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Given a Lagrangian submanifold L of the affine symplectic 
2n-space, one can canonically and uniquely define a center-
chord and a special improper affine sphere of dimension 
2n, both of whose sets of singularities contain L. Although 
these improper affine spheres (IAS) always present other 
singularities away from L (the off-shell singularities studied 
in [8]), they may also present singularities other than L which 
are arbitrarily close to L, the so called singularities “on shell”. 
These on-shell singularities possess a hidden Z2 symmetry 
that is absent from the off-shell singularities. In this paper, 
we study these canonical IAS obtained from L and their on-
shell singularities, in arbitrary even dimensions, and classify 
all stable Lagrangian/Legendrian singularities on shell that 
may occur for these IAS when L is a curve or a Lagrangian 
surface.
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Singularity theory: 
Lagrangian/Legendrian singularities, 
symmetric singularities

1. Introduction

An improper affine sphere (IAS) is a hypersurface whose affine Blaschke normal vec-
tors are all parallel. They are given as the graph of a function F : Rm → R satisfying 
the Monge-Ampère equation

det(D2F ) = ±1. (1.1)

In the lowest dimensional cases, surfaces in R3, there are two classes of improper affine 
spheres: the convex ones, satisfying the equation det(D2F ) = 1, and the non-convex 
ones, satisfying the equation det(D2F ) = −1.

For two planar curves α+ : U ⊂ R → R2 and α− : V ⊂ R → R2, denote by 
x(u, v) = 1

2 (α+(u) + α−(v)) the mid-point of (α+(u), α−(v)) and denote by f(u, v) the 
area of the region bounded by the chord connecting α+(u) and α−(v), plus a chosen fixed 
chord ξ0 connecting arbitrary points α+(u0) and α−(v0), plus the arcs of α+ and α−

between these two chords (f ≡ fξ0 depends on the choice of ξ0, of course, but for another 
choice ξ′0, fξ′0 − fξ0 = constant). The map (u, v) �→ (x(u, v), f(u, v)) in a non-convex IAS 
and, conversely, any 2-dimensional non-convex IAS is locally as above, for certain curves 
α+ and α−. Since the mid-chord y(u, v) = 1

2(α+(u) −α−(v)) is the symplectic gradient of 
f ,1 this type of IAS was called center-chord in [8], where this construction was generalized 
to arbitrary even dimensions substituting the pair of planar curves by a pair (L+, L−)
of Lagrangian submanifolds of R2n. But in fact, this generalization was first presented 
in [6], where IAS of this type were referred to as special para-Kähler manifolds.

The center-chord IAS is independent of parameterizations of the Lagrangian subman-
ifolds and the singular set of a center-chord IAS is given by the pairs (u, v) such that 
TuL

+ and TvL
− are not transversal. The image of the singular set by the map x(u, v)

is the Wigner caustic of the pair (L+, L−) and will be denoted Ecc(L+, L−), while the 
image of the singular set by the map (x(u, v), f(u, v)) will be denoted Ẽcc(L+, L−).

For a holomorphic function H : C → C, H(z) = P (s, t) + iQ(s, t), where z = s +
it, let us denote x(s, t) = (s, ∂Q∂t ), y(s, t) = (t, ∂Q∂s ), and also f(s, t) = Q(s, t) − t∂Q∂t . 
Then, the map (s, t) �→ (x(s, t), f(s, t)) is a convex IAS whose symplectic gradient is y.2
Conversely, any 2-dimensional convex IAS is as above, for a certain holomorphic function 
H. This construction was generalized to arbitrary even dimensions in [3], by considering 
holomorphic maps H : Cn → C, and IAS of this type were shown to be special Kähler 
manifolds in the sense of [16]. Thus, this type of IAS was called special in [3].

1 More precisely, Y (x) = y(u, v) is the Hamiltonian vector field of F (x) = f(u, v), for x = x(u, v) the 
center as above, with respect to the canonical symplectic form on R2 � x.
2 Y (x) = y(s, t) is the Hamiltonian vector field of F (x) = f(s, t), for x = x(s, t) as above.
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The singular set of a special IAS is given by the pairs (s, t) such that ∂
2Q
∂t2 is singular. 

The image of the singular set by the map x(s, t) is a caustic and will be denoted Esp(L), 
while the image of the singular set by the map (x(s, t), f(s, t)) will be denoted Ẽsp(L), 
where L is the graph of dH in Cn ×Cn.

For both the center-chord and the special IAS, the function F : R2n → R, given by 
F (x) = f(u, v), satisfies the Monge-Ampère equation (1.1), but generically each such 
solution F of the Monge-Ampère equation has singularities, as studied in [8]. On the 
other hand, what was not explored in [8] and is the object of the present paper is 
that, in various instances, a subset of the singular set of F is a Lagrangian submanifold 
L ⊂ R2n.

In fact, by taking the same Lagrangian submanifold, L+ = L− = L, we obtain an 
interesting subclass of the center-chord improper affine spheres. In this case, L is con-
tained in the Wigner caustic Ecc(L) of L. The study of the Wigner caustic of L is of 
some interest in physics ([11], [12]), and this subclass of the center-chord IAS is also of 
interest in computational vision ([7], [24]).

In this paper we introduce the corresponding subclass for special IAS. This subclass 
consists of special IAS defined by holomorphic maps H : Cn → C that take the real 
space Rn into the real line R, which implies that the real function Q, above, is an odd 
function of t. Denote by L the image of the real space Rn by the map x, which is a 
Lagrangian submanifold of R2n. Since the holomorphic map H can be recovered from 
L, we shall denote by Esp(L) the corresponding caustic of the special IAS. As in the 
center-chord case, L is contained in Esp(L). In [7], this type of IAS was considered for 
n = 1.

Generically, the sets Ecc(L) and Esp(L) contain L and other points away from L, but 
they may also contain more points than just L in any neighborhood of L, the so-called 
on-shell part of Ecc(L) and Esp(L), denoted by Es

cc(L) and Es
sp(L), respectively. In [8], 

singularities of Ecc(L) \ Es
cc(L) and Esp(L) \ Es

sp(L), also called off-shell singularities, 
were studied and classified. In this paper, we shall study and classify the singularities of 
Es

cc(L) and Es
sp(L), and of their Legendrian analogues Ẽs

cc(L) and Ẽs
sp(L).

Since both Es
cc(L) and Es

sp(L) are sets of critical values of Lagrangian maps (re-
spectively Legendrian maps for Ẽs

cc(L) and Ẽs
sp(L)), it is natural to study them in this 

context using generating functions and generating families. But the study of singularities 
via generating families is of a local nature, so we shall actually study germs of singu-
larities. In this setting, the on-shell singularity-germs of these IAS are described by the 
following theorem, which is detailed in section 3 below and generalize [11, Theorem 2.11].

For center-chord IAS, if L is locally generated by function S = S(q) via

L = {(q, p) ∈ R2n| p = dS} ,

then a generating family for Es
cc(L) in a neighborhood of L is given by

Gs
cc(β, q, p) = 1 (S(q + β) − S(q − β)) − p · β . (1.2)
2
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In the special case, for the function Q = Q(s, t) introduced above, with

L =
{
(q, p) =

(
s,

∂Q

∂t
(s, 0)

)
, s ∈ Rn

}

locally, a generating family for Es
sp(L) in a neighborhood of L is given by

Gs
sp(β, q, p) = Q(q, β) − p · β . (1.3)

Theorem 1.1. The germ at 0 ∈ L of Es
cc(L), resp. Es

sp(L), is the set of critical values the 
Lagrangian map-germ π|L : L → R2n, where L is the Lagrangian submanifold-germ of 
(TR2n, Ω) determined by the generating family Gs

cc, resp. Gs
sp, as above (cf. (3.5) below). 

Similarly, the germ at 0 ∈ L ×{0} of Ẽs
cc(L), resp. Ẽs

sp(L), is the set of critical values of 
the Legendrian map-germ π̃|L̃ : L̃ → R2n × R, where L̃ is the Legendrian submanifold-
germ of (TR2n ×R, θ) determined by the generating family Gs

cc, resp. Gs
sp, as above (cf. 

(3.6) below).

In the above theorem, π : TR2n → R2n is the canonical projection, with π̃ : TR2n ×
R → R2n×R its trivial extension, and Ω is the tangential lift ([25], [17]) of the canonical 
symplectic form on R2n, cf. (3.1), with θ being the contact form associated to Ω which 
is semi-basic w.r.t. π̃, cf. (3.2) below.

From (1.2), Gs
cc is odd in β. Likewise, from (1.3) and the fact that Q(q, β) is odd in 

β, Gs
sp is also odd in β. Therefore, in both cases we must consider odd deformations of 

odd generating families, for classification of the singularities on shell, cf. section 4 and 
specially Theorem 4.17 below.

The set Es
cc(L) was studied in [11] (see also [15]), where its stable Lagrangian singu-

larities were classified, when L is a curve or a surface. In this paper, we adapt the results 
from [11] to classify the stable Legendrian singularities on shell of the center-chord IAS 
and classify the stable Lagrangian and Legendrian singularities on shell of the special 
IAS, for such IAS associated to curves and Lagrangian surfaces.

Thus, the important characteristic of these on-shell singularities, both in center-chord 
and special cases, is that they possess a hidden Z2 symmetry that descends from the 
explicit Z2 symmetry of L or L̃ due to G being odd in β. Such a hidden Z2 symmetry 
is absent from the off-shell singularities, so the classification of on-shell singularities is 
different. This is relevant for the geometric study of solutions of the Monge-Ampère equa-
tion for functions F : R2n → R whose singularity set contains a Lagrangian submanifold 
L ⊂ R2n.

On the other hand, a remarkable distinction of the special case is that Gs
sp is nec-

essarily real analytic, and thus, in the special case, we should in principle consider the 
classification of singularities up to analytic equivalence. It turns out, however, that im-
posing real analyticity amounts to no refinement on the classification under smooth 
diffeomorphisms [4], so the classification of singularities of odd smooth functions, pre-
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sented in [11], applies equally to classification of singularities on shell of both center-chord 
and special IAS.

