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Perturbative expansions, such as the well-known gradient series and the recently proposed slow-roll
expansion, have been recently used to investigate the emergence of hydrodynamic behavior in systems
undergoing Bjorken flow. In this paper we determine for the first time the large order behavior of these
perturbative expansions in relativistic hydrodynamics in the case of Gubser flow. While both series diverge,
the slow-roll series can provide a much better overall description of the system’s dynamics than the gradient
expansion when both series are truncated at low orders. The truncated slow-roll series can also describe the
attractor solution of Gubser flow as long as the system is sufficiently close to equilibrium near the origin
(i.e., ρ ¼ 0) in dS3 ⊗ R. Differently than the case of Bjorken flow, here we show that the Gubser flow
attractor solution is not solely a function of the effective Knudsen number τR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σμνσ

μν
p

∼ τR tanh ρ. Our

results give further support to the idea that new resummed constitutive relations between dissipative
currents and the gradients of conserved quantities can emerge in systems far from equilibrium that are
beyond the regime of validity of the usual gradient expansion.
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I. INTRODUCTION

Hydrodynamic behavior in a many-body system is
usually characterized by the existence of constitutive
relations between dissipative currents and gradients of
conserved quantities [1]. When the gradients are small
compared to the system’s corresponding microscopic
scales, i.e., when the Knudsen number is small, the system
is close to local equilibrium and, in principle, dissipative
corrections can be taken into account via a systematic
expansion in powers of the Knudsen number [1]. Such an
expansion, when truncated to first order, leads to the
famous nonrelativistic Navier-Stokes (NS) equations [2,3].
The relativistic generalization of these equations was

worked out by Eckart [4] and Landau [5] nearly a century
ago and, with the advent of the quark-gluon plasma formed
in ultrarelativistic heavy ion collisions, viscous relativistic
hydrodynamics has become the main tool to describe the
spacetime evolution of the hot and dense matter created in
these collisions [6,7]. This led to a number of new
theoretical approaches, e.g., [8–20] as well as computa-
tional/phenomenological developments [21–35] in viscous
relativistic hydrodynamics, which have built upon Israel
and Stewart’s seminal work [36–38] and extended it in a
number of ways (for a recent review, see [39]).
However, the extreme energy density and large spatial

gradients expected to occur in the initial stages of the
quark-gluon plasma formed in the collisions of large nuclei

[26], together with the later measurement of large collective
behavior also in small collision systems [40], have con-
tributed in part to the question of whether hydrodynamic
behavior can also appear when gradients are not small and
more terms in the gradient series have to be taken into
account. Reference [41] initiated the study of the large
order behavior of the gradient series in the field, which was
shown to have zero radius of convergence in the case of a
strongly coupled N ¼ 4 supersymmetric Yang-Mills
plasma undergoing Bjorken expansion [42]. Other exam-
ples later followed involving strongly coupled systems with
different symmetries in the context of cosmology [43]
and also in kinetic theory [44,45] (for a review, see [46]). To
extract the properties and meaningfully handle these
divergent gradient series, powerful mathematical tech-
niques from resurgence theory (see, e.g., [47]) have been
used to resum the large order behavior of the series in
systems with a large degree of symmetry [18,43,45,48–51].
Now that it is known that the gradient series diverges and

that it is still meaningful to look for hydrodynamic behavior
even in situations where gradients are not necessarily small,
one may ask if a different mathematical representation,
which does not rely on the assumption of small gradients,
can be formulated to describe the hydrodynamic regime.
The first step in this direction was made in [18] with the
proposal that hydrodynamic behavior may be meaningfully
defined even far from equilibrium as long as a late time
“attractor” structure is present. In this context, NS already
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played the role of an attractor since the system, regardless
of its initial conditions, approaches this limit when suffi-
ciently close to equilibrium—the novelty of Ref. [18]’s
proposal is that this may occur in the far-from-equilibrium
regime as well. Several works have since then investigated
this in Bjorken flow [52–59] but the question of what
happens in systems with less symmetries still remains [55].
In Bjorken flow, an approximation to the attractor

solution was obtained [18] using a method analogous to
the slow-roll expansion developed in cosmology [60]. In
the context of hydrodynamics, a given order in the slow-roll
expansion contains derivative terms of all orders, which
suggests that such an expansion can be useful in the
formulation of hydrodynamics of far-from-equilibrium
systems. The large order behavior of the slow-roll expan-
sion was computed for the first time in [57] where it was
shown that this series also diverges in Bjorken flow. Since
this type of perturbative expansion is fairly recent in
hydrodynamic applications, it is useful to check different
types of systems and flow profiles where the slow-roll
expansion can be systematically implemented to obtain a
better understanding of its properties.
Divergent series are known to provide excellent

approximations to the solution of several mathematical
problems [61] and, thus, the fact that both series diverge
is not an issue per se. The relevant question is which
one of these divergent series provides the best approxi-
mation to the out-of-equilibrium dynamics of the system
under consideration after truncation. The detailed analy-
sis performed in [57] for Bjorken flow suggested that
the slow-roll expansion may lead to a better overall
description of the system’s dynamics for a wider range
of values of Knudsen number in comparison to the
gradient series.
In this work we investigate the fate of both series in a

simple system undergoing Gubser flow [62]. This type of
flow describes a relativistic fluid that is not only longitu-
dinally boost invariant but also undergoes a radially
symmetric expansion in the transverse plane. For simplic-
ity, we follow [18] and consider as our “microscopic”
theory the Israel-Stewart formulation of transient fluid
dynamics [36–38], whose properties in Gubser flow were
first studied in [63]. We explain how to systematically
construct the gradient and slow-roll perturbative series in
this type of flow and we compute the large order behavior
of both series for the first time in Gubser flow. Our results
strongly indicate that both series are divergent, as happened
for systems expanding following Bjorken flow. However,
when comparing low order truncations of both series, we
observe that the slow-roll expansion can provide a better
overall description of exact solutions in a wider range of
parameters in comparison to the gradient expansion. The
truncated slow-roll series can also describe the attractor
solution of Gubser flow as long as the shear stress tensor
approximately vanishes near the origin of the timelike

coordinate (i.e., ρ ¼ 0) in dS3 ⊗ R. Differently than the
case of Bjorken flow, we find that the Gubser flow attractor
solution is not solely a function of the effective Knudsen
number τR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σμνσ

μν
p

∼ τR tanh ρ. Our results support the
idea that a new type of constitutive relations between
dissipative currents (e.g., the shear stress tensor) and the
gradients of conserved quantities can emerge in far-from-
equilibrium systems which are, thus, beyond the regime of
applicability of the gradient expansion.
This paper is organized as follows. In the next section we

define the equations of motion of the Israel-Stewart-like
theory considered in this paper while in Sec. III we define
what Gubser flow is. Sections IV and V are devoted to
explaining how to perform the same gradient series in two
different ways while in Sec. VI we discuss a complemen-
tary perturbative series in powers of the inverse relaxation
time. We develop the slow-roll expansion in Sec. VII and
investigate the hydrodynamic attractor of Gubser flow in
Sec. VIII. Our final remarks can be found in Sec. IX. The
Appendix gives yet another way to develop the gradient
series in Gubser flow.
Definitions: We use a mostly minus metric signature and

natural units, ℏ ¼ c ¼ kB ¼ 1.

