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GLOBAL SURFACES OF SECTION FOR REEB FLOWS IN
DIMENSION THREE AND BEYOND

Pedro A. S. Salomao and Umberto L. Hryniewicz

Abstract

We survey some recent developments in the quest for giobal surfaces of section for
Reeb flows in dimension three using methods from Sympiectic Topology. We focus on
applications to geometry, including existence of ciosed geodesics and sharp systolic
inequalities. Applications to topology and ceiestial mechanics are also presented.

Dedicated to the memory of Professor Kris Wysocki

1 Introduction

The idea of a global surface of section goes back to Poincaré and the planar circular re-
stricted three-body probicm.

Definition 1.1. Lei ¢ be a smooth flow on a smooth closed 3-manifold M . An embedded
surface ¥ — M is a global surface of section for ¢' if:

(i) Each component of 0% is a periodic orbit of ¢".
(ii) ¢! is transverse to ¥\ 0X.

(iii) Forevery p € M \ 0% there exist ty > 0 and t— < 0 such that '+ (p) and "= (p)
belong to ¥\ 0%.

Every p € 3\ 0% has a first return time t(p) = inf{t > 0 | ¢'(p) € X} and the
dynamics of the flow are encoded in the first return map

(1 YT\ 0E > X\, y(p) =¢"P(p).

In Poincaré [1912] Poincaré described annulus-like global surfaces of section for the
planar circular restricted three-body problem (PCR3BP) for certain values of the Jacobi
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constant and mass ratio. Poincaré’s global sections motivated his celebrated last geometric
theorem. The associated first return map preserves an area form, extends up to boundary,
and satisfies a twist condition in the range of parameters considered. The exciting dis-
covery made by Poincaré was that the twist condition implies the existence of infinitely
many periodic points, i.e., infinitely many periodic orbits for the PCR3BP. In one stroke
Poincaré gave a strong push towards a qualitative point of view for studying differential
equations, and stated a fixed point theorem intimately connected to the Arnold conjectures
and the foundations of Floer Theory.

The recent success of Floer theory and other methods from Symplectic Geometry prompted
Hofer to coin the term Symplectic Dynamics Bramham and Hofer {2012]. In this note we
are concerned with the success of these methods to study Reeb flows in dimension three,
with an eye towards applications to geometry.

Our first goal is to discuss existence results for global sections. This will be done
in Section 2. After stating Birkhoff’s theorem, we focus on Hofer’s theory of pseudo-
holomorphic curves Hofer [1993]. We survey seme published and also some unpublished
results, without giving proofs.

Section 3 is devoted to some applications to systolic geometry that were obtained in
collaboration with Abbondandolo and Bramham. We will explain how global surfaces of
section open the door for symplectic methods in the study of sharp systolic inequalities.
We focus on Riemannian two-spheres and on a special case of a conjecture of Viterbo.
In Section 4 we present the planar circular restricted three-body problem in more detail.
A conjecture due to Birkioft on the existence of disk-like global surfaces of section for
retrograde orbits is discussed.

We intend to convince the reader that there are many positive results for global sections
in large classes ot flows. However, there are situations where it might be hard to decide
whether they exist or not. In sections 5 and 6 we discuss results designed to handle some
of these situations. In Section 5 we present deep results of Hofer, Wysocki, and Zehn-
der [2003] concerning the existence of transverse foliations, and its use in the study of
Hamiltonian dynamics near critical levels. In Section 6 we present a Poincaré-Birkhoff
theorem for tight Reeb flows on 3 proved in Hryniewicz, Momin, and Salomao [2015].
It concerns Reeb flows with a pair of closed orbits exactly as those in the boundary of
Poincaré’s annulus, i.e. forming a Hopf link.

The appendix discusses a new proof of the existence of infinitely many closed geodesics
on any Riemannian two-sphere, which is alternative to the classical arguments of Bangert
[1993] and Franks [1992]. It relies on the work of Hingston [1993].
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2 Existence results for global surfaces of section

Poincaré constructed his annulus map for a specific family of systems close to integrable'.
One of the first statements for a large family of systems which can be quite far from
integrable is due to Birkhoff.

Theorem 2.1 (Birkhoff [1966]). Let y be a simple closed geodesic of a positively curved
Riemannian two-sphere. Consider the set A, of unit vectors along y pointing towards
one of the hemispheres determined by y. Then A, is a global surface of section for the
geodesic flow.

In other words, every geodesic ray not contained in y visits both hemispheres infinitely
often. We call the embedded annulus A, the Birkhoff aininuius. The family of geodesic
flows on positively curved two-spheres is large, making the above statement quite useful.
The proof heavily relies on Riemannian geometry and sheds little light on the general
existence problem.

A very general theory to attack the existence problem of global surfaces of section ex-
ists, and nowadays goes by the name of Schwartzman-Fried-Sullivan theory, see Ghys
[2009] or the original works Fried [1982], Schwartzman [1957], and Sullivan [1976]. It
produces beautiful theorems with stroing conclusions for general flows in dimension three,
or even in higher dimensions. The drawback is that these conclusions often require hy-
potheses which are hard to chieck, limiting the range of applications. This should not be a
surprise because the set of all flows on a 3-manifold is just too wild.

Hofer’s pseudo-holoracprhic curve theory deals with the more restrictive class of Reeb
flows. However, the results obtained require more reasonable hypotheses which one can
often check, as we intend to demonstrate in the next paragraphs. It is often the case that
results apply automatically for classes of Reeb flows that are large enough to provide
applications it topology and geometry. Consider R* with coordinates (x1, y1, X2, y2) and
its standard symplectic form wy = Zi:l dx; A dyj. Here are two examples of such
unconditional theorems.

Theorem 2.2 (Hofer, Wysocki, and Zehnder [1998]). The Hamiltonian flow on a smooth,
compact and strictly convex energy level in (R*, wq) admits a disk-like global surface of
section.

We see Theorem 2.2 as one of the pinnacles of Symplectic Dynamics, it is the guiding
application of this theory to the study of global surfaces of section. All results to be dis-
cussed in this section are proved using the methods from Hofer, Wysocki, and Zehnder
[ibid.].

! Angular momentum is preserved in the rotating Kepler problem.



940 PEDRO A. S. SALOMAO AND UMBERTO L. HRYNIEWICZ

Theorem 2.3 (Hryniewicz [2012, 2014]). A periodic orbit of the Hamiltonian flow on a
smooth, compact and strictly convex energy level in (R*, wy) bounds a disk-like global
surface of section if, and only if, it is unknotted and has self-linking number —1.

To explain the connection between the above statements and Reeb flows, and to de-
scribe further results of this theory, we need first to review basic notions. A contact form
A on a 3-manifold M is a 1-form such that A A d A defines a volume form. Its Reeb vector
field R is implicitly defined by

) dA(Ry,) =0,  A(Ry)=1.

The distribution § = ker A is a contact structure, the pair (37,&) is a contact manifold.
More precisely, these are the co-orientable contact manifoids since A orients TM /&. We
only work here with co-orientable contact structures. By a Reeb flow on (M, &) we mean
one associated to a contact form A on M such that § = ker A. Contact manifolds are the
main objects of study in contact topology. O interest here is shifted towards dynamics.

A knot is called transverse if at every point its tangent space is transverse to the contact
structure. A transverse knot with a Seifert surface has a self-linking number, which is
invariant under transverse isotopies. it is defined as follows: choose a non-vanishing
section of the contact structure aiong the Seifert surface, then use this section to push the
knot off from itself, and finaily count intersections with the Seifert surface. The vector
bundle (§,dA) is symplectic and has a first Chern class ¢, (§) € H2(M;Z). 1f ¢1(§)
vanishes on Ho (M ; 7} ihen the self-linking number does not depend on the Seifert surface.
The book Geiges [2008] by Geiges is a nice reference for these concepts.