This paper is organized as follows:
In section 2, we review the properties of center-chord and special IAS, emphasizing 

the ones obtained from a single Lagrangian submanifold; we also characterize the IAS 
coming from a single Lagrangian submanifold among all possible center-chord and special 
IAS, showing that for each L there is a unique canonical center-chord IAS and a unique 
canonical special IAS obtained from L. Thus, in particular, many results in this section 
are of a global nature, in contrast with the remaining of the paper.

In section 3, we describe the on-shell odd generating families for the canonical center-
chord and special IAS, detailing Theorem 1.1, and then, in section 4, we study equivalence 
and stability of Lagrangian/Legendrian maps which are Z2-symmetric along the fibers, 
in relation with equivalence, stability and versality of generating families in the odd 
category, expanding and complementing the treatment developed in [11]. Section 4 is 
also intended to clarify many results in singularity theory which are not so familiar to 
nonspecialists, in view of the interdisciplinary nature of the paper.

Then, in section 5, we present the classification of simple Lagrangian and Legendrian 
singularities on shell for the canonical center-chord and special IAS obtained from L, 
producing explicit examples that show they are all realized, and we also present the 
classification and geometrical condition/interpretation of all stable Lagrangian and Leg-
endrian singularities on shell for the canonical center-chord and special IAS obtained 
from curves and Lagrangian surfaces, by adapting the results presented in [11].

Finally, in Section 6 we present the proof of Theorem 4.17.

2. Singular center-chord and special IAS

2.1. Center-chord IAS

Let U, V be simply connected open subsets of Rn. Consider a pair of Lagrangian 
immersions α+ : U → R2n and α− : V → R2n, where R2n is the affine symplectic space 
with the canonical symplectic form ω =

∑n
i=1 dqi ∧ dpi, q = (q1, ..., qn), p = (p1, ..., pn). 

Define x, y : U × V → R2n by

x(u, v) = 1
2
(
α+(u) + α−(v)

)
, y(u, v) = 1

2
(
α+(u) − α−(v)

)
. (2.1)

Fix a pair of parameters (u0, v0) ∈ U × V . For a given (u, v) ∈ U × V , consider 
the oriented curve δ(u, v, u0, v0) in R2n obtained by concatenating the chord connecting 
α+(u0) and α−(v0), a curve in L− = α−(V ) connecting α−(v0) and α−(v), the chord 
connecting α−(v) and α+(u), and a curve in L+ = α+(U) connecting α+(u) and α+(u0).

Because δ is closed and R2n is simply connected, δ = ∂Σ and ω = dη, where η =∑n
i=1 pidqi. Denote
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f [δ] =
∫
Σ

ω =
∫
δ

η =
∫

δ(u,v,u0,v0)

pidqi .

It is clear that f [δ] is independent of the choice of the curves along L+ and L− and that, 
if we change the initial pair (u0, v0) we just add a constant to f , since U, V are simply 
connected and α+, α− are Lagrangian immersions. Thus, up to a constant, we can write 
f [δ] = f(u, v). The following proposition was proved in [8]:

Proposition 2.1. The function f : U × V → R defined above up to an additive constant 
satisfies

fu = ω(xu, y), fv = ω(xv, y).

Moreover, the map φ : U × V ⊂ R2n → R2n+1 φ(u, v) = (x(u, v), f(u, v)) is an improper 
affine map, which, when regular, defines an improper affine sphere (IAS).

Remark 2.2. In all cases of IAS considered in this paper, we shall often abbreviate and 
refer to singularities of the map φ as singularities of the IAS.

The type of IAS from Proposition 2.1 is called a center-chord IAS. By a smooth change 
of coordinates, we may assume that locally

α+(u) =
(
u, dS+(u)

)
, α−(v) =

(
v, dS−(v)

)
, (2.2)

for some pair of functions S+ : U ⊂ Rn → R and S− : V ⊂ Rn → R.
The singular set of the center-chord IAS consists of the pairs (u, v) ∈ U × V such 

that the tangent spaces of α−(u) and α+(v) are not transversal subspaces of R2n, or 
equivalently, d2S+(u) − d2S−(v) is singular. The image of the singular set by the map 
x(u, v) is called the Wigner caustic of (L−, L+) and will be denoted by Ecc(L−, L+), 
while the image of the singular set by φ = (x, f) will be denoted Ẽcc(L−, L+).

Center-chord IAS from a given Lagrangian submanifold In this paper, we shall be par-
ticularly interested in the case that the Lagrangian submanifolds L+ and L− coincide, 
i.e.,

α+(u) = α(u), α−(v) = α(v),

for some Lagrangian immersion α : U ⊂ Rn → R2n. In this case we shall denote the 
image of this immersion by L = L+ = L− and the corresponding IAS by φcc(L). In case 
α is of the form (2.2) we shall write

α(u) = (u, dS(u)) , (2.3)

for some function S : U ⊂ Rn → R.
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Fig. 1. The singular center-chord IAS of Example 1.

When L+ = L− = L, the caustic Ecc(L, L) is the Wigner caustic of the Lagrangian 
submanifold L and will be denoted Ecc(L). In this case, the set u = v is contained in 
the singular set of φ. Since x(u, u) = α(u), we conclude that L ⊂ Ecc(L) (see also [11]
and [12]).

Example 1. Assume that α(u) = (cos(u), sin(u)), i.e., L is the unit circle in the plane. 
Then

x(u, v) = cos
(
u− v

2

)(
cos

(
u + v

2

)
, sin

(
u + v

2

))

y(u, v) = sin
(
u− v

2

)(
− sin

(
u + v

2

)
, cos

(
u + v

2

))

f(u, v) = 1
4 (v − u + sin(u− v)) ,

(see Fig. 1). The image of the map x is the unit disc D and the singular set is u = v+kπ, 
k ∈ Z. This example can be generalized by taking

α(u) = (cos(u1), sin(u1), ....., cos(un), sin(un)) , u = (u1, ..., un),

so that L is the n-dimensional torus in R2n. Then

f(u, v) = 1
4

n∑
i=1

(vi − ui + sin(ui − vi)) .

The singular set of this center-chord IAS is the union of submanifolds

R2 ×R2.....× {ui = vi + kπ} × ...R2, 1 ≤ i ≤ n.

2.2. Special IAS

Consider a complex Lagrangian immersion γ = (γ1, γ2) : W ⊂ Cn → C2n and denote 
its image by L. Also, let x, y : W → R2n be given by
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x(w) = 1
2 (γ(w) + γ̄(w)) ; y(w) = 1

2i (γ(w) − γ̄(w)) , (2.4)

w ∈ W , w = u + iv. The following proposition was proved in [8]:

Proposition 2.3. There exists f : W → R, unique up to an additive constant, such that

fu = ω(xu, y), fv = ω(xv, y) (2.5)

and the map

φ(u, v) = (x(u, v), f(u, v))

is an improper affine map, which, when regular, defines an improper affine sphere (IAS). 
Moreover, the IAS φ does not depend on the parameterization of the complex Lagrangian 
immersion γ.

From equations (2.4) and (2.5), the function f can be given a geometrical description 
similar to the one in the center-chord case. Let δ = δ(w, w0) be a oriented curve formed 
by the concatenation of the imaginary chord joining γ̄(w0) to γ(w0), a curve in L joining 
γ(w0) to γ(w), the imaginary chord joining γ(w) to γ̄(w), and a curve in L joining γ̄(w)
to γ̄(w0).

Because δ is closed and C2n is simply connected, δ = ∂Σ, and because ω is real and 
exact, ω = dη, where η = i

2wdw̄. Denote

f [δ] =
∫
Σ

ω =
∫
δ

η = i

2

n∑
k=1

∫
δ(w,w0)

wkdw̄k .

It is clear that the real function f [δ] is independent of the choice of the curves along L
and L (Lagrangian condition) and that, if we change the initial point w0 we just add a 
constant to f . Thus, up to a constant, we can write f [δ] = f(w).

The type of IAS from Proposition 2.3 is called special ([3]). As shown in [8], by a holo-
morphic change of coordinates, we may locally reparameterize γ by

γ(z) = (z, dH(z)) , z ∈ Z, (2.6)

where H : Z ⊂ Cn → C is a holomorphic map. Furthermore, setting z = s + it and 
H = P + iQ, we can write

x(z) =
(
s,

∂Q

∂t

)
, y(z) =

(
t,
∂Q

∂s

)
, (2.7)

and we also have that, up to an additive constant,
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f(s, t) = Q(s, t) −
n∑

k=1

tk · ∂Q
∂tk

, (2.8)

a formula first obtained by Cortés in [5].
The singular set of the special IAS consists of points (s, t) ∈ U such that ∂2Q

∂t2 is 
singular. The image of the singular set by x will be denoted Esp(L), while the image of 
the singular set by (x, f) will be denoted Ẽsp(L).

Remark 2.4. Recall that, in both the center-chord and the special cases, the regularity of 
the map φ : (u, v) �→ (x(u, v), f(u, v)) is equivalent to having an invertible map (u, v) �→
x(u, v), x−1 possibly multiple valued, so that each function F = f ◦x−1 : U ⊂ R2n → R

is well defined and satisfies the Monge-Ampère equation (1.1), and each regular branch 
of φ is a graph of F .

Special IAS from a given Lagrangian submanifold In this paper we shall be interested 
in the case Z is a domain in Cn invariant by conjugation and γ̄(z) = γ(z̄), which is 
equivalent to saying that H(Rn ∩ Z) is contained in R. In this case, we shall denote by 
L the image of Z ∩Rn by the map x(z).

Assume now we are given a real analytic Lagrangian submanifold L, image of α
given by equation (2.3), for some S : U ⊂ Rn → R real analytic. Then there exists a 
domain Z ⊂ Cn invariant by conjugation such that Z ∩Rn = U and a holomorphic map 
H : Z → C such that H restricted to U equals S. In particular, the image of Z ∩Rn by 
H is contained in R.

It is clear from the above two paragraphs that L ∩ L = L ⊂ R2n is a Lagrangian 
submanifold of the real symplectic space and that the special IAS defined by γ(z) =
(z, dH(z)) depends only on L. Therefore we shall denote it by φsp(L), and we shall 
denote by Esp(L) the caustic of φsp(L).