II. CONFORMAL ISRAEL-STEWART THEORY

Excluding the contribution from conserved charges, the
main fluid-dynamical equations are the continuity equa-
tions related to the conservation of energy and momentum,

∇μTμν ¼ 0: ð1Þ
The field Tμν introduced above is the energy-momentum
tensor, which is commonly decomposed in terms of the
local fluid velocity uμ as

Tμν ¼ εuμuν − ΔμνPþ πμν; ð2Þ

where ε is the energy density, P is the thermodynamic
pressure and πμν is the shear stress tensor. The fluid velocity
is constructed to be a normalized 4-vector, uμuμ ¼ 1,
defined according to Landau’s picture [5], Tμνuν ≡ εuμ,
as an eigenvector of the energy-momentum tensor. Note
that we also introduced the projection operator transverse to
uμ, Δμν ≡ gμν − uμuν, with gμν being the spacetime metric.
In this paper, we only consider the dynamics of conformal
fluids [9] and, consequently, there is no bulk viscous
pressure and the equation of state of the fluid is given
by ε ¼ 3P (i.e., the trace of Tμν vanishes).
The conservation laws alone do not describe all the

degrees of freedom of Tμν. They must be complemented
by additional dynamical equations (or constitutive rela-
tions) that describe the time evolution of the shear stress
tensor. For this purpose, we employ the transient hydro-
dynamic equations derived by Israel and Stewart [36–38]
from kinetic theory (and later complemented by several
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authors [64–73]). In this framework, the shear stress tensor
satisfies the following relaxation-type equation,

τRΔ
μν
αβDπαβ þ δππΘπμν þ τππΔ

μν
αβπ

αλσβλ − 2τRΔ
μν
αβπ

α
λω

βλ

þ πμν ¼ 2ησμν; ð3Þ

where D ¼ uμ∇μ is the comoving covariant derivative,

Θ ¼ ∇μuμ is the local expansion rate, σμν ¼ Δαβ
μν∇αuβ is

the shear tensor with Δαβ
μν ¼ 1

2
ðΔα

μΔ
β
ν þ Δα

νΔ
β
μ − 2

3
ΔαβΔμνÞ,

ωμν ¼ ðΔλ
μ∇λuν − Δλ

ν∇λuμÞ=2 is the vorticity tensor, η is
the shear viscosity, and τR is the shear relaxation time.
The equations above may be derived from the Boltzmann

equation using the 14-moment approximation or the relaxa-
tion time approximation, as shown in Refs. [14,67,69].
For a massless gas in the 14-moment approximation, it
was demonstrated that δππ ¼ 4=3τR, τππ ¼ 10=21τR and
η ¼ ðεþ PÞτR=5. Since we are dealing with a conformal
fluid, the shear relaxation time must be inversely propor-
tional to the temperature

τR ¼ c
T
; ð4Þ

where c is a constant that determines the magnitude of the
shear viscosity to entropy density ratio, η=s ¼ c=5. For the
sake of simplicity, we neglect the transport coefficient τππ
in this work. Furthermore, the nonlinear term that contains
the vorticity vanishes in the flow profile investigated in this
paper (see next section) and does not have to be considered
as well. This leads to the so-called (simplified) conformal
Israel-Stewart equations [63]

Δμν
αβDπαβ þ 4

3
πμνΘþ πμν

τR
¼ 2

η

τR
σμν: ð5Þ

III. GUBSER FLOW

Following [62], we look for solutions of the hydro-
dynamic equations with SOð3Þ ⊗ SUð1; 1Þ ⊗ Z2 symmetry
in flat spacetime. This is more naturally implemented by
performing a Weyl transformation to dS3 ⊗ R spacetime
(where dS3 stands for the three-dimensional de Sitter
spacetime [74]) and assuming that the fluid is homogeneous
in this curved geometry. This spacetime is described by the
line element [62]

ds2 ¼ gμνdxμdxν ¼ dρ2

− ðcosh2 ρdθ2 þ cosh2 ρ sin2 θdϕ2 þ dη2Þ: ð6Þ

The nonzero Christoffel symbols of this metric are Γρ
θθ ¼

cosh ρ sinh ρ, Γρ
ϕϕ¼ðsinθÞ2coshρsinhρ, Γθ

ρθ¼Γϕ
ρϕ¼ tanhρ,

Γθ
ϕϕ ¼ − sin θ cos θ, Γϕ

θϕ ¼ ðtan θÞ−1 and its determinant isffiffiffiffiffiffi−gp ¼ sin θðcosh ρÞ2. Since the system is homogeneous,

all fields depend only on the timelike variable ρ, without
displaying any dependence on θ, ϕ, and η. If we transform
back to Minkowski spacetime in hyperbolic coordinates
ðτ; r;ϕ; ηÞ, where the line element is ds2 ¼ dτ2 − dr2 −
r2dϕ2 − τ2dη [62], this homogeneous system is mapped into
a longitudinally boost invariant fluid whose expansion in the
transverse plane is radially symmetric. In flat spacetime, this
type of fluid displays a more complex pattern of expansion in
comparison to the Bjorken solutions [42] considered in
previous works, e.g., [18,41,44,50,57] where no radial
expansion is allowed.
The assumption that the system is homogeneous in

dS3⊗R leads to a trivial velocity field, uμ ¼ ð1; 0; 0; 0Þ,
which automatically satisfies the momentum conservation
continuity equations. Nevertheless, in this curved space-
time, the fluid still has a nonzero expansion rate and shear
tensor, which are given by

Θ≡∇μuμ ¼ 2 tanh ρ; ð7Þ

σμν ≡ 1

2
Δα

μΔ
β
νð∇αuβ þ∇βuαÞ −

1

3
ΔμνΘ ð8Þ

¼ diagð0; gθθ; gϕϕ;−2gηηÞ ×
1

3
tanh ρ; ð9Þ

where ∇αuβ ¼ ∂αuβ − Γλ
αβuλ is the covariant derivative of

the flow velocity. As already stated, the vorticity tensor
vanishes for this flow profile, ωμν ¼ 0, and plays no role in
the results obtained in this paper. Since the shear tensor is
diagonal, the shear stress tensor will also be diagonal,
πμν ¼ diagð0; πθθ; πϕϕ; πηηÞ, as long as it is initially diago-
nal. The equation of motion for the energy density, ε, then
becomes

uν∇μTμν ¼ dε
dρ

þ 8

3
ε tanh ρ −

1

3
πηη tanh ρ ¼ 0;

where we used that πμνσμν ¼ πηη tanh ρ. The equations of
motion for πμν are

dπθθ
dρ

þ 8

3
πθθ tanh ρþ

πθθ
τR

¼ 2η

3τR
tanh ρ; ð10Þ

dπϕϕ
dρ

þ 8

3
πϕϕ tanh ρþ

πϕϕ
τR

¼ 2η

3τR
tanh ρ; ð11Þ

dπηη
dρ

þ 8

3
πηη tanh ρþ πηη

τR
¼ −

4η

3τR
tanh ρ: ð12Þ

For the purposes of this paper, it is convenient to
reexpress these equations in terms of the temperature, T
(the system is conformal, ε ∼ T4), and a variable π
defined as
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π ≡ −
πηη

εþ P
: ð13Þ

With this choice of variables, the simplified conformal hydro-
dynamical equations of Israel-Stewart theory become [63]

1

T
dT
dρ

þ 2

3
tanh ρ −

1

3
π tanh ρ ¼ 0; ð14Þ

dπ
dρ

þ π

τR
þ 4

3
π2 tanh ρ ¼ 4

15
tanh ρ: ð15Þ

These are the equations that we investigate throughout
this paper.

IV. GRADIENT EXPANSION

We develop our calculations following the procedure
outlined in Ref. [57]. We convert the original problem into
a perturbation theory problem by introducing a dimension-
less parameter ϵ into the differential equation satisfied by π
as follows,

ϵ
dπ
dρ

þ πT
c

þ 4

3
π2ϵ tanh ρ ¼ 4

15
ϵ tanh ρ; ð16Þ

where we already used that τR ¼ c=T. Now, in this problem
the shear stress tensor and the temperature are functions of
ρ and the new variable ϵ, i.e., T ¼ Tðρ; ϵÞ and π ¼ πðρ; ϵÞ.
The parameter ϵ was introduced in every term which
contains a derivative or tanh ρ and, hence, it becomes a
book-keeping parameter to count orders or powers of
gradients. Thus, an expansion in powers of ϵ naturally
leads to an expansion in powers of gradients. Note that
while in Bjorken scaling it was straightforward to deduce
that powers of gradients correspond to inverse powers of
the time coordinate τ [57], here the situation is not that
simple and the corresponding terms are obtained from the
perturbative procedure itself.
Next, we look for a solution for π that can be represented

as a series in powers of ϵ,

π ∼
X∞
n¼0

πnðρÞϵn: ð17Þ

This reduces the problem to solving an infinite number
of simpler equations (in this case, algebraic equations),
which are given by recurrence relations. At the end of the
calculation, one sets ϵ ¼ 1 to recover the parameters of the
original problem. We note that such perturbative procedure
is only useful when the first few terms of the series contain
at least some basic properties of the exact solution, i.e., if a
low order truncation of the series can capture basic trends
of the solution. This does not necessarily mean that the
series must converge. As a matter of fact, in practice
convergent series quite often do not offer useful represen-
tations of functions since they may be slowly convergent

