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Singularity theory:
Lagrangian/Legendrian singularities,
symmetric singularities

1. Introduction

An improper affine sphere (IAS) is a hypersurface whose affine Blaschke normal vec-
tors are all parallel. They are given as the graph of a function F' : R™ — R satisfying
the Monge-Ampeére equation

det(D*F) = +1. (1.1)

In the lowest dimensional cases, surfaces in R3, there are two classes of improper affine
spheres: the convex ones, satisfying the equation det(D?*F) = 1, and the non-convex
ones, satisfying the equation det(D?F) = —1.

For two planar curves a™ : U ¢ R — R%2 and o~ : V € R — R2, denote by
z(u,v) = 3(a(u) + @~ (v)) the mid-point of (o (u),a™(v)) and denote by f(u,v) the
area of the region bounded by the chord connecting a*(u) and «~ (v), plus a chosen fixed
chord &; connecting arbitrary points at(ug) and o~ (vg), plus the arcs of a™ and o~
between these two chords (f = f¢, depends on the choice of &, of course, but for another
choice &, fe; — fe, = constant). The map (u,v) = (z(u,v), f(u,v)) in a non-convex IAS
and, conversely, any 2-dimensional non-convex IAS is locally as above, for certain curves
o and a~. Since the mid-chord y(u,v) = (a*(u) —a~ (v)) is the symplectic gradient of
f,! this type of IAS was called center-chord in [8], where this construction was generalized
to arbitrary even dimensions substituting the pair of planar curves by a pair (LT, L™)
of Lagrangian submanifolds of R?™. But in fact, this generalization was first presented
in [6], where TAS of this type were referred to as special para-Kahler manifolds.

The center-chord IAS is independent of parameterizations of the Lagrangian subman-
ifolds and the singular set of a center-chord TAS is given by the pairs (u,v) such that
T, L and T,L~ are not transversal. The image of the singular set by the map x(u,v)
is the Wigner caustic of the pair (LT, L™) and will be denoted E..(L™, L™), while the
image of the singular set by the map (x(u,v), f(u,v)) will be denoted E..(LT,L™).

For a holomorphic function H : C — C, H(z) = P(s,t) +iQ(s,t), where z = s +
it, let us denote z(s,t) = (s, %—?), y(s,t) = (¢, %—g), and also f(s,t) = Q(s,t) — t%—?.
Then, the map (s,t) — (x(s,t), f(s,t)) is a convex IAS whose symplectic gradient is y.>
Conversely, any 2-dimensional convex [AS is as above, for a certain holomorphic function
H. This construction was generalized to arbitrary even dimensions in [3], by considering
holomorphic maps H : C™ — C, and IAS of this type were shown to be special Kéhler

manifolds in the sense of [16]. Thus, this type of IAS was called special in [3].

! More precisely, Y (z) = y(u,v) is the Hamiltonian vector field of F(x) = f(u,v), for z = z(u,v) the
center as above, with respect to the canonical symplectic form on R? 3 z.
2 Y (z) = y(s, t) is the Hamiltonian vector field of F(z) = f(s,t), for & = x(s,t) as above.
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The singular set of a special TAS is given by the pairs (s,t) such that %z‘g is singular.

The image of the singular set by the map x(s, ) is a caustic and will be denoted E, (L),
while the image of the singular set by the map (x(s,t), f(s,t)) will be denoted Eg,(L),
where L is the graph of dH in C™ x C".

For both the center-chord and the special IAS, the function F : R?" — R, given by
F(z) = f(u,v), satisfies the Monge-Ampére equation (1.1), but generically each such
solution F' of the Monge-Ampére equation has singularities, as studied in [8]. On the
other hand, what was not explored in [8] and is the object of the present paper is
that, in various instances, a subset of the singular set of F' is a Lagrangian submanifold
L C R™,

In fact, by taking the same Lagrangian submanifold, L™ = L~ = L, we obtain an
interesting subclass of the center-chord improper affine spheres. In this case, L is con-
tained in the Wigner caustic E..(L) of L. The study of the Wigner caustic of L is of
some interest in physics ([11], [12]), and this subclass of the center-chord TAS is also of
interest in computational vision ([7], [24]).

In this paper we introduce the corresponding subclass for special IAS. This subclass
consists of special IAS defined by holomorphic maps H : C™ — C that take the real
space R™ into the real line R, which implies that the real function @, above, is an odd
function of t. Denote by L the image of the real space R™ by the map x, which is a
Lagrangian submanifold of R?". Since the holomorphic map H can be recovered from
L, we shall denote by E;,(L) the corresponding caustic of the special IAS. As in the
center-chord case, L is contained in Egy,(L). In [7], this type of IAS was considered for
n = 1.

Generically, the sets E..(L) and Eg,(L) contain L and other points away from L, but
they may also contain more points than just L in any neighborhood of L, the so-called
on-shell part of E..(L) and E,(L), denoted by EZ.(L) and E§, (L), respectively. In [8],
singularities of E..(L) \ E;.(L) and Eg,(L) \ E3,(L), also called off-shell singularities,
were studied and classified. In this paper, we shall study and classify the singularities of
E;.(L) and Eg,(L), and of their Legendrian analogues E? (L) and Eip(L).

Since both EZ.(L) and Ej, (L) are sets of critical values of Lagrangian maps (re-
spectively Legendrian maps for EZ.(L) and E (L)), it is natural to study them in this
context using generating functions and generating families. But the study of singularities
via generating families is of a local nature, so we shall actually study germs of singu-
larities. In this setting, the on-shell singularity-germs of these IAS are described by the
following theorem, which is detailed in section 3 below and generalize [11, Theorem 2.11].

For center-chord TAS, if L is locally generated by function S = S(q) via

L={(q,p) € R2"| p=4dS},

then a generating family for Ef (L) in a neighborhood of L is given by

Go(Byq,p) = 5 (S(g+B)—S(q—B)—p-B . (1.2)

| =
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In the special case, for the function @ = Q(s,t) introduced above, with

L={(¢.p) = (s, %(5,0)),5 €R"}

locally, a generating family for Eip(L) in a neighborhood of L is given by

Theorem 1.1. The germ at 0 € L of E; (L), resp. E§, (L), is the set of critical values the
Lagrangian map-germ 7|z : L — R?™, where L is the Lagrangian submanifold-germ of
(TR?",Q) determined by the generating family GS,, resp. G5y as above (cf. (5.5) below).
Similarly, the germ at 0 € L x {0} of Ei.(L), resp. B, (L), is the set of critical values of
the Legendrian map-germ 7|z : L — R2" x R, where L is the Legendrian submanifold-
germ of (TR?™ x R, 0) determined by the generating family G*., resp. G

(5.6) below).

S

sps as above (cf.

In the above theorem, 7 : TR?® — R2" is the canonical projection, with # : TR2" x
R — R?" x R its trivial extension, and € is the tangential lift ([25], [17]) of the canonical
symplectic form on R?", cf. (3.1), with 6 being the contact form associated to Q which
is semi-basic w.r.t. 7, cf. (3.2) below.

From (1.2), G2, is odd in 3. Likewise, from (1.3) and the fact that Q(g, 3) is odd in
B, G, is also odd in (. Therefore, in both cases we must consider odd deformations of
odd generating families, for classification of the singularities on shell, cf. section 4 and
specially Theorem 4.17 below.

The set EZ.(L) was studied in [11] (see also [15]), where its stable Lagrangian singu-
larities were classified, when L is a curve or a surface. In this paper, we adapt the results
from [11] to classify the stable Legendrian singularities on shell of the center-chord TAS
and classify the stable Lagrangian and Legendrian singularities on shell of the special
TAS, for such TAS associated to curves and Lagrangian surfaces.

Thus, the important characteristic of these on-shell singularities, both in center-chord
and special cases, is that they possess a hidden Zs symmetry that descends from the
explicit Zy symmetry of £ or £ due to G being odd in 8. Such a hidden Z, symmetry
is absent from the off-shell singularities, so the classification of on-shell singularities is
different. This is relevant for the geometric study of solutions of the Monge-Ampére equa-
tion for functions F : R?” — R whose singularity set contains a Lagrangian submanifold
L C R,

On the other hand, a remarkable distinction of the special case is that GF, is nec-
essarily real analytic, and thus, in the special case, we should in principle consider the
classification of singularities up to analytic equivalence. It turns out, however, that im-
posing real analyticity amounts to no refinement on the classification under smooth
diffeomorphisms [4], so the classification of singularities of odd smooth functions, pre-
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sented in [11], applies equally to classification of singularities on shell of both center-chord
and special TAS.

This paper is organized as follows:

In section 2, we review the properties of center-chord and special IAS, emphasizing
the ones obtained from a single Lagrangian submanifold; we also characterize the TAS
coming from a single Lagrangian submanifold among all possible center-chord and special
TAS, showing that for each L there is a unique canonical center-chord IAS and a unique
canonical special TAS obtained from L. Thus, in particular, many results in this section
are of a global nature, in contrast with the remaining of the paper.