We may assume that L is given by equation (2.6), for some H : Z → C satisfying 
H̄(z) = H(z̄). This implies that the imaginary part Q of H is odd in t, where z = s + it, 
and so ∂

2Q
∂t2 = 0 for t = 0. We conclude that L ⊂ Esp(L).

Example 2. Let γ(z) = (cos(z), sin(z)). Then L is the unit circle in R2 and

x(s, t) = cosh(t) (cos(s), sin(s)) ; y(s, t) = sinh(t) (− sin(s), cos(s)) ,

f = 1
4 (sinh(2t) − 2t) ,

(see Fig. 2). The image of the map x is the complement D̄ of the open unit disc, while 
the singular set is t = 0. This example can be generalized by considering γ : Cn → C2n

given by

γ(z) = (cos(z1), sin(z1), ...., cos(zn), sin(zn)) , z = (z1, ..., zn).
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Fig. 2. The singular special IAS of Example 2.

In this case L is the n-dimensional torus L ⊂ R2n and

f(s, t) = 1
4

n∑
i=1

(sinh(2ti) − 2ti) ,

the caustic is the union of submanifolds R2 ×R2..... × {t = 0} × ...R2, where {t = 0} is 
in coordinate i.

2.3. Affine Björling problem

The affine Björling problem for n = 1 consists in finding an improper affine sphere 
containing a smooth curve, analytic in the convex case, with a prescribed co-normal 
along it. Recall that the co-normal at a point of the curve is a co-vector that has the 
tangent line in its kernel and takes the value 1 at the affine Blaschke normal. We ob-
serve that the co-normal for both types of IAS is given by (y, 1) and thus this problem 
is equivalent to finding an IAS given the values of (x, f) and y along a curve in the 
parameter plane.

The affine Björling problem for n = 1 has a unique solution for the center chord case 
(see [22, Thm.3.1] and [23, Thm.6.1]) and also for the special case (see [1, Thm.6.1]). We 
shall see below that by taking y = 0 along the curve L, we obtain the IAS φcc(L) and 
φsp(L) in each case.

We now let n be general and characterize φcc(L) among the center-chord IAS 
φcc(L−, L+) and φsp(L) among the special IAS φsp(L).

For a center-chord IAS φ = φcc(L−, L+), denote by E0
cc(L−, L+) the subset of 

Ecc(L−, L+) such that the tangent spaces to L+ at α+(u) and to L− at α−(v) are strongly 
parallel. For α± of the form (2.2), this is equivalent to having d2S+(u) = d2S−(v).

Proposition 2.5. Let φ = φcc(L−, L+) and L a Lagrangian submanifold of R2n. The 
following statements are equivalent:

1. φ = φcc(L).
2. L ⊂ E0

cc(L−, L+) and f is constant along L.
3. y = 0 along L.
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Proof. (1) ⇒ (2) follows from the description of φcc(L) given in section 2.1.
(2) ⇒ (3): If f is constant along L, then necessarily ω(y, xu) = ω(y, xv) = 0, implying 
that the chord y is tangent to L. On the other hand, L ⊂ E0

cc(L−, L+) implies that the 
tangent spaces of α+(u) and α−(u) are strongly parallel. We conclude that the tangent 
spaces in fact coincide and y = 0.
(3) ⇒ (1): The condition y = 0 at L implies that u = v and dS+(u) = dS−(v). Thus 
L is contained in the image of the diagonal u = v and dS+(u) = dS−(u). This implies 
that, up to a constant, S+(u) = S−(u) and so φ = φcc(L). �
Remark 2.6. If L ⊃ A, where A is an affine subspace of R2n, then condition (2) only 
implies that L = L+ = L−, thus implying (1), since it is possible to have a nonvanishing 
y ∈ TA if α+ 
= α−. But then, by choosing the canonical parametrization α+ = α−

for L+ = L−, we obtain (3). This canonical choice when L+ = L− shall always be 
assumed.

For a special IAS φ = φsp(L), denote by E0
sp(L) the subset of Esp(L) such that the 

tangent spaces to L at γ(z) and to L at γ̄(z) are strongly parallel. For γ of the form 
(2.6), this is equivalent to having ∂

2Q
∂t2 = 0.

Proposition 2.7. Let φ = φ(L) and L a Lagrangian submanifold of R2n. The following 
statements are equivalent:

1. φ = φsp(L).
2. L ⊂ E0

sp(L) and f is constant along L.
3. y = 0 along L.

Proof. (1) ⇒ (2) follows from the description of φsp(L) given in section 2.2.
(2) ⇒ (3): If f is constant along L, then necessarily y is tangent to L. We may assume 
t = t(s) along L with t(0) = 0. Differentiating equation (2.7)(a), we obtain that along L

xs =
(

1, ∂
2Q

∂t2
ts + ∂2Q

∂s∂t

)
.

Since ∂
2Q
∂t2 = 0 along L and y is tangent to L we conclude from (2.7)(b) that

t
∂

∂t

∂Q

∂s
= ∂Q

∂s
,

which implies that ∂Q∂s = ct, for some constant c. Since Q is harmonic, ∂
2Q
∂s2 = 0, and so 

t(s) = 0, which implies y = 0.
(3) ⇒ (1): y = 0 implies t = 0 and ∂Q∂s = 0 at L. Thus L is contained in the image of the 

parameterization 
(
s, ∂Q (s, 0)

)
and ∂Q (s, 0) = 0. Thus we know ∂Q and ∂Q along the 
∂t ∂s ∂s ∂t
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curve t = 0. This implies that we know dH at t = 0. So we know H, up to an additive 
constant, which implies φ = φsp(L). �
Remark 2.8. For φsp(L), the choice of parametrization (2.6) with H̄(z) = H(z̄) is canon-
ical in the sense that L ⊂ L and L ⊂ L have the same parametrization (cf. Remark 2.6) 
and therefore this is implicitly assumed.

Remark 2.9. For both φcc(L) and φsp(L), since f is constant along L, we can choose f
such that f(L) = 0. With this canonical choice, L ⊂ Ẽcc(L) and L ⊂ Ẽsp(L), and we 
have lost the freedom of adding a constant to f .

In view of the above remarks, we present the following:

Definition 2.10. With canonical choices outlined in Remarks 2.6, 2.8 and 2.9, we call 
φcc(L) and φsp(L) the two canonical IAS obtained uniquely from L.

3. Description of Lagrangian/Legendrian singularities on shell for the two canonical 
IAS from a Lagrangian submanifold

In this section we describe Ecc and Esp as sets of critical values of Lagrangian maps 
(caustics) and Ẽcc and Ẽsp as sets of critical values of Legendrian maps. However, because 
our following descriptions will be of a local nature, it’s necessary to distinguish two 
different “parts” of each of these sets.

The off-shell part of Ecc(L) is locally of the form Ecc(L−, L+), where L− 
= L+ are 
germs of L at two distinct points in L, but the on-shell part of Ecc(L) is locally of the 
form Ecc(L′, L′), where L′ is the germ of L at one point in L. Similarly for the other 
sets above.3

From now on, we are concerned with describing and classifying the “on-shell” part of 
the sets above and their singularities. Because our treatment will be local, it is tempting 
to define a germ of Ecc(L) on shell, for instance, as the germ of Ecc(L) at a point x ∈ L. 
However, although in various instances the on-shell and the off-shell parts of these sets 
are disconnected,4 there are various other instances when the germ of Ecc(L) at a point 
x ∈ L is the union of a germ of Ecc(L) on-shell and a germ of Ecc(L) off-shell.5 For this 
reason, the most precise description of a germ of Ecc(L) (or Esp(L), Ẽcc(L), Ẽsp(L)) 
on-shell is the one given by Theorem 1.1, which we detail below.

3 The local characterization of the off-shell part of Ecc(L) and the local classification of its singularities 
can be found in [12], [8] (global properties of the Wigner caustic Ecc(L) of planar curves are studied in 
[13–15]).
4 This is often the case for Ecc(L) of closed convex planar curves (for general closed planar curves the 

on-shell part is composed of curves connecting two inflection points [15]).
5 Recall that x ∈ Ecc(L)-off-shell if x is the midpoint of a chord connecting distinct points a, b ∈ L s.t. 

TaL and TbL are not transversal. But it may happen that x ∈ L.
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Notation 3.1. Because we’ll focus on the on-shell parts of Ecc(L), or Esp(L), and Ẽcc(L), 
or Ẽsp(L), the on-shell parts of these sets shall be denoted with a superscript “s” as 
Es

cc(L), or Es
sp(L), and Ẽs

cc(L), or Ẽs
sp(L), respectively, or simply by Es(L) and Ẽs(L), 

when the kind is not specified.

3.1. Generating functions and families

Let x = (q, p) = (q1, ..., qn, p1, ..., pn), y = (q̇, ṗ) = (q̇1, ..., q̇n, ṗ1, ..., ṗn), denote by 
π : TR2n = R2n×R2n → R2n the canonical projection π(x, y) = x and by π̃ : TR2n×R �
(q, p, q̇, ṗ, z) �→ (q, p, z) ∈ R2n ×R its trivial extension.

Denote by ω =
∑n

i=1 dqi ∧ dpi the canonical symplectic form on R2n, by

Ω =
n∑

i=1
dqi ∧ dṗi + dq̇i ∧ dpi (3.1)

the tangential lift ([25], [17]) of ω on TR2n and by

θ = dz +
n∑

i=1
q̇idpi − ṗidqi (3.2)

the contact form on TR2n ×R associated to Ω and semi-basic w.r.t. π̃.
Let U be an open subset of R2n. We shall denote by L the image of the Lagrangian 

immersion L = (x, y) : U → (TR2n, Ω) and by L̃ the image of the Legendrian immersion 
L̃ = (x, y, f) : U → (TR2n ×R, {θ = 0}). We are interested in studying the singularities 
of the Lagrangian map π ◦ (x, y) and the Legendrian map π̃ ◦ (x, y, f), where x = (q, p), 
y = (q̇, ṗ).

