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GLOBAL SURFACES OF SECTION FOR REEB FLOWS IN
DIMENSION THREE AND BEYOND

Pedro A. S. Salomão and Umberto L. Hryniewicz

Abstract
We survey some recent developments in the quest for global surfaces of section for

Reeb flows in dimension three usingmethods from Symplectic Topology. We focus on
applications to geometry, including existence of closed geodesics and sharp systolic
inequalities. Applications to topology and celestial mechanics are also presented.

Dedicated to the memory of Professor Kris Wysocki

1 Introduction

The idea of a global surface of section goes back to Poincaré and the planar circular re-
stricted three-body problem.

Definition 1.1. Let �t be a smooth flow on a smooth closed 3-manifoldM . An embedded
surface Σ ,! M is a global surface of section for �t if:

(i) Each component of @Σ is a periodic orbit of �t .

(ii) �t is transverse to Σ n @Σ.

(iii) For every p 2 M n @Σ there exist t+ > 0 and t� < 0 such that �t+(p) and �t�(p)
belong to Σ n @Σ.

Every p 2 Σ n @Σ has a first return time �(p) = infft > 0 j �t (p) 2 Σg and the
dynamics of the flow are encoded in the first return map

(1)  : Σ n @Σ ! Σ n @Σ;  (p) = ��(p)(p):

In Poincaré [1912] Poincaré described annulus-like global surfaces of section for the
planar circular restricted three-body problem (PCR3BP) for certain values of the Jacobi
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constant andmass ratio. Poincaré’s global sectionsmotivated his celebrated last geometric
theorem. The associated first return map preserves an area form, extends up to boundary,
and satisfies a twist condition in the range of parameters considered. The exciting dis-
covery made by Poincaré was that the twist condition implies the existence of infinitely
many periodic points, i.e., infinitely many periodic orbits for the PCR3BP. In one stroke
Poincaré gave a strong push towards a qualitative point of view for studying differential
equations, and stated a fixed point theorem intimately connected to the Arnold conjectures
and the foundations of Floer Theory.

The recent success of Floer theory and othermethods fromSymplectic Geometry prompted
Hofer to coin the term Symplectic Dynamics Bramham and Hofer [2012]. In this note we
are concerned with the success of these methods to study Reeb flows in dimension three,
with an eye towards applications to geometry.

Our first goal is to discuss existence results for global sections. This will be done
in Section 2. After stating Birkhoff’s theorem, we focus on Hofer’s theory of pseudo-
holomorphic curves Hofer [1993]. We survey some published and also some unpublished
results, without giving proofs.

Section 3 is devoted to some applications to systolic geometry that were obtained in
collaboration with Abbondandolo and Bramham. We will explain how global surfaces of
section open the door for symplectic methods in the study of sharp systolic inequalities.
We focus on Riemannian two-spheres and on a special case of a conjecture of Viterbo.
In Section 4 we present the planar circular restricted three-body problem in more detail.
A conjecture due to Birkhoff on the existence of disk-like global surfaces of section for
retrograde orbits is discussed.

We intend to convince the reader that there are many positive results for global sections
in large classes of flows. However, there are situations where it might be hard to decide
whether they exist or not. In sections 5 and 6 we discuss results designed to handle some
of these situations. In Section 5 we present deep results of Hofer, Wysocki, and Zehn-
der [2003] concerning the existence of transverse foliations, and its use in the study of
Hamiltonian dynamics near critical levels. In Section 6 we present a Poincaré-Birkhoff
theorem for tight Reeb flows on S3 proved in Hryniewicz, Momin, and Salomão [2015].
It concerns Reeb flows with a pair of closed orbits exactly as those in the boundary of
Poincaré’s annulus, i.e. forming a Hopf link.

The appendix discusses a new proof of the existence of infinitelymany closed geodesics
on any Riemannian two-sphere, which is alternative to the classical arguments of Bangert
[1993] and Franks [1992]. It relies on the work of Hingston [1993].
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2 Existence results for global surfaces of section

Poincaré constructed his annulus map for a specific family of systems close to integrable1.
One of the first statements for a large family of systems which can be quite far from
integrable is due to Birkhoff.

Theorem 2.1 (Birkhoff [1966]). Let 
 be a simple closed geodesic of a positively curved
Riemannian two-sphere. Consider the set A
 of unit vectors along 
 pointing towards
one of the hemispheres determined by 
 . Then A
 is a global surface of section for the
geodesic flow.

In other words, every geodesic ray not contained in 
 visits both hemispheres infinitely
often. We call the embedded annulus A
 the Birkhoff annulus. The family of geodesic
flows on positively curved two-spheres is large, making the above statement quite useful.
The proof heavily relies on Riemannian geometry and sheds little light on the general
existence problem.

