must be responsible for
the scatter we see for galaxies.

Moreover, we fit the HOD parameters to SM-selected galaxy
samples using the smaller size simulations presented in Section 2
to make the analysis more computationally manageable. We also use
the measured (in this case, not fitted) HOD of SFR selected galaxies
from these same simulations. We compute the effective bias using
these fitted HODs (orange and blue points in Fig. 11). In this case,
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Figure 11. The dependence of the bl.L(bf) relation on the sample HOD.
Each point represents the effective bias corresponding to a given choice of
HOD parameters, according to equation (12). In the case of green circles,
the HOD parameters are chosen randomly. For orange squares, instead, the
HOD parameters have been fitted to the SM selected galaxy samples of our
smaller size simulations (at z = 0 and 1). For blue diamonds instead we use
the HOD measured from SFR selected galaxies. The black and red lines are
the polynomial fits to our halo and galaxy samples (respectively) as presented
in Table 3. We also show the galaxy priors from equation (11) as a red shaded
area.

the level of scatter is significantly reduced, especially for the SM
selected sample.

Finally, we consider the effect of GAB. We expect our galaxy
catalogues to include GAB, since we created them using a SHAMe
technique. There are two ways to single out the effect of GAB: on
the one hand, one can shuffle all galaxies of a sample in narrow
bins of host halo mass, thus washing out any dependence of galaxy
occupancy other than halo mass; on the other end, one can fit the
HOD parameters to the galaxy sample and then use those parameters
to create a new galaxy catalogue that by construction is agnostic
of dependences other than host halo mass. While we tested both
methods with identical results, we present here the latter.

In particular, in Fig. 12 we show the bias relations obtained for
the SM-selected galaxy samples using, once again, the smaller size
simulations. At the same time, we also show the bias relations
obtained for a sample of HOD galaxies, whose HOD parameters
have been obtained from the SHAMe galaxies. We can see that,
once removed the effect of GAB, the linear bias considerably shifts
towards smaller values. On the contrary, the changes in b%, bSL2 and
bgz 5 are not particularly significant. We interpret this by considering
that GAB by definition affects the large scale clustering of galaxies,
and is therefore expected to appear mostly in the parameter bl
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Figure 12. The effect of galaxy assembly bias on the Lagrangian bias
relations for SM selected galaxies from the smaller size simulations. In
the x-axis, the bias parameters come from fitting the clustering of galaxy
samples created with the SHAMe technique, which therefore include a
variable amount of GAB. The y-axis, instead, refers to the bias parameters
obtained fitting mock catalogues built using HOD parameters fitted to the
SM selected galaxies (so this samples of galaxies have the same HODs as the
SHAMe ones, but no GAB).

While for dark matter haloes the effect of halo assembly bias
on higher order bias parameters (in Eulerian bias expansions) is
well established (Angulo, Baugh & Lacey 2008; Lazeyras, Musso &
Schmidt 2017), there is still no consensus on the effect of GAB.
However, our findings for galaxies qualitatively agree with those of
Lazeyras, Barreira & Schmidt (2021), where the authors, focusing
on dark matter haloes, find almost no impact of AB on the b,(b;)
relation. They do, however, find a significant effect of halo assembly
bias on the b2 (b;) relation. On our part, we notice an increased scatter
among our points for bSL2 in Fig. 12, but, given the uncertainties of
our fitting method, we cannot draw any definitive conclusion on this
matter.

As a final remark, we conclude that both variations in the HOD and
in GAB can partly explain the difference between the coevolution
relations of galaxies and haloes, both in terms of systematic shifts
and scatter. However, other effects must be in place to fully explain
this difference. For instance, Voivodic & Barreira (2020) proposed
an extension of the halo model that considers the response of the
HOD to long-wavelength perturbations. In Barreira et al. (2021),
the authors have shown that these HOD responses can also induce
differences between the coevolution relations of haloes and those of
galaxies, and should therefore be taken into account.