The main tools used for classifying Lagrangian and Legendrian singularities are the 
generating functions and generating families. A generating function of the Lagrangian 
submanifold L and the Legendrian submanifold L̃ is a function

g : Rn ×Rn � (q, q̇) �→ g(q, q̇) ∈ R,

satisfying

L = {(q, p, q̇, ṗ) : ∂g
∂q

= ṗ,
∂g

∂q̇
= p}, (3.3)

and

L̃ = {(q, p, q̇, ṗ, z) : ∂g
∂q

= ṗ,
∂g

∂q̇
= p, z = g(q, q̇) − q̇ · p}. (3.4)

A generating family of the Lagrangian map π ◦ L and the Legendrian map π̃ ◦ L̃ is a 
function G : Rn ×R2n � (β, q, p) �→ G(β, q, p) ∈ R satisfying
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L = {(q, p, q̇, ṗ) : ∃β : ∂G
∂β

= 0, ∂G
∂q

= ṗ,−∂G

∂p
= q̇}, (3.5)

and

L̃ = {(q, p, q̇, ṗ, z) : ∃β : ∂G
∂β

= 0, ∂G
∂q

= ṗ,−∂G

∂p
= q̇, z = G(β, q, p)}. (3.6)

A generating family can be obtained from a generating function by

G(β, q, p) = g(q, β) − p · β. (3.7)

However, we stress that generating families are local objects, suitable for local descrip-
tions and classifications, therefore we now focus on the generating families for φcc(L) and 
φsp(L) on shell, when (p, q) is in a neighborhood of L � 0, in order to complete the state-
ment of Theorem 1.1.

Generating families for center-chord and special IAS on shell For a center-chord 
IAS φcc(L), where L is defined by (u, dS(u)), straightforward calculations show 
that

gscc(q, q̇) = 1
2S(q + q̇) − 1

2S(q − q̇)

is a generating function on shell and so

Gs
cc(β, q, p) = 1

2S(q + β) − 1
2S(q − β) − p · β (3.8)

is a generating family for φcc(L) on shell. For a special IAS defined by the holomorphic 
function H taking Rn to R, by straightforward calculations

gssp(q, q̇) = Q(q, q̇)

is shown to be a generating function on shell and the generating family for φsp(L) on 
shell is given by

Gs
sp(β, q, p) = Q(q, β) − p · β, (3.9)

where Q is the imaginary part of H and thus is odd in the second entry.
Equations (3.1)-(3.9) complete the statement of Theorem 1.1, whose proof follows 

straightforwardly from standard theory of Lagrangian and Legendrian maps. We refer 
to [2] and subsection 4.2 below, for details.

But note that both Gs
cc(β, q, p) and Gs

sp(β, q, p) are odd functions of β.
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Remark 3.2. This odd property of the generating families G implies that the singu-
larities of Es(L), resp. Ẽs(L), possess a hidden Z2-symmetry, which descends from an 
explicit fibred-Z2-symmetry of the Lagrangian, resp. Legendrian, submanifold L, resp. 
L̃, obtained from G by (3.5), resp. (3.6).

Thus, in order to classify the singularities on shell of φcc(L) and φsp(L) we must con-
sider: (i) the classification problem for fibred-Z2-symmetric Lagrangian and Legendrian 
singularities; in relation with: (ii) the classification problem for generating families in the 
odd category.

Part (ii) was carried out in [11], but there neither part (i) nor the relation between 
the two parts was treated. These are carried out in the next section.

4. Fibred-Z2-symmetric germs of Lagrangian maps and their odd generating families

In this section, first we develop the definition of Lagrangian stability in the context 
of fibred-Z2-symmetric Lagrangian map-germs (cf. Definition 4.7), by carefully adapting 
the nonsymmetric treatment presented in [2]. Here we shall only work in the Lagrangian 
setting, the extension to the Legendrian setting being straightforward because all Leg-
endrian immersions we consider are graph-like (cf. [18, Section 5.3]).

Then, we detail the relation between Definition 4.7 and the definition of stability of 
odd generating families (cf. Definition 4.14 and Corollary 4.18). The central result for 
relating these two definitions is given by Theorem 4.17, which relates the corresponding 
notions of equivalence (cf. Definitions 4.6 and 4.11). Because the proof of this theorem 
is not too short, it has been placed in section 6, at the end of the paper.

Finally, we state, explaining its proof, the theorem which relates stability of odd 
generating families to their odd versality (cf. Theorem 4.20 below), which will be used 
to classify the stable singularities on shell of the center-chord and special IAS, in the 
next section.

We start by recalling basic definitions of the theory of Lagrangian singularities (cf. 
e.g. [2, Part III]) and then specialize some of these basic definitions to the fibred-Z2-
symmetric context.

4.1. Fibred-Z2-symmetric Lagrangian map-germs

Let M be a smooth (or analytic) m-dimensional manifold. Let E → M be a smooth 
(or analytic) fiber bundle over M . A diffeomorphism of E is fibered (or fibred) if it maps 
fibers to fibers.

Let T ∗M be the cotangent bundle of M and let ω be the canonical symplectic form 
on T ∗M . A smooth (or analytic) section s : M → T ∗M is called Lagrangian if s∗ω = 0. 
Sections of T ∗M are differential 1-forms on M and it is easy to see that a section is 
Lagrangian iff the 1-form is closed. Thus, any germ of a smooth (or analytic) Lagrangian 
section can be described as the differential of a smooth (or analytic) function-germ 
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on M . This function-germ is called a generating function of the germ of a Lagrangian 
section.

Let λ and (κ, λ) = (κ1, · · · , κm, λ1, · · · , λm) be local coordinates on M and T ∗M , 
respectively, then ω =

∑m
i=1 dκi ∧ dλi. (T ∗M, ω) with canonical projection π : T ∗M �

(κ, λ) �→ λ ∈ M is a Lagrangian fibre bundle.
Let L be a Lagrangian submanifold of T ∗M i.e. dimL = dimM and the pullback of 

the symplectic form ω to L vanishes. Then π|L : L → M is called a Lagrangian map. 
The set of critical values of a Lagrangian map is called a caustic. Let L and L̃ be two 
Lagrangian submanifolds of (T ∗M, ω):

Definition 4.1. Two Lagrangian maps π|L : L → M and π|L̃ : L̃ → M are Lagrangian 
equivalent if there exists a fibered symplectomorphism of (T ∗M, ω) mapping L to L̃. 
A Lagrangian map is stable if every nearby Lagrangian map (in the Whitney topol-
ogy) is Lagrangian equivalent to it. Likewise for germs of Lagrangian submanifolds and 
Lagrangian maps.

We are interested in studying a special type of Lagrangian maps, this type consisting 
of maps which are Z2-symmetric in the fibers.

Definition 4.2. A Lagrangian submanifold L of T ∗M is fibred-Z2-symmetric if for every 
point (κ, λ) in L the point (−κ, λ) belongs to L. The Lagrangian map π|L : L → M is 
fibred-Z2-symmetric if the Lagrangian submanifold L is fibred-Z2-symmetric. Likewise 
for fibred-Z2-symmetric germs of Lagrangian submanifolds and Lagrangian maps.

Remark 4.3. Because the Lagrangian map-germs are fibred-Z2-symmetric, the Z2 sym-
metry is hidden in their caustics. Thus, the classification of caustics of fibred-Z2-
symmetric Lagrangian map-germs differs from classifications of caustic-germs which are 
explicitly Z2-symmetric (cf. e.g. [19] for the latter).

It is easy to see that the fibers of T ∗M and the zero section of T ∗M are fibred-Z2-
symmetric Lagrangian submanifolds. We will study singularities of fibred-Z2-symmetric 
Lagrangian map-germs. Thus we need a Lagrangian equivalence which preserves this 
Z2-symmetry. Let us denote

ζ : T ∗M � (κ, λ) = (−κ, λ) ∈ T ∗M.

The map ζ defines a Z2-action on T ∗M i.e. Z2 ∼= {ζ, idT∗M}.

Definition 4.4. A fibred symplectomorphism Φ of (T ∗M, ω) is odd or Z2-equivariant if 
Φ ◦ ζ = ζ ◦ Φ.

Since our consideration is local we may assume that M = Rm. A fibred symplecto-
morphism-germ Φ of (T ∗M, ω) has the form Φ = (φ)∗ + dG, where φ : M → M is a 
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diffeomorphism-germ and G is a smooth (analytic) function-germ on M (see [2] section 
18.5). Since ζ is the identity on the zero section of T ∗M , odd fibred symplectomorphisms 
map the zero section to itself. This implies the following characterization of odd fibred 
symplectomorphism-germs.

Proposition 4.5. If Φ is an odd fibred symplectomorphism-germ of (T ∗M, ω) then Φ has 
the form Φ = (φ)∗, where φ : M → M is a diffeomorphism-germ.

It is easy to see that odd fibred symplectomorphisms map fibred-Z2-symmetric La-
grangian submanifolds to fibred-Z2-symmetric Lagrangian submanifolds. Thus we can 
define a Z2-symmetric Lagrangian equivalence of fibred-Z2-symmetric Lagrangian map-
germs in the following way:

Definition 4.6. Fibred-Z2-symmetric Lagrangian map-germs π|L : L → M and π|L̃ :
L̃ → M are Z2-symmetrically Lagrangian equivalent if there exists an odd fibred 
symplectomorphism-germ of (T ∗M, ω) mapping L to L̃.

This induces the following natural definition:

Definition 4.7. A fibred-Z2-symmetric Lagrangian map-germ is Z2-symmetrically stable
if every nearby fibred-Z2-symmetric Lagrangian map-germ (in Whitney topology) is Z2-
symmetrically Lagrangian equivalent to it.

Thus, Definitions 4.6 and 4.7 specialize in a natural way the definitions of Lagrangian 
equivalence and stability (cf. Definition 4.1) to the context of fibred-Z2-symmetric La-
grangian map-germs.

4.2. Odd generating family-germs

Any Lagrangian submanifold-germ can be described by a generating family. In the 
case of fibred-Z2-symmetric Lagrangian submanifold-germs the generating family can be 
odd in β. Before we prove the above statement we introduce some preparatory definitions 
(see [2, Section 19.2]).

Because all the following descriptions are local, we take M = Rm. Then, a bundle 
ρ : Rn × Rm � (β, λ) �→ λ ∈ Rm is called an auxiliary bundle, for which the space 
Rn+m = Rn×Rm is the big space and M = Rm is the base. The cotangent bundle of the 
big space is the big phase space and the cotangent bundle of the base, π : T ∗Rm → Rm, 
is the small phase space.