and require a great number of terms to provide a good
approximation in a given domain [61]. On the other hand,
truncations of divergent series are known to provide very
good approximations of certain functions (as in the case of
the error function).
Naturally, this procedure does not lead to a general

solution of Israel-Stewart theory since the equations
obtained in this type of perturbative approach do not
contain any free parameter associated with the initial
condition for π (the initial condition for the temperature
remains a free parameter, even in the perturbative problem).
In this sense, what is obtained with this approach is just one
solution for π that cannot be adjusted to an arbitrary
boundary condition. However, this solution is expected
to have physical meaning, reflecting the long-time, slow
evolution of the system when all transient, initial-state
dynamics is lost and the system enters a universal,
hydrodynamical regime (assumed in this section to be
described by the gradient expansion).
We now continue the perturbative calculation, substitut-

ing the proposed series solutions in powers of ϵ into the
equations of motion for π. One then obtains the following
result:

c
X∞
n¼0

dπn
dρ

ϵnþ1 þ T
X∞
n¼0

πnϵ
n

þ 4

3
c
X∞
n¼0

X∞
m¼0

πnπmϵ
nþmþ1 tanh ρ ¼ 4

15
cϵ tanh ρ: ð18Þ

The problem in solving this equation, i.e., in collecting all
terms that are of the same power in ϵ, is that the term
dπn=dρ also has an ϵ-dependence that must be considered
when grouping the terms. This can be taken into account
by noticing that the coefficient πn depends on ρ through
two different variables, πn ¼ πnðtanh ρ; TðρÞÞ and, thus,
its derivative can be mathematically reexpressed in the
following way:

dπn
dρ

¼ ∂πn
∂ρ

����
T
þ ∂πn

∂T
����
tanh ρ

dT
dρ

: ð19Þ

Above, the derivatives are taken as if tanh ρ and T were two
independent variables. It is the temperature derivative that
carries the ϵ-dependence and, thus, using Eq. (14) we can
rewrite Eq. (18) as

c
X∞
n¼0

�∂πn
∂ρ

����
T
−
2

3
T tanh ρ

∂πn
∂T

����
tanh ρ

�
ϵnþ1

þ c
3
tanh ρ

X∞
n¼0

X∞
m¼0

πmT
∂πn
∂T

����
tanh ρ

ϵnþmþ1 þ T
X∞
n¼0

πnϵ
n

þ 4

3
c
X∞
n¼0

πnπmϵ
nþmþ1 tanh ρ −

4

15
cϵ tanh ρ ¼ 0: ð20Þ

GABRIEL S. DENICOL and JORGE NORONHA PHYS. REV. D 99, 116004 (2019)

116004-4



Now that the terms are properly organized in powers of ϵ
we can group together the terms that are of the same order
and obtain the set of recurrence relations that must be
solved to obtain πn. The zeroth order term must satisfy

Tπ0 ¼ 0; ð21Þ

which describes a system that is in local equilibrium, as
expected. Collecting the terms that are of first order in ϵ one
obtains

π1ðρÞ ¼
4

15
τR tanh ρ; ð22Þ

which corresponds to relativistic NS theory. This expres-
sion also reflects the fact that the shear stress tensor in NS
theory is linear in the Knudsen number KN ∼ τR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σμνσ

μν
p

for Gubser flow. Finally, the terms that are of second order
or higher in ϵ, (n ≥ 2), satisfy the equations

T
c
πnþ1 ¼ −

4

3

Xn
m¼0

πn−mπm tanh ρ

−
1

3
tanh ρ

Xn
m¼0

πmT
∂πn−m
∂T

����
tanh ρ

þ
�
2

3
tanh ρ

�
T
∂πn
∂T

����
tanh ρ

−
∂πn
∂ρ

����
T
: ð23Þ

Since we already know π0 and π1, we can calculate all
the πn’s that follow. For the sake of completeness, we write
down below the answer up to third order,

π ¼ 4

15
ϵτR tanh ρ −

4

15
ðϵτRÞ2

�
1 −

1

3
tanh2 ρ

�

þ 8

45
ðϵτRÞ3

�
tanh ρ −

1

15
tanh3 ρ

�
þOðϵ4Þ: ð24Þ

Therefore, we can write the solution as a series in powers of
ϵτR, with all of the temperature contribution to the shear
stress tensor contained in the relaxation time. Also, we note
that while the NS result depends solely on the combination
τR tanh ρ, the same is not true for the higher order terms in
the gradient expansion, which depend separately on τR
and tanh ρ.
These equations have the form that is traditionally

associated with a gradient expansion: the zeroth and first
order truncations obtained in this section correspond to
well-known results, ideal hydrodynamics and Navier-
Stokes theory, respectively. Both of these examples were
already studied extensively in the literature [62]. In the
Appendix we derive the gradient expansion using another
equivalent method.
We end this section with a comment about the meaning of

the gradient expansion used in this work. Hydrodynamics is

usually understood as an effective theory constructed via
the gradient expansion [1]. In the relativistic regime, the
energy-momentum tensor is expanded in a series of
gradients of the temperature, flow, and other macroscopic
quantities, and this series is characterized by transport
coefficients that can be determined by matching this long
wavelength description to the underlying microscopic
theory. In this language, Israel-Stewart theory can be
viewed as a particular example of second order hydro-
dynamics. Alternatively, the Israel-Stewart equations writ-
ten above (where the shear stress tensor is a dynamical
variable that obeys a differential equation) may be under-
stood as a particular resummation of the gradient expan-
sion that is correct to second order in gradients; see
Ref. [9]. Following Refs. [18,52], in this work the same
equations are used to define a simple “toy model”
microscopic theory for which coarse-grained descriptions
can be systematically derived using different approaches
such as, for instance, the gradient expansion and also the
slow-roll series discussed in Sec. VII.

V. GRADIENT EXPANSION—REVISITED

In the previous section we constructed the gradient
expansion solution of Israel-Stewart theory following a
perturbative scheme. We demonstrated that the result can
be expressed as an expansion in powers of ϵτR. In this
section we construct once again the gradient expansion
solution of Israel-Stewart theory, but now using the knowl-
edge that the temperature appears in the series only through
powers of the relaxation time, τR ∼ 1=T. Therefore, it is
more straightforward to simply assume an expansion of π
just in powers of τR from the very beginning (the parameter
ϵ can also be included, as before, but it will not make any
difference),

π ¼
X∞
n¼0

π̂nðρÞτnR: ð25Þ

The calculations become simpler this way (even though
less general) as they allow us to determine the large order
behavior of the gradient series. In order to avoid confusion
with the variables from the previous section, here we
change the notation of the expansion coefficients by adding
a hat, i.e., π̂n. We note that the coordinates in the line
element in (6) are dimensionless1 and so are all the
variables computed in dS3 ⊗ R. Therefore, an expansion
in powers of τR is again an expansion in terms of a
dimensionless parameter.
Replacing this expansion in the equation of motion for π

leads to

1Naturally, an energy scale (called q in [62]) is introduced
when going from dS3 ⊗ R back to Minkowski. In this paper we
set this scale to unity.
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X∞
n¼0

τnþ1
R

dπ̂n
dρ

þ 2

3
tanh ρ

X∞
n¼0

nτnþ1
R π̂n þ

X∞
n¼0

π̂nτ
n
R

þ 1

3
tanh ρ

X∞
n¼0

X∞
m¼0

ð4 − nÞπ̂nπ̂mτnþmþ1
R ¼ 4

15
τR tanh ρ:

ð26Þ

We see that the terms can be grouped together according to
their power of τR. If we collect all the terms of the same
order, we obtain the equations satisfied by each expansion
coefficient π̂n. We also note that this procedure of collect-
ing powers of τR completely removes the temperature from
the perturbation theory problem. As expected, the zeroth
and first order coefficients satisfy