7 CONCLUSIONS

In this paper, we have assumed a hybrid second-order Lagrangian
bias expansion and inferred the bias parameter for many different
bias tracers from N-body simulations: we have considered dark
matter haloes, SM-selected galaxies, and SFR-selected galaxies. We
have obtained the galaxy samples employing an extended SHAM
technique.

Priors on Lagrangian bias 5455

(i) We find that the hybrid Lagrangian bias model is a good
description of generic bias tracers. We show in Figs 2, 3, and 4
that it can fit our fiducial SFR-selected sample, in a way that is
robust against different choices of smoothing scale in Lagrangian
space and maximum wavenumber included in the fit. Moreover, in
Fig. 5 we show that this model can describe thousands of different
galaxy populations with reduced x> < 1.

(ii) By analysing haloes in differential mass bins, we find that the
values of the different bias parameters inferred with our method are
roughly compatible with commonly used fitting functions. However,
we notice some small systematic discrepancies in the b (v) relation
for v > 1. These departures from theoretical predictions and fitting
formulae are likely due to approximations in the connection between
Eulerian and Lagrangian parameters, but could in principle also come
from different assumptions in the modelling of biased tracers and
scales included in the fits.

(iii) The systematic differences between our bias parameters and
other theoretical predictions for haloes are present also when consid-
ering the coevolution relations b-(bY). We find that the coevolution
relations obtained for our biasing model are robust against changes
in kp.x and smoothing for the linear and quadratic biases, while
depending on the details of the fit for the higher derivative bias
(Fig. 7).

(iv) We find that galaxy bias parameters follow bl-L(blL) relations
that are different from those of haloes in differential mass bins
(assuming the same biasing model). In particular, compared to
haloes, galaxies show systematically higher b} at fixed b'-. Moreover
the coevolution relations of bsL2 and bgz s exhibit larger scatter than
their halo counterparts. In Figs 8 and 9, we study these differences
singling out the effects of the galaxy formation parameters, satellite
fraction, and cosmology. We find that the bias relations depend non-
trivially on the galaxy formation model assumed. In Fig. 10, we
present all of our models together to have a grasp of the bias parameter
space spanned by our realistic galaxy samples.

(v) We link the shifts and scatter in the bias parameter relations
between the case of haloes in mass bins and the cumulative galaxy
bins to at least two causes: on the one hand, using ad hoc HOD
mocks we show that changing the way galaxies populate haloes does
introduce a scatter in the b5 (b}) relation and systematically increases
b% (Fig. 11). However, the differences in HOD alone seem not to
be enough to explain the difference between coevolution relations
between galaxies and haloes (especially the scattering for the b';z and
béz 5 Telations). On the other hand, by erasing the effect of assémbly
bias from our galaxy samples we show that galaxy assembly affects
almost exclusively b-. We conclude that the difference between
the coevolution relations for haloes and galaxies in the context
of the hybrid Lagrangian bias expansion model are partly due to
the different halo occupations of different galaxy samples and to
occupancy variations for samples with same HOD. However, other
processes might also be important such as those that set the spatial
distribution of satellite galaxies inside haloes.

These results illustrate the typical values assumed by Lagrangian
bias parameters corresponding to very different galaxy populations
and number densities, between z = 0 and 1. We provide in Table 3 the
fitting functions for the coevolution relations for bias parameters in
the context of the hybrid Lagrangian bias expansion model (at second
order) for both haloes and galaxies. Moreover, in equation (11) we
provide the boundaries of a hypervolume enclosing the values of
bias parameters describing all of our galaxy samples. We anticipate
that these formulae can be used as a prior for future Bayesian
analyses where both bias parameters and cosmological parameters
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are constrained, thus reducing the size of the parameter space to be
explored. In the future, we expect that an even better characterization
of these coevolution relations will be possible combining the power
spectra analysis with other observables and, in particular, including
higher order correlations. Moreover, we expect that including third-
order terms in the bias expansion will be key to determine the actual
range of applicability of these relations to fitting configurations
different from the ones assumed in this work.
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