The mixed space A for the auxiliary bundle ρ is the set of elements of the big phase 
space which annihilate vectors tangent to the fibers of ρ. The mixed bundle is the bundle 
over the big space induced from the small phase space by the map ρ. It is easy to see 
that the total space of the mixed bundle ρ∗π is A and the fibers of ρ∗π are isomor-
phic to the fibers of π. A is also the total space of the bundle π∗ρ : A → T ∗Rn+m
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induced from the auxiliary bundle ρ by π. These bundles are described by the following 
diagrams.

T ∗Rm A T ∗Rn+m

Rm Rn+m

π

ι

π∗ρ

ρ∗π

ρ

(κ, λ) (κ, β, λ) (0, κ, β, λ)

λ (β, λ)

π

ι

π∗ρ

ρ∗π

ρ

A Lagrangian submanifold of the big phase space is called ρ-regular if it is transversal 
to the mixed space A for ρ. The image of the intersection of a ρ-regular Lagrangian 
submanifold with the mixed space A by the natural projection π∗ρ to the small phase 
space is a Lagrangian (immersed) submanifold and every germ of a Lagrangian subman-
ifold of the small space can be obtained by this construction from the germ of ρ-regular 
Lagrangian section of the appropriate big phase space (see [2, Section 19.3]).

A function F is a generating function of the Lagrangian section L of the big phase 
space if L is described by

L =
{

(α, κ, β, λ) ∈ T ∗Rn+m| α = ∂F

∂β
(β, λ), κ = ∂F

∂λ
(β, λ)

}
, (4.1)

where we use the notation ∂F∂λ (β, λ) =
(

∂F
∂λ1

(β, λ), · · · , ∂F
∂λm

(β, λ)
)
, etc. Since the mixed 

space A is described by {(α, κ, β, λ) ∈ T ∗Rn+m|α = 0}, it follows that L = π∗ρ(L ∪ A)
is described by

L =
{

(κ, λ) ∈ T ∗M
∣∣ ∃ β,

∂F

∂β
(β, λ) = 0, κ = ∂F

∂λ
(β, λ)

}
. (4.2)

The family of generating functions Fβ(λ) = F (β, λ) is called a generating family of the 
Lagrangian submanifold-germ L ⊂ (T ∗M, ω) described by (4.2). Although somewhat 
counterintuitive, one usually refers to β as the variables and to λ as the parameters of 
the generating family.

Remark 4.8. The set of critical points of the family F is the following set

Σ(F ) =
{

(β, λ) ∈ Rn+m
∣∣ ∂F

∂β
(β, λ) = 0

}
.

Since the Lagrangian submanifold L is ρ-regular, Σ(F ) is a m-dimensional submanifold 
of Rn+m. The set of critical points of the family F is naturally diffeomorphic to the germ 
of the Lagrangian submanifold L of the small phase space determined by the germ of the 
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generating family F . Then the Lagrangian map-germ in terms of the generating family 
F is described by

Σ(F ) � (β, λ) �→ λ ∈ Rm.

Proposition 4.9. If a Lagrangian submanifold-germ L of T ∗M is fibred-Z2-symmetric 
then there exists a generating family-germ F = F (β, λ) which is odd (in variables) i.e. 
F (−β, λ) ≡ −F (β, λ).

Proof. We use the method described in [2] (see Example 6 in Section 18.3 and Section 
19.3 C). There exist subsets J = {j1, · · · , jn}, I = {i1, · · · , im−n} of {1, · · · , m} such 
that I ∩ J = ∅ and I ∪ J = {1, · · · , m} and a local generating function S = S(κJ , λI) of 
L, where κJ = (κj1 , · · · , κjn) and λI = (λi1 , · · · , λim−n

). Then, L is locally described by

L =
{

(κ, λ) ∈ T ∗M | λJ = − ∂S

∂κJ
(κJ , λI), κI = ∂S

∂λI
(κJ , λI)

}
. (4.3)

Since L is fibred-Z2-symmetric, if (κ, λ) ∈ L then (−κ, λ) ∈ L. Hence, if λJ =
− ∂S

∂κJ
(κJ , λI), κI = ∂S

∂λI
(κJ , λI) then λJ = − ∂S

∂κJ
(−κJ , λI), −κI = ∂S

∂λI
(−κJ , λI). Thus 

we get

∂S

∂κJ
(−κJ , λI) ≡

∂S

∂κJ
(κJ , λI),

∂S

∂λI
(−κJ , λI) ≡ − ∂S

∂λI
(−κJ , λI). (4.4)

The generating function-germ is determined up to an additive constant. So we may 
assume that S(0, 0) = 0. From (4.4) we obtain that S = S(κJ , λI) is an odd function-
germ in κJ . Consider a function-germ on a big space Rn+m of the form F (β, λ) ≡
S(β, λI) + 〈β, λJ 〉, where 〈·, ·〉 is the dot product. Then F = F (β, λ) is odd in β. It is 
easy to see that F is a generating function of a Lagrangian section L of the big phase 
space T ∗Rn+m described by (4.1) and L is ρ-regular. The set π∗ρ(L ∪ A) is exactly L. 
Indeed, ∂F∂β (β, λ) ≡ ∂S

∂κJ
(β, λI) + λJ , ∂F

∂λI
(β, λ) ≡ ∂S

∂λI
(β, λI) and ∂F

∂λJ
(β, λ) ≡ β. Thus, 

by (4.3) L is locally described by (4.2). �
Remark 4.10. We can choose such sets J, I such that n = �J is the dimension of the 
kernel of the differential of the Lagrangian map L ↪→ T ∗M → M . The Lagrangian 
map-germ is described in terms of S in the following way

Rm � (κJ , λI) �→ (− ∂S

∂κJ
(κJ , λI), λI).

The coordinates λJ and κJ are called pathological. The arguments κJ are n pathological 
arguments of the function S.
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4.3. Z2-symmetric Lagrangian stability and Rodd-versality

From classical results (cf. [2, Section 19.4]), in the non-symmetric context we know 
that Lagrangian equivalence of Lagrangian map-germs corresponds to stably fibred R+-
equivalence of their generating families.6

We recall that to two germs of generating families F, G : (Rn×Rm, 0) → R are fibred 
R+-equivalent if there is a fibred diffeomorphism-germ Ψ(β, λ) ≡ (Φ(β, λ), Λ(λ)) and 
a function-germ h : (Rm, 0) → R such that F (β, λ) ≡ G(Φ(β, λ), Λ(λ)) + h(λ). Then, 
F : (Rk × Rm, 0) → R and G : (Rl × Rm, 0) → R, with k 
= l, are stably fibred R+-
equivalent if there exist nondegenerate quadratic forms Qi : Rri → R for i = 1, 2, s.t. 
k + r1 = l + r2 = n and F + Q1, G + Q2 : (Rn ×Rm, 0) → R are fibred R+-equivalent.

In Z2-symmetric context, the zero-section is preserved by Z2-symmetric Lagrangian 
equivalence and quadratic forms are not odd functions. Then, denote the group of 
diffeomorphism-germs (Rn × Rm, 0) → (Rn × Rm, 0) by Dn+m and let Dodd

n de-
note the subgroup of odd diffeomorphism-germs (Rn, 0) → (Rn, 0) i.e. Φ ∈ Dodd

n if 
Φ(−β) ≡ −Φ(β). By odd generating family we shall always mean odd in variables.

Definition 4.11. Odd generating families F, G of fibred-Z2-symmetric Lagrangian 
submanifold-germs are fibred Rodd-equivalent if there exists an odd (in variables) fibred 
diffeomorphism-germ Ψ ∈ Dn+m, that is,

Ψ(β, λ) ≡ (Φ(β, λ),Λ(λ)) , with Φ|Rn×{λ} ∈ Dodd
n , ∀λ ∈ Rm,

such that

F = G ◦ Ψ. (4.5)

Remark 4.12. In the notation of section 3, equation (4.5) can be written as

G(β, x) = Ḡ(β̄, x̄)

(parameters λ = x = (q, p) ∈ R2n = Rm), w.r.t. an odd fibred diffeomorphism-germ 
denoted as

(β, x) =
(
β(β̄, x̄), x(x̄)

)
.

Proposition 4.13. If the generating families G and Ḡ are fibred Rodd-equivalent, then the 
caustics Es(L) and Es(L̄) are diffeomorphic.

Proof. Since

∂G

∂β
= ∂Ḡ

∂β̄

∂β̄

∂β

6
 We shall often abbreviate and refer to a generating family-germ simply as a generating family.
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we conclude that ∂G∂β = 0 if and only if ∂Ḡ
∂β̄

= 0. Moreover

∂2G

∂β2 = ∂2Ḡ

∂β̄2

(
∂β̄

∂β

)2

+ ∂Ḡ

∂β̄

∂2β̄

∂β2 .

Thus ∂
2G

∂β2 = ∂G
∂β = 0 if and only if ∂

2Ḡ
∂β̄2 = ∂Ḡ

∂β̄
= 0. Finally, observe that the diffeomor-

phism x : R2n → R2n takes Es(L) to Es(L̄). �
The following definition is fundamental.

Definition 4.14. An odd generating family G : (Rn ×Rm, (0, λ0)) → R is Rodd-stable if, 
for any odd representative G′ : V → R of G, there exists a neighborhood W of G′ in 
the C∞-topology (Whitney) such that for any odd Ḡ′ ∈ W there exists (0, ̄λ0) ∈ V such 
that G and Ḡ are (fibred) Rodd-equivalent, Ḡ being the germ of Ḡ′ at (0, ̄λ0).

And the following definition is suitable for computations.

Notation 4.15. Let Em be the ring of smooth function-germs (Rm, 0) → R. We denote by 
En−even
n+m the ring of smooth function-germs f : (Rn ×Rm, 0) → R such that f(−β, λ) ≡

f(β, λ) (f is even in β), by En−odd
n+m the set of smooth function-germs g : (Rn ×Rm, 0) →

(R, 0) such that g(−β, λ) ≡ −g(β, λ) (g is odd in β), which has a module structure over 
En−even
n+m .