Finally, we describe the Conley-Zehnder index in low-dimensions following Hofer,
Wysocki, and Zehnder [2003]. Let y be a periodic trajectory of the flow ¢’ of the Reeb
vector field R, and let T > 0 be a period of y. Since (¢*)*A = A, we get a path of d A-
symplectic linear maps d¢’ : &,(0) — &,(1). The orbit y is called degenerate in period
T if 1 is an eigenvalue of d¢p” : &y(0) = &y(0), otherwise it is called non-degenerate in
period T'. The contact form A is called non-degenerate when every periodic trajectory is
non-degenerate in every period. When T is the primitive period we may simply call y
degenerate or non-degenerate accordingly.

Since T is a period, we get a well-defined map y : R/TZ — M still denoted by
y without fear of ambiguity. Choose a symplectic trivialization ® of y*£. Then the
linearized flow d¢’ : £,(0) — &) gets represented as a path of symplectic matrices
M : R — Sp(2) satisfying M(0) = I, M(t + T) = M(t)M(T) Vt. For every
non-zero u € R? we write M (t)u = (r(t)cos(t),r(t)sin0(t)) in polar coordinates,
for some continuous lift of argument 6 : R — R, and define the rotation function

Ay R2)\ {(0,0)} - Rby Ap(u) = w. The image of Ay is a compact
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interval of length strictly less than 1/2. The rotation interval Jps is defined as the image
of AM.

Consider the following function fi(J) defined on closed intervals J of length less than
1/2. IfdJ NZ = @ then set i(J) = 2k when k € J, or i(J) = 2k + 1 when
J C (k,k+1). IfoJ NZ # & then set i(J) = limeg+ fi(J — €). The Conley-
Zehnder index can be finally defined as CZ®(y, T) = ji(Jar). We omit the period when
it is taken to be the primitive period. If ¢ (€) vanishes on spheresand y : R/TZ — M is
contractible then we write CZ%** for the index computed with a triviaiization that extends
to a capping disk.

The Conley-Zehnder index is an extremely important tool. It is related to Fredholm
indices of solutions of many of the elliptic equations from Symplectic Topology, in par-
ticular to dimensions of moduli spaces of holomorphic curves.

Definition 2.4 (Hofer, Wysocki and Zehnder). A contact form A on a 3-manifold M is
dynamically convex if c1 (ker )k) vanishes on spheres and contractible periodic Reeb orbits
Y :R/TZ — M satisfy CZ%(y, T) > 3.

The terminology is justified as follows. The standard contact structure &y on the unit
sphere §3 C R* is defined as the kernel of 1o = § 3°5_, x;dy; — y;dx; restricted to S°.
More generally, A restricts to a coniact form on any smooth, compact hypersurface S in
(R*, wp) that is (strictly) star-shaped with respect to the origin. The associated Reeb flow
reparametrizes the Hamiltonian fiow on S for any Hamiltonian realizing S as a regular
energy level. Moreover, it is smoothly conjugated to a Reeb flow on (S3, &). Conversely,
every Reeb flow on (53, &) is smoothly conjugated to the Reeb flow of Aq restricted to
some S. When S is strictly convex we get dynamical convexity in view of

Theorem 2.5 (Hofer, Wysocki, and Zehnder [1998]). The Hamiltonian flow on a smooth,
compact and strictly convex energy level in (R*, w) is smoothly conjugated to a dynami-
cally convex Reeb flow on (S3, &).

A Reeb flow will be called dynamically convex when it is induced by a dynamically
convex contact form. The next result and Theorem 2.5 together imply Theorem 2.3.

Theorem 2.6 (Hryniewicz [2012, 2014]). Let y be a periodic orbit of a dynamically con-
vex Reeb flow on (S3, &y). Then y bounds a disk-like global surface of section if, and only
if, it is unknotted and has self-linking number —1. Moreover, such an orbit binds an open
book decomposition whose pages are disk-like global surfaces of section.

These statements are powered by a non-trivial input.

Theorem 2.7 (Hofer, Wysocki, and Zehnder [1996b]). Any Reeb flow on (S3, &) has an
unknotted periodic orbit with self-linking number —1.
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Putting together theorems 2.6 and 2.7 we obtain a more general version of Theorem 2.2.

Theorem 2.8 (Hofer, Wysocki, and Zehnder [1998]). Any dynamically convex Reeb flow
on (S3, &) admits a disk-like global surface of section.

Global sections open the door for tools in two-dimensional dynamics. Here is a strong
application in this direction taken from Hofer, Wysocki, and Zehnder [ibid.]. The return
map of the disk obtained from Theorem 2.8 preserves an area form with finite total area.
Brouwer’s translation theorem provides a periodic orbit simply linked to the boundary of
the disk. If the fixed point corresponding to this orbit is removed then we end up with a
return map on the open annulus. Results of John Franks [1992] complete the proof of the
following statement.

Corollary 2.9 (Hofer, Wysocki, and Zehnder [1998]). Dynamically convex Reeb flows on
(S3,&q) admit either two or infinitely many periodic orbits.

To push Theorem 2.6 beyond dynamical convexity one needs to introduce linking as-
sumptions with certain periodic orbits. This is aligned to Schwartzman-Fried-Sullivan
theory where one makes linking assumptions with invariant measures.

Theorem 2.10 (Hryniewicz, Licata, and Salomao [2015] and Hryniewicz and Salomao
[2011]). A periodic orbit y of a Reeb flow on (S3, &y) binds an open book decomposition
whose pages are disk-like glcba! surfaces of section if it matches the following conditions:

(a) y is unknotted, has self-linking number —1 and satisfies CZY(y) > 3.

(b) y is linked to ail periodic orbits Y :R/TZ — S3\y such that either CZ%(y’, T) =
2, or CZ¥*(y' T) = 1 and y' is degenerate in period T .

Conversely, if y is non-degenerate (in its primitive period) then these assumptions are
necessary for y to bound a disk-like global surface of section.

After all these results on the 3-sphere we would like to discuss more general Reeb
flows. Can we recover and generalize Birkhoff’s Theorem 2.1? To make a statement in
this direction we need to recall a few concepts.

The notion of fibered link has a contact topological analogue. If A is a contact form
and L is a transverse link then the right notion of fibered is that L binds an open book
decomposition satisfying

(i) dA is an area form on each page, and

(ii) the boundary orientation induced on L by the pages oriented by d A coincides with
the orientation induced on L by A.
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Such an open book is said to support the contact structure § = ker A. We may call them
Giroux open books because of their fundamental role in the classification of contact struc-
tures due to Giroux [2002]. An open book decomposition is said to be planar if pages
have no genus. A contact structure orients the underlying 3-manifold by A A d A, where
A is any defining contact form. A global surface of section will be called positive if the
orientation induced on it by the flow and the ambient orientation turns out to orient its
boundary along the flow.

Theorem 2.11. Let (M, £) be a closed, connected contact 3-manifold. Letthe link L C M
bind a planar Giroux open book decomposition © of M. Denote by f € Ho(M, L;Z)
the class of a page of ©, and by y1, ..., vy, the components of 1.. Let the contact form A
define & and realize L as periodic Reeb orbits, and consider ihe following assertions:

(i) L bounds a positive genus zero global surface of seciion for the A-Reeb flow repre-
senting the class f.

(ii) L binds a planar Giroux open book whose pages are global surfaces of section for
the A-Reeb flow and represent the class f.

(iii) The following hold:
(a) CZ®(yx) > 0 for all .

(b) Every periodic A-Rzeb orbitin M \ L has non-zero intersection number with
f.