A very general theory to attack the existence problem of global surfaces of section ex-
ists, and nowadays goes by the name of Schwartzman-Fried-Sullivan theory, see Ghys
[2009] or the original works Fried [1982], Schwartzman [1957], and Sullivan [1976]. It
produces beautiful theorems with strong conclusions for general flows in dimension three,
or even in higher dimensions. The drawback is that these conclusions often require hy-
potheses which are hard to check, limiting the range of applications. This should not be a
surprise because the set of all flows on a 3-manifold is just too wild.

Hofer’s pseudo-holomoprhic curve theory deals with the more restrictive class of Reeb
flows. However, the results obtained require more reasonable hypotheses which one can
often check, as we intend to demonstrate in the next paragraphs. It is often the case that
results apply automatically for classes of Reeb flows that are large enough to provide
applications in topology and geometry. Consider R4 with coordinates (x1; y1; x2; y2) and
its standard symplectic form !0 =

P2
j=1 dxj ^ dyj . Here are two examples of such

unconditional theorems.

Theorem 2.2 (Hofer, Wysocki, and Zehnder [1998]). The Hamiltonian flow on a smooth,
compact and strictly convex energy level in (R4; !0) admits a disk-like global surface of
section.

We see Theorem 2.2 as one of the pinnacles of Symplectic Dynamics, it is the guiding
application of this theory to the study of global surfaces of section. All results to be dis-
cussed in this section are proved using the methods from Hofer, Wysocki, and Zehnder
[ibid.].

1Angular momentum is preserved in the rotating Kepler problem.
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Theorem 2.3 (Hryniewicz [2012, 2014]). A periodic orbit of the Hamiltonian flow on a
smooth, compact and strictly convex energy level in (R4; !0) bounds a disk-like global
surface of section if, and only if, it is unknotted and has self-linking number �1.

To explain the connection between the above statements and Reeb flows, and to de-
scribe further results of this theory, we need first to review basic notions. A contact form
� on a 3-manifoldM is a 1-form such that �^d� defines a volume form. Its Reeb vector
field R� is implicitly defined by

(2) d�(R�; �) = 0; �(R�) = 1:

The distribution � = ker� is a contact structure, the pair (M; �) is a contact manifold.
More precisely, these are the co-orientable contact manifolds since � orients TM/� . We
only work here with co-orientable contact structures. By a Reeb flow on (M; �) we mean
one associated to a contact form � onM such that � = ker�. Contact manifolds are the
main objects of study in contact topology. Our interest here is shifted towards dynamics.

A knot is called transverse if at every point its tangent space is transverse to the contact
structure. A transverse knot with a Seifert surface has a self-linking number, which is
invariant under transverse isotopies. It is defined as follows: choose a non-vanishing
section of the contact structure along the Seifert surface, then use this section to push the
knot off from itself, and finally count intersections with the Seifert surface. The vector
bundle (�; d�) is symplectic and has a first Chern class c1(�) 2 H 2(M ;Z). If c1(�)
vanishes onH2(M ;Z) then the self-linking number does not depend on the Seifert surface.
The book Geiges [2008] by Geiges is a nice reference for these concepts.

Finally, we describe the Conley-Zehnder index in low-dimensions following Hofer,
Wysocki, and Zehnder [2003]. Let 
 be a periodic trajectory of the flow �t of the Reeb
vector field R�, and let T > 0 be a period of 
 . Since (�t )�� = �, we get a path of d�-
symplectic linear maps d�t : �
(0) ! �
(t). The orbit 
 is called degenerate in period
T if 1 is an eigenvalue of d�T : �
(0) ! �
(0), otherwise it is called non-degenerate in
period T . The contact form � is called non-degenerate when every periodic trajectory is
non-degenerate in every period. When T is the primitive period we may simply call 

degenerate or non-degenerate accordingly.

Since T is a period, we get a well-defined map 
 : R/TZ ! M still denoted by

 without fear of ambiguity. Choose a symplectic trivialization Φ of 
��. Then the
linearized flow d�t : �
(0) ! �
(t) gets represented as a path of symplectic matrices
M : R ! Sp(2) satisfying M (0) = I , M (t + T ) = M (t)M (T ) 8t . For every
non-zero u 2 R2 we write M (t)u = (r(t) cos �(t); r(t) sin �(t)) in polar coordinates,
for some continuous lift of argument � : R ! R, and define the rotation function
∆M : R2 n f(0; 0)g ! R by ∆M (u) = �(T )��(0)

2�
. The image of ∆M is a compact
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interval of length strictly less than 1/2. The rotation interval JM is defined as the image
of ∆M .