Definition 4.16. An odd generating family G : (Rn ×Rm, 0)) → R is infinitesimally 
Rodd-stable if

En−odd
n+m = En−even

n+m

{
βj

∂G

∂βi
, i, j = 1...n

}
+ Em

{
∂G

∂λl
, l = 1...m

}
(4.6)

We now have the following main result, whose (not too short) proof is presented at 
the end of the paper, in Section 6.

Theorem 4.17. Fibred-Z2-symmetric Lagrangian map-germs are Z2-symmetrically La-
grangian equivalent (cf. Definition 4.6) if and only if their odd generating families are 
fibred Rodd-equivalent (cf. Definition 4.11).

As a direct consequence of Theorem 4.17 we have the following:

Corollary 4.18. A fibred-Z2-symmetric Lagrangian map-germ is Z2-symmetrically La-
grangian stable (cf. Definition 4.7) if and only if its odd generating family is Rodd-stable 
(cf. Definition 4.14).

Remark 4.19. As mentioned at the beginning of this section, the adaptation of The-
orem 4.17 and Corollary 4.18 to the context of graph-like Legendrian map-germs is 
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straightforward, once we adapt Definitions 4.2 and 4.6-4.7 to the graph-like Legendrian 
setting as well. We refer the reader to [18, Section 5.3] for a detailed thorough exposition 
of the straightforward relationship between the Lagrangian and Legendrian descriptions 
in terms of generating families when the Legendrian immersions are graph-like, which 
is always the case for the center-chord and special IAS obtained from a Lagrangian 
submanifold.

The final result for the classification of singularities on shell is given by:

Theorem 4.20. An odd generating family G : Rn ×Rm → R is Rodd-stable if and only if 
G is an Rodd-versal deformation of G0 = G(·, 0).

Theorem 4.20 follows, as a special case, from basic general theorems in singularity 
theory, as we now explain. In the nonsymmetric case, the analogous to Theorem 4.20
can be divided in two theorems.

The first one states that a family F : Rn ×Rm → R is stable (definition analogous to 
Definition 4.14 but replacing Dodd

n by the full diffeomorphism group Dn in Definition 4.11) 
if and only if F is infinitesimally stable (analogous to Definition 4.16). The concept of 
infinitesimal stability for F under an action of a group G means, loosely speaking, that 
the G-orbit of such an action contains a neighborhood of F .

A very important property of an infinitesimally stable family F is its finite determi-
nacy, meaning that F is equivalent to F ′ under this R+ action iff there exists k ∈ N

such that F and F ′ are R+ equivalent up to the kth order in their Taylor expansions on 
Rn. Around 1968, J. Mather [21] proved that infinitesimally stable families are stable, 
and vice versa if F is proper.

At that same time Mather also proved the second theorem, which states that a family 
F : Rn × Rm → R is infinitesimally stable if and only if F is a versal deformation of 
F0 = F (·, 0) : Rn → R. The concept of a versal deformation F of a function f : Rn → R

means, loosely speaking, that F contains all possible deformations of f or, more precisely, 
that any deformation F ′ of f is (fibred) R+ equivalent to one induced (by possibly 
eliminating some parameters) from F . If F : Rn × Rm → R is a versal deformation of 
f = F0, then F : Rn×Rm → R ×Rm, F (β, λ) = (F (β, λ), λ), is called a versal unfolding 
of f . Finally, the versal deformations F (or unfoldings F ) of f with the least possible 
number of parameters are called miniversal deformations (or unfoldings) of f , and they 
are all equivalent.

The complete statements and proofs of these two theorems belong to the basics of 
singularity theory, so they can be found in various texts, as for instance in [2] (see also 
[18]). In fact, these theorems are stated and proved for general (families of) maps, not 
just functions (as Mather did [21]).

Then, around 1981, J. Damon [9] (see also [10]) showed that these basic theorems 
of singularity theory are still valid if the appropriate group action induced from a full 
diffeomorphism group (for F : Rn × Rm → R this is the fibred R+ group action) is 
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replaced by a subgroup satisfying certain properties (natural, tangential, exponential and 
filtrational), which he called a geometrical subgroup. The key point is that the (fibred) 
Rodd group action, induced from Dodd

n acting on odd families F : Rn × Rm → R as 
in Definition 4.11, is a geometrical subgroup in this sense, so these basic theorems of 
singularity theory go through,7 implying the statement of Theorem 4.20.

We end this section with the following results from [11] which characterize the Rodd-
versal deformations G : Rn × Rm → R, emphasizing that, although the results in [11]
were obtained in the smooth category, they also hold in the real analytic category (see 
[4]).

Notation 4.21. We denote by Eeven
n the ring of even smooth function-germs f : (Rn, 0) →

R, by Eodd
n the set of odd smooth function-germs g : (Rn, 0) → (R, 0), which has a module 

structure over Eeven
n , and by Mk(odd)

n , k odd, the Eeven
n -submodule of Eodd

n generated by 
xk1 · · ·xkn , s.t. ki ≥ 0, 

∑
ki = k.

First, in the general case:

Proposition 4.22. (cf. [11, Theorem 3.9]) A m-parameter deformation G(β, λ) of G0(β) =
G(β, 0) is Rodd-versal if and only if

Eodd
n = Eeven

n

{
βj

∂G0

∂βi
, i, j = 1...n

}
+ R

{
∂G

∂λl
|Rn×{0}, l = 1...m

}
. (4.7)

Then, specifically for center-chord or special IAS on shell:

Corollary 4.23. (cf. [11, Corollary 4.4, Theorem 4.5]) The germ of a generating family G
is an Rodd-versal deformation of G0 if and only if

M3(odd)
n = Eeven

n

{
βj

∂G0

∂βi
, i, j = 1...n

}
+ R

{
∂g

∂ql
|Rn×{0}, l = 1...n

}
,

where the relation between G (= Gcc or = Gsp) and g (= gcc or = gsp) are given by 
(3.7)-(3.9).

Remark 4.24. Using the general Malgrange Preparation Theorem (see [20], Chapter X, 
Section 6.3), one can show that Proposition 4.22 implies that infinitesimal Rodd-stability 
(4.6) is equivalent to Rodd-versality (4.7).

7 In our odd setting, the first theorem asserts that Definitions 4.14 and 4.16 are equivalent, while the second 
theorem asserts that equation (4.6) in Definition 4.16 is equivalent to equation (4.7) in Proposition 4.22. 
This second theorem is more direct, cf. Remark 4.24.
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5. Realization of simple singularities on shell for canonical IAS

5.1. Simple singularities of odd functions

The following results are a compilation of results in [11], section 3.
We recall that the germ of a function f has a simple singularity if there exists a 

neighborhood of f that intersects only a finite number of equivalence classes of other 
singularities.

Let G0 ∈ Eodd
n with a singular point at 0. If n ≥ 3, G0 is not Rodd-simple (cf. [11, 

Theorem 3.14]).
For n = 1, only the singularities A2k/2 are simple and their corresponding miniversal 

deformations are (cf. [11, Theorem 3.16, Corollary 3.17]):

G(t, λ1, ..., λk) = t2k+1 +
k∑

j=1
λjt

2j−1

For codimension ≤ 2, the only possibilities are A2/2 and A4/2.
For n = 2, the following singularities are simple (cf. [11, Theorem 3.18]):

1. D±
2k/2: (t1, t2) → t21t2 + t2k−1

2 , k = 2, 3..
2. E8/2: (t1, t2) → t31 + t52

3. J±
10/2: (t1, t2) → t31 + t1t

4
2

4. E12/2: (t1, t2) → t31 + t72

The corresponding miniversal deformations are (cf. [11, Corollary 3.19]):

1. D±
2k/2: G(t1, t2, λ1, .., λk) = t21t2 + t2k−1

2 + λ1t1 +
∑k

i=2 λit
2i−3
2

2. E8/2: G(t1, t2, λ1, ..., λ4) = t31 + t52 + λ1t1 + λ2t2 + λ3t1t
2
2 + λ4t

3
2

3. J±
10/2: G(t1, t2, λ1, ..., λ5) = t31 + t1t

4
2 + λ1t1 + λ2t2 + λ3t

2
1t2 + λ4t1t

2
2 + λ5t

3
2

4. E12/2: G(t1, t2, λ1, ..., λ6) = t31 + t72 + λ1t1 + λ2t2 + λ3t1t
2
2 + λ4t

3
2 + λ5t1t

4
2 + λ6t

5
2

For codimension ≤ 4, the only possibilities are D±
4/2, D

±
6/2, D

±
8/2 and E8/2.

5.2. Relation between the generating families for φcc(L) and φsp(L)

Assume L is locally the graph of dS(s), with S the germ at 0 of a real analytic function, 
S(s) =

∑
(k1,··· ,kn)∈Nn ak1,··· ,kn

sk1
1 · · · skn

n , s = (s1, · · · , sn) ∈ Rn, where N denotes the 
set of natural numbers including 0 and ak1,··· ,kn

∈ R for any (k1, · · · , kn) ∈ Nn. Take then 
the germ at 0 of a holomorphic function H(z) =

∑
(k1,··· ,kn)∈Nn ak1,··· ,kn

zk1
1 · · · zkn

n , z =
(z1, · · · , zn) ∈ Cn.
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Lemma 5.1. For L ⊂ R2m a Lagrangian submanifold, let gcc(q, q̇) and gsp(q, q̇) denote 
the generating functions of φcc(L) and φsp(L). Then8

gcc(q, q̇) = −igsp(q, iq̇). (5.1)

In other words,

if gsp(q, q̇) =
∞∑

j=1,odd

bj(q)(−1)�j/2�(q̇)j , then gcc(q, q̇) =
∞∑

j=1,odd

bj(q)(q̇)j .

Proof. We have that

Q(s, t) =
∞∑

j=1,odd

bj(s)(−1)�j/2�tj , where bj(s) =
∞∑
k=j

ak

(
k

j

)
sk−j .