Then (iii) = (ii) = (i). Moreover, (i) = (iii) provided a certain C°°-generic condition
hold.

In (iii-a) CZ9{yy ) is the Conley-Zehnder index of yy in its primitive period computed
with a trivialization aligned to the normal of a page of ©. The genericity needed for (i)
= (iii) is implied by non-degeneracy of the contact form. Theorem 2.11 is fruit of joint
work with Kris Wysocki and will be proved in Hryniewicz, Salomao, and Wysocki [n.d.].
It heavily relies on Siefring’s intersection theory Siefring [2011].

As a first test note that Birkhoff’s Theorem 2.1 follows as a consequence. Indeed, the
unit sphere bundle of S? has a contact form induced by pulling back the tautological 1-
from on T*S? via Legendre transform. Reeb flow is geodesic flow. A simple closed
geodesic lifts to two closed Reeb orbits, which form a link that binds a supporting open
book. Pages are annuli that are isotopic to the Birkhoff annulus. Positivity of the curva-
ture and the Gauss-Bonnet theorem imply that (iii-a) and (iii-b) hold. Birkhoff’s theorem
follows.

Theorem 2.11 has applications to Celestial Mechanics. The following statement is the
abstract result needed for these applications. The standard primitive 1o of w is symmetric
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by the antipodal map. Identifying antipodal points we obtain RP3 = §3/{41}. The
restriction of Ay to S3 descends to a contact form on R P? defining its standard contact
structure, still denoted &y. The Hopf link

70:{(x1,y1,xQ,y2) €S3|x1 =y;=00rxy =yy =0}

is antipodal symmetric and descends to a transverse link /y on R P3. Any transverse link
in (RP3, &) transversely isotopic to /o will be called a Hopf link. Ary transverse knot in
(RP3, &) transversely isotopic to a component of /o will be called = Hopf fiber.

Theorem 2.12 (Hryniewicz and Salomao [2016], Hryniewicz, Salomao, and Wysocki
[n.d.]). Consider an arbitrary dynamically convex Reeb flow on (R P3, £y). Any periodic
orbit which is a Hopf fiber binds an open book decompesition whose pages are rational
disk-like global surfaces of section. Any pair of periodic orbits forming a Hopf link binds
an open book decomposition whose pages are anni:lus-like global surfaces of section.

These techniques have applications to existence of elliptic periodic orbits. A periodic
orbit is elliptic if all Floquet multipliers Jie in the unit circle.

Theorem 2.13 (Hryniewicz and Salomao [2016]). Any Reeb flow on (R P2, &q) which is
sufficiently C *°-close to a dynenriically convex Reeb flow admits an elliptic periodic orbit.
This orbit binds a rational cpei book decomposition whose pages are disk-like global
surfaces of section. Its double cover has Conley-Zehnder index equal to 3.

When combined with a result of Harris and Paternain [2008] relating pinched flag
curvatures to dynamical convexity, Theorem 2.13 refines the main result of Rademacher
from Rademacher [2007].

Corollary 2.14. Consider a Finsler metric on the two-sphere with reversibility r. If all
flag curvatures lie in (r?/(r + 1)2, 1] then there exists an elliptic closed geodesic. More-
over, its velocity vector defines a periodic orbit of the geodesic flow that bounds a rational
disk-like global surface of section. A fixed point of the return map gives a second closed
geodesic.

We end this section with a topological application. We look for characterizations of
contact 3-manifolds in terms of Reeb dynamics, motivated by early fundamental results
of Hofer, Wysocki, and Zehnder [1995a, 1999a].

Identify R* ~ C2 by (x1,y1,X2,y2) =~ (21 = X1 + iy1,22 = Xo + iys) and
fix relatively prime integers p > ¢ > 1. The action of Z/pZ generated by the map
(z1.29) F> (e/?7/Pzy,e!?74/Pz,) is free on S3, and the lens space L(p, ¢) is defined as
its orbit space. The 1-form Ao = 3 Z?:l x;dy; — y;dx; is invariant and descends to a
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contact form on L(p, q). The induced contact structure is called standard, we still denote
it by &y with no fear of ambiguity.

A knot K on a closed 3-manifold M is p-unknotted if there is an immersion u : D —
M such that u|p\sp defines a proper embedding D \ dD — M \ K, and u|yp defines a p-
coveringmap dD — K. The map u is called a p-disk for K. The Hopffiber S'x0 C S3is
Z/ pZ invariant and descends to the simplest example of a p-unknotted knot in L(p, q).
The case p = 2 has the following geometric meaning: if we identify L(2,1) with the
unit tangent bundle of the round two-sphere then the velocity vector of a great circle is
2-unknotted.

In the presence of a contact structure a transverse p-unknotted knot has a rational self
linking number. In the examples given above the knots are transverse and their rational
self-linking numbers are equal to —1/p. These notions play a role in the following dy-
namical characterization of standard lens spaces.

Theorem 2.15 (Hofer, Wysocki, and Zehnder [1995a, 1999a] and Hryniewicz, Licata, and
Saloméo [2015]). Let (M, ) be a closed connecied contact 3-manifold, and let p > 1 be
an integer. Then (M, &) is contactomorphic tc some (L(p, q), &) if, and only if, it carries
a dynamically convex Reeb flow with a p-unknotted self-linking number —1/ p periodic
orbit.

This is a special case of more general statements where linking assumptions with cer-
tain periodic orbits are used. The existence of a p-unknotted self-linking number —1/p
periodic orbit implies that (M, &) = (L(p, q), &0)#(M’, £’) for some contact 3-manifold
(M',&'). Dynamical convexity forces (M',£') = (S3, &).

Using that (L (2, 1), &) is contactomorphic to the unit sphere bundle of any Finsler met-
ric on 2 we get a geometric application. Consider the set & of immersions S — §?2 with
no positive self-tangencies. Two immersions are declared equivalent if they are homotopic
through immevsions in &. This defines an equivalence relation ~ and an element of &/ ~
will be called a weak flat knot type. This notion is related to Arnold’s J *-theory of plane
curves. Note that a closed geodesic on a Finsler two-sphere has a well-defined weak flat
knot type. Let kg be the weak flat knot type of a curve with precisely one self-intersection
which is transverse. Clearly there are curves representing kg with an arbitrarily large num-
ber of self-intersections.

Theorem 2.16 (Hryniewicz and Salomao [2013]). Ifa Finsler two-sphere with reversibil-
ity r has flag curvatures in (r?/(r + 1)2, 1] then no closed geodesic represents k.

This statement follows from Theorem 2.15. In fact, the pinching of the curvature forces
dynamical convexity (Harris and Paternain [2008]), and the velocity vector of a closed
geodesic of type kg is unknotted with self-linking number —1 in the unit sphere bundle.
Since R P3 is not the 3-sphere we conclude that such a closed geodesic does not exist.
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3 Global surfaces of section applied to systolic geometry

Our first goal in this section is to explain how Birkhoff’s annulus-like global surfaces
of section (Theorem 2.1) allow for the possibility that symplectic and Riemannian meth-
ods be combined to get sharp systolic inequalities on the two-sphere. Our second goal is
to describe how disk-like global surfaces of section can be used to prove a special case
of Viterbo’s conjecture Viterbo [2000]. The results described here were obtained in col-
laboration with Alberto Abbondandolo and Barney Bramham Abbondandolo, Bramham,
Hryniewicz, and Salomdo [2017a, 2018, 2017b,c].

The 1-systole sys; (X, g) of a closed non-simply connected Riemannian manifold (X, g)
is defined as the length of the shortest non-contractible loop. Sysiolic geometry has its ori-
gins in the following results.