π̂0 ¼ 0; ð27Þ

π̂1ðρÞ ¼
4

15
tanh ρ: ð28Þ

The higher order coefficients obey the equations

π̂nþ1 þ
dπ̂n
dρ

þ 2n
3
tanh ρπ̂n

þ 1

3
tanh ρ

Xn
m¼0

ð4 − nþmÞπ̂n−mπ̂m ¼ 0: ð29Þ

More specifically, the second order coefficient is given by

π̂2ðρÞ ¼ −
dπ̂1
dρ

−
2

3
π̂1 tanh ρ ¼ −

4

15
þ 4

45
tanh2 ρ: ð30Þ

We note that the solutions obtained for π̂1 and π̂2 are
exactly the same as the ones obtained in the previous
section, provided one multiplies each coefficient by the
appropriate power of the relaxation time and sets ϵ ¼ 1 in
the results obtained in the previous section. However, the
procedure described in this section is much simpler to
implement than the one constructed in the previous section.
Nevertheless, it is important to remember that the formal-
ism constructed before is more general since it is not always
possible to rearrange the problem in terms of a simpler
(though equivalent) perturbative expansion. When dealing
with more general flow configurations or with more
complicated perturbative series (see Sec. VII), one must
follow the general procedure outlined in the previous
section.
When ρ → ∞ all derivatives of tanh ρ vanish and the

recurrence relations satisfied by π̂n considerably simplify

π̂nþ1 þ
2n
3
π̂n þ

1

3

Xn
m¼0

ð4 − nþmÞπ̂n−mπ̂m ¼ 0: ð31Þ

In this case, the coefficients π̂n are just pure numbers that
satisfy recurrence relations that are very similar to those

obtained in the Bjorken case (see, e.g., [57]). In this case, it
is straightforward to see that when n ≫ 1 this expression
leads to π̂n ∼ n! and, consequently, to a divergent series.

A. Divergence of the gradient expansion
in Gubser flow

With the expansion constructed above we are able to
determine the large order behavior of the gradient expan-
sion for arbitrary values of ρ. The recurrence relations
derived above were solved with Wolfram’s Mathematica,
up to n ¼ 100, and plotted in Fig. 1 for ρ ¼ 0.1, ρ ¼ 1, and
ρ ¼ 10. In Fig. 2, we also show the corresponding result
when ρ ¼ 0 and ρ → ∞. We do not plot results for negative
values of ρ since the modulus of each coefficient does not
depend on the sign of ρ. Both figures clearly display the
factorial growth of the coefficients of the series, indicating
that the gradient expansion has zero radius of convergence.
We also remark that the results vary very little when ρ is
changed.
It is interesting to see that when ρ ¼ 0 (i.e., when the

shear tensor is 0) the gradient expansion still diverges.
Moreover, since the first order term in the expansion is

FIG. 1. jπnj1=n as a function of n for ρ ¼ 0.1 (red), ρ ¼ 1 (bule),
and ρ ¼ 10 (black).

FIG. 2. jπnj1=n as a function of n for ρ ¼ 0 and ρ → ∞.
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proportional to tanh ρ, this term vanishes when ρ ¼ 0 and,
as a matter of fact, one can show that all odd terms in the
series vanish in this case. However, the coefficients π̂2nð0Þ
do not vanish and these terms alone display factorial
growth.

B. Determining the domain of applicability of the
gradient expansion

As already mentioned, low order truncations of a
divergent expansion can still be used to provide reasonable
approximations for solutions of the theory, at least in some
domains. In Figs. 3 and 4 we compare several truncations of
this divergent series with exact solutions obtained by
numerically solving the Israel-Stewart equations (14) and
(15), for two values of η=s – η=s ¼ 1=ð4πÞ and 1. The
initial conditions for the numerical problem where chosen
to be Tðρ0Þ ¼ 0.0057 and πðρ0Þ ¼ 0.4, with ρ0 ¼ −30. We
remark that our results do not depend strongly on the value
chosen for πðρ0Þ, but they do depend on the choice of
Tðρ0Þ.2 In this comparison, we take the exact temperature
profile TðρÞ and insert it into the corresponding constitutive
relations obtained for π using the gradient expansion.
We find that, when the viscosity is small (η=s ¼ 1=4π),

the first and second order truncations of the gradient
expansion provide a good approximation to the exact
solution in a wide region around ρ ¼ 0. We remark that
the best approximation to the exact solution, for this value
of viscosity, is obtained by truncating the expansion at
second order, as also happened when performing this
analysis assuming Bjorken flow [57]. However, the diver-
gent nature of the series is manifest by the fact that the

eighth order truncation is significantly worse than the lower
orders, indicating that the optimal truncation of the series is
indeed at a lower order.
Meanwhile, for a larger value of viscosity, η=s ¼ 1, none

of the different truncations of the gradient series is able to
provide a reasonable description of the exact solution. In
fact, in this case one even finds that πð0Þ deviates
significantly from 0 in the exact solution—a result that
is very hard to describe using the gradient expansion, since
it implies that the NS limit is not approached at all even
when ρ ≈ 0. In general, our results suggest that truncations
of the gradient expansion can provide a good description of
solutions of Israel-Stewart theory around ρ ¼ 0, though
how far in ρ this occurs (or if this occurs at all) clearly
depends on the value of η=s.
Furthermore, we remark that the gradient expansion

cannot describe the quantitative and qualitative behavior
of the solution when jρj is very large. In fact, it is known
from [63] that the exact solution for π in Israel-Stewart
theory asymptotes to a constant when jρj ≫ 1—a result
that can never be obtained within a gradient expansion.
However, this is not the limit where one would expect the
gradient expansion to be useful since in this case all powers
of tanh ρ become of the same order. In fact, in this regime a
complementary perturbative expansion must be developed,
which is the subject of the next section.

VI. EXPANSION IN POWERS OF THE
INVERSE RELAXATION TIME

Previously, we showed that the gradient expansion in
Israel-Stewart theory undergoing Gubser flow corresponds
to a series in powers of the relaxation time. The large order
behavior of this expansion, investigated for the first time in
the last section, suggests that it has a zero radius of
convergence. From the nature of the equations, it is obvious
that if a series in powers of τR is possible, then a series in

FIG. 3. Comparison between the exact result for π defined in
(13) obtained by solving Eqs. (14) and (15) and the gradient
expansion truncated at different orders. In this plot η=s ¼ 1=ð4πÞ.

FIG. 4. Comparison between the exact result for π defined in
(13) obtained by solving Eqs. (14) and (15) and the gradient
expansion truncated at different orders. In this plot η=s ¼ 1.

2It is straightforward to see from the equations of motion for T
and π that rescaling the initial value of the temperature is
equivalent to changing the shear viscosity of the system. This
happens in such a way that reducing the initial temperature of the
system corresponds to effectively increasing the value of η=s.
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powers of 1=τR should also be possible, though its regime
of applicability should be complementary to the former.
Such a series is interesting in its own way and here we study
the properties of this other type of perturbative expansion.
We note that in Sec. 4.2.1 of Ref. [75] a similar series to the
one studied in this section was investigated.
Let us now consider again the Israel-Stewart equations

and develop an expansion of π in powers of τ−1R ,

π ¼
X∞
n¼0

π̃nτ
−n
R : ð32Þ

Again, we change our notation for the expansion coefficient
to π̃n in order to avoid confusion with the variables
employed in the previous sections. Substituting this ansatz
into the simplified Israel-Stewart equation for π (15)
leads to

X∞
n¼0

τ−nR
dπ̃n
dρ

þ
X∞
n¼0

τ−ðnþ1Þ
R π̃n −

2

3
tanh ρ

X∞
n¼0

τ−nR nπ̃n

þ 1

3
tanh ρ

X∞
n¼0

X∞
m¼0

τ−ðnþmÞ
R ðnþ 4Þπ̃nπ̃m −

4

15
tanh ρ ¼ 0:

ð33Þ

We now follow the same procedure as before and collect
the terms that are of the same order in the inverse relaxation
time. At zeroth order we find the following differential
equation of motion for π̃0:

dπ̃0
dρ

þ 4

3
π̃20 tanh ρ ¼ 4

15
tanh ρ:

This equation corresponds to the cold plasma limit solution
first found and studied in Ref. [63], whose analytical
solution is

π̃0ðρÞ ¼
ffiffiffi
5

p

5
tanh

� ffiffiffi
5

p

5

�
4

3
ln cosh ρ − 5b

��
;

where b is a free parameter that is fixed by the initial
condition chosen for π. Approximating π by this zeroth
order solution, one then obtains the following solution for
the temperature,