In section 3, we describe the on-shell odd generating families for the canonical center-
chord and special TAS, detailing Theorem 1.1, and then, in section 4, we study equivalence
and stability of Lagrangian/Legendrian maps which are Zs-symmetric along the fibers,
in relation with equivalence, stability and versality of generating families in the odd
category, expanding and complementing the treatment developed in [11]. Section 4 is
also intended to clarify many results in singularity theory which are not so familiar to
nonspecialists, in view of the interdisciplinary nature of the paper.

Then, in section 5, we present the classification of simple Lagrangian and Legendrian
singularities on shell for the canonical center-chord and special IAS obtained from L,
producing explicit examples that show they are all realized, and we also present the
classification and geometrical condition/interpretation of all stable Lagrangian and Leg-
endrian singularities on shell for the canonical center-chord and special IAS obtained
from curves and Lagrangian surfaces, by adapting the results presented in [11].

Finally, in Section 6 we present the proof of Theorem 4.17.

2. Singular center-chord and special IAS
2.1. Center-chord IAS

Let U,V be simply connected open subsets of R™. Consider a pair of Lagrangian
immersions ot : U — R?" and o~ : V — R?"”, where R?" is the affine symplectic space
with the canonical symplectic form w = """, dg; Adpi, ¢ = (q1, .., qn), P = (P1s -, Pn)-
Define z,y : U x V — R?" by

x(u,v) = (a+(u) +a” (v)) , ylu,v) =

(@t (u) —a™(v)). (2.1)

N |
N |

Fix a pair of parameters (ug,v9) € U x V. For a given (u,v) € U x V, consider
the oriented curve &(u, v, ug, vo) in R?" obtained by concatenating the chord connecting
a™(up) and o~ (vg), a curve in L™ = a~ (V) connecting o (vy) and o~ (v), the chord
connecting @~ (v) and @t (u), and a curve in LT = o (U) connecting ot (u) and o™ (up).

Because § is closed and R?" is simply connected, § = X and w = dn, where =
> pidg;. Denote
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o = [o=[n="[ pda.

> 5 8(u,v510,00)

It is clear that f[d] is independent of the choice of the curves along L and L_ and that,
if we change the initial pair (ug,vg) we just add a constant to f, since U,V are simply
connected and o™, o~ are Lagrangian immersions. Thus, up to a constant, we can write
f[6] = f(u,v). The following proposition was proved in [8]:

Proposition 2.1. The function f : U x V — R defined above up to an additive constant
satisfies

fu = w<$u7y)a fv = w(acv,y).

Moreover, the map ¢ : U x V. C R?" — R?"+ L ¢(u,v) = (z(u,v), f(u,v)) is an improper
affine map, which, when reqular, defines an improper affine sphere (IAS).

Remark 2.2. In all cases of IAS considered in this paper, we shall often abbreviate and
refer to singularities of the map ¢ as singularities of the IAS.

The type of TAS from Proposition 2.1 is called a center-chord IAS. By a smooth change
of coordinates, we may assume that locally

ot (u) = (u,dST(u), a (v) = (v,dS™(v)), (2.2)

for some pair of functions ST : U C R® - R and S~ :V Cc R® = R.

The singular set of the center-chord IAS consists of the pairs (u,v) € U x V such
that the tangent spaces of a~(u) and a*(v) are not transversal subspaces of R?", or
equivalently, d>S*(u) — d?S~(v) is singular. The image of the singular set by the map
x(u,v) is called the Wigner caustic of (L™, L™) and will be denoted by E..(L™, LT),
while the image of the singular set by ¢ = (z, f) will be denoted E..(L~, L1).

Center-chord IAS from a given Lagrangian submanifold In this paper, we shall be par-
ticularly interested in the case that the Lagrangian submanifolds LT and L~ coincide,
ie.,

at(u) =au), o (v)=av),
for some Lagrangian immersion « : U C R™ — R?", In this case we shall denote the
image of this immersion by L = L™ = L~ and the corresponding IAS by ¢..(L). In case
« is of the form (2.2) we shall write

a(u) = (u,dS(u)), (2.3)

for some function S : U C R™ — R.
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Fig. 1. The singular center-chord IAS of Example 1.

When LT = L™ = L, the caustic E..(L, L) is the Wigner caustic of the Lagrangian
submanifold L and will be denoted E..(L). In this case, the set u = v is contained in
the singular set of ¢. Since z(u,u) = a(u), we conclude that L C E..(L) (see also [11]
and [12]).

Example 1. Assume that a(u) = (cos(u),sin(u)), i.e., L is the unit circle in the plane.

Then
x(u,v) = cos (%) (cos (u;v) ,sin <u;v)>
= (55) (o (157) = (57))

flu,v) = % (v—u+sin(u —v)),

(see Fig. 1). The image of the map z is the unit disc D and the singular set is u = v+ k,
k € Z. This example can be generalized by taking

a(u) = (cos(uy), sin(u ), .....,cos(uy), sin(uy ), u = (U, ..., Un),

so that L is the n-dimensional torus in R?". Then
NS .
flu,v) = 1 ; (v; — u; + sin(u; — vy)) .
The singular set of this center-chord IAS is the union of submanifolds
R? x R%..... x {u; = v; + kr} x ..R?, 1<i<n.

2.2. Special IAS

Consider a complex Lagrangian immersion v = (71,72) : W C C® — C?" and denote
its image by L. Also, let z,7y : W — R2" be given by
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(2.4)

I

|
o
E

I
2
E

(v(w) +3(w)); y(w)

DN | =

z(w) =
w € W, w = u+ . The following proposition was proved in [8]:

Proposition 2.3. There ezists f : W — R, unique up to an additive constant, such that

Ju= w($u>y)7 fo= W(Iwy) (25)

and the map

d)(u’ U) = (x(u, U)’ f(u7 U))

is an improper affine map, which, when regular, defines an improper affine sphere (IAS).
Moreover, the IAS ¢ does not depend on the parameterization of the complex Lagrangian
immersion 1.

From equations (2.4) and (2.5), the function f can be given a geometrical description
similar to the one in the center-chord case. Let 6 = §(w, wp) be a oriented curve formed
by the concatenation of the imaginary chord joining ¥(wp) to v(wo), a curve in L joining
v(wp) to y(w), the imaginary chord joining v(w) to J(w), and a curve in L joining 7(w)
to y(wo).

Because § is closed and C2" is simply connected, § = 93, and because w is real and
exact, w = dn, where n = %wdﬁ). Denote

f16) =/w =/77 - / wyd iy, .
5 5 k=150 wo)

It is clear that the real function f[d] is independent of the choice of the curves along L
and L (Lagrangian condition) and that, if we change the initial point wg we just add a
constant to f. Thus, up to a constant, we can write f[d] = f(w).

The type of IAS from Proposition 2.3 is called special ([3]). As shown in [8], by a holo-
morphic change of coordinates, we may locally reparameterize v by

v(z) = (2,dH(2)), z€ Z, (2.6)

where H : Z C C™ — C is a holomorphic map. Furthermore, setting z = s + it and
H = P +iQ, we can write

w0 = (2 52). = (1 52). 1)

and we also have that, up to an additive constant,
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f(s,t) Ztk 8tk : (2.8)

a formula first obtained by Cortés in [5].

The singular set of the special IAS consists of points (s,t) € U such that 2 6t2 is
singular. The image of the singular set by = will be denoted E,,(IL), while the image of
the singular set by (, f) will be denoted E,,(L).

Remark 2.4. Recall that, in both the center-chord and the special cases, the regularity of
the map ¢ : (u,v) — (x(u,v), f(u,v)) is equivalent to having an invertible map (u,v)
x(u,v), 71 possibly multiple valued, so that each function F = fox~!: U Cc R?" — R
is well defined and satisfies the Monge-Ampeére equation (1.1), and each regular branch
of ¢ is a graph of F'.

Special TAS from a given Lagrangian submanifold In this paper we shall be interested
in the case Z is a domain in C™ invariant by conjugation and ¥(z) = v(2), which is
equivalent to saying that H(R™ N Z) is contained in R. In this case, we shall denote by
L the image of Z NR"™ by the map z(z).

Assume now we are given a real analytic Lagrangian submanifold L, image of «
given by equation (2.3), for some S : U C R™ — R real analytic. Then there exists a
domain Z C C™ invariant by conjugation such that ZNR™ = U and a holomorphic map
H : Z — C such that H restricted to U equals S. In particular, the image of Z N R™ by
H is contained in R.

It is clear from the above two paragraphs that L NL = L C R?" is a Lagrangian
submanifold of the real symplectic space and that the special IAS defined by ~(z) =
(2,dH(z)) depends only on L. Therefore we shall denote it by ¢s,(L), and we shall
denote by Eg,(L) the caustic of ¢4, (L).