Theorem 3.1 (Lowner). The inequality (sys,)?/Arca < 2/+/3 holds for every Rieman-
nian metric on the two-torus. Equality is achieved precisely for the flat torus defined by
an hexagonal lattice.

Theorem 3.2 (Pu). The inequality (sys, )?/Area < /2 holds for every Riemannian met-
ric on RP2. Equality is achieved precisely for the round geometry.

Systolic geometry is a huge and active field, it developed quite a lot since the results
of Lowner and Pu. We emphasizc Gromov’s celebrated paper Gromov [1983].

To include simply connected manifolds one considers the length £, (X, g) of the short-
est non-constant closed geodesic of a closed Riemannian manifold (X, g). The systolic
ratio is defined by

(Lmin(X, g))"

Vol(X, g) (n =dimX)

3) Psys(X» g) =
The systolic ratio of two-spheres is far from being well understood. An important
statement is due to Croke.

Theorem 3.3 (Croke [1988]). The function g > psys(S?, g) is bounded among all Rie-
mannian metrics on S2.

In view of Pu’s inequality it is tempting to hope that a round two-sphere (52, g¢) maxi-
mizes the systolic ratio. Its value is psys(S?, go) = 7. However, the Calabi-Croke sphere
shows that the supremum of pgys(S?2, g) is at least 24/3 > 7. This is a singular metric con-
structed by glueing two equilateral triangles along their sides to form a “flat” two-sphere.
It can be approximated by smooth positively curved metrics with systolic ratio close to

24/3.
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Question 1. What is the value of sup g2 ¢ psys(S?2, g)? Are there restrictions on the kinds
of geometry that approximate this supremum?

It has been conjectured that the answer to Question 1 is 24/3. In Balacheff [2010]
Balacheff shows that the Calabi-Croke sphere can be seen as some kind of local maximum
if non-smooth metrics with a certain type of singular behavior are included.

A Zoll metric is one such that all geodesic rays are closed and have the same length. It
is interesting that all Zoll metrics on S 2 have conjugated geodesic flows. and have systolic
ratio equal to 7.

It becomes a natural problem that of understanding the geometiy of the function pgys
near (S2, go). This problem was considered by Babenko and studied by Balacheff. In Bal-
acheff [2006] Balacheff shows that (S, g¢) can be seen as a critical point of Psys and
conjectured that it is a local maximum. We will refer te this conjecture as the Babenko-
Balacheff conjecture.

Contact geometry is a natural set-up to study systolic inequalities. This point of view
was advertised and used by Alvarez Paiva and Balacheff [2014]. Let o be a contact form
on a closed manifold M of dimension 27 — ! criented by a A (da)"~!. We denote by
Tin(M, ) the minimal period among clased orbits of the Reeb flow. Existence of closed
orbits is taken for granted. The contact voiume of (M, o) is defined as

Voi(M, «) ::/ a A (da)*?
M

and the systolic ratio of (M, «) as

(M, ) Toin(M, )"
Sys ’ o) = ———F——
Py Vol(M, )
Note that pgy, (M, ) is invariant under re-scalings of o.

To see the connection to systolic geometry, consider a Riemannian n-manifold (X, g).
The pull-back of the tautological form on 7* X by Legendre transform restricts to a contact
form ag on the unit sphere bundle 7' X . Since the Reeb flow of o, is the geodesic flow of
g, we get Toin(T1 X, ag) = Limin(X, g). It turns out that Vol(X, g) and Vol(T' X, a ) are
proportional by a constant depending only on n. Hence psys(T' X, ag) = Cy poys(X, g)
for every Riemannian metric g on X, where C,, depends only on 7.

A Zoll contact form is one such that all Reeb trajectories are periodic and have the same
period. These are usually called regular in the literature, but we prefer the term Zoll in
view of the above connection to the Riemannian case.

A convex body in R?" is a compact convex set with non-empty interior. In Viterbo
[2000] Viterbo conjectured that

c(K)" 1

) nIVol(K) —
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holds for every convex body K C R?" and every symplectic capacity ¢, where Vol(K)
denotes euclidean volume. We end by discussing a special case of the conjecture. Let
K be a convex body in (R?", wg) with smooth and strictly convex boundary, with the
origin in its interior. Denote by ¢ : dK — R?" the inclusion map, and by A the stan-
dard Liouville form A9 = 1 Z'}:l x;jdy; — yjdx;. Then t*Ag is a contact form on JK.
In Hofer and Zehnder [1994] it is claimed that the Hofer-Zehnder capacity of K is equal
t0 Tmin (0K, t*Ag). In this case (4) is restated as

(5) psys(aK,L*Ao) < 1

which is supposed to be an equality if, and only if, t* A is Zoll

Having described our problems, we move on to state some results. Recall that for
8 € (0, 1], a positively curved closed Riemannian manifold is said to be §-pinched if the
minimal and maximal values Kin, Kmax Of the secticnal curvatures satisfy Kmin/ Kmax >
8. On a positively curved two-sphere we write £, for the length of the longest closed
geodesic without self-intersections. Note that ¢, is finite.

Theorem 3.4 (Abbondandolo, Bramham, Hryniewicz, and Salomao [2017a]). If (S2, g)
is 8-pinched for some § > (4 + /7)/8 = 0.8307... then Lyin(S?, g)? < wArea(S?, g) <
Lax (S2, g)2. Moreover, any of these inequalities is an equality if, and only if, the metric
is Zoll.

This first inequality confirtizs the Babenko-Balacheff conjecture on an explicit and
somewhat large C2-neighborhood of the round geometry. It seems that the upper bound
involving £,.x was nct known before.

We discuss some related problems before explaining the role of global surfaces of sec-
tion in the proof of Theorem 3.4. The pinching constant § seems to be a helpful parameter.
For instance, one could consider the non-increasing bounded (Theorem 3.3) function

p:(0,1] >R p(8) = sup{psys(S2, g) | (S?, g) is 8-pinched}
to study the positively curved case.
Question 2. Is it true that p(1/4) = n? What does the graph of p(8) look like?

The Calabi-Croke sphere shows that limg_, o+ p(8) > 24/3. Theorem 3.4 implies that
p(8) = m forall § > (4 + +/7)/8. One must try to understand among which metrics
does the round metric maximize systolic ratio. Assuming positive curvature it might be
reasonable to expect that inf{5 | p(§) = 7} < 1/4.

If curvature assumptions are dropped then the situation might be much harder. What
about symmetry assumptions? Here is a result in this direction that answers a question by
Alvarez-Paiva and Balacheff.
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Theorem 3.5. Inequality psys < 7 holds for every sphere of revolution, with equality
precise when the metric is Zoll.

Global surfaces of section show up in the proofs of theorems 3.4 and 3.5 to connect sys-
tolic inequalities to a quantitative fixed point theorem for symplectic maps of the annulus.
We outline the proof to make this point precise.

Let (S2, g) be §-pinched. If § > 1/4 then £n;, is only realized by simple closed
geodesics. Let y be a closed geodesic of length £,;,. By Theorem 2.1 the Birkhoff annu-
lus A, is a global surface of section. Let A be the 1-form on A, given by restricting the
contact form g. Then d A is an area form on the interior of A, and vanishes on 04, . The
total d A-area of A, is 2 min.

The first return map ¥ and the first return time 7 are defined on the interior of 4,,, but it
turns out that they extend smoothly to 4,. Moreover, ¥ preserves boundary components.
Santald’s formula reads

(6) 2w Area(S?, g) = / 2 Adog = / Td)
T18? Ay

Since v preserves the 2-form d A, it foliows that ¢*A — A is closed.