T0ðρÞ ¼ a
exp ð5b=2Þ
ðcosh ρÞ2=3 cosh

1=4

� ffiffiffi
5

p

5

�
4

3
ln cosh ρ − 5b

��
;

where a is a free parameter that fixes the initial temperature.
The equation satisfied by the first order coefficient is

dπ̃1
dρ

þ π̃0 þ
�
3π̃0 −

2

3

�
π̃1 tanh ρ ¼ 0: ð34Þ

This equation does not have a simple analytical solution but
it can be easily solved numerically. Finally, the equation of
motion for π̃n, n ≥ 1, is

dπ̃n
dρ

þ π̃n−1 −
�
2n
3
tanh ρ

�
π̃n

þ tanh ρ
Xn
m¼0

n −mþ 4

3
π̃n−mπ̃m ¼ 0:

One can see that this type of expansion is qualitatively
different than the gradient expansion as it requires solving a
differential equation at every order, which makes it harder
to determine its large order behavior. In fact, this introduces
back into the problem the initial condition for π, which now
can be taken into account by the 0th order term of the
expansion. Moreover, differently than the gradient expan-
sion, we note that in this case there is no approximate
constitutive relation between the shear stress tensor and the
hydrodynamic variables.
As this series is defined by powers of the inverse

relaxation time, if one keeps the initial condition for the
temperature fixed, the regime of applicability of the series
is controlled by how large η=s is. In Fig. 5 we set η=s ¼
100 and compare the exact solution of the Israel-Stewart
equations with the same initial conditions as before to
different truncations of this new series in powers of the
inverse relaxation time. One can see that the 0th order term
already correctly describes the asymptotic regime at very
large jρj, though the agreement worsens for 0 < ρ < 10.
The inclusion of higher order terms improves the agree-
ment near ρ ∼ 0 though for 5 < ρ < 10 not even the 4th
order truncation can describe the numerical solution.
We finish this section with the remark that in flow

situations with less symmetry, the type of series developed
in this section basically requires solving a problem as hard

FIG. 5. Comparison between the exact result for π defined in
(13) obtained by solving Eqs. (14) and (15) and the series in
inverse powers of the relaxation truncated at different orders.
In this plot η=s ¼ 100.
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as the original problem (coupled, nonlinear partial differ-
ential equations for the shear stress tensor) at each order.
Therefore, we expect its use in practical applications to be
more limited than the more easily implementable gradient
expansion. In the next section we develop a perturbative
expansion that can describe not only the ρ ∼ 0 regime but
also the asymptotic values of the solution when ρ → ∞.

VII. SLOW-ROLL EXPANSION

The slow-roll expansion was first used in the context of
hydrodynamics in [18] in the case of Bjorken flow. The
systematic implementation of this series in that problem
was discussed in [54] and later in [57]. The slow-roll
expansion in Gubser flow is defined by the following
perturbative problem

ϵc
dπ
dρ

þ Tπ þ 4

3
cπ2 tanh ρ ¼ 4

15
c tanh ρ; ð35Þ

where now the book-keeping parameter ϵ multiplies only
the derivative term of the equation. As before, we look for
perturbative solutions of the form

π ∼
X∞
n¼0

π̄nϵ
n; ð36Þ

and, at the end of the calculation, set ϵ ¼ 1, recovering, in
principle, a solution of the original equation of motion.
Replacing this expansion into Eq. (35), we obtain the
following set of relations:

c
X∞
n¼0

dπ̄n
dρ

ϵnþ1 þ T
X∞
n¼0

π̄nϵ
n þ 4

3
c
X∞
n¼0

X∞
m¼0

π̄nπ̄mϵ
nþm tanh ρ

¼ 4

15
c tanh ρ: ð37Þ

As before, we write the derivative of π̄n as

dπ̄n
dρ

¼ ∂π̄n
∂ρ

����
T
þ ∂π̄n

∂T
����
tanh ρ

dT
dρ

;

which allows us to properly collect all powers of ϵ and leads
to the following equations,

c
X∞
n¼0

�∂π̄n
∂ρ

����
T
−
2

3
tanh ρT

∂π̄n
∂T

����
tanh ρ

�
ϵnþ1 þ c

3
tanh ρ

X∞
n¼0

X∞
m¼0

π̄mT
∂π̄n
∂T

����
tanh ρ

ϵnþmþ1

þ T
X∞
n¼0

π̄nϵ
n þ 4

3
c
X∞
n¼0

X∞
m¼0

π̄nπ̄mϵ
nþm tanh ρ ¼ 4

15
c tanh ρ: ð38Þ

The zeroth order solution is the Gubser flow generali-
zation of the well-known result first derived for Bjorken
flow in [18],

4

3
π̄20τR tanh ρþ π̄0 ¼

4

15
τR tanh ρ;

⇒ π̄�0 ðρÞ ¼
−3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4

5
ð4τR tanh ρÞ2

q
8τR tanh ρ

: ð39Þ

We remark that the 0th order term of the slow-roll
expansion for Israel-Stewart theory shown above was first
computed in [75]. Out of the two possible solutions
obtained above, we chose the one that asymptotes to the
Navier-Stokes solution in the limit ρ → 0; i.e., we consider
only the solution π̄þ0 . In fact, one may expand (39) in
powers of τR to find

π̄þ0 ðρÞ ¼
4

15
τR tanh ρ −

64

675
ðτR tanh ρÞ3 þOðτ5RÞ: ð40Þ

Thus, we see that the 0th order term in the slow-roll
expansion recovers the NS result (i.e., it matches the

gradient expansion truncated at 1st order). However, it is
important to notice that the higher order terms generated by
Taylor expanding π̄þ0 differ from the higher order terms
present in the gradient expansion.
Also, it is interesting to notice that the 0th order slow-roll

term π̄þ0 is solely a function of the Knudsen number
τR tanh ρ ∼ τR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σμνσ

μν
p

for Gubser flow, as also happened
with the first order truncation of the gradient expansion (NS
theory). A similar situation was found in Bjorken flow,
where the zeroth-order truncation of the slow–roll expan-
sion was shown to depend solely on the combination Tτ,
the inverse Knudsen number for this flow configuration
[18]. In Bjorken flow this feature persisted to all orders in
the slow-roll expansion [57] though here we see that this
does not hold for the slow-roll expansion in Gubser flow
(the same was observed for the gradient expansion in
Gubser flow in Sec. IV). As a matter of fact, we explicitly
show in the following that the higher order terms of the
slow-roll series in Gubser flow are functions of both τR and
tanh ρ, separately.
Using Eq. (39), higher order solutions are obtained by

solving the recurrence relation
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∂π̄n
∂ρ

����
T
−
2T
3
tanh ρ

∂π̄n
∂T

����
tanh ρ

þ T
3
tanh ρ

Xn
m¼0

π̄m
∂π̄n−m
∂T

����
tanh ρ

þ T
c
π̄nþ1 þ

4

3

Xnþ1

m¼0

π̄nþ1−mπ̄m tanh ρ ¼ 0; ð41Þ

which can be simplified to

�
1

τR
þ 8

3
π̄þ0 tanh ρ

�
π̄nþ1 ¼ −

2

3
tanh ρτR

∂π̄n
∂τR

����
tanh ρ

−
∂π̄n
∂ρ

����
τR

þ 1

3
tanh ρ

Xn
m¼0

π̄mτR
∂π̄n−m
∂τR

����
tanh ρ

−
4

3

Xn
m¼1

π̄nþ1−mπ̄m tanh ρ: ð42Þ

Solving this recurrence relation, one can determine the first
order solution to be

π̄1ðρÞ ¼
15π̄þ0

τR tanh ρ

�ð1þ π̄þ0 ÞðτR tanh ρÞ2 − 3τ2R
45þ 64ðτR tanh ρÞ2

�
: ð43Þ

This result clearly demonstrates that π̄1 depends on both τR
and tanh ρ, separately, a fact that remains true for all higher
order coefficients of the slow-roll expansion.
Furthermore, expanding now the truncated series at 1st

order (i.e., π̄ → π̄þ0 þ π̄1) in powers of τR leads to

π̄ðρÞ ¼ 4

15
τR tanh ρ −

4

15
ðτRÞ2

�
1 −

1

3
tanh2ρ

�

−
16

225
ðτR tanh ρÞ3 þOðτ4RÞ; ð44Þ

which shows that the 1st order truncation of the slow-roll
series is able to recover the result obtained from the
gradient expansion truncated at 2nd order; see (24). In
general, a Taylor expansion of the slow-roll expansion
truncated at the Nth term reduces to the correct expression
for the gradient expansion truncated at order N þ 1. In this
sense, the slow-roll expansion can be seen as a type of
reorganization of the gradient series that contains an infinite
resummation of gradients at a given order.