Consider the following function �̃(J ) defined on closed intervals J of length less than
1/2. If @J \ Z = ¿ then set �̃(J ) = 2k when k 2 J , or �̃(J ) = 2k + 1 when
J � (k; k + 1). If @J \ Z ¤ ¿ then set �̃(J ) = lim�!0+ �̃(J � �). The Conley-
Zehnder index can be finally defined as CZΦ(
; T ) = �̃(JM ). We omit the period when
it is taken to be the primitive period. If c1(�) vanishes on spheres and 
 : R/TZ ! M is
contractible then we write CZdisk for the index computed with a trivialization that extends
to a capping disk.

The Conley-Zehnder index is an extremely important tool. It is related to Fredholm
indices of solutions of many of the elliptic equations from Symplectic Topology, in par-
ticular to dimensions of moduli spaces of holomorphic curves.

Definition 2.4 (Hofer, Wysocki and Zehnder). A contact form � on a 3-manifold M is
dynamically convex if c1(ker�) vanishes on spheres and contractible periodic Reeb orbits

 : R/TZ ! M satisfy CZdisk(
; T ) � 3.

The terminology is justified as follows. The standard contact structure �0 on the unit
sphere S3 � R4 is defined as the kernel of �0 = 1

2

P2
j=1 xjdyj �yjdxj restricted to S3.

More generally, �0 restricts to a contact form on any smooth, compact hypersurface S in
(R4; !0) that is (strictly) star-shaped with respect to the origin. The associated Reeb flow
reparametrizes the Hamiltonian flow on S for any Hamiltonian realizing S as a regular
energy level. Moreover, it is smoothly conjugated to a Reeb flow on (S3; �0). Conversely,
every Reeb flow on (S3; �0) is smoothly conjugated to the Reeb flow of �0 restricted to
some S . When S is strictly convex we get dynamical convexity in view of

Theorem 2.5 (Hofer, Wysocki, and Zehnder [1998]). The Hamiltonian flow on a smooth,
compact and strictly convex energy level in (R4; !0) is smoothly conjugated to a dynami-
cally convex Reeb flow on (S3; �0).

A Reeb flow will be called dynamically convex when it is induced by a dynamically
convex contact form. The next result and Theorem 2.5 together imply Theorem 2.3.

Theorem 2.6 (Hryniewicz [2012, 2014]). Let 
 be a periodic orbit of a dynamically con-
vex Reeb flow on (S3; �0). Then 
 bounds a disk-like global surface of section if, and only
if, it is unknotted and has self-linking number �1. Moreover, such an orbit binds an open
book decomposition whose pages are disk-like global surfaces of section.

These statements are powered by a non-trivial input.

Theorem 2.7 (Hofer, Wysocki, and Zehnder [1996b]). Any Reeb flow on (S3; �0) has an
unknotted periodic orbit with self-linking number �1.
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Putting together theorems 2.6 and 2.7 we obtain a more general version of Theorem 2.2.

Theorem 2.8 (Hofer, Wysocki, and Zehnder [1998]). Any dynamically convex Reeb flow
on (S3; �0) admits a disk-like global surface of section.

Global sections open the door for tools in two-dimensional dynamics. Here is a strong
application in this direction taken from Hofer, Wysocki, and Zehnder [ibid.]. The return
map of the disk obtained from Theorem 2.8 preserves an area form with finite total area.
Brouwer’s translation theorem provides a periodic orbit simply linked to the boundary of
the disk. If the fixed point corresponding to this orbit is removed then we end up with a
return map on the open annulus. Results of John Franks [1992] complete the proof of the
following statement.

Corollary 2.9 (Hofer, Wysocki, and Zehnder [1998]). Dynamically convex Reeb flows on
(S3; �0) admit either two or infinitely many periodic orbits.

To push Theorem 2.6 beyond dynamical convexity one needs to introduce linking as-
sumptions with certain periodic orbits. This is aligned to Schwartzman-Fried-Sullivan
theory where one makes linking assumptions with invariant measures.

Theorem 2.10 (Hryniewicz, Licata, and Salomão [2015] and Hryniewicz and Salomão
[2011]). A periodic orbit 
 of a Reeb flow on (S3; �0) binds an open book decomposition
whose pages are disk-like global surfaces of section if it matches the following conditions:

(a) 
 is unknotted, has self-linking number �1 and satisfies CZdisk(
) � 3.

(b) 
 is linked to all periodic orbits 
 0 : R/TZ ! S3n
 such that eitherCZdisk(
 0; T ) =

2, or CZdisk(
 0; T ) = 1 and 
 0 is degenerate in period T .