We may assume that L is given by equation (2.6), for some H : Z — C satisfying
H(z) = H(%). This implies that the imaginary part Q of H is odd in ¢, where z = s +it,
and so £ = 0 for t = 0. We conclude that L C E,,(L).

8t
Example 2. Let v(z) = (cos(z),sin(z)). Then L is the unit circle in R? and
x(s,t) = cosh(t) (cos(s), sin(s)) ;i y(s,t) = sinh(¢) (—sin(s), cos(s)),

f= (smh(2t) —2t),
(see Fig. 2). The image of the map x is the complement D of the open unit disc, while
the singular set is ¢ = 0. This example can be generalized by considering v : C"* — C?»

given by

¥(2) = (cos(z1),sin(21), ..., co8(zn ), 8in(z,)) , 2 = (21, ., 2n)-
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Fig. 2. The singular special IAS of Example 2.

In this case L is the n-dimensional torus L C R?" and

1 n
=1 Z (sinh(2t;) — 2t;),
i=1

the caustic is the union of submanifolds R? x R?..... x {t = 0} x ...R?, where {t = 0} is

in coordinate 1.
2.3. Affine Bjorling problem

The affine Bjérling problem for n = 1 consists in finding an improper affine sphere
containing a smooth curve, analytic in the convex case, with a prescribed co-normal
along it. Recall that the co-normal at a point of the curve is a co-vector that has the
tangent line in its kernel and takes the value 1 at the affine Blaschke normal. We ob-
serve that the co-normal for both types of TAS is given by (y,1) and thus this problem
is equivalent to finding an IAS given the values of (z, f) and y along a curve in the
parameter plane.

The affine Bjorling problem for n = 1 has a unique solution for the center chord case
(see [22, Thm.3.1] and [23, Thm.6.1]) and also for the special case (see [1, Thm.6.1]). We
shall see below that by taking y = 0 along the curve L, we obtain the IAS ¢..(L) and
¢sp(L) in each case.

We now let n be general and characterize ¢..(L) among the center-chord IAS
bec(L™, LT) and ¢, (L) among the special IAS ¢, (LL).

For a center-chord TAS ¢ = ¢..(L™, L"), denote by E%.(L~, L") the subset of
E..(L~, L") such that the tangent spaces to LT at a*(u) and to L™ at a™ (v) are strongly
parallel. For a® of the form (2.2), this is equivalent to having d?S*(u) = d2S~(v).

Proposition 2.5. Let ¢ = ¢o.(L~,L1) and L a Lagrangian submanifold of R?". The
following statements are equivalent:

1. ¢ = ¢ee(L).
2. LCEY(L=,L") and f is constant along L.
3. y=0 along L.
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Proof. (1) = (2) follows from the description of ¢..(L) given in section 2.1.

(2) = (3): If f is constant along L, then necessarily w(y,x,) = w(y, z,) = 0, implying
that the chord y is tangent to L. On the other hand, L C E,(L~, L") implies that the
tangent spaces of ot (u) and o~ (u) are strongly parallel. We conclude that the tangent
spaces in fact coincide and y = 0.

(3) = (1): The condition y = 0 at L implies that v = v and dS*(u) = dS~(v). Thus
L is contained in the image of the diagonal u = v and dS*(u) = dS™(u). This implies
that, up to a constant, ST (u) = S~ (u) and so ¢ = ¢.(L). O

Remark 2.6. If L O A, where A is an affine subspace of R?", then condition (2) only
implies that L = L™ = L™, thus implying (1), since it is possible to have a nonvanishing
y € TA if a™ # o~. But then, by choosing the canonical parametrization a™ = o~
for Lt = L, we obtain (3). This canonical choice when Lt = L~ shall always be
assumed.

For a special IAS ¢ = ¢4, (L), denote by EJ (L) the subset of Ey(IL) such that the
tangent spaces to L at y(z) and to E at 7(z) are strongly parallel. For « of the form

Q@ —o.

(2.6), this is equivalent to having Z 8t2 =

Proposition 2.7. Let ¢ = ¢(IL) and L a Lagrangian submanifold of R*™. The following
statements are equivalent:

1. ¢ = ¢sp(L).
2. L CEY, (L) and f is constant along L.
3. y=0 along L.

Proof. (1) = (2) follows from the description of ¢s,(L) given in section 2.2.

(2) = (3): If f is constant along L, then necessarily y is tangent to L. We may assume
t = t(s) along L with ¢(0) = 0. Differentiating equation (2.7)(a), we obtain that along L

2Q. 020
T = (1’ et asat> '

Since a;t‘;? = 0 along L and y is tangent to L we conclude from (2.7)(b) that

9 0 8@ 8@
ot s 0s’

which implies that %—g = ct, for some constant c. Since @) is harmonic, %27‘29 =0, and so
t(s) = 0, which implies y = 0.
(3) = (1): y = 0 implies ¢ = 0 and 8—Q =0 at L. Thus L is contained in the image of the

parameterization (s, Gr (s, O)) and aQ(s 0) = 0. Thus we know % and % along the
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curve t = 0. This implies that we know dH at t = 0. So we know H, up to an additive
constant, which implies ¢ = ¢5,(L). O

Remark 2.8. For ¢, (L), the choice of parametrization (2.6) with H(z) = H(Z) is canon-
ical in the sense that L C L and L C L have the same parametrization (cf. Remark 2.6)
and therefore this is implicitly assumed.

Remark 2.9. For both ¢..(L) and ¢s,(L), since f is constant along L, we can choose f
such that f(L) = 0. With this canonical choice, L C Ec.(L) and L C Eg,(L), and we
have lost the freedom of adding a constant to f.

In view of the above remarks, we present the following:

Definition 2.10. With canonical choices outlined in Remarks 2.6, 2.8 and 2.9, we call
¢ce(L) and ¢sp,(L) the two canonical IAS obtained uniquely from L.

3. Description of Lagrangian/Legendrian singularities on shell for the two canonical
IAS from a Lagrangian submanifold

In this section we describe E.. and E;, as sets of critical values of Lagrangian maps
(caustics) and E.. and Esp as sets of critical values of Legendrian maps. However, because
our following descriptions will be of a local nature, it’s necessary to distinguish two
different “parts” of each of these sets.

The off-shell part of E..(L) is locally of the form E..(L~, L"), where L™ # L* are
germs of L at two distinct points in L, but the on-shell part of E..(L) is locally of the
form E..(L', L"), where L’ is the germ of L at one point in L. Similarly for the other
sets above.”

From now on, we are concerned with describing and classifying the “on-shell” part of
the sets above and their singularities. Because our treatment will be local, it is tempting
to define a germ of E..(L) on shell, for instance, as the germ of E..(L) at a point « € L.
However, although in various instances the on-shell and the off-shell parts of these sets
are disconnected,” there are various other instances when the germ of E..(L) at a point
x € L is the union of a germ of E..(L) on-shell and a germ of E..(L) off-shell.” For this
reason, the most precise description of a germ of E..(L) (or Eyy(L), Ece(L), Egp(L))
on-shell is the one given by Theorem 1.1, which we detail below.

3 The local characterization of the off-shell part of E..(L) and the local classification of its singularities
can be found in [12], [8] (global properties of the Wigner caustic E..(L) of planar curves are studied in
[13-15]).

4 This is often the case for E..(L) of closed convex planar curves (for general closed planar curves the
on-shell part is composed of curves connecting two inflection points [15]).

5 Recall that z € E..(L)-off-shell if z is the midpoint of a chord connecting distinct points a,b € L s.t.
T, L and T, L are not transversal. But it may happen that = € L.
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Notation 3.1. Because we’ll focus on the on-shell parts of E..(L), or Eg,(L), and E..(L),
or Esp(L)7 the on-shell parts of these sets shall be denoted with a superscript “s” as
E;.(L), or E3,(L), and E? (L), or Ezp(L)7 respectively, or simply by E*(L) and E*(L),

when the kind is not specified.

3.1. Generating functions and families

Let xz = (Q7p) = (q17'~'aQTL7p1a"'apn)7 Yy = (qvp) = (Q1a--~747l,p1»~-~7pn)a denote by
7 TR2" = R?" x R2" — R2" the canonical projection m(z,y) = z and by 7@ : TR?" xR >
(q,p,4,p, 2) = (q,p,2) € R?™ x R its trivial extension.

Denote by w = Z?Zl dg; A dp; the canonical symplectic form on R?", by

Q=" dg; Adpi + dg; A dp; (3.1)

=1

the tangential lift ([25], [17]) of w on TR?"™ and by

0 =dz + Z q'idpi — p,dql (32)

i=1

the contact form on TR?” x R associated to €2 and semi-basic w.r.t. 7.