A. Divergence of the slow-roll series in Gubser flow

Now we solve Eq. (42) numerically to determine the
behavior of the slow-roll series at higher orders. In Fig. 6
we show how the coefficients of the series change with n
when ρ → 0 and for the following values of relaxation
time, τR ¼ 0.1, 1. This plot indicates that, in this limit, the
magnitude of the terms grows larger than n! when n is
large.3 To illustrate the fact that the large order behavior of
the slow-roll series now depends on two parameters (i.e., ρ
and τR), we show in Fig. 7 what happens when ρ ¼ 1. Even

though the series still appears to diverge, in this case
jπ̄nj1=ðnþ1Þ only grows linearly with n (the same qualitative
result appears for other values of τR and also when ρ is
negative). Therefore, in Israel-Stewart theory both the
gradient and the slow-roll expansions generally diverge
in Gubser flow, just as it occurred in Bjorken flow [57].

FIG. 6. Large order behavior of the slow-roll series when ρ → 0
and τR ¼ 0.1, 1.

FIG. 7. Large order behavior of the slow-roll series when ρ ¼ 1
and τR ¼ 1, 10.

3We checked that jπnj does not grow larger ðn!Þα where α <
1.3 in the range considered (this result is robust with respect to the
choice of values for τR).
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The only exception occurs when jρj→∞. Since the tem-
perature vanishes in this limit one must also take τR → ∞,
which implies that π̄�0 → �signρ=

ffiffiffi
5

p
and Eq. (42) gives

π̄n>0 ¼ 0. This shows that the slow-roll expansion in fact
converges in this limit to π̄�0 . As discussed in [63], solutions
of the Israel-Stewart equation for the shear stress tensor
(15) do display the same behavior and, thus, one can see
that the slow-roll series necessarily converges to solutions
of the Israel-Stewart equation when jρj → ∞.

B. Determining the domain of applicability
of the slow-roll expansion

In Figs. 8–11 we investigate how different truncations of
the slow-roll series for π fare in comparison to the same
exact solution of the Israel-Stewart equations used in
previous sections. These exact solutions were constructed
using the same initial condition for T and π employed in
the previous sections. We can see in Fig. 8 that, for

η=s ¼ 1=ð4πÞ, the 0th order truncation deviates only
slightly from the exact solution though the 1st order
truncation of the slow-roll expansion gives a reasonably
accurate description of the solution for ρ > −5. We also
show the results for the 7th order truncation, which are
found to display oscillatory behavior compatible with the
divergent character of the series when ρ is finite (when
jρj → ∞, however, the series converges and this is why the
oscillations do not appear in that regime). Figure 9 shows
that the agreement with the exact solution improves at 2nd
order for ρ > 0.
Figures 10 and 11 show that the agreement between the

truncated slow-roll series and the exact solution consid-
erably worsens when η=s ¼ 1 (the same occurred in the
gradient expansion investigated in Sec. V). As already
mentioned, in this case πð0Þ deviates considerably from 0
in the exact solution and the 0th order approximation of the
slow-roll series is not accurate even at ρ ¼ 0. This affects
the overall ability of the truncated series to describe the

FIG. 8. Comparison between the exact solution of Israel-
Stewart (IS) equations and different truncations of the slow-roll
series in Gubser flow for η=s ¼ 1=ð4πÞ.

FIG. 9. Detailed comparison when ρ > 0 between the exact
solution of the IS equations and the low order truncations of the
slow-roll series in Gubser flow for η=s ¼ 1=ð4πÞ.

FIG. 10. Comparison between the exact solution of IS equa-
tions and different truncations of the slow-roll series in Gubser
flow for η=s ¼ 1.

FIG. 11. Detailed comparison when ρ > 0 between the exact
solution of the IS equations and the low order truncations of the
slow-roll series in Gubser flow for η=s ¼ 1.
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solution and one can see in Fig. 10 that oscillations now
appear already at 2nd order. Figure 11 shows the results
for the ρ > 0 region in detail. Even though the higher
order truncations become closer to the exact solution, the
agreement is generally poor in comparison to what was
found in Fig. 9, where η=s ¼ 1=ð4πÞ. Overall, since T has a
maximum at ρ ¼ 0 in Israel-Stewart theory [63], the
relaxation time has a minimum at the same location and
we find that the slow-roll series is not a good proxy for the
exact solutions when τRð0Þ ≳ 1, which occurs in this
example when η=s ¼ 1.

C. Comparison between the
perturbative expansions

We mentioned before that a Taylor series in powers of τR
of the Nth order truncation of the slow-roll expansion
reduces to the result obtained from the (N þ 1)th order

truncation of the gradient series. In order to assess how
these two perturbative series fare in comparison to the exact
solution of Israel-Stewart equations, we plot in Fig. 12 the
2nd order gradient expansion result and the N ¼ 1 trunca-
tion of the slow-roll series for η=s ¼ 1=ð4πÞ. One can see
that the N ¼ 1 slow-roll expansion indeed matches the
N ¼ 2 gradient series result as long as the latter still
provides a good approximation to the exact solution
(approximately when −3 < ρ < 3). However, outside this
regime the gradient series fails to describe the solution
while the slow-roll result nicely continues to provide a very
good description of the system’s dynamics towards larger
values of ρ. A detailed comparison between the truncated
series and the numerical result when ρ > 0 can be found in
Fig. 13. The 1st order slow-roll series is much more
accurate in this regime than the gradient expansion, which
fails around ρ ∼ 3.
Figure 14 shows that, when η=s ¼ 1, both expansions

have difficulties in describing the behavior of the exact
solution, as expected from the results of the previous
sections. However, we remark that the 1st order truncation
of the slow-roll series still behaves much better than the 2nd
order gradient expansion. In general, perturbative series
such as the gradient or the slow-roll expansions can only be
accurate if their lowest order terms are not too far from the
exact solution. This is the case when η=s ¼ 1=ð4πÞ, since
πð0Þ is very small and can be well approximated by the
Navier-Stokes solution. The same does not happen when
η=s ¼ 1, in which case the solution for πð0Þ considerably
deviates from 0.

VIII. ATTRACTOR SOLUTION IN GUBSER FLOW

In this section we investigate the attractor solution of
Israel-Stewart equations for a system expanding according
to Gubser flow, which was first studied in Ref. [75]. In this
work, we interpret the attractor solution as a resummed
slow-roll expansion. The analysis presented in this section

FIG. 12. Comparison between the exact solution of IS equa-
tions undergoing Gubser flow for η=s ¼ 1=ð4πÞ and the N ¼ 1
and N ¼ 2 truncations of the slow-roll and gradient series,
respectively.

FIG. 13. Detailed comparison when ρ > 0 between the exact
solution of IS equations undergoing Gubser flow for η=s ¼
1=ð4πÞ and the N ¼ 1 and N ¼ 2 truncations of the slow-roll and
gradient series, respectively.