Conversely, if 
 is non-degenerate (in its primitive period) then these assumptions are
necessary for 
 to bound a disk-like global surface of section.

After all these results on the 3-sphere we would like to discuss more general Reeb
flows. Can we recover and generalize Birkhoff’s Theorem 2.1? To make a statement in
this direction we need to recall a few concepts.

The notion of fibered link has a contact topological analogue. If � is a contact form
and L is a transverse link then the right notion of fibered is that L binds an open book
decomposition satisfying

(i) d� is an area form on each page, and

(ii) the boundary orientation induced on L by the pages oriented by d� coincides with
the orientation induced on L by �.
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Such an open book is said to support the contact structure � = ker�. We may call them
Giroux open books because of their fundamental role in the classification of contact struc-
tures due to Giroux [2002]. An open book decomposition is said to be planar if pages
have no genus. A contact structure orients the underlying 3-manifold by � ^ d�, where
� is any defining contact form. A global surface of section will be called positive if the
orientation induced on it by the flow and the ambient orientation turns out to orient its
boundary along the flow.

Theorem 2.11. Let (M; �) be a closed, connected contact 3-manifold. Let the linkL � M

bind a planar Giroux open book decomposition Θ of M . Denote by f 2 H2(M;L;Z)

the class of a page of Θ, and by 
1; : : : ; 
n the components of L. Let the contact form �
define � and realize L as periodic Reeb orbits, and consider the following assertions:

(i) L bounds a positive genus zero global surface of section for the �-Reeb flow repre-
senting the class f .

(ii) L binds a planar Giroux open book whose pages are global surfaces of section for
the �-Reeb flow and represent the class f .

(iii) The following hold:

(a) CZΘ(
k) > 0 for all k.
(b) Every periodic �-Reeb orbit inM nL has non-zero intersection number with

f .

Then (iii) ) (ii) ) (i). Moreover, (i) ) (iii) provided a certain C1-generic condition
hold.

In (iii-a) CZΘ(
k) is the Conley-Zehnder index of 
k in its primitive period computed
with a trivialization aligned to the normal of a page of Θ. The genericity needed for (i)
) (iii) is implied by non-degeneracy of the contact form. Theorem 2.11 is fruit of joint
work with Kris Wysocki and will be proved in Hryniewicz, Salomão, and Wysocki [n.d.].
It heavily relies on Siefring’s intersection theory Siefring [2011].

As a first test note that Birkhoff’s Theorem 2.1 follows as a consequence. Indeed, the
unit sphere bundle of S2 has a contact form induced by pulling back the tautological 1-
from on T �S2 via Legendre transform. Reeb flow is geodesic flow. A simple closed
geodesic lifts to two closed Reeb orbits, which form a link that binds a supporting open
book. Pages are annuli that are isotopic to the Birkhoff annulus. Positivity of the curva-
ture and the Gauss-Bonnet theorem imply that (iii-a) and (iii-b) hold. Birkhoff’s theorem
follows.

Theorem 2.11 has applications to Celestial Mechanics. The following statement is the
abstract result needed for these applications. The standard primitive �0 of!0 is symmetric
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by the antipodal map. Identifying antipodal points we obtain RP 3 = S3/f˙1g. The
restriction of �0 to S3 descends to a contact form on RP 3 defining its standard contact
structure, still denoted �0. The Hopf link

el0 = f(x1; y1; x2; y2) 2 S3
j x1 = y1 = 0 or x2 = y2 = 0g

is antipodal symmetric and descends to a transverse link l0 on RP 3. Any transverse link
in (RP 3; �0) transversely isotopic to l0 will be called a Hopf link. Any transverse knot in
(RP 3; �0) transversely isotopic to a component of l0 will be called a Hopf fiber.

Theorem 2.12 (Hryniewicz and Salomão [2016], Hryniewicz, Salomão, and Wysocki
[n.d.]). Consider an arbitrary dynamically convex Reeb flow on (RP 3; �0). Any periodic
orbit which is a Hopf fiber binds an open book decomposition whose pages are rational
disk-like global surfaces of section. Any pair of periodic orbits forming a Hopf link binds
an open book decomposition whose pages are annulus-like global surfaces of section.

These techniques have applications to existence of elliptic periodic orbits. A periodic
orbit is elliptic if all Floquet multipliers lie in the unit circle.

Theorem 2.13 (Hryniewicz and Salomão [2016]). Any Reeb flow on (RP 3; �0) which is
sufficiently C1-close to a dynamically convex Reeb flow admits an elliptic periodic orbit.
This orbit binds a rational open book decomposition whose pages are disk-like global
surfaces of section. Its double cover has Conley-Zehnder index equal to 3.