Let U be an open subset of R?". We shall denote by £ the image of the Lagrangian
immersion L = (z,y) : U — (TR?",Q) and by £ the image of the Legendrian immersion
L= (z,y,f):U— (TR?* xR, {0 = 0}). We are interested in studying the singularities
of the Lagrangian map = o (z,y) and the Legendrian map 7 o (z,y, f), where z = (¢, p),
y=(4,p)-

The main tools used for classifying Lagrangian and Legendrian singularities are the
generating functions and generating families. A generating function of the Lagrangian
submanifold £ and the Legendrian submanifold £ is a function

g:R" xR" 3 (q,4) = g(q,4) € R,

satisfying
B .. .09 .09
L={(q,p.q,p) : 9~ D 9 = p}, (3.3)
and
~ .. 0 .0 ) .
E={(q,p,q,p,z):8—z=p,a—g=p73=g(q,q)—q-p}- (3.4)

A generating family of the Lagrangian map 7 o L and the Legendrian map 7 o L is a
function G : R™ x R?" > (3, ¢,p) — G(B,q,p) € R satisfying
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0G _,9G _ . 9G _

’C:{(qvp’%p):zlﬂz 98 = 78_q:p7_6_p_q}, (3'5)
and
5 .. oG oG . oG
‘C = {(qap7Qap7z) : Elﬂ : % = O7a—q :p7_a_p =4,z = G(/Baqap)} (36)

A generating family can be obtained from a generating function by

G(B,4,p) = g(q,8) —p- B. (3.7)

However, we stress that generating families are local objects, suitable for local descrip-
tions and classifications, therefore we now focus on the generating families for ¢..(L) and
¢sp(L) on shell, when (p, ¢) is in a neighborhood of L 3 0, in order to complete the state-
ment of Theorem 1.1.

Generating families for center-chord and special IAS on shell For a center-chord
IAS ¢.c(L), where L is defined by (u,dS(u)), straightforward calculations show
that

1 L1 .
9ee(a,4) = 55(q+q) - 55((1 —q)

is a generating function on shell and so

G2(8,0.0) = 5S(a+ B) — 35(a—B) —p-f (39

is a generating family for ¢..(L) on shell. For a special TAS defined by the holomorphic
function H taking R™ to R, by straightforward calculations

95p(a0:4) = Q(q,9)

is shown to be a generating function on shell and the generating family for ¢,,(L) on
shell is given by

where @ is the imaginary part of H and thus is odd in the second entry.

Equations (3.1)-(3.9) complete the statement of Theorem 1.1, whose proof follows
straightforwardly from standard theory of Lagrangian and Legendrian maps. We refer
to [2] and subsection 4.2 below, for details.

But note that both G¢.(8,¢,p) and G%,(8, ¢, p) are odd functions of /3.
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Remark 3.2. This odd property of the generating families G implies that the singu-
larities of E*(L), resp. E*(L), possess a hidden Zy-symmetry, which descends from an
explicit fibred-Zo-symmetry of the Lagrangian, resp. Legendrian, submanifold £, resp.
L, obtained from G by (3.5), resp. (3.6).

Thus, in order to classify the singularities on shell of ¢..(L) and ¢sp(L) we must con-
sider: (i) the classification problem for fibred-Zo-symmetric Lagrangian and Legendrian
singularities; in relation with: (ii) the classification problem for generating families in the
odd category.

Part (ii) was carried out in [11], but there neither part (i) nor the relation between
the two parts was treated. These are carried out in the next section.

4. Fibred-Zo-symmetric germs of Lagrangian maps and their odd generating families

In this section, first we develop the definition of Lagrangian stability in the context
of fibred-Zz-symmetric Lagrangian map-germs (cf. Definition 4.7), by carefully adapting
the nonsymmetric treatment presented in [2]. Here we shall only work in the Lagrangian
setting, the extension to the Legendrian setting being straightforward because all Leg-
endrian immersions we consider are graph-like (cf. [18, Section 5.3]).

Then, we detail the relation between Definition 4.7 and the definition of stability of
odd generating families (cf. Definition 4.14 and Corollary 4.18). The central result for
relating these two definitions is given by Theorem 4.17, which relates the corresponding
notions of equivalence (cf. Definitions 4.6 and 4.11). Because the proof of this theorem
is not too short, it has been placed in section 6, at the end of the paper.

Finally, we state, explaining its proof, the theorem which relates stability of odd
generating families to their odd versality (cf. Theorem 4.20 below), which will be used
to classify the stable singularities on shell of the center-chord and special TAS, in the
next section.

We start by recalling basic definitions of the theory of Lagrangian singularities (cf.
e.g. [2, Part IIT]) and then specialize some of these basic definitions to the fibred-Zo-
symmetric context.

4.1. Fibred-Zo-symmetric Lagrangian map-germs

Let M be a smooth (or analytic) m-dimensional manifold. Let £ — M be a smooth
(or analytic) fiber bundle over M. A diffeomorphism of E is fibered (or fibred) if it maps
fibers to fibers.

Let T M be the cotangent bundle of M and let w be the canonical symplectic form
on T*M. A smooth (or analytic) section s : M — T*M is called Lagrangian if s*w = 0.
Sections of T*M are differential 1-forms on M and it is easy to see that a section is
Lagrangian iff the 1-form is closed. Thus, any germ of a smooth (or analytic) Lagrangian
section can be described as the differential of a smooth (or analytic) function-germ
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on M. This function-germ is called a generating function of the germ of a Lagrangian
section.

Let A and (k,\) = (K1, , Kmy A1, , Am) be local coordinates on M and T*M,
respectively, then w = 2111 di; N dN;. (T*M,w) with canonical projection 7 : T*M >
(k,A) —= X € M is a Lagrangian fibre bundle.

Let L be a Lagrangian submanifold of 7*M i.e. dim L = dim M and the pullback of
the symplectic form w to L vanishes. Then 7|y, : L — M is called a Lagrangian map.
The set of critical values of a Lagrangian map is called a caustic. Let L and L be two
Lagrangian submanifolds of (T*M,w):

Definition 4.1. Two Lagrangian maps «|;, : L — M and 7|; : L — M are Lagrangian
equivalent if there exists a fibered symplectomorphism of (T*M,w) mapping L to L.
A Lagrangian map is stable if every nearby Lagrangian map (in the Whitney topol-
ogy) is Lagrangian equivalent to it. Likewise for germs of Lagrangian submanifolds and
Lagrangian maps.

We are interested in studying a special type of Lagrangian maps, this type consisting
of maps which are Z,-symmetric in the fibers.

Definition 4.2. A Lagrangian submanifold L of T*M is fibred-Zs-symmetric if for every
point (x,A) in L the point (—&, \) belongs to L. The Lagrangian map =|y : L — M is
fibred-Zo-symmetric if the Lagrangian submanifold L is fibred-Zs-symmetric. Likewise
for fibred-Zs-symmetric germs of Lagrangian submanifolds and Lagrangian maps.

Remark 4.3. Because the Lagrangian map-germs are fibred-Zo-symmetric, the Zs sym-
metry is hidden in their caustics. Thus, the classification of caustics of fibred-Zo-
symmetric Lagrangian map-germs differs from classifications of caustic-germs which are
explicitly Zg-symmetric (cf. e.g. [19] for the latter).

It is easy to see that the fibers of T* M and the zero section of T*M are fibred-Zo-
symmetric Lagrangian submanifolds. We will study singularities of fibred-Z,-symmetric
Lagrangian map-germs. Thus we need a Lagrangian equivalence which preserves this
Zo-symmetry. Let us denote

C:T*M > (k,\) = (—k,\) € T*M.
The map ¢ defines a Zg-action on T*M i.e. Zo = {(,idp-pr}-

Definition 4.4. A fibred symplectomorphism ® of (T*M,w) is odd or Zs-equivariant if
Po(=(od.

Since our consideration is local we may assume that M = R™. A fibred symplecto-
morphism-germ ® of (T*M,w) has the form ® = (¢)* + dG, where ¢ : M — M is a
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diffeomorphism-germ and G is a smooth (analytic) function-germ on M (see [2] section
18.5). Since ¢ is the identity on the zero section of T*M, odd fibred symplectomorphisms
map the zero section to itself. This implies the following characterization of odd fibred
symplectomorphism-germs.

Proposition 4.5. If ® is an odd fibred symplectomorphism-germ of (T*M,w) then ® has
the form ® = (¢)*, where ¢ : M — M is a diffeomorphism-germ.

It is easy to see that odd fibred symplectomorphisms map fibred-Zo-symmetric La-
grangian submanifolds to fibred-Zs-symmetric Lagrangian submanifolds. Thus we can
define a Zy-symmetric Lagrangian equivalence of fibred-Z,-symmetric Lagrangian map-
germs in the following way:

Definition 4.6. Fibred-Z,-symmetric Lagrangian map-germs «|y : L — M and «|; :
L — M are Zy-symmetrically Lagrangian equivalent if there exists an odd fibred
symplectomorphism-germ of (T* M, w) mapping L to L.

This induces the following natural definition:

Definition 4.7. A fibred-Zo-symmetric Lagrangian map-germ is Zo-symmetrically stable
if every nearby fibred-Zs-symmetric Lagrangian map-germ (in Whitney topology) is Zo-
symmetrically Lagrangian equivalent to it.