We now need to consider lifts of 3 to the universal covering of A,. If ¢ admits a lift
in the kernel of the FLUX homomorphism then ¥ *A — A is exact. The unique primitive
o of Y*A — A satisfying

v(p)
a(p):/ A Vpeod,
p

is called the aciisn of . Here the integral is taken along the boundary according to the
lift with zerc FLUX. The Calabi invariant is defined as

1 1
CAL(Y) = ——— di = dA
(w) fAy dar Ay ? 2Zmin /:4)/ ?

Of course, we need to worry about whether ¥ admits a lift of zero FLUX, but this follows
from reversibility of the geodesic flow.

It is a very general fact that t is also a primitive of ¢/*A — A. Toponogov’s theorem
proves that if § > 1/4 then

(7) T=0+ emin
Combining (7) with (6) we finally get

®) 2 Area(S2, g) = 2(€min)? + 2€minCAL (V)
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Equations (7) and (8) should be seen as some kind of dictionary between geometry and
dynamics: action corresponds to length, Calabi invariant corresponds to area.

We are now in position to make the link to the quantitative fixed point theorem and
conclude the argument. Roughly speaking, the theorem states:

If ¥ admits a generating function (of a specific kind), CAL(Y¥) < 0and ¢ # id, then
there exists a fixed point pg satisfying o(pg) < 0.

Arguing indirectly, suppose that either 7Area < (€yin)?, or wArea = ({yin)? and
g is not Zoll. Tt follows from (8) and a little more work that either CAL(y/) < 0, or
CAL(y) = 0 and  is not the identity. Toponogov’s theorern comes into play again to
show that ¥ admits the required generating function provided § > (4 4+ +/7)/8. The
fixed point theorem applies to give a fixed point of negative action. By (7) this fixed point
corresponds to a closed geodesic of length strictly smualler than £y, This contradiction
finishes the proof.

The above argument reveals how global surfaces of section can serve as bridge between
systolic geometry and symplectic dynamics. The same strategy proves a special case of
Viterbo’s conjecture in dimension 4.

Theorem 3.6 (Abbondandolo, Bramhaim, Hryniewicz, and Salomao [2018]). There exists
a C3-neighborhood UL of the space of Zoll contact forms on S such that « € U =
Psys(S3, &) < 1 with equelity if” only if, o is Zoll.

The proof again strongly relies on global surfaces of sections. Namely, if a contact
form is C3-close to the standard contact form A then its Reeb flow admits a disk-like
global surface of section whose first return map extends up to the boundary and is C*-
close to the identity. We have a dictionary between maps and flows just as in the proof of
Theorem 3.4: contact volume corresponds to Calabi invariant, return time corresponds to
action. The quantitative fixed point theorem applies to give the desired conclusion.

One could see the constants in sharp systolic inequalities for Riemannian surfaces as
invariants. Similarly, one could hope to construct contact invariants from sharp systolic
inequalities for contact forms. The following statement shows that this is not possible in
dimension three: systolic inequalities are not purely contact topological phenomena. For
example, inequalities such as (5) must depend on the convexity assumption.

Theorem 3.7 (Abbondandolo, Bramham, Hryniewicz, and Salomao [2018, 2017b]). For
every co-orientable contact 3-manifold (M, §) and every ¢ > 0 there exists a contact form
o on M satisfying & = kero and psys(M, ) > c.

Hofer, Wysocki, and Zehnder [1999a, 1998] introduced the notion of dynamically con-
vex contact forms, see Section 2 for a detailed discussion. It plays a crucial role in the
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construction of global surfaces of section (theorems 2.6, 2.8). Dynamical convexity is
automatically satisfied on the boundary of a smooth convex body with strictly convex
boundary. It becomes relevant to decide whether (5) holds for dynamically convex con-
tact forms on S3.

Theorem 3.8 (Abbondandolo, Bramham, Hryniewicz, and Salomao [2017c¢]). Given any
€ > 0 there exists a dynamically convex contact form « on S® such that peys(S®, ) > 2—e.

ooy

A narrow connection between high systolic ratios and negativity ¢f Conley-Zehnder
indices is quantified in Abbondandolo, Bramham, Hryniewicz, and Salomao [ibid.].

Observe that Theorem 3.8 implies that either Viterbo’s conjecture is not true, or there
exists a dynamically convex contact form on S® whose Reeb fisw is not conjugated to the
Reeb flow on a strictly convex hypersurface of (R*, wg). Unfoitunately we can not decide
which alternative holds. It also proves that there are smooth compact star-shaped domains
U in (R*, wp) with the following property: the value ¢(U/) of any capacity realized as the
action of some closed characteristic on dU is striciiy iarger than the Gromov width of U.

Global surfaces of section continue to play essential role in the proofs of Theorem 3.7
and Theorem 3.8. Both start by constructing giobal sections for certain Reeb flows with
well-controlled return maps. Then the Reeb flows are modified by carefully changing the
return maps in order to make the systolic ratio increase.

4 The planar circular restricted three-body problem

The three-body problem 1is that of understanding the motion of three massive particles
which attract each cther according to Newton’s law of gravitation. Some simplifying as-
sumptions turn this problem into a two-degree-of-freedom Hamiltonian system:

* The three particles move in a fixed plane.

» The mass of the third body (satellite) is neglected and so the first two particles
(primaries) move according to the two-body problem.

* The primaries move on circular trajectories about their center of mass.

In inertial coordinates where the center of mass of the primaries rests at the origin one
getsz; = rie'® and zo = —rye'®! for some w, where r1, ry > 0 satisfy myry —morg =0
and (r; +r2)3w? = my + mo. Itis harmless to assume that @ = ry +7ry = m; +my = 1
which makes the mass ratio u := m; = ro € (0, 1) the unique parameter of the system.

In rotating (non-inertial) coordinates the position ¢(¢) € C of the satellite relative to
the second primary is given by z3(¢) = (¢g(t) — u)e'’, from where it follows that
q-—1 (1-p)-2

O] Gg+2qg—(q—p)=—p-—7s—-1-pn)F7s-
lg — 13 lq]?
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As is well known, if we set p = ¢ + i (g — ) and consider

1 . W L—p
(10) Hyu(q.p) = 5|p* + (g — p.ip) - - —,
g 2 lg=11 gl
then (9) becomes Hamilton’s equations
(11) q=VpHy, p=—VqHy.

The function H), has five critical points. A sublevel set below its lowest critical value
defines three Hill regions in the configuration plane, two of whick are bounded while the
third is a neighborhood of co. Each bounded Hill region is topciogically a punctured disk
and contains a primary, namely, one of them is a punctured neighborhood of the origin
and the other is a punctured neighborhood of 1. The boundaries of the Hill regions are
called ovals of zero velocity, since there we have (¢ -- u) = —ip < ¢ = 0. From now on
we restrict to subcritical cases, i.e. energy levels [7,, = —c where —c is below the lowest
critical value of H,,. We focus on the bounded 5ill region near the origin.

Following Poincaré, mathematicians first iried to understand the limiting behavior as
uw — 0T oras u — 17. The limit as t. — OV is in some ways better behaved than
the limit 4 — 17, but sometimes it is just the other way around. In the limit u = 0 the
system describes the so-called rotating Kepler problem, where all mass is concentrated at
the origin. The boundary of the bounded Hill region about the origin converges to a circle
of definite radius. As u —> 17 the bounded Hill region about the origin collapses, and we
face a somewhat more siniguiar situation.

Definition 4.1. A retvograde orbit is a periodic orbitt — (q(t), p(t)) such that ¢(t) is
in the Hill region about the origin, and describes a curve without self-intersections with
winding number —1 around the origin. Analogously, a direct orbit is a periodic orbit
t +— (q(t), p(t)) such that q(t) is in the Hill region about the origin, and describes a
curve without self-intersections with winding number +1 around the origin.