FIG. 14. Comparison between the exact solution of IS equations
undergoing Gubser flow for η=s ¼ 1 and the N ¼ 1 and N ¼ 2
truncations of the slow-roll and gradient series, respectively.
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aims to explore two fundamental aspects of the attractor: its
possible functional dependence on the Knudsen number
and its approximate description using the slow-roll series
truncated at higher orders.
In the previous section, we found that the slow-roll series

converges when jρj → ∞ and we can use this fact to
numerically construct a resummed version of the slow-roll
solution. We found that there are two possible convergent
solutions for π when jρj → ∞: 1=

ffiffiffi
5

p
and −1=

ffiffiffi
5

p
. It is

natural to expect that one of these boundary conditions
leads to the exact solution related to the slow-roll expan-
sion. In practice, we observe that the vast majority of
solutions (if not all of them) of Israel-Stewart theory
actually converge to 1=

ffiffiffi
5

p
when ρ → −∞ (for ρ → ∞,

all known numerical solutions of Israel-Stewart theory also
converge to 1=

ffiffiffi
5

p
). So far, the only case in which we are

able to obtain a solution that is equal to −1=
ffiffiffi
5

p
, when

ρ → −∞, is when we give exactly this boundary condition
at a very small value of ρ. Any small deviation from−1=

ffiffiffi
5

p
makes the solution tend to 1=

ffiffiffi
5

p
when we decrease the

value of ρ. This behavior suggests that the boundary
condition πð−∞Þ ¼ −1=

ffiffiffi
5

p
defines a unique solution of

the equation and that such a unique solution can be
identified as the resummed result for the slow-roll series.
On the other hand, the other boundary condition at
ρ ¼ −∞, πð−∞Þ ¼ 1=

ffiffiffi
5

p
, is satisfied by an infinite

number of solutions and cannot be used to define any
specific solutions of the equations.
This is illustrated in Figs. 15 and 16 for two vastly

different values of η=s. In these plots, the solid red curve
depicts the solution of Israel-Stewart equations assuming
Tð−30Þ¼9.222×10−8 and πð−30Þ ¼ −1=

ffiffiffi
5

p
. The dashed

curves are computed keeping the initial condition for the
temperature fixed while considering very small variations
of πð−30Þ, of at most 1% around −1=

ffiffiffi
5

p
. We see that any

small variation of the value of π at ρ ¼ −30 makes the

solution converge to 1=
ffiffiffi
5

p
when ρ is decreased. This only

does not happen when we fix π to be exactly −1=
ffiffiffi
5

p
(red

curve). Furthermore, one can see that all the solutions
converge extremely rapidly to the solution where
limρ→−∞πðρÞ ¼ −1=

ffiffiffi
5

p
. This solution, represented here

by the solid red curve in these plots, corresponds to the
hydrodynamic attractor solution first discussed in [18] in
Bjorken flow, which was later investigated in more detail
in [54].
Comparing Figs. 15 and 16 we see that the profile of

the attractor depends on the value of η=s, becoming closer
to a step function as η=s is increased even further. Such
a behavior is very hard to describe using the slow-roll
series, as one can see in Fig. 17. In this figure we com-
pare the attractor solutions (solid red) with truncations of
the slow-roll series. For η=s ¼ 1=ð4πÞ we used the 2nd
order truncation while for the extremely large value of
η=s ¼ 1000 we only took the 0th order term in the series.
When η=s is small, the truncated slow-roll series provides

FIG. 15. Attractor solution of IS equations undergoing Gubser
flow (solid red) compared to other solutions of the equations
(dashed black curves) for η=s ¼ 1=ð4πÞ.

FIG. 16. Attractor solution of IS equations undergoing Gubser
flow (solid red) compared to other solutions of the equations
(dashed black curves) for the very large value of η=s ¼ 1000.

FIG. 17. Comparison between the attractor solutions of IS
equations undergoing Gubser flow, for η=s ¼ 1=ð4πÞ and
η=s ¼ 1000, and the corresponding approximations using the
slow-roll series (dashed).
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an excellent description of the attractor while for very large
values of η=s this perturbative approach provides a poor
description, even though still qualitatively accurate, of the
attractor away from the asymptotic regime, as expected.
Now we explore a different feature, so far exclusive to

Gubser flow, which is the fact that the attractor solution
per se depends on the temperature. This can be seen in
Fig. 18 where we now fix πð−30Þ ¼ −1=

ffiffiffi
5

p
(attractor

solutions) and consider three very different values for the
initial temperature Tð−30Þ ¼ 9.222 × 10−8, Tð−30Þ ¼
9.222 × 10−10, and Tð−30Þ ¼ 9.222 × 10−12 and η=s ¼
1=ð4πÞ. These variations in initial temperature lead to very
different values for the temperature at ρ ¼ 0 in the attractor
solutions. One obtains three different profiles for the
attractor, which are also compared to their corresponding
slow-roll series truncated at 2nd order for the first two
solutions and at 0th order for the last one. Even though η=s
is small, by significantly decreasing the initial value of the
temperature one can again recover the large τRð0Þ regime
where the slow-roll series does not work well.
Finally, in Fig. 19 we explore another key difference

between the Gubser flow attractor and the Bjorken flow
attractor. In this figure we picked two of the attractor
solutions discussed above where Tð0Þ ¼ 0.2 and Tð0Þ≫1,
with η=s ¼ 1=ð4πÞ, and plotted them against the Knudsen
number combination τR tanh ρ. The fact that these curves
are different show that, in contrast to the Bjorken flow case,
the attractor solution of Israel-Stewart equations under-
going Gubser flow is not solely a function of τR tanh ρ, even
though the 0th order truncation of the slow-roll series is.
This illustrates that characterizing attractor solutions by the
0th order slow-roll series can be misleading as this special
solution of Israel-Stewart equations (the attractor) displays
a more complex dependence on ρ than the simplest
truncated series. Since already the 1st order truncation of
the slow-roll series depends on both τR and tanh ρ, we see

that higher order truncations of the slow-roll series are
better suited to properly characterize the attractor.

IX. CONCLUSIONS

In this paper we developed a perturbative scheme to
construct asymptotic solutions, such as the gradient and
slow-roll expansions, of Israel-Stewart theory undergoing
Gubser flow. We then determine for the first time the large
order behavior of these perturbative expansions in the case
of Gubser flow. We demonstrated numerically that the
expansion coefficients in both cases grow factorially,
indicating that these series have a zero radius of conver-
gence. Even though these series appear to diverge, their low
order truncations can still offer a reasonable description of
exact solutions of Israel-Stewart theory near the origin of
the Gubser coordinate system. However, we emphasize that
such agreement is only possible when the relaxation time is
sufficiently small at ρ ¼ 0, i.e., τRðρ ¼ 0Þ ≪ 1.
When comparing both asymptotic solutions, we found

that the slow-roll expansion provides a much better overall
description of exact solutions of Israel-Stewart, when
truncated at low orders. In particular, a truncated slow-roll
expansion can even describe qualitative and, often, quanti-
tative, aspects of exact solutions when ρ → ∞—a region in
which gradients cannot be considered small. This suggests
the existence of nontrivial constitutive relations satisfied by
the shear stress tensor that are valid even when gradients are
large (i.e., the far-from-equilibrium regime).
We also demonstrated that the slow-roll series converges

to �1=
ffiffiffi
5

p
when jρj → ∞ and used this fact to numerically

construct a resummed version of the slow-roll expansion.
We showed numerically that such a solution displays the
basic properties expected of an attractor, with solutions
obtained using different initial conditions always converg-
ing to such a resummed solution. Differently than the case

FIG. 19. Attractor solutions of IS equations undergoing Gubser
flow, computed using different initial conditions for the temper-
ature, vs the Knudsen numberlike quantity τR tanh ρ. The fact that
these curves are distinct imply that in Gubser flow the attractor
solution of IS theory is not just a simple function of τR tanh ρ.
Rather, the attractor depends on both τR and tanh ρ, separately. In
this plot η=s ¼ 1=ð4πÞ.