Thus, Definitions 4.6 and 4.7 specialize in a natural way the definitions of Lagrangian
equivalence and stability (cf. Definition 4.1) to the context of fibred-Z,-symmetric La-
grangian map-germs.

4.2. 0dd generating family-germs

Any Lagrangian submanifold-germ can be described by a generating family. In the
case of fibred-Zs-symmetric Lagrangian submanifold-germs the generating family can be
odd in 3. Before we prove the above statement we introduce some preparatory definitions
(see [2, Section 19.2]).

Because all the following descriptions are local, we take M = R™. Then, a bundle
p: R"XR™ 3 (5,A\) = A € R™ is called an auxiliary bundle, for which the space
R™T™ = R™ x R™ is the big space and M = R™ is the base. The cotangent bundle of the
big space is the big phase space and the cotangent bundle of the base, 7 : T*R™ — R™,
is the small phase space.

The mized space A for the auxiliary bundle p is the set of elements of the big phase
space which annihilate vectors tangent to the fibers of p. The mized bundle is the bundle
over the big space induced from the small phase space by the map p. It is easy to see
that the total space of the mixed bundle p*m is A and the fibers of p*m are isomor-
phic to the fibers of 7. A is also the total space of the bundle 7*p : A — T*R"*+™
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induced from the auxiliary bundle p by 7. These bundles are described by the following
diagrams.

T*Rm L T*Rn+m

P

R™ 5 Rn+m

(K‘aA) A (Kaﬁv)‘> ;} (07’%767A)

Ik - L’/

A (B, N)

A Lagrangian submanifold of the big phase space is called p-regular if it is transversal
to the mixed space A for p. The image of the intersection of a p-regular Lagrangian
submanifold with the mixed space A by the natural projection 7*p to the small phase
space is a Lagrangian (immersed) submanifold and every germ of a Lagrangian subman-
ifold of the small space can be obtained by this construction from the germ of p-regular
Lagrangian section of the appropriate big phase space (see [2, Section 19.3]).

A function F' is a generating function of the Lagrangian section £ of the big phase
space if £ is described by

c={lemsn e TR a= SN k= SLENF L @)

35

where we use the notation (ﬂ, A) = (a/\1 (BN, a,\ (3, )), etc. Since the mixed

space A is described by {(047 K, B, A) € T*R"™|a = 0}, it follows that L = 7*p(L U A)
is described by

L{(n,A)GT*M|EIﬂ, F(ﬂ,A):O, ng];(ﬁ,x)}. (4.2)

0
B
The family of generating functions Fg(\) = F(5, ) is called a generating family of the
Lagrangian submanifold-germ L C (T*M,w) described by (4.2). Although somewhat
counterintuitive, one usually refers to 8 as the variables and to A\ as the parameters of
the generating family.

Remark 4.8. The set of critical points of the family F is the following set

5(F) = { (8.0 e R | L0 =0}

Since the Lagrangian submanifold £ is p-regular, ¥(F') is a m-dimensional submanifold
of Rt The set of critical points of the family F' is naturally diffeomorphic to the germ
of the Lagrangian submanifold L of the small phase space determined by the germ of the
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generating family F'. Then the Lagrangian map-germ in terms of the generating family
F' is described by

E(F)>(B,\) = AeR™

Proposition 4.9. If a Lagrangian submanifold-germ L of T*M is fibred-Zo-symmetric
then there exists a generating family-germ F = F(3,\) which is odd (in variables) i.e.

Proof. We use the method described in [2] (see Example 6 in Section 18.3 and Section
19.3 C). There exist subsets J = {j1, - ,jn}, I = {i1, -+ ;ém-n} of {1,---,m} such
that INJ =0 and TUJ = {1,--- ,m} and a local generating function S = S(xs, Ar) of
L, where ky = (Kjy, -, Kj,) and Ar = (Asy, -+, Ai,,_,,)- Then, L is locally described by

oS 0S
L= M =—— 4.
{teyeran == 22 o mi = e 6
Since L is fibred-Zgy-symmetric, if (k,A) € L then (—x,\) € L. Hence, if A\; =
ac’)KSJ (HJ,/\[) Ry = a{))_\g’ (KJ,/\[) then )\J = _88;;5; (_K/J,)\])7_K/[ = g—)i(—HJ7)\I). Thus
we get
oS 08 oS oS
— (=K, A1) = — A —(—kj, A1) = —=—(—Kj, A1). 4.4
a/ﬁ].]( RJ, I) aHJ(HJ7 1)7 8/\1( KJ, I) 8)\]( R, I) ( )

The generating function-germ is determined up to an additive constant. So we may
assume that S(0,0) = 0. From (4.4) we obtain that S = S(kj, A\;) is an odd function-
germ in . Consider a function-germ on a big space R™™ of the form F(3,\) =
S(B,Ar) + (B, As), where (,-) is the dot product. Then F = F(3, ) is odd in j3. It is
easy to see that F' is a generating function of a Lagrangian section £ of the big phase
space T*R™+™m described by (4.1) and /j is p-regular. The set 7*p(L U A) is exactly L
Indeed, gg(ﬁ, A) = FE(B,M0) + Mgy 2E(B,0) = £2(8, A1) and ZE(8,)) = 8. Thus,
by (4.3) L is locally described by (4.2). O

Remark 4.10. We can choose such sets J, I such that n = fJ is the dimension of the
kernel of the differential of the Lagrangian map L — T*M — M. The Lagrangian
map-germ is described in terms of S in the following way

oS
R™ 3 (ky, A1) — (_a—m(“JvAI) S AL)-

The coordinates Ay and k; are called pathological. The arguments k; are n pathological
arguments of the function S.
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4.8. Zy-symmetric Lagrangian stability and R -versality

From classical results (cf. [2, Section 19.4]), in the non-symmetric context we know
that Lagrangian equivalence of Lagrangian map-germs corresponds to stably fibred R™-
equivalence of their generating families.’

We recall that to two germs of generating families F, G : (R™ x R™,0) — R are fibred
Rt-equivalent if there is a fibred diffeomorphism-germ W(3,\) = (®(5, ), A(A\)) and
a function-germ h : (R™,0) — R such that F(3,\) = G(®(3,A),A(N)) + h()). Then,
F: (RF xR™ 0) = R and G : (R' x R™ 0) — R, with k # I, are stably fibred R*-
equivalent if there exist nondegenerate quadratic forms @; : R™ — R for i = 1,2, s.t.
k+ri=Il+rs=nand F+Q1,G+ Qz: (R" x R™ 0) — R are fibred R -equivalent.

In Zs-symmetric context, the zero-section is preserved by Zs-symmetric Lagrangian
equivalence and quadratic forms are not odd functions. Then, denote the group of
diffeomorphism-germs (R™ x R™ 0) — (R™ x R™,0) by D,ym and let D24 de-
note the subgroup of odd diffeomorphism-germs (R™,0) — (R",0) i.e. ® € D% if
®(—p) = —D(B). By odd generating family we shall always mean odd in variables.

Definition 4.11. Odd generating families F,G of fibred-Zs-symmetric Lagrangian
submanifold-germs are fibred R°%-equivalent if there exists an odd (in variables) fibred
diffeomorphism-germ ¥ € D,,,,, that is,

T(B,\) = (2(8,A),A(N) , with @|gny(ny € DI, YA €R™,
such that
F=GoV. (4.5)
Remark 4.12. In the notation of section 3, equation (4.5) can be written as
G(B,x) = G(B,7)

(parameters A\ = x = (¢,p) € R?™ = R™), w.r.t. an odd fibred diffeomorphism-germ
denoted as

(8,2) = (B(B, %), 2(z)) .

Proposition 4.13. If the generating families G and G are fibred R°% -equivalent, then the
caustics E*(L) and E*(L) are diffeomorphic.

Proof. Since

oG _ 0G0}
B 9B oB

6 We shall often abbreviate and refer to a generating family-germ simply as a generating family.
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G

we conclude that %—g =0 if and only if 8,(@; = 0. Moreover

0°G G (0B 0GB
(5)

B> o \9B) 0B op*

Thus ?;g = ‘g—g = 0 if and only if ?925? = % = 0. Finally, observe that the diffeomor-

phism z : R?" — R?" takes E*(L) to E¥(L). O
The following definition is fundamental.

Definition 4.14. An odd generating family G : (R™ x R™, (0, \g)) — R is R°%_stable if,
for any odd representative G’ : V' — R of G, there exists a neighborhood W of G’ in
the C*-topology (Whitney) such that for any odd G’ € W there exists (0, \g) € V such
that G and G are (fibred) R°%-equivalent, G being the germ of G’ at (0, \g).

And the following definition is suitable for computations.