When combined with a result of Harris and Paternain [2008] relating pinched flag
curvatures to dynamical convexity, Theorem 2.13 refines the main result of Rademacher
from Rademacher [2007].

Corollary 2.14. Consider a Finsler metric on the two-sphere with reversibility r . If all
flag curvatures lie in (r2/(r + 1)2; 1] then there exists an elliptic closed geodesic. More-
over, its velocity vector defines a periodic orbit of the geodesic flow that bounds a rational
disk-like global surface of section. A fixed point of the return map gives a second closed
geodesic.

We end this section with a topological application. We look for characterizations of
contact 3-manifolds in terms of Reeb dynamics, motivated by early fundamental results
of Hofer, Wysocki, and Zehnder [1995a, 1999a].

Identify R4 ' C2 by (x1; y1; x2; y2) ' (z1 = x1 + iy1; z2 = x2 + iy2) and
fix relatively prime integers p � q � 1. The action of Z/pZ generated by the map
(z1; z2) 7! (ei2�/pz1; e

i2�q/pz2) is free on S3, and the lens space L(p; q) is defined as
its orbit space. The 1-form �0 = 1

2

P2
j=1 xjdyj � yjdxj is invariant and descends to a
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contact form on L(p; q). The induced contact structure is called standard, we still denote
it by �0 with no fear of ambiguity.

A knot K on a closed 3-manifoldM is p-unknotted if there is an immersion u : D !

M such that ujDn@D defines a proper embedding D n@D ! M nK, and uj@D defines a p-
coveringmap @D ! K. Themapu is called ap-disk forK. TheHopf fiberS1�0 � S3 is
Z/pZ invariant and descends to the simplest example of a p-unknotted knot in L(p; q).
The case p = 2 has the following geometric meaning: if we identify L(2; 1) with the
unit tangent bundle of the round two-sphere then the velocity vector of a great circle is
2-unknotted.

In the presence of a contact structure a transverse p-unknotted knot has a rational self
linking number. In the examples given above the knots are transverse and their rational
self-linking numbers are equal to �1/p. These notions play a role in the following dy-
namical characterization of standard lens spaces.

Theorem 2.15 (Hofer, Wysocki, and Zehnder [1995a, 1999a] and Hryniewicz, Licata, and
Salomão [2015]). Let (M; �) be a closed connected contact 3-manifold, and let p � 1 be
an integer. Then (M; �) is contactomorphic to some (L(p; q); �0) if, and only if, it carries
a dynamically convex Reeb flow with a p-unknotted self-linking number �1/p periodic
orbit.

This is a special case of more general statements where linking assumptions with cer-
tain periodic orbits are used. The existence of a p-unknotted self-linking number �1/p

periodic orbit implies that (M; �) = (L(p; q); �0)#(M 0; � 0) for some contact 3-manifold
(M 0; � 0). Dynamical convexity forces (M 0; � 0) = (S3; �0).

Using that (L(2; 1); �0) is contactomorphic to the unit sphere bundle of any Finsler met-
ric on S2 we get a geometric application. Consider the set I of immersions S1 ! S2 with
no positive self-tangencies. Two immersions are declared equivalent if they are homotopic
through immersions in I. This defines an equivalence relation ∼ and an element of I/ ∼
will be called a weak flat knot type. This notion is related to Arnold’s J+-theory of plane
curves. Note that a closed geodesic on a Finsler two-sphere has a well-defined weak flat
knot type. Let k8 be the weak flat knot type of a curve with precisely one self-intersection
which is transverse. Clearly there are curves representing k8 with an arbitrarily large num-
ber of self-intersections.

Theorem 2.16 (Hryniewicz and Salomão [2013]). If a Finsler two-sphere with reversibil-
ity r has flag curvatures in (r2/(r + 1)2; 1] then no closed geodesic represents k8.

This statement follows from Theorem 2.15. In fact, the pinching of the curvature forces
dynamical convexity (Harris and Paternain [2008]), and the velocity vector of a closed
geodesic of type k8 is unknotted with self-linking number �1 in the unit sphere bundle.
Since RP 3 is not the 3-sphere we conclude that such a closed geodesic does not exist.
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3 Global surfaces of section applied to systolic geometry

Our first goal in this section is to explain how Birkhoff’s annulus-like global surfaces
of section (Theorem 2.1) allow for the possibility that symplectic and Riemannian meth-
ods be combined to get sharp systolic inequalities on the two-sphere. Our second goal is
to describe how disk-like global surfaces of section can be used to prove a special case
of Viterbo’s conjecture Viterbo [2000]. The results described here were obtained in col-
laboration with Alberto Abbondandolo and Barney Bramham Abbondandolo, Bramham,
Hryniewicz, and Salomão [2017a, 2018, 2017b,c].