The difficulty in finding direct orbits led Birkhoff to consider the following strategy
in Birkhoff [1914, section 19]. Firstly one should try to find a disk-like global surface of
section bounded by a (doubly covered) retrograde orbit. For this to make sense collision
orbits need to be regularized. Secondly, due to preservation of an area form with finite
total area, one can apply Brouwer’s translation theorem to the first return map and find
a fixed point that should correspond to a direct orbit. Two main difficulties are: (1) for
an arbitrary mass ratio it is hard to find global surfaces of section, and (2) it might be
hard to check that the fixed point corresponds to a direct orbit. The following is extracted
from Birkhoff [ibid., section 19]:
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“This state of affairs seems to me to make it probable that the restricted problem of
three bodies admit of reduction to the transformation of a discoid into itself as long as
there is a closed oval of zero velocity about J, and that in consequence there always exists
at least one direct periodic orbit of simple type.”

More recently this has been called a conjecture, which perhaps should be read as fol-
lowing: For any value of u and any subcritical energy value, there must be a way of
finding a disk-like global surface of section in order to understand the movement of the
satellite inside the Hill region about the origin. To implement the sirategy of Birkhoff
this disk should be spanned by the retrograde orbit, in particular fixed points could be
good candidates for direct orbits. Again, all this only makes sense if collision orbits are
regularized.

Note that the smallest critical value of H,, converges to —% both when u — 07 or
u — 17. Here is a good point to state and discuss our result concerning Birkhoff’s
conjecture.

Theorem 4.2. For every ¢ > % there exists € > 0 such that the following holds.

(a) If 1 — u < € and collisions ave regularized via Levi-Civita regularization, then
the double cover of every retrograde orbit inside the Hill region about the origin
bounds a disk-like globa!l surface of section. Moreover, if we quotient by antipodal
symmetry then this disk descends to a rational disk-like global surface of section.

(b) If u < € and coiiisions are regularized via Moser regularization, then every retro-
grade orbit inside the Hill region about the origin bounds a rational disk-like global
surface of section.

Results of Albers, Fish, Frauenfelder, Hofer and van Koert from Albers, Fish, Frauen-
felder, Hofer, and van Koert [2012] imply that if 1 — p is small enough then Levi-Civita
regularization lifts the Hamiltonian flow on the corresponding component of H /:1 (—c) to
the characteristic flow on a strictly convex hypersurface iﬂ,c, up to time reparametriza-
tion. Moreover, iu,c is antipodal symmetric and each state is represented twice as a pair
of antipodal points. Results from Hofer, Wysocki, and Zehnder [1998] apply and give
disk-like global surfaces of section in ’iu,c. Statement (a) above says that there is such a
global section in iu,c spanned by the lift of every doubly covered retrograde orbit, and
that it descends to a global section in the quotient ¥, . = iu,c J{£1}. If 4 = O then
Moser regularization applies to the rotating Kepler problem to compactify the Hamilto-
nian flow on H,; L(—c) to the characteristic flow on a fiberwise starshaped hypersurface
Y. inside TS, up to time reparametrization. A proof of this statement can be found in
the paper Albers, Frauenfelder, van Koert, and Paternain [2012] where the contact-type
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property of energy levels of the PCR3BP is studied. Again we have £, . ~ R P3. State-
ment (b) above says that every retrograde orbit bounds a rational disk-like global surface
of section in ¥, .. A proof in this case would rely on the dynamical convexity obtained
in Albers, Fish, Frauenfelder, and van Koert [2013] for u = 0. Hence, for i close to
0 or 1 we can always apply Theorem 2.13 and obtain a pair of periodic orbits which are
2-unknotted and have self-linking number —1/2. These orbits are transversely isotopic to
(a quotient of) a Hopf link. Theorem 2.12 can also be applied and an annulus-like global
surface of section is obtained.

We end with a sketch of proof of (a) in Theorem 4.2. Fix ¢ > 3/2. The component
YucCH . | (=c) which projects to the Hill region surrounding 0 € C contains collision
orbits. These orbits are regularized with the aid of Levi-Civita coordinates (v, u) € C xC
givenby ¢ = 2v? and p = —%, which are symplectic tip to a constant factor. The
regularized Hamiltonian is

Kuc(v.u) == v|*(Hu(p.q) +c)

12) 1 1-
= §|u|2 + 2] (u,iv) — pI(uv) — 2”

|v]?

[2v2 — 1]

— 1 +clvl?,
and there is a two-to-one correspondeace between a centrally symmetric sphere-like com-
ponent ¥, - C K;;%.(0) and ¥, ., up to collisions.

Now we consider the re-scaled coordinates v = 04/1 — u and u = 1./1 — u, with
Hamiltonian

(13) 1 |f)|2

I L S 12
> P oy Tl
The component 3, . C K;;L(0) gets re-scaled and we denote it by 3, C K5 L(0).

Taking u — 1~ we see from (13) that f),w converges in the C*° topology to a hyper-
surface satisfying

1
[2]? — () + (¢ — 1)[5)* = =.

1
(14) 5 3

In order to have a better picture of the hypersurface in (14), we denote, for simplicity,
U = U1 +i09 and ## = i1 + itis. Then (14) is equivalent to

(15) (ﬂ1—62)2+(ﬁ2—61)2+2(c—g) (02 +93) = 1.
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Taking new coordinates (w = wy + iws,z = z1 +iz9) € C x C with wy; = 1] — Vo,
wo = Uy — U1 and z = 0+/2¢ — 3, which are symplectic up to a constant factor, we see
that (15) is equivalent to w? + w3 + z% + z5 = 1.

We conclude that the regularized Hamiltonian flow on N w,c converges smoothly to the
standard Reeb flow on (S3,&;) as 4 — 17 up to reparametrizations. Its orbits are the
Hopf fibers. Since the projection of the retrograde orbit winds once around 0 € C in
g-coordinates, it is doubly covered by a simple closed orbit P, . C iw,m which in z-
coordinates winds once around 0 € C. Hence, P, . converges smoothiy to a Hopf fiber
in (w, z) and, in particular, it is unknotted and has self-linking number --i. The dynamical
convexity of the Hamiltonian flow on 3 u,c and Theorem 2.6 imply 7hat it is the boundary
of a disk-like global surface of section. In view of Theorem 2.12, we may assume that this
global section descends to a rational disk-like global section on 3, . = iu,c J{x1}.

5 Transverse felistions

We discuss the idea of transverse foliations adapted to a 3-dimensional flow based on
the concepts introduced by Hofer, Wysocki and Zehnder in Hofer, Wysocki, and Zehnder
[2003]. This generalizes the notion 6f open books and global sections.

Definition 5.1. Let ¢' be a smooik flow on an oriented closed 3-manifold M . A transverse
foliation for ¢' is formed by:

(i) A finite set ® of primitive periodic orbits of ¢', called binding orbits.

(ii) A smooth foliation of M \ Upep P by properly embedded surfaces. Every leaf Y.
is transverse to ¢!, has an orientation induced by ¢' and M, and there exists a
compact embedded surface ¥ — M so that > = X\ 0% and % is a union of
components of Upep P. An end z of ¥ is called a puncture. To each puncture z
there is an associated component P; € ® of 0% called the asymptotic limit of Satz.
A puncture z of 3. is called positive if the orientation on P, induced by 3. coincides
with the orientation induced by ¢'. Otherwise z is called negative.

The following theorem is a seminal result on the existence of transverse foliations for
Reeb flows on the tight 3-sphere. It is based on pseudo-holomorphic curve theory in
symplectic cobordisms.