On the other hand,

gcc(s, β) = 1
2
∑
k

ak
(
(s + β)k − (s− β)k

)
⇒ gcc(s, β) =

∞∑
j=1,odd

bj(s)βj . �

5.3. Simple singularities on shell of φcc(L) and φsp(L)

We now show by examples that, by an adequate choice of L, the simple singularities 
A2/2, A4/2, D±

4/2, D
±
6/2, D

±
8/2 and E8/2 appear as stable singularities of φcc(L) and 

φsp(L).

Example 3. Consider S(q) = q3. Then,

Gcc(β, q, p) = β3 + 3q2β − pβ,

and

Gsp(β, q, p) = −β3 + 3q2β − pβ,

which are versal unfoldings of A2/2-singularities.

Example 4. Consider S(q) = q5 + 1
4q

4. Then,

Gcc(β, q, p) = β5 + 10q2β3 + 5q4β + q3β + qβ3 − pβ.

8 To simplify the notation, from now on we are dropping the superscript s for the generating functions 
and generating families of the on-shell part of the IAS.
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Fig. 3. The caustics Ecc(L) and Esp(L) of Example 4.

The caustic Es
cc(L) is given by β = 0 or 3q + 30q2 + 10β2 = 0 (see Fig. 3 (a)). We have 

also

Gsp = β5 − 10q2β3 + 5q4β + q3β − qβ3 − pβ.

Thus Es
sp(L) is given by β = 0 or 3q = 10β2 − 30q2 (see Fig. 3 (b)). Observe that both 

constructions lead to versal unfoldings of an A4/2-singularity.

Example 5. Consider S(u1, u2) = u2
1u2 ± u3

2. Then,

Gcc(β, q, p) = ±β3
2 + β2

1β2 − p1β1 − p2β2 ± 3q2
2β2 + q2

1β2 + 2q1q2β1

and the singular set is defined by ±3β2
2 = β2

1 . In the special case, we have

Gsp(β, q, p) = ∓β3
2 − β2

1β2 − p1β1 − p2β2 ± 3q2
2β2 + q2

1β2 + 2q1q2β1,

and the singular set is again defined by ±3β2
2 = β2

1 . Both constructions lead to versal 
unfoldings of a D±

4/2-singularity.

Example 6. Consider S = q2
1q2 ± q5

2 + 1
4q

4
2 . Then,

Gcc = β2
1β2 ± β5

2 + q2β
3
2 − p1β1 − p2β2 + q2

1β2 + 2q1q2β1 ± 10β3
2q

2
2 ± 5β2q

4
2 + β2q

3
2 ,

while

Gsp = −β2
1β2 ± β5

2 − q2β
3
2 − p1β1 − p2β2 + q2

1β2 + 2q1q2β1 ∓ 10β3
2q

2
2 ± 5β2q

4
2 + β2q

3
2 .

Thus, Gcc is a versal unfolding of a D±
6/2-singularity, while Gsp is a versal unfolding of a 

D∓
6/2 singularity.

Example 7. Consider S = q2
1q2 ± q7

2 + q1q
3
2 + 1

6q
6
2 .

Then, the corresponding Gcc is a versal unfolding of a D±
8/2 singularity.

The corresponding Gsp is a versal unfolding of a D± singularity.
8/2
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Example 8. Consider S = q3
1 + q5

2 + q1q
3
2 .

Then, the corresponding Gcc is a versal unfolding of a E8/2 singularity.
The corresponding Gsp is a versal unfolding of a E8/2 singularity.

Remark 5.2. In Examples 3 and 4, Es
cc(L) and Es

sp(L) are diffeomorphic, since they are 
bifurcation sets of points A2/2 and A4/2, respectively. The same occurs in Examples 5, 
7 and 8, but not in Example 6.

5.4. Stable singularities on shell for the two canonical IAS obtained from a given 
Lagrangian curve or surface

We now classify all Rodd-stable singularities that appear in the caustics Es(L), Ẽs(L), 
when L is a planar curve or a Lagrangian surface in R4. In these dimensions, only simple 
singularities are stable, so we apply the previous results taking care of the possible 
codimensions.

5.4.1. Lagrangian curves
We follow section 4.1 of [11]. Let L be a germ at 0 of a curve and assume that L is 

generated by a function germ S ∈ M3
1 ⊂ E1.

Proposition 5.3.

1. If S(3)(0) 
= 0, Gcc and Gsp are Rodd-equivalent to the Rodd versal deformation of 
A2/2.

2. If S(3)(0) = 0, S(4)(0) 
= 0, S(5)(0) 
= 0, Gcc and Gsp are Rodd-equivalent to the 
Rodd versal deformation of A4/2.

Proof. If S(3) 
= 0, then f (3) 
= 0 and g(3) 
= 0. Thus Gcc and Gsp are odd deformations 
of an A2/2-singularity, and it is easy to see that they are in fact versal deformations of 
G0. Thus we have proved item 1.

For item 2, observe that the hypothesis implies that F and G are odd deformations of 
an A4/2-singularity. It is also easy to verify that this deformation is versal, thus proving 
the result. �

The geometric interpretation of condition 1 is that the curvature of L does not vanish, 
while the geometric interpretation of condition 2 is that the curvature vanishes, but its 
first and second derivatives do not.

Corollary 5.4. If L is strongly convex, then Es
cc(L) = Es

sp(L) = L.

Remark 5.5. Example 1 (cf. Fig. 1) and Example 2 (cf. Fig. 2) are particular nongeneric 
illustrations of the above corollary, while Example 3 illustrate the generic case, locally. 
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The generic case when condition 2 of Proposition 5.3 is satisfied is illustrated by Exam-
ple 4 (cf. Fig. 3).

5.4.2. Lagrangian surfaces
We follow section 4.2 of [11]. Let L be a germ at 0 of a Lagrangian surface and assume 

that L is generated by a function germ S ∈ M3
2 ⊂ E2.

Notation 5.6. Denote

Si,j = ∂i+jS

∂qi1∂q
j
2
(0, 0),

with

j3
0S = 1

6S3,0q
3
1 + 1

2S2,1q
2
1q2 + 1

2S1,2q1q
2
2 + 1

6S0,3q
3
2

denoting the 3-jet of S at 0. The discriminant of j3
0S is

Δ(j3
0S) = 1

48
(
3S2

1,2S
2
2,1 − 4S0,3S

3
2,1 − 4S3

1,2S3,0 − S2
0,3S

2
3,0 + 6S0,3S1,2S2,1S3,0

)
.

Proposition 5.7. Assume Δ(j3
0S) 
= 0.

1. If Δ(j3
0S) > 0, Gcc and Gsp are Rodd-equivalent to the Rodd versal deformation of 

D−
4/2.

2. If Δ(j3
0S) < 0, Gcc and Gsp are Rodd-equivalent to the Rodd versal deformation of 

D+
4/2.

Proof. Assume Δ(j3
0S) > 0. Then, by a linear change of coordinates, we can write 

j3
0g = β2

1β2 − β3
2 . Thus g is Rodd-equivalent to a D−

4/2 singularity, and it is easy to see 

that Gsp is an Rodd versal deformation of g. This proves the first assertion for Gsp, the 
second one being similar. The proofs for Gcc are similar or else one can invoke theorem 
4.11 of [11]. �
Notation 5.8. Denote

δ1 = S3,0S1,2 − S2
2,1; δ2 = S0,3S2,1 − S2

1,2.

r1 = S2,1S1,2 − S3,0S0,3

2(S3,0S1,2 − S2
2,1)

; r2 =
S2

3,0S0,3 − 4S3,0S2,1S1,2 + 3S3
2,1

S3,0S1,2 − S2
2,1

σ0,n =
∑n

k=0
(
n
k

)
Sk,n−kr

k
1

(S3,0r1 − r2)n
, n = 5, 7.

r̃1 = S2,1S1,2 − S3,0S0,3

2(S S − S2 ) ; r̃2 =
S2

0,3S3,0 − 4S0,3S2,1S1,2 + 3S3
1,2

S S − S2

0,3 2,1 1,2 0,3 2,1 1,2
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σn,0 =
∑n

k=0
(
n
k

)
Sk,n−kr̃

k
1

(S0,3r̃1 − r̃2)n
, n = 5, 7.

Lemma 5.9. If Δ(j3
0S) = 0, then δi ≤ 0, i = 1, 2.

Proposition 5.10. Assume Δ(j3
0S) = 0.

1. If δ1 ·σ0,5 < 0 or δ2 ·σ5,0 < 0, Gcc is Rodd-equivalent to the Rodd versal deformation 
of D+

6/2, while G is Rodd-equivalent to the Rodd versal deformation of D−
6/2.

2. If δ1 · σ0,5 > 0 or δ2 · σ5,0 > 0, F is Rodd-equivalent to the Rodd versal deformation 
D−

6/2, while Gsp is Rodd-equivalent to the Rodd versal deformation of D+
6/2.

Proof. Similar to theorem 4.14 of [11]. �
Proposition 5.11. Assume Δ(j3

0S) = 0.

1. If δ1 < 0, σ0,5 = 0 and σ0,7 > 0 or δ2 < 0, σ5,0 = 0 and σ7,0 > 0, Gcc and Gsp are 
Rodd-equivalent to the Rodd versal deformation of D+

8/2.
2. If δ1 < 0, σ0,5 = 0 and σ0,7 < 0 or δ2 < 0, σ5,0 = 0 and σ7,0 < 0, Gcc and Gsp are 

Rodd-equivalent to the Rodd versal deformation of D−
8/2.

Proof. Similar to theorem 4.15 of [11]. �
Proposition 5.12. Assume Δ(j3

0S) = 0. If

δ1 = 0, S3,0 
= 0,
5∑

k=0

(
5
k

)
Sk,5−k(−S2,1)k(S3,0)5−k 
= 0,

or

δ2 = 0, S0,3 
= 0,
5∑

k=0

(
5
k

)
Sk,5−k(−S1,2)k(S0,3)5−k 
= 0,

then Gcc and Gsp are Rodd-equivalent to the Rodd versal deformation of E8/2.