The 1-systole sys1(X; g) of a closed non-simply connectedRiemannianmanifold (X; g)
is defined as the length of the shortest non-contractible loop. Systolic geometry has its ori-
gins in the following results.

Theorem 3.1 (Löwner). The inequality (sys1)2/Area � 2/
p
3 holds for every Rieman-

nian metric on the two-torus. Equality is achieved precisely for the flat torus defined by
an hexagonal lattice.

Theorem 3.2 (Pu). The inequality (sys1)2/Area � �/2 holds for every Riemannian met-
ric on RP 2. Equality is achieved precisely for the round geometry.

Systolic geometry is a huge and active field, it developed quite a lot since the results
of Löwner and Pu. We emphasize Gromov’s celebrated paper Gromov [1983].

To include simply connected manifolds one considers the length `min(X; g) of the short-
est non-constant closed geodesic of a closed Riemannian manifold (X; g). The systolic
ratio is defined by

(3) �sys(X; g) =
(`min(X; g))

n

Vol(X; g)
(n = dimX)

The systolic ratio of two-spheres is far from being well understood. An important
statement is due to Croke.

Theorem 3.3 (Croke [1988]). The function g 7! �sys(S
2; g) is bounded among all Rie-

mannian metrics on S2.

In view of Pu’s inequality it is tempting to hope that a round two-sphere (S2; g0)maxi-
mizes the systolic ratio. Its value is �sys(S2; g0) = � . However, the Calabi-Croke sphere
shows that the supremum of �sys(S2; g) is at least 2

p
3 > � . This is a singular metric con-

structed by glueing two equilateral triangles along their sides to form a “flat” two-sphere.
It can be approximated by smooth positively curved metrics with systolic ratio close to
2
p
3.
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Question 1. What is the value of sup(S2;g) �sys(S
2; g)? Are there restrictions on the kinds

of geometry that approximate this supremum?

It has been conjectured that the answer to Question 1 is 2
p
3. In Balacheff [2010]

Balacheff shows that the Calabi-Croke sphere can be seen as some kind of local maximum
if non-smooth metrics with a certain type of singular behavior are included.

A Zoll metric is one such that all geodesic rays are closed and have the same length. It
is interesting that all Zoll metrics on S2 have conjugated geodesic flows, and have systolic
ratio equal to � .

It becomes a natural problem that of understanding the geometry of the function �sys
near (S2; g0). This problem was considered by Babenko and studied by Balacheff. In Bal-
acheff [2006] Balacheff shows that (S2; g0) can be seen as a critical point of �sys and
conjectured that it is a local maximum. We will refer to this conjecture as the Babenko-
Balacheff conjecture.

Contact geometry is a natural set-up to study systolic inequalities. This point of view
was advertised and used by Álvarez Paiva and Balacheff [2014]. Let ˛ be a contact form
on a closed manifold M of dimension 2n � 1 oriented by ˛ ^ (d˛)n�1. We denote by
Tmin(M;˛) the minimal period among closed orbits of the Reeb flow. Existence of closed
orbits is taken for granted. The contact volume of (M;˛) is defined as

Vol(M;˛) :=
Z
M

˛ ^ (d˛)n�1

and the systolic ratio of (M;˛) as

�sys(M;˛) :=
Tmin(M;˛)

n

Vol(M;˛)

Note that �sys(M;˛) is invariant under re-scalings of ˛.
To see the connection to systolic geometry, consider a Riemannian n-manifold (X; g).

The pull-back of the tautological form on T �X by Legendre transform restricts to a contact
form ˛g on the unit sphere bundle T 1X . Since the Reeb flow of ˛g is the geodesic flow of
g, we get Tmin(T 1X; ˛g) = `min(X; g). It turns out that Vol(X; g) and Vol(T 1X; ˛g) are
proportional by a constant depending only on n. Hence �sys(T 1X; ˛g) = Cn �sys(X; g)

for every Riemannian metric g on X , where Cn depends only on n.
A Zoll contact form is one such that all Reeb trajectories are periodic and have the same

period. These are usually called regular in the literature, but we prefer the term Zoll in
view of the above connection to the Riemannian case.