Notation 4.15. Let &, be the ring of smooth function-germs (R™,0) — R. We denote by
EN v the ring of smooth function-germs f: (R™ x R™,0) — R such that f(—3,A) =

n+m

f(B,\) (f is even in B), by £"7 2% the set of smooth function-germs g : (R™ x R™,0) —

n+m
(R, 0) such that g(—8,A) = —g(B, ) (g is odd in B), which has a module structure over
871;/7/;7(:3’:}677/.
Definition 4.16. An odd generating family G : (R™ x R™,0)) — R is infinitesimally
R4 _stable if

oG oG
—odd _ .o
Epodd — gneven {Bja_ﬂi’z’j = ln} +Em {a—)\l7l = 1...m} (4.6)

We now have the following main result, whose (not too short) proof is presented at
the end of the paper, in Section 6.

Theorem 4.17. Fibred-Zo-symmetric Lagrangian map-germs are Zo-symmetrically La-
grangian equivalent (cf. Definition /.0) if and only if their odd generating families are
fibred R°%-equivalent (cf. Definition /.11).

As a direct consequence of Theorem 4.17 we have the following;:

Corollary 4.18. A fibred-Zo-symmetric Lagrangian map-germ is Zs-symmetrically La-
grangian stable (cf. Definition J.7) if and only if its odd generating family is R°%-stable
(cf. Definition 4.14).

Remark 4.19. As mentioned at the beginning of this section, the adaptation of The-
orem 4.17 and Corollary 4.18 to the context of graph-like Legendrian map-germs is
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straightforward, once we adapt Definitions 4.2 and 4.6-4.7 to the graph-like Legendrian
setting as well. We refer the reader to [18, Section 5.3] for a detailed thorough exposition
of the straightforward relationship between the Lagrangian and Legendrian descriptions
in terms of generating families when the Legendrian immersions are graph-like, which
is always the case for the center-chord and special IAS obtained from a Lagrangian
submanifold.

The final result for the classification of singularities on shell is given by:

Theorem 4.20. An odd generating family G : R™ x R™ — R is R°%_stable if and only if
G is an R°%-versal deformation of Gy = G(-,0).

Theorem 4.20 follows, as a special case, from basic general theorems in singularity
theory, as we now explain. In the nonsymmetric case, the analogous to Theorem 4.20
can be divided in two theorems.

The first one states that a family 7 : R™ x R™ — R is stable (definition analogous to
Definition 4.14 but replacing D24 by the full diffeomorphism group D,, in Definition 4.11)
if and only if F' is infinitesimally stable (analogous to Definition 4.16). The concept of
infinitesimal stability for F' under an action of a group G means, loosely speaking, that
the G-orbit of such an action contains a neighborhood of F'.

A very important property of an infinitesimally stable family F' is its finite determi-
nacy, meaning that F' is equivalent to F’ under this R* action iff there exists k € N
such that F' and F’ are R equivalent up to the kth order in their Taylor expansions on
R”™. Around 1968, J. Mather [21] proved that infinitesimally stable families are stable,
and vice versa if F' is proper.

At that same time Mather also proved the second theorem, which states that a family
F :R™ x R™ — R is infinitesimally stable if and only if F' is a versal deformation of
Fy = F(-,0) : R™ — R. The concept of a versal deformation F of a function f : R” — R
means, loosely speaking, that F' contains all possible deformations of f or, more precisely,
that any deformation F’ of f is (fibred) R™ equivalent to one induced (by possibly
eliminating some parameters) from F. If F': R” x R™ — R is a versal deformation of
f = Fy, then F: R" xR™ — R xR™, F(3,\) = (F(B,\),\), is called a versal unfolding
of f. Finally, the versal deformations F' (or unfoldings F) of f with the least possible
number of parameters are called miniversal deformations (or unfoldings) of f, and they
are all equivalent.

The complete statements and proofs of these two theorems belong to the basics of
singularity theory, so they can be found in various texts, as for instance in [2] (see also
[18]). In fact, these theorems are stated and proved for general (families of) maps, not
just functions (as Mather did [21]).

Then, around 1981, J. Damon [9] (see also [10]) showed that these basic theorems
of singularity theory are still valid if the appropriate group action induced from a full
diffeomorphism group (for F' : R™ x R™ — R this is the fibred RT group action) is
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replaced by a subgroup satisfying certain properties (natural, tangential, exponential and
filtrational), which he called a geometrical subgroup. The key point is that the (fibred)
R°44 group action, induced from D% acting on odd families F' : R® x R™ — R as
in Definition 4.11, is a geometrical subgroup in this sense, so these basic theorems of
singularity theory go through,” implying the statement of Theorem 4.20.

We end this section with the following results from [11] which characterize the R°%-
versal deformations G : R™ x R™ — R, emphasizing that, although the results in [11]
were obtained in the smooth category, they also hold in the real analytic category (see

[4)-

Notation 4.21. We denote by £57¢™ the ring of even smooth function-germs f : (R™,0) —
R, by £299 the set of odd smooth function-germs g : (R™,0) — (R, 0), which has a module
structure over £°", and by /\/llfL(Odd), k odd, the ££v¢"-submodule of £2%¢ generated by
kb stk >0,k = k.

First, in the general case:

Proposition 4.22. (cf. [11, Theorem 3.9]) A m-parameter deformation G(58, ) of Go(B) =
G(p,0) is R°%-versal if and only if

0Gy . . oG
ETOde = gﬁven {ﬂja—;,l,j == 1...TL} +R {G_AanX{O},l - ]....m} . (4.7)

Then, specifically for center-chord or special TAS on shell:

Corollary 4.23. (cf. [11, Corollary 4.4, Theorem 4.5]) The germ of a generating family G
is an R°%-versal deformation of G if and only if

M3lodd) — geven {ﬂj 8G0,z’,j = 1n} +R {@

— n l=1..
aﬁz 6ql R x {0} TL},

where the relation between G (= Gee or = Gsp) and g (= gee 07 = gsp) are given by

(3.7)-(3.9).

Remark 4.24. Using the general Malgrange Preparation Theorem (see [20], Chapter X,
Section 6.3), one can show that Proposition 4.22 implies that infinitesimal R°%-stability
(4.6) is equivalent to R°-versality (4.7).

7 In our odd setting, the first theorem asserts that Definitions 4.14 and 4.16 are equivalent, while the second
theorem asserts that equation (4.6) in Definition 4.16 is equivalent to equation (4.7) in Proposition 4.22.
This second theorem is more direct, cf. Remark 4.24.
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5. Realization of simple singularities on shell for canonical IAS
5.1. Simple singularities of odd functions

The following results are a compilation of results in [11], section 3.

We recall that the germ of a function f has a simple singularity if there exists a
neighborhood of f that intersects only a finite number of equivalence classes of other
singularities.

Let Gy € £299 with a singular point at 0. If n > 3, Gg is not R°%-simple (cf. [11,
Theorem 3.14]).

For n = 1, only the singularities Ay /o are simple and their corresponding miniversal
deformations are (cf. [11, Theorem 3.16, Corollary 3.17]):

k
Gt Ar, ooy M) = £2FF 4 Y 012

j=1

For codimension < 2, the only possibilities are Ay/; and Ays.
For n = 2, the following singularities are simple (cf. [11, Theorem 3.18]):

D, (t1,12) = 83ty + 4371 k=23
. BEgjo: (t1,t2) = 13 + 13

Tioyt (1, t2) = 7 + 113

. Eigyo: (t1,t2) — 5 + 5

Ll A

The corresponding miniversal deformations are (cf. [11, Corollary 3.19]):

DQik/Qz G(t1,ta, A1y oy M) = B3t + 15571+ Moty + Zf:z Ait3' 3

. Exjor Gt to, Aty ooy M) = £ 4+ 85+ Aty + Aoty + Agt1t2 + Agt3

' Jlﬁa/? G(t1,t2, A1y Xs) = 15 + 1185 + A1ty + Aata + Astits 4+ Agt1t3 + Asth

- Bigye: Gty ta, A1,y X) = 3+ 17+ AMit1 + Aato + Aat1t3 + Mgt + Astits + Nets

=W N

For codimension < 4, the only possibilities are D4i/27 DgE/Q, Dsi/2 and Fg/o.

5.2. Relation between the generating families for ¢..(L) and ¢sp(L)

Assume L is locally the graph of dS(s), with S the germ at 0 of a real analytic function,

S(5) = Y s e dyene Thrro S5 -5, s = (s1,--- ,8,) € R”, where N denotes the
set of natural numbers including 0 and ag, ... k, € R for any (k1,--- , ky) € N™. Take then
the germ at 0 of a holomorphic function H(z) = >, .. 4 jenn Ty, B Ak =

(21, ,2n) €C™
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Lemma 5.1. For L C R®™ a Lagrangian submanifold, let g..(q,q) and 9sp(q, q) denote
the generating functions of ¢cc(L) and ¢sp(L). Then®

gcc(qa q) = _igsP<Qa MI) (51)

In other words,

if 9(0:0) = D bi(@(=DE2q), then gee(g,d) = > bylg
j=1,0dd j=1,0dd

Proof. We have that

Z bi( U/thj where b, ( iak(>

j=1,0dd k=j

On the other hand,

el B) = X (548~ (=B = gulssB) = 30 B(9F. O
k

j=1,0dd

5.3. Simple singularities on shell of ¢pec(L) and ¢sp(L)
We now show by examples that, by an adequate choice of L, the simple singularities

A2/27 A4/27 4/2, Di

6/27 Dgt/z and Fg/, appear as stable singularities of ¢..(L) and
Psp(L).