Theorem 5.2 (Hofer, Wysocki, and Zehnder [ibid.]). Let ¢’ be a nondegenerate Reeb flow
on (S3,&y). Then ¢' admits a transverse foliation. The binding orbits have self-linking
number —1 and their Conley—Zehnder indices are 1, 2 or 3. Every leaf Yisa punctured
sphere and has precisely one positive puncture. One of the following conditions holds:
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« The asymptotic limit of . at its positive puncture has Conley-Zehnder index 3 and
the asymptotic limit of Y at any negative puncture has Conley-Zehnder index 1 or
2. There exists at most one negative puncture whose asymptotic limit has Conley-
Zehnder index 2.

« The asymptotic limit of ¥ at its positive puncture has Conley-Zehnder index 2 and
the asymptotic limit of 3 at any negative puncture has Conley-Zehnder index 1.

The open books with disk-like pages constructed in Hofer, Wysacki, and Zehnder
[1995a, 1999a, 1998], Hryniewicz [2012, 2014], Hryniewicz, Licata, and Salomao [2015],
and Hryniewicz and Salomdo [2011] for Reeb flows on (S3, &) are particular cases of
transverse foliations with a single binding orbit. The main obstruction for the existence of
such an open book with a prescribed binding orbit P is the presence of closed orbits with
Conley-Zehnder index 2 which are unlinked to P. One particular transverse foliation of
interest which deals with such situations is the so cailed 3-2-3 foliation.

Definition 5.3. 4 3-2-3 foliation for a Reeb flow &' on (S3, &) is a transverse foliation
Sor @' with precisely three binding orbits Ps. P, and P;. They are unknotted, mutually
unlinked and their respective Conley-Zehnder indices are 3,2 and 3. The leaves are punc-
tured spheres and consist of

* A pair of planes Uy and Us, boin asymptotic to Py at their positive punctures.

* A cylinder V asymptotic to Ps at its positive puncture and to Py at its negative
puncture; a cylinder V' asymptotic to P at its positive puncture and to Py at its
negative puncture.

* A one parameter family of planes asymptotic to Ps at their positive punctures, a
one parameter family of planes asymptotic to Pj at their positive punctures.

The 3-2-3 foliations are the natural objects to consider if one studies Hamiltonian dy-
namics near certain critical energy levels.

Take a Hamiltonian H on R* which has a critical point p € H~1(0) with Morse index
1 and of saddle-center type. Its center manifold is foliated by the so called Lyapunoff
orbits Po g C H™'(E), E > 0 small. Each one of them is unknotted, hyperbolic inside
its energy level and has Conley-Zehnder index 2.

Assume that for every E < 0 the energy level H!(E) contains two sphere-like com-
ponents Sg and S which develop a common singularity at p as E — 0. This means
that Sg converges in the Hausdorff topology to S C H _1(0) as E — 07, where Sj is
homeomorphic to the 3-sphere and contains p as its unique singularity. The analog holds
for 7. Therefore, So N S}, = {p} and, for E > 0 small, H ' (E) contains a sphere-like
component Wg close to Sp U S{|. We observe that Wg contains the Lyapunoff orbit Ps g
and is in correspondence with the connected sum of Sg and Sp.
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Definition 5.4. We say that S, is strictly convex if Sy bounds a convex domain in R* and
all the sectional curvatures of Sy \ {p} are positive. We say that S is strictly convex if
analogous conditions hold.

The following theorem is inspired by results in Hofer, Wysocki, and Zehnder [2003].

Theorem 5.5 (de Paulo and Salomao [2018, n.d.]). If H is real analytic and both Sy and
S, are strictly convex then, for every E > 0 small, the Hamiltonian flow on the sphere-
like component Wg C H Y (E) admits a 3-2-3 foliation. The Lyapunoff crbit P g is one
of the binding orbits and there exist infinitely many periodic orbits and infinitely many
homoclinics to Pa g in WE.

One difficulty in proving Theorem 5.5 is that there are no tos-degeneracy assumptions
of any kind. A criterium for checking strict convexity of the subsets Sy and S is found
in Salomao [2003].

The notion of 3-2-3 foliation is naturally extended io Reeb flows on connected sums
R P3#R P3. In this case the binding orbits P5 and Pj are non-contractible and the fam-
ilies of planes are asymptotic to their respectivc double covers. The existence of 3-2-3
foliations for Reeb flows on R P3#R P? is stili an object of study and it is conjectured that
they exist for some Hamiltonians i celestial mechanics such as the Euler’s problem of
two centers in the plane and the planai circular restricted three body problem for energies
slightly above the first Lagrange value.

A more general theory of transverse foliations for Reeb flows still needs to be devel-
oped. If one wishes to use hclomorphic curves then one step is implemented by Fish and
Siefring [2013], who showed persistence under connected sums. Transverse foliations on
mapping tori of disk-maps were constructed by Bramham [2015a,b] to study questions
about rigidity of pseudo-rotations.

6 A Poincaré-Birkhoff theorem for tight Reeb flows on S*

Poincaré’s last geometric theorem is nowadays known as the Poincaré-Birkhoff theorem.
In its simplest form it is a statement about fixed points of area-preserving annulus homeo-
morphisms f : R/Z x [0,1] — R/Z x [0, 1] preserving orientation and boundary compo-
nents. The map f can be lifted to the universal covering R x[0, 1]. Let us denote projection
onto the first coordinate by p : R x [0, 1] — R. Then f is said to satisfy a twist condition
on the boundary if it admits a lift to the universal covering F : R x [0,1] — R x [0, 1]
such that the rotation numbers
poF(x.0) poF(x.l)

lim ——= lim
n—o00 n n—>o0 n

differ. We call the open interval / bounded by these numbers the twist interval.
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Theorem 6.1 (Poincaré-Birkhoff Birkhoff [1913] and Poincaré [1912]). If I N Z # @
then f has at least two fixed points.

Poincaré [1912] found annulus-like global surfaces of section for the PCR3BP for en-
ergies below the lowest critical value of the Hamiltonian, and when the mass is almost all
concentrated in the primary around which the satellite moves. The boundary orbits form a
Hopf link in the three-sphere. For generic values of the parameters, the Poincaré-Birkhoff
theorem applies to the associated return map and proves the existence of infinitely many
periodic orbits.

One also finds such pair of orbits for the Hamiltonian flow on a simooth, compact and
strictly convex energy level inside (R*, wg). In fact, the fundamental result of Hofer,
Wysocki, and Zehnder [1998] provides an unknotted periodic crbit Py that bounds a disk-
like global surface of section. Brouwer’s translation theorem yields a second periodic
orbit Py simply linked to Py, but much more can be said. The orbit Py is the binding of
an open book decomposition whose pages are disk-like global surfaces of section. It turns
out that the following statement follows: the fiow is smoothly conjugated to a Reeb flow
on (83, &) in such a way that Py U P; corresponds to a link transversely isotopic to the
standard Hopf link

To={(x1.y1.X2.v2) € 83 | x1 = y1 = 0 or xy = yy = 0}

Ifthe fixed point corresponding to P is removed from the disk-like global section spanned
by Py, then we obtain a difteomorphism of the open annulus that preserves a standard area-
form and can be continuousiy extended to the boundary. It is interesting to study the twist
condition for this map. We need to consider the transverse rotation numbers 6, and 6, of
Py and P; with respect to Seifert surfaces (disks). In terms of Conley-Zehnder indices,
these can be read as follows:

n n
(16) 1+90:lim% 1+91:1im%
n—oo 21 n—-00 2n
Here CZ(P/") denotes the Conley-Zehnder index of the n-iterated orbit P; computed with
respect to a global trivialization of &. The open book singles out a lift of the map to
the strip such that the rotation numbers on the boundary are precisely 1/6 and 6;. The
Poincaré-Birkhoff theorem proves the following non-trivial statement: If 6, % 1/6, then
there are infinitely many periodic orbits in the complement of Py U Py. These orbits are
distinguished by their homotopy classes in the complement of Py U Py.