A convex body in R2n is a compact convex set with non-empty interior. In Viterbo
[2000] Viterbo conjectured that

(4)
c(K)n

n!Vol(K)
� 1
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holds for every convex body K � R2n and every symplectic capacity c, where Vol(K)

denotes euclidean volume. We end by discussing a special case of the conjecture. Let
K be a convex body in (R2n; !0) with smooth and strictly convex boundary, with the
origin in its interior. Denote by � : @K ! R2n the inclusion map, and by �0 the stan-
dard Liouville form �0 = 1

2

Pn
j=1 xjdyj � yjdxj . Then ���0 is a contact form on @K.

In Hofer and Zehnder [1994] it is claimed that the Hofer-Zehnder capacity of K is equal
to Tmin(@K; ���0). In this case (4) is restated as

(5) �sys(@K; �
��0) � 1

which is supposed to be an equality if, and only if, ���0 is Zoll.
Having described our problems, we move on to state some results. Recall that for

ı 2 (0; 1], a positively curved closed Riemannian manifold is said to be ı-pinched if the
minimal and maximal valuesKmin; Kmax of the sectional curvatures satisfyKmin/Kmax �

ı. On a positively curved two-sphere we write `max for the length of the longest closed
geodesic without self-intersections. Note that `max is finite.

Theorem 3.4 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2017a]). If (S2; g)

is ı-pinched for some ı > (4 +
p
7)/8 = 0:8307::: then `min(S2; g)2 � �Area(S2; g) �

`max(S
2; g)2. Moreover, any of these inequalities is an equality if, and only if, the metric

is Zoll.

This first inequality confirms the Babenko-Balacheff conjecture on an explicit and
somewhat large C 2-neighborhood of the round geometry. It seems that the upper bound
involving `max was not known before.

We discuss some related problems before explaining the role of global surfaces of sec-
tion in the proof of Theorem 3.4. The pinching constant ı seems to be a helpful parameter.
For instance, one could consider the non-increasing bounded (Theorem 3.3) function

� : (0; 1] ! R �(ı) = supf�sys(S
2; g) j (S2; g) is ı-pinchedg

to study the positively curved case.

Question 2. Is it true that �(1/4) = �? What does the graph of �(ı) look like?

The Calabi-Croke sphere shows that limı!0+ �(ı) � 2
p
3. Theorem 3.4 implies that

�(ı) = � for all ı > (4 +
p
7)/8. One must try to understand among which metrics

does the round metric maximize systolic ratio. Assuming positive curvature it might be
reasonable to expect that inffı j �(ı) = �g � 1/4.

If curvature assumptions are dropped then the situation might be much harder. What
about symmetry assumptions? Here is a result in this direction that answers a question by
Álvarez-Paiva and Balacheff.
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Theorem 3.5. Inequality �sys � � holds for every sphere of revolution, with equality
precise when the metric is Zoll.

Global surfaces of section show up in the proofs of theorems 3.4 and 3.5 to connect sys-
tolic inequalities to a quantitative fixed point theorem for symplectic maps of the annulus.
We outline the proof to make this point precise.

Let (S2; g) be ı-pinched. If ı > 1/4 then `min is only realized by simple closed
geodesics. Let 
 be a closed geodesic of length `min. By Theorem 2.1 the Birkhoff annu-
lus A
 is a global surface of section. Let � be the 1-form on A
 given by restricting the
contact form ˛g . Then d� is an area form on the interior ofA
 , and vanishes on @A
 . The
total d�-area of A
 is 2`min.

The first return map and the first return time � are defined on the interior ofA
 , but it
turns out that they extend smoothly to A
 . Moreover,  preserves boundary components.
Santaló’s formula reads

(6) 2�Area(S2; g) =

Z
T 1S2

˛g ^ d˛g =

Z
A


� d�

Since  preserves the 2-form d�, it follows that  �� � � is closed.
We now need to consider lifts of  to the universal covering of A
 . If  admits a lift

in the kernel of the FLUX homomorphism then  �� � � is exact. The unique primitive
� of  �� � � satisfying

�(p) =

Z  (p)

p

� 8p 2 @A


is called the action of  . Here the integral is taken along the boundary according to the
lift with zero FLUX. The Calabi invariant is defined as

CAL( ) =
1R

A

d�

Z
A


� d� =
1

2`min

Z
A


� d�

Of course, we need to worry about whether  admits a lift of zero FLUX, but this follows
from reversibility of the geodesic flow.

It is a very general fact that � is also a primitive of  �� � �. Toponogov’s theorem
proves that if ı > 1/4 then

(7) � = � + `min

Combining (7) with (6) we finally get

(8) 2�Area(S2; g) = 2(`min)
2 + 2`minCAL( )
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Equations (7) and (8) should be seen as some kind of dictionary between geometry and
dynamics: action corresponds to length, Calabi invariant corresponds to area.