FIG. 18. Comparison between the attractor solutions of IS
equations undergoing Gubser flow, computed using different
initial conditions for the temperature, and the corresponding
approximations using the slow-roll series (dashed). In this plot
η=s ¼ 1=ð4πÞ.
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of Bjorken flow, we found that the Gubser flow attractor
solution cannot be expressed just as a function of the
effective Knudsen number ∼τR tanh ρ. Instead, it depends
on the relaxation time and tanh ρ separately, suggesting the
existence of a class of attractor solutions and not just a
single universal function. Nevertheless, we emphasize that
when the relaxation time is sufficiently small at ρ ¼ 0,
τRð0Þ ≪ 1, the attractor can be approximately expressed as
a function of τR tanh ρ. Furthermore, the truncated slow-roll
series can also describe the attractor solution of Gubser
flow as long as the system is sufficiently close to equilib-
rium near the origin (i.e., ρ ¼ 0).
Finally, our results give further support to the idea that

new resummed constitutive relations between dissipative
currents and the gradients of conserved quantities can
emerge in systems far from equilibrium that are beyond
the regime of validity of the usual gradient expansion.
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APPENDIX: YET ANOTHER IMPLEMENTATION
OF THE GRADIENT EXPANSION

In this Appendix we consider a possible solution for T
and π that is represented as a series in powers of ϵ,

T ∼
X∞
n¼0

TnðρÞϵn; ðA1Þ

π ∼
X∞
n¼0

πnðρÞϵn: ðA2Þ

Substituting the proposed series solutions in powers of ϵ
into the equations of motion for π and T one obtains the
following set of coupled equations:

X∞
n¼0

∂ρTnϵ
n þ 2

3

X∞
n¼0

Tnϵ
n tanh ρ

−
1

3

X∞
n¼0

X∞
m¼0

πnTmϵ
nþm tanh ρ ¼ 0; ðA3Þ

c
X∞
n¼0

∂ρπnϵ
nþ1 þ

X∞
n¼0

X∞
m¼0

πnTmϵ
nþm

þ 4

3
c
X∞
n¼0

X∞
m¼0

πnπmϵ
nþmþ1 tanh ρ ¼ 4

15
cϵ tanh ρ: ðA4Þ

We now group together the terms that are of the same power
in ϵ, obtaining the set of recurrence relations that must be
solved to obtain Tn and πn. The terms that are of zeroth
order in ϵ satisfy

∂ρT0 þ
2

3
T0 tanh ρ −

1

3
π0T0 tanh ρ ¼ 0; ðA5Þ

π0T0 ¼ 0; ðA6Þ

leading to the solution

∂ρT0 þ
2

3
T0 tanh ρ ¼ 0; ðA7Þ

π0 ¼ 0: ðA8Þ

Note that the equations above are exactly the same as those
of an ideal fluid and, consequently, the lowest order
truncation of the series leads to ideal hydrodynamics, as
expected.
Collecting the terms that are of first order in ϵ, one

obtains

∂ρT1 þ
2

3
T1 tanh ρ −

1

3
π1T0 tanh ρ ¼ 0; ðA9Þ

π1 ¼
4c

15T0

tanh ρ; ðA10Þ

leading to the following equation for T1:

∂ρT1 þ
2

3
T1 tanh ρ ¼ 4c

45
tanh2 ρ: ðA11Þ

Furthermore, the terms that are of second order or higher in
ϵ, (n ≥ 2), satisfy the equations

∂ρTn þ
2

3
Tn tanh ρ −

1

3

Xn
m¼0

Tn−mπm tanh ρ ¼ 0; ðA12Þ

c∂ρπn þ T0πnþ1 þ
Xn
m¼1

Tmπn−mþ1

þ 4c
3

Xn
m¼1

πn−mπm tanh ρ ¼ 0: ðA13Þ

The equations/solutions obtained above have a rather
disturbing feature. So far, it was not possible to derive a
constitutive equation for π that is expressed solely in terms
of T and tanh ρ (gradients of velocity), as would be
expected in a gradient expansion. Instead, the solution
appears in terms of the temperature expansion coefficients,
Tn. Nevertheless, we later demonstrate that this solution,
truncated up to a given order in ϵ, can be resumed and
reexpressed solely in terms of the full temperature T.
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For the first order truncation, this procedure is rather
obvious: one simply takes the 1=T0 dependence, that
appears in the solution for π1, and reexpresses it as
1=T0 ∼ 1=T þOðϵÞ. Therefore, neglecting terms of second
order or higher in ϵ, we have that

π ¼ π0 þ ϵπ1 þOðϵ2Þ ¼ 4cϵ
15T

tanh ρþOðϵ2Þ: ðA14Þ

Similarly, the equation of motion for the temperature up to
second order, T0 þ ϵT1, can be written as

∂ρðT0 þ ϵT1Þ þ
2

3
ðT0 þ ϵT1Þ tanh ρ ¼ 4c

45
ϵ tanh2 ρ;

ðA15Þ

and, consequently, we have that

∂ρT þ 2

3
T tanh ρ ¼ 4c

45
ϵ tanh2 ρþOðϵ2Þ: ðA16Þ

If we set ϵ ¼ 1, the equation above becomes the Navier-
Stokes equation under Gubser flow. This equation can be
solved analytically, as was shown in Ref. [62], even though
this solution displays unphysical features such as negative
temperatures when ρ → −∞.
Next, we obtain the second and third order solutions and

show that these can also be expressed in terms of the full
temperature (up to the corresponding order). The second
order equations (for T2 and π2) are

∂ρT2 þ
2

3
T2 tanh ρ −

1

3
π2T0 tanh ρ −

1

3
π1T1 tanh ρ ¼ 0;

ðA17Þ

c∂ρπ1 þ π2T0 þ π1T1 ¼ 0: ðA18Þ

Using the solutions/equations already obtained for π1, T1,
and T0, we find the constitutive equation satisfied by π2,

π2 ¼
4c2

15T2
0

�
−1 −

T1

c
tanh ρþ 1

3
tanh2 ρ

�
: ðA19Þ

One can see that π2 depends separately on T0 and T1, while
the equation of motion for T2 is coupled to T0, T1, π1,
and π2.
The third order equations are

∂ρT3 þ
2

3
T3 tanh ρ −

1

3
T2π1 tanh ρ −

1

3
T1π2 tanh ρ

−
1

3
T0π3 tanh ρ ¼ 0; ðA20Þ

c∂ρπ2 þ π3T0 þ π2T1 þ π1T2 þ
4

3
cπ21 tanh ρ ¼ 0: ðA21Þ

Using all the equations obtained for the lower order
coefficients, the constitutive equation satisfied by π3 can
be simplified to

π3 ¼
4c2

15T2
0

T1

T0

�
1þ T1

c
tanhρ−

1

3
tanh2 ρ

�
−

4c
15T0

T2

T0

tanhρ

ðA22Þ

þ 4c3

15T3
0

�
T1

c
þ 2

3
tanh ρ −

1

3

T1

c
tanh2 ρ −

2

45
tanh3 ρ

�
:

ðA23Þ

The second and third order coefficients, π2 and π3, are
complicated and contain terms that have mixed contribu-
tions from T0, T1, and T2.
We now reexpress all these contributions solely in

terms of T. In order to perform this task, one should first
note that

π1 ¼
4τR
15

�
1þ ϵ

T1

T
þ ϵ2

T2

T
þ ϵ2

T2
1

T2

�
tanh ρþOðϵ3Þ;

ðA24Þ

π2 ¼ −
4

15
τ2R

�
1 −

1

3
tanh2 ρþ T1

c
tanh ρ

�

−
8T1

15T
ϵτ2R

�
1 −

1

3
tanh2 ρþ T1

c
tanh ρ

�
þOðϵ2Þ;

ðA25Þ

π3 ¼
4τ3R
15

�
2

3
tanh ρ −

2

45
tanh3 ρþ T1

c

�
1 −

1

3
tanh2 ρ

��

−
4τR
15

T2

T
tanh ρ ðA26Þ

þ 4τ2R
15

�
1 −

1

3
tanh2 ρþ T1

c
tanh ρ

�
T1

T
þOðϵÞ: ðA27Þ

All that was done above was to rewrite T0 in terms of T, up
to a given order in ϵ. Combining all these expressions,
π ¼ ϵπ1 þ ϵ2π2 þ ϵ3π3 þOðϵ4Þ, one can verify that all
contributions including T1 and T2 cancel each other and
only the dependence on the full temperature is left. The
resumed answer is

π ¼ 4

15
ϵτR tanh ρ −

4

15
ðϵτRÞ2

�
1 −

1

3
tanh2 ρ

�
ðA28Þ

þ 8

45
ðϵτRÞ3

�
tanh ρ −

1

15
tanh3 ρ

�
þOðϵ4Þ: ðA29Þ

Therefore, we are able to rewrite the previous series as a
power series in ϵτR, with all the temperature contributions
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contained in the powers of the relaxation time. Note that the
equation of motion for the (full) temperature can also be
written in the form

∂ρT þ 2

3
T tanh ρ ¼ 1

3
πT tanh ρþOðϵ4Þ: ðA30Þ

Finally, following this scheme we obtain equations of
motion for the temperature that are complemented by
constitutive equations for the shear stress tensor. These
equations have the form that is traditionally associated with
a gradient expansion, as discussed in the main text.
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