Example 3. Consider S(q) = ¢. Then,
Gee(B,q,p) = B° +3¢°6 — pP,
and
Gop(B:a:p) = =B +3¢°8 — pp,
which are versal unfoldings of Ay /,-singularities.
Example 4. Consider S(q) = ¢° + ¢*. Then,

Gee(B,q,p) = B° +10¢°8% + 5¢* B+ ¢°B + ¢° — pp.

& To simplify the notation, from now on we are dropping the superscript s for the generating functions
and generating families of the on-shell part of the IAS.
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(a) The set Ecc(L). (b) The set Egp(L).

Fig. 3. The caustics E..(L) and E,,(L) of Example 4.

The caustic ES.(L) is given by 3 = 0 or 3¢ + 30¢® + 108% = 0 (see Fig. 3 (a)). We have
also

Gsp = B° —10¢°B* +5¢* B+ ¢*B — ¢B* — ppB.

Thus E$, (L) is given by 8 = 0 or 3¢ = 103% — 30¢° (see Fig. 3 (b)). Observe that both
constructions lead to versal unfoldings of an Ay p-singularity.

Example 5. Consider S(uy,uz) = uug £ u3. Then,
Gee(B,a,p) = £B5 + Bi B2 — p11 — 2o + 3¢5 B2 + 41 B2 + 2¢14251
and the singular set is defined by +332 = 7. In the special case, we have

Gop(B,q,p) = FB5 — BBz — p151 — p2B2 £ 363 B + 41 B2 + 21421,

and the singular set is again defined by +335 = 7. Both constructions lead to versal
unfoldings of a fo/Q—singularity.

Example 6. Consider S = ¢?qs + ¢5 + %q%. Then,

Gee = BiB2 + B3 + @283 — p1B1 — p2B2 + 41 B2 + 2q1q281 + 108343 + 55245 + B3,

while

Gsp = —BiP2 £ B3 — 285 — p181 — p2B2 + ¢ B2 + 2q1g251 F 108565 £ 55245 + Bags.

Thus, G, is a versal unfolding of a D6i/2—singularity, while G, is a versal unfolding of a

Dg/Q singularity.

Example 7. Consider S = ¢?q2 &+ ¢3 + q1¢5 + %qg.
Then, the corresponding G, is a versal unfolding of a D;E/Q singularity.

The corresponding Gy, is a versal unfolding of a D§t/2 singularity.
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Example 8. Consider S = ¢3 + ¢5 + q145.
Then, the corresponding G, is a versal unfolding of a Eg/, singularity.
The corresponding Gy, is a versal unfolding of a Fg/, singularity.

Remark 5.2. In Examples 3 and 4, E.(L) and E3,(L) are diffeomorphic, since they are
bifurcation sets of points Ay, and Ay /s, respectively. The same occurs in Examples 5,
7 and 8, but not in Example 6.

5.4. Stable singularities on shell for the two canonical IAS obtained from a given
Lagrangian curve or surface

We now classify all R°%-stable singularities that appear in the caustics E*(L), E(L),
when L is a planar curve or a Lagrangian surface in R*. In these dimensions, only simple
singularities are stable, so we apply the previous results taking care of the possible
codimensions.

5.4.1. Lagrangian curves
We follow section 4.1 of [11]. Let L be a germ at 0 of a curve and assume that L is
generated by a function germ S € M3 C &;.

Proposition 5.3.

1. If S®(0) # 0, Gee and Gsp are R°-equivalent to the R°? versal deformation of
A2/2.

2. If S®(0) = 0, SW(0) # 0, SO(0) # 0, Gee and Gy, are R -equivalent to the
ReM yersal deformation of Aysa-

Proof. If S®) #£ 0, then f® # 0 and ¢®® # 0. Thus G,. and Gsp are odd deformations
of an Aj/p-singularity, and it is easy to see that they are in fact versal deformations of
Go. Thus we have proved item 1.

For item 2, observe that the hypothesis implies that F' and G are odd deformations of
an Ay o-singularity. It is also easy to verify that this deformation is versal, thus proving
the result. O

The geometric interpretation of condition 1 is that the curvature of L does not vanish,
while the geometric interpretation of condition 2 is that the curvature vanishes, but its
first and second derivatives do not.

Corollary 5.4. If L is strongly convez, then Ef (L) = Ej (L) = L.

Remark 5.5. Example 1 (cf. Fig. 1) and Example 2 (cf. Fig. 2) are particular nongeneric
illustrations of the above corollary, while Example 3 illustrate the generic case, locally.
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The generic case when condition 2 of Proposition 5.3 is satisfied is illustrated by Exam-
ple 4 (cf. Fig. 3).

5.4.2. Lagrangian surfaces
We follow section 4.2 of [11]. Let L be a germ at 0 of a Lagrangian surface and assume
that L is generated by a function germ S € M3 C &,.

Notation 5.6. Denote

oIS

Sij = 2o
94103

(0,0),
with
. 1 1 1 1
Jos = 653,0(15? + 552,1(1%(]2 + 551,2(11(15 + ESo,qu

denoting the 3-jet of S at 0. The discriminant of 535 is

1

AljaS) = 33

(3575551 — 450,395 1 — 457 5,930 — 55553 ¢ + 650,351,252,153,0) -
Proposition 5.7. Assume A(j3S) # 0.

L. If A(j3S) > 0, Gee and Gy, are RO _equivalent to the R wersal deformation of
DZ/2'

2. If A(j3S) < 0, G and Gy are RO _equivalent to the R wersal deformation of
+

Dy /2
Proof. Assume A(j3S) > 0. Then, by a linear change of coordinates, we can write
jig = B%B2 — B3. Thus g is R°%-equivalent to a D, , singularity, and it is easy to see
that Gy, is an R°% versal deformation of g. This proves the first assertion for Gy, the
second one being similar. The proofs for G.. are similar or else one can invoke theorem

411 of [11]. O
Notation 5.8. Denote

0 = 53,051,2 - 53,1; 0 = 50,352,1 - Siy
= S2,151,2 — 53,053 ry = S5 050,3 — 453,05,151,2 + 355 ;
2(S3,0512 —585,) S30S1,2 — S5,
S () Skt
(S3,0m1 — 12)"
S,151,2 — S50, . 58.353,0 — 450,352,151 ,2 + 357 5
' 2(S0,352,1 — Stg) 2= So,382,1 — Sty

, n=2>5,7.

00,n

,”Z




M. Craizer et al. / Advances in Mathematics 374 (2020) 107326 29

ZZ:O (Z)Sk,n—kf’]f
(So,3™1 — T2)™

n=>9,T7.

On,0 =

Lemma 5.9. If A(585) =0, then §; <0, i=1,2.
Proposition 5.10. Assume A(j3S) = 0.

1. If61-005 <0 orda-050 <0, Gec 45 RO _equivalent to the R°% versal deformation
of Dg'/z, while G is R°-equivalent to the R versal deformation of D6_/2‘
2. If 81 - 005 >0 or 8z - 050 > 0, F is R°-equivalent to the R° versal deformation

D while G s RO _equivalent to the R° wersal deformation of DY

6/27 6/2°

Proof. Similar to theorem 4.14 of [11]. O

Proposition 5.11. Assume A(j35) = 0.

1. If 61 <0, 095 =0 and 097 > 0 or d3 < 0, 050 =0 and o790 > 0, G.. and Gy, are
RO _equivalent to the R°% versal deformation of Dé"/z.
2. If 61 <0, 005 =0and og7 <0 ordy <0, 050=0 and o790 <0, Geec and Gsp are

RO _equivalent to the R° wversal deformation of Dg/Q.

Proof. Similar to theorem 4.15 of [11]. O

Proposition 5.12. Assume A(53S) = 0. If

5
5
01 =0, 83070, Z (k) Sks—k(—92,1)"(S5,0)° " # 0,
k=0
or
>\ (5
52 = 07 5073 7& 07 Z (k‘) Sk,S*k(_5172>k(S073)5_k 75 0’
k=0

then Ge. and G, are R°-equivalent to the R° versal deformation of Eg/s.
Proof. Similar to theorem 4.16 of [11]. O

Remark 5.13. For detailed geometric interpretations of all the conditions of Proposi-
tions 5.7-5.12, we refer to section 4.3 of [11]. Here, we just point out that conditions of
Proposition 5.7 are realized for hyperbolic and elliptic points of L, the higher singulari-
ties of Propositions 5.10-5.12 occurring for parabolic points of L. In particular, the local
equivalent of Corollary 5.4 is realized for hyperbolic points of L, that is, if L’ is the germ
of L at a generic hyperbolic point of L, then E (L") = E3, (L") = L’ (cf. [11, Corollary
4.19]).
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6. Proof of Theorem 4.17

We now prove Theorem 4.17, which relates the definition of equivalence of fibred-Zs-
symmetric Lagrangian, resp. Legendrian, map-germs (cf. Definition 4.6) to the definition
of fibred R°%-equivalence of their odd generating families (cf. Definition 4.11). We
prove this theorem by modifying the method used in [2, Section 19.5] to the case of
Zso-symmetric Lagrangian equivalence.