One motivation for the main result of this section is to study the possibility of extending
the above discussion to situations where neither Py nor P; bound global sections. Before
the statement we need some notation. The term Hopflink will be referred to any transverse
link in (S3, &) that is transversely isotopic to the standard Hopf link /. Given non-zero
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vectors u, v € R? in the complement of the third quadrant, we write ¥ > v (or v < u) if
the argument of u is larger than that of v in the counter-clockwise sense.

Theorem 6.2 (Hryniewicz, Momin, and Salomdo [2015]). Consider a Reeb flow on (S3, &)
that admits a pair of periodic orbits Py, Py forming a Hopf link. Denote by 0y, 6, their
transverse rotation numbers computed with respect to Seifert surfaces. If (p,q) is a pair
of relatively prime integers satisfying

(00, 1) <(p.g) <(1,61)  or  (1,61) <(p,q) <{b,1)

then there is a periodic orbit P C S3\ (Py U Py) such that p = )ink(P, Py) and ¢ =
link(P, Py).

The main tools in the proof are the contact homolegy theory introduced by Momin
[2011] and the intersection theory of punctured bolomorphic curves in dimension four
developed by Siefring [2011].

Another source of motivation for Theorem 6.2 is a result due to Angenent [2005] which
we now recall. It concerns geodesic flows on Riemannian two-spheres. Let g be a Rie-
mannian metric on S2, and let y : R — 5% be a closed geodesic of length L parametrized
with unit speed. In particular y(¢) is L-periodic. Jacobi fields along y are characterized
by the second order ODE y”(¢) = —K (y(¢))y(¢) where K denotes the Gaussian curva-
ture. Given a (non-trivial) solution y(¢) we can write y’(¢) + iy(¢) = r(¢)e’®® in polar
coordinates. The Poincaré inverse rotation number of y is defined as

L 0(t)

(17) p(y) = o (m  —=

The special case of the results from Angenent [ibid.] that we would like to emphasize
concerns the case when y is simple, that is, y|(o,z) is injective. Denote by 7(¢) a normal
vector along y(¢). Given relatively prime integers p, ¢ # 0 and € > 0 small, a (p, q)-
satellite about y is the equivalence class of the immersion a : R/Z — S2

(18) ae(t) = exp, (g (€5in(27pt) n(qtL)).

Two immersions are equivalent if they are homotopic through immersions, but self-tangencies
and tangencies with y are not allowed.

Theorem 6.3 (Angenent [ibid.]). If a rational number p'/q’ strictly between p(y) and 1
is written in lowest terms then there exists a closed geodesic which is a (p’, q')-satellite
about y.

Let us explain the connection between theorems 6.2 and 6.3. The unit tangent bundle
T'S? ={v € TS? | g(v,v) = 1} admits a contact form 1, whose Reeb flow coincides
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with the geodesic flow. It is given by the restriction to 7'S? of the pull-back of the
tautological 1-form on 7 *S? by the associated Legendre transform. The L-periodic orbits
y(t) and —y(—t) form alink /,, on 7' S? transverse to the contact structure ker A 4. There
exists a double cover S — T''S? that pulls back the Reeb flow of A, to a Reeb flow
on (S3,&). Moreover, it pulls back the link /,, to a Hopf link consisting of periodic
orbits Py U Py just like in the statement of Theorem 6.2. Note that p(y) # 1 forces the
vectors (6p = 2p(y) —1,1) and (1,6, = 2p(y) — 1) to span a non-empty sector. Then
Theorem 6.2 captures the contractible (p’, ¢’)-satellites of Theorem 6.3 up to homotopy,
and a refinement for Reeb flows on the standard R P? (Hryniewicz, Momin, and Salomao
[2015, Theorem 1.9]) captures all the (p’, ¢')-satellites of Theorem 6.3 up to homotopy.
Of course, we do not hope to capture geodesics up to equivaience of satellites because
Theorem 6.2 deals with more general flows than those dealt bv Theorem 6.3. For instance,
it handles non-reversible Finsler geodesic flows with a pzir of closed geodesics homotopic
to a pair of embedded loops through immersions without positive tangencies. In particular,
it covers reversible Finsler metrics with a simpie closed geodesic.

Finally, a pair of closed Reeb orbits forming a Hopf link is not known to exist in general
for a Reeb flow on (S 3, &o). Each of its compenents is unknotted, transverse to & and has
self-linking number —1; we refer to such a closed curve as a Hopf fiber. The existence of at
least one closed Reeb orbit on (S?2, &) which is a Hopf fiber is proved in Hofer, Wysocki,
and Zehnder [1996b]; this is a difficult result. If P is a nondegenerate closed orbit which
bounds a disk-like global surface of section then P is a Hopf fiber and its rotation number
is > 1. Moreover, a fixed point of the first return map, assured by Brouwer’s translation
theorem, determines 2 ctosed orbit P’ which forms a Hopf link with P. One may ask
whether every closed orbit which is a Hopf fiber and has rotation number > 1 admits
another closed orbit forming together a Hopf link. In that direction we have the following
result which inay be seen as a version of Brouwer’s translation theorem for Reeb flows on

($%.%0).

Theorem 6.4 (Hryniewicz, Momin, and Salomao [n.d.]). Assume that a Reeb flow on
(S3,&0) admits a closed Reeb orbit P which is a Hopf fiber. If the transverse rotation
number p(P) belongs to (1,+00) \ {1+ % : k € N} then there exists a closed orbit P’
simply linked to P.

The closed orbit P’ in Theorem 6.4 is not even known to be unknotted.

A Closed geodesics on a Riemannian two-sphere

The purpose of this appendix is to describe the steps of a new proof of the existence of
infinitely many closed geodesics on any Riemannian two-sphere. The argument is based
on a combination of Angenent’s theorem (Theorem 6.3) and the work of Hingston [1993],
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it serves as an alternative to the classical proof that combines results of Victor Bangert
and John Franks. We recommend Oancea [2015] for an account of the closed geodesic
problem on Riemannian manifolds.

Theorem A.1 (Bangert [1993] and Franks [1992]). Every Riemannian metric on S* ad-
mits infinitely many closed geodesics.

We start with a remark from Hingston [1993]. The space of embedded loops in the two-
sphere carries a 3-dimensional homology class modulo short loops. Or:e can use Grayson’s
curve shortening flow to run a min-max argument over this class and obtain a special
simple closed geodesic y.. The crucial fact here is that Grayson’s curve shortening flow
preserves the property of being embedded. The sum of the Morse index and the nullity of
v« 18 larger than or equal to 3, in particular p(y«) > 1.

If p(y«) = 1 (Hingston’s non-rotating case) then yx is a very special critical point of the
energy functional. The growth of Morse indices under iterations of y. follows a specific
pattern. Index plus nullity of y. is equal to 3, and if y. is isolated then its local homology
is non-trivial in degree 3. If every iterate of j. is isolated then the analysis of Hingston
[ibid.] shows that there are infinitely manyv closed geodesics. If some iterate y, is not
isolated then already there are infinitely many closed geodesics. Hence we are left with
the case p(y«) > 1, which is covered by Theorem 6.3. Theorem A.1 is proved. The case
p(y«) > 1 is handled independenily by Theorem 6.2.

The work of Hingston [ibid.] iriggered many developments, including a proof of the
Conley conjecture for standard symplectic tori in Hingston [2009]. In Ginzburg [2010]
used Floer homology and Hingston’s methods to prove the Conley conjecture for aespher-
ical symplectic manitolds.
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