Proof. Similar to theorem 4.16 of [11]. �
Remark 5.13. For detailed geometric interpretations of all the conditions of Proposi-
tions 5.7-5.12, we refer to section 4.3 of [11]. Here, we just point out that conditions of 
Proposition 5.7 are realized for hyperbolic and elliptic points of L, the higher singulari-
ties of Propositions 5.10-5.12 occurring for parabolic points of L. In particular, the local 
equivalent of Corollary 5.4 is realized for hyperbolic points of L, that is, if L′ is the germ 
of L at a generic hyperbolic point of L, then Es

cc(L′) = Es
sp(L′) = L′ (cf. [11, Corollary 

4.19]).
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6. Proof of Theorem 4.17

We now prove Theorem 4.17, which relates the definition of equivalence of fibred-Z2-
symmetric Lagrangian, resp. Legendrian, map-germs (cf. Definition 4.6) to the definition 
of fibred Rodd-equivalence of their odd generating families (cf. Definition 4.11). We 
prove this theorem by modifying the method used in [2, Section 19.5] to the case of 
Z2-symmetric Lagrangian equivalence.

First, assume that odd generating families F1 and F2 are fibred Rodd-equivalent, cf. 
Definition 4.11. Then, the fibred diffeomorphism (Ψ−1)∗ of the big phase space T ∗Rn+m

determines a Lagrangian equivalence of the big phase space between Lagrangian sec-
tions of T ∗Rn+m generated by the function-germs F1 and F2 on the big space. Both 
Lagrangian sections are ρ-regular. Since the diffeomorphism-germ Ψ of Rn+m is fibred, 
the Lagrangian equivalence of the big phase space induces a Lagrangian equivalence of 
the small phase space T ∗Rm (see [2], Section 19.4) between germs of Lagrangian subman-
ifolds generated by the odd families F1 and F2. It is easy to check that this Lagrangian 
equivalence of the small phase space T ∗Rm is determined by the diffeomorphism-germ 
(Λ−1)∗. But (Λ−1)∗ is a linear map in the fibers of T ∗Rm, hence is odd in the fibers. Thus, 
the Lagrangian map-germs generated by odd families F1 and F2 are Z2-symmetrically 
Lagrangian equivalent.

Now, assume that we are given a Z2-symmetric Lagrangian equivalence of the small 
phase space, mapping the germ of a fibred-Z2-symmetric Lagrangian submanifold L1, 
determined by an odd generating family F1, to the germ of a fibred-Z2-symmetric La-
grangian submanifold L2. By Proposition 4.5, the Z2-symmetric Lagrangian equivalence 
is determined by (φ)∗, where φ is a diffeomorphism-germ of the base. Let us consider a 
diffeomorphism-germ (IdRn , φ) : Rn × Rm → Rn × Rm of the big space. This induces 
a Lagrangian equivalence (IdRn , φ)∗ of the big phase space, mapping the germ of the 
Lagrangian section L1 generated by function-germ F1 to the germ of the Lagrangian 
section L2. Then, it is easy to see that L2 is generated by a function germ F2 of the form 
F2(β, λ) = F1(β, φ−1(λ)). It implies that F2 is an odd generating family of L2 which is 
fibered Rodd-equivalent to F1.

To finish the proof of Theorem 4.17 we need the following lemmas. But first some 
preparations.

By Remark 4.10, every fibred-Z2-symmetric Lagrangian germ admits a generating 
function-germ S = S(κJ , λI) which is odd in κJ , with the minimal number of pathological 
arguments κJ . This number is equal to the dimension of the kernel of the differential of 
the Lagrangian map-germ. We fix the set κJ of n pathological arguments. By Remark 4.8, 
we obtain that the Lagrangian map-germ is given in terms of F by Σ(F ) � (β, λ) �→ λ ∈
Rm.

A vector η is tangent to Σ(F ) at (0, 0) if d(∂F∂β )|(0,0)(η) = 0 and η is in the ker-
nel of the Lagrangian germ if dλ|(0,0)(η) = 0. This implies that dβ(η) is in the kernel 
of the map ∂2F

∂β2 (0, 0) : Rn → Rn. But since F is odd, ∂2F
∂β2 (−β, λ) ≡ −∂2F

∂β2 (β, λ), 
thus ∂2F

2 (0, λ) ≡ 0 and therefore the image of the kernel of the Lagrangian map un-
∂β
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der the linear map dβ : Rn+m → Rn is the whole space Rn. But κJ are fixed n
pathological arguments. Thus the image of the kernel of the Lagrangian map under 
the linear map dκJ = d( ∂F

∂λJ
)(0, 0) : Rn+m → Rm is n-dimensional. But we have 

dκJ (η) = ∂2F
∂β∂λJ

(0, 0)dβ(η), because dλJ(η) = 0. Hence, if F is odd then

det ∂2F

∂β∂λJ
(0, 0) 
= 0. (6.1)

An odd generating family F is called special if for ∂F
∂β (β, λ) = 0 the condition β =

∂F
∂λJ

(β, λ) is fulfilled. We then have the following lemmas.

Lemma 6.1. The germ of an odd generating family is fibred Rodd-equivalent to the germ 
of a special odd generating family of the same Lagrangian germ.

Proof of Lemma 6.1. We follow the proof of Lemma 1 in Section 19.5 [2]. Since F is odd 
the condition (6.1) is fulfilled. Hence the map-germ Ψ(β, λ) ≡ ( ∂F

∂λJ
(β, λ), λ) is a fibred 

diffeomorphism-germ of the big space. Since F is odd in β, Ψ is also odd in β. The 
germ F is fibred Rodd-equivalent to the germ of an odd generating family F1(β, λ) ≡
F (Ψ−1(β, λ)). It is easy to check that F1 is special and it generates the same Lagrangian 
germ (see [2] for details). �
Lemma 6.2. The germs of special odd generating families, determining the same 
fibred-Z2-symmetric Lagrangian germ, are fibered Rodd-equivalent.

Proof of Lemma 6.2. From [2, Section 19.5 (D)(d)], any two special generating families 
F0, F1 of the same Lagrangian germ have the same set of critical points Σ(F0) = Σ(F1) =
Σ, the restrictions of F0 and F1 to Σ coincide up to an additive constant and the total 
differential of F0 −F1 is equals to 0 on the whole of Σ. Let F0 and F1 be two special odd 
generating families of the same fibred-Z2-symmetric Lagrangian germ. Since F0, F1 are 
odd, we have F0(0, 0) = F1(0, 0) = 0. Thus F0−F1 has zero of not less than second order 
on Σ. We use the homotopy method. Let Ft = F0 + t(F1 − F0) for t ∈ [0, 1]. Then Ft

is a special odd generating family of the same Lagrangian germ. We shall find a family 
Ψt(β, λ) ≡ (Φt(β, λ), λ) of odd diffeomorphisms in β, smoothly depending on t ∈ [0, 1], 
such that

Ft ◦ Ψt = F0, Ψ0 = IdRn+m . (6.2)

The diffeomorphism-germ Ψ1 establishes fibred Rodd-equivalence of F0 and F1. Differ-
entiating (6.2) with respect to t we obtain the equation

F1(β, λ) − F0(β, λ) +
n∑

ξi(β, λ, t)
∂Ft

∂βi
(β, λ) ≡ 0. (6.3)
i=1
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Let Θ : Rn+m × [0, 1] → Rn+m × [0, 1] be the map-germ Θ(β, λJ , λI , t) ≡
(β, ∂Ft

∂β (β, λ), λI , t). Since Ft is odd, ∂Ft

∂β is even and (6.1) holds. Hence, Θ is a 
diffeomorphism-germ, Θ−1(β, v, λI , t) ≡ (β, γ(β, v, λI , t), λI , t) and γ(−β, v, λI , t) ≡
γ(β, v, λI , t). Let H be the family of function-germs on Rn+m

H(β, v, λI , t) ≡ F0(β, γ(β, v, λI , t), λI) − F0(β, γ(β, v, λI , t), λI).

Then H is odd in β and H(β, ∂Ft

∂β (β, λ), λI , t) ≡ F0(β, λ) − F1(β, λ). It implies that 
H(β, 0, λI , t) ≡ (F0(β, λ) −F1(β, λ))|Σ ≡ 0. Let h(s) = H(β, sv, λI , t) for s ∈ [0, 1]. Thus 
h(1) − h(0) =

∫ 1
0

dh
ds (s)ds. Hence

H(β, v, λI , t) ≡
n∑

i=1
vi

1∫
0

∂H

∂vi
(β, sv, λI , t)ds.

If we put v = ∂Ft

∂β (β, λ) we get

F0(β, λ) − F1(β, λ) ≡
n∑

i=1
ξi(β, λ, t)

∂Ft

∂βi
(β, λ), (6.4)

where ξi(β, λ, t) ≡
∫ 1
0

∂H
∂vi

(β, s∂Ft

∂β (β, λ), λI , t)ds for i = 1, · · · , n. It is easy to see that 
ξi(−β, λ, t) = −ξi(β, λ, t). Since the total differential of F0 − F1 vanishes on the whole 
of Σ = Σ(Ft), by (6.4) we have ξi|Σ = 0 for i = 1, · · · , n.

Thus, the vector field ξ(β, λ, t) =
∑n

i=1 ξi(β, λ, t)
∂

∂βi
depending on t takes value 0 on 

Σ and is odd in β. Hence ξ induces a diffeomorphism Ψt in the neighborhood of (0, 0)
for all t ∈ [0, 1], which satisfies the ODE system

dΨt

dt
= ξ(Ψt). (6.5)

From the form of ξ(β, λ, t), the diffeomorphism Ψt has form Ψt(β, λ) ≡ (Φt(β, λ), λ). 
The maps y(t) ≡ Ψt(−β, λ) and z(t) ≡ (−Φt(β, λ), λ) satisfy the system (6.5) with the 
same initial condition y(0) = z(0) = (−β, λ). By the uniqueness of the solution of the 
initial value problem, Φt(−β, λ) ≡ −Φt(β, λ). Hence Φt is odd in β. Thus, the fibered 
odd diffeomorphism-germ Ψ1 satisfies F1 ◦Ψ1 = F0. Consequently, F1 and F0 are fibered 
Rodd-equivalent. �

Then, by Lemmas 6.1-6.2 we obtain that any two odd generating families of the same 
fibred-Z2-symmetric Lagrangian submanifold-germ L are fibred Rodd-equivalent, which 
finishes the proof of Theorem 4.17.
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