First, assume that odd generating families F; and F, are fibred R°%-equivalent, cf.
Definition 4.11. Then, the fibred diffeomorphism (¥ ~1)* of the big phase space T*R"™
determines a Lagrangian equivalence of the big phase space between Lagrangian sec-
tions of T*R™*™ generated by the function-germs Fy and Fy on the big space. Both
Lagrangian sections are p-regular. Since the diffeomorphism-germ ¥ of R™*™ is fibred,
the Lagrangian equivalence of the big phase space induces a Lagrangian equivalence of
the small phase space T*R™ (see [2], Section 19.4) between germs of Lagrangian subman-
ifolds generated by the odd families F; and F5. It is easy to check that this Lagrangian
equivalence of the small phase space T*R™ is determined by the diffeomorphism-germ
(A=1)*. But (A~1)* is a linear map in the fibers of T*R™, hence is odd in the fibers. Thus,
the Lagrangian map-germs generated by odd families F; and F, are Zs-symmetrically
Lagrangian equivalent.

Now, assume that we are given a Zs-symmetric Lagrangian equivalence of the small
phase space, mapping the germ of a fibred-Zs-symmetric Lagrangian submanifold L,
determined by an odd generating family Fj, to the germ of a fibred-Zy-symmetric La-
grangian submanifold Ly. By Proposition 4.5, the Zs-symmetric Lagrangian equivalence
is determined by (¢)*, where ¢ is a diffeomorphism-germ of the base. Let us consider a
diffeomorphism-germ (Idgn,®) : R™ x R™ — R™ x R™ of the big space. This induces
a Lagrangian equivalence (Idrn,@)* of the big phase space, mapping the germ of the
Lagrangian section £; generated by function-germ Fj to the germ of the Lagrangian
section Lo. Then, it is easy to see that Lo is generated by a function germ F5 of the form
Fy(B,\) = F1(B,671()\)). It implies that F} is an odd generating family of Lo which is
fibered R°%-equivalent to F.

To finish the proof of Theorem 4.17 we need the following lemmas. But first some
preparations.

By Remark 4.10, every fibred-Zo-symmetric Lagrangian germ admits a generating
function-germ S = S(k s, Ar) which is odd in &7, with the minimal number of pathological
arguments ;. This number is equal to the dimension of the kernel of the differential of
the Lagrangian map-germ. We fix the set x; of n pathological arguments. By Remark 4.8,
we obtain that the Lagrangian map-germ is given in terms of F' by X(F) 3 (8,A) — A €
R™.

A vector 7 is tangent to X(F) at (0,0) if d(g—g)\(o,o) (n) = 0 and 7 is in the ker-
nel of the Lagrangian germ if dA|( 0)(n) = 0. This implies that d3(n) is in the kernel
of the map ‘?;TI;(O,O) : R™ — R™. But since F' is odd, %(—5,)\) = 7?925(5,,\),
thus ‘gZTI;(O, A) = 0 and therefore the image of the kernel of the Lagrangian map un-
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der the linear map dB : R™™ — R™ is the whole space R"™. But ks are fixed n
pathological arguments. Thus the image of the kernel of the Lagrangian map under
the linear map dry = d(aTFJ)(O,O) : R*M™ — R™ is m-dimensional. But we have
dkg(n) = aﬁw\J (0,0)d3(n), because dAj(n) = 0. Hence, if F' is odd then

02F
det 7oy (0:0) £0. (6.1)

An odd generating family F is called special if for ‘g—g(ﬁ, A) = 0 the condition =
aaTC(B ,A) is fulfilled. We then have the following lemmas.

Lemma 6.1. The germ of an odd generating family is fibred R°%-equivalent to the germ
of a special odd generating family of the same Lagrangian germ.

Proof of Lemma 6.1. We follow the proof of Lemma 1 in Section 19.5 [2]. Since F is odd
the condition (6.1) is fulfilled. Hence the map-germ ¥ (5, \) = ((%—i(ﬂ, A),A) is a fibred
diffeomorphism-germ of the big space. Since F' is odd in 8, ¥ is also odd in S. The
germ F is fibred R°-equivalent to the germ of an odd generating family Fy(3,)\) =
F(U~=1(B,))). It is easy to check that F} is special and it generates the same Lagrangian
germ (see [2] for details). O

Lemma 6.2. The germs of special odd generating families, determining the same
fibred-Z.o-symmetric Lagrangian germ, are fibered R -equivalent.

Proof of Lemma 6.2. From [2, Section 19.5 (D)(d)], any two special generating families
Fy, Fy of the same Lagrangian germ have the same set of critical points 3(Fp) = 3(Fy) =
Y, the restrictions of Fjy and F; to X coincide up to an additive constant and the total
differential of Fy — Fy is equals to 0 on the whole of . Let Fy and Fy be two special odd
generating families of the same fibred-Zo-symmetric Lagrangian germ. Since Fy, F; are
odd, we have Fy(0,0) = F1(0,0) = 0. Thus Fj — F has zero of not less than second order
on Y. We use the homotopy method. Let Fy = Fy + t(Fy — Fp) for t € [0,1]. Then Fy
is a special odd generating family of the same Lagrangian germ. We shall find a family
U (B, A) = (P4(5, M), A) of odd diffeomorphisms in S, smoothly depending on ¢ € [0, 1],
such that

Ft o \Ilt = _F‘()7 \IIO = Id]Rn-%—m. (62)

The diffeomorphism-germ ¥, establishes fibred R°%-equivalence of Fy and Fy. Differ-
entiating (6.2) with respect to ¢ we obtain the equation

OF;

Fl(ﬂa ) FO /87 +Z€l 57>\t 851

“L3,0) = 0. (6.3)
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Let © : R"™™ x [0,1] — R"™ x [0,1] be the map-germ ©O(S,\s, A1, t)
(ﬂ,%(ﬂ, A), Ar,t). Since F} is odd, %_1; is even and (6.1) holds. Hence, O is
dlﬁ'eomorphlbm—germ, 0 1(B,v,A1,t) = (B,7(B,v,A1,t), Ar,t) and ~v(—f,v, A, 1)

v(B,v,A1,t). Let H be the family of function-germs on R"*™

I o

H(ﬂ7v7>\l7t) = F0(557(57va)‘17t)7>‘1) 7F0(Ba’7(ﬂav7)\l7t)7)\1)'

Then H is odd in 8 and H(S, 2% 7 (B,A),Ant) = Fo(B,A) — F1(8,A). It implies that
H(B,0,A1,t) = (Fo(B,\) — F1(B, ))|E = 0. Let h(s) = H(B, sv, A1, t) for s € [0, 1]. Thus

h(1) — h(0) = f, 9 (s)ds. Hence

1
- aH
HB ot =Y v [ 5650 00ds.
=1 0 v

If we put v = %—%(ﬁ,/\) we get
FolB,)) - Fa(B, \) Z&@Afmwm, (6.4)

where & (5, A\, t) = 01 g—g(ﬁ, 9F, (57 A), A, t)ds for i = 1,--- ,n. It is easy to see that
(=B, A\ t) = =&(B, \1). Since the total differential of Fy — F; vanishes on the whole
of ¥ = 3(F}), by (6.4) we have §|x =0 fori=1,-

Thus, the vector field (8, A, t) = > 1| & (B, A t) dependmg on t takes value 0 on
Y and is odd in 8. Hence £ induces a dlffeomorphlsm ¥, in the neighborhood of (0,0)
for all t € [0, 1], which satisfies the ODE system

dv,

! (6.5)

From the form of £(53, A, t), the diffeomorphism ¥, has form W, (8, A) = (P+(5, \), \).
The maps y(t) = U (—5,A) and z(t) = (—P+(5, \), A) satisfy the system (6.5) with the
same initial condition y(0) = z(0) = (=8, A). By the uniqueness of the solution of the
initial value problem, ®;(—3,\) = —®;(5,A). Hence ®; is odd in 3. Thus, the fibered
odd diffeomorphism-germ W, satisfies F; o ¥; = F{y. Consequently, F; and Fj are fibered
Re_equivalent. O

Then, by Lemmas 6.1-6.2 we obtain that any two odd generating families of the same
fibred-Z,-symmetric Lagrangian submanifold-germ L are fibred R°%-equivalent, which
finishes the proof of Theorem 4.17.
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