We are now in position to make the link to the quantitative fixed point theorem and
conclude the argument. Roughly speaking, the theorem states:

If  admits a generating function (of a specific kind), CAL( ) � 0 and  ¤ id , then
there exists a fixed point p0 satisfying �(p0) < 0.

Arguing indirectly, suppose that either �Area < (`min)
2, or �Area = (`min)

2 and
g is not Zoll. It follows from (8) and a little more work that either CAL( ) < 0, or
CAL( ) = 0 and  is not the identity. Toponogov’s theorem comes into play again to
show that  admits the required generating function provided ı > (4 +

p
7)/8. The

fixed point theorem applies to give a fixed point of negative action. By (7) this fixed point
corresponds to a closed geodesic of length strictly smaller than `min. This contradiction
finishes the proof.

The above argument reveals how global surfaces of section can serve as bridge between
systolic geometry and symplectic dynamics. The same strategy proves a special case of
Viterbo’s conjecture in dimension 4.

Theorem 3.6 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2018]). There exists
a C 3-neighborhood U of the space of Zoll contact forms on S3 such that ˛ 2 U )

�sys(S
3; ˛) � 1 with equality if, only if, ˛ is Zoll.

The proof again strongly relies on global surfaces of sections. Namely, if a contact
form is C 3-close to the standard contact form �0 then its Reeb flow admits a disk-like
global surface of section whose first return map extends up to the boundary and is C 1-
close to the identity. We have a dictionary between maps and flows just as in the proof of
Theorem 3.4: contact volume corresponds to Calabi invariant, return time corresponds to
action. The quantitative fixed point theorem applies to give the desired conclusion.

One could see the constants in sharp systolic inequalities for Riemannian surfaces as
invariants. Similarly, one could hope to construct contact invariants from sharp systolic
inequalities for contact forms. The following statement shows that this is not possible in
dimension three: systolic inequalities are not purely contact topological phenomena. For
example, inequalities such as (5) must depend on the convexity assumption.

Theorem 3.7 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2018, 2017b]). For
every co-orientable contact 3-manifold (M; �) and every c > 0 there exists a contact form
˛ onM satisfying � = ker˛ and �sys(M;˛) > c.

Hofer, Wysocki, and Zehnder [1999a, 1998] introduced the notion of dynamically con-
vex contact forms, see Section 2 for a detailed discussion. It plays a crucial role in the
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construction of global surfaces of section (theorems 2.6, 2.8). Dynamical convexity is
automatically satisfied on the boundary of a smooth convex body with strictly convex
boundary. It becomes relevant to decide whether (5) holds for dynamically convex con-
tact forms on S3.

Theorem 3.8 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2017c]). Given any
� > 0 there exists a dynamically convex contact form ˛ onS3 such that �sys(S3; ˛) > 2��.

A narrow connection between high systolic ratios and negativity of Conley-Zehnder
indices is quantified in Abbondandolo, Bramham, Hryniewicz, and Salomão [ibid.].

Observe that Theorem 3.8 implies that either Viterbo’s conjecture is not true, or there
exists a dynamically convex contact form on S3 whose Reeb flow is not conjugated to the
Reeb flow on a strictly convex hypersurface of (R4; !0). Unfortunately we can not decide
which alternative holds. It also proves that there are smooth compact star-shaped domains
U in (R4; !0) with the following property: the value c(U ) of any capacity realized as the
action of some closed characteristic on @U is strictly larger than the Gromov width of U .

Global surfaces of section continue to play essential role in the proofs of Theorem 3.7
and Theorem 3.8. Both start by constructing global sections for certain Reeb flows with
well-controlled return maps. Then the Reeb flows are modified by carefully changing the
return maps in order to make the systolic ratio increase.

4 The planar circular restricted three-body problem

The three-body problem is that of understanding the motion of three massive particles
which attract each other according to Newton’s law of gravitation. Some simplifying as-
sumptions turn this problem into a two-degree-of-freedom Hamiltonian system:

• The three particles move in a fixed plane.

• The mass of the third body (satellite) is neglected and so the first two particles
(primaries) move according to the two-body problem.

• The primaries move on circular trajectories about their center of mass.

In inertial coordinates where the center of mass of the primaries rests at the origin one
gets z1 = r1e

i!t and z2 = �r2e
i!t for some !, where r1; r2 > 0 satisfym1r1�m2r2 = 0

and (r1 + r2)3!2 = m1 +m2. It is harmless to assume that ! = r1 + r2 = m1 +m2 = 1

which makes the mass ratio � := m1 = r2 2 (0; 1) the unique parameter of the system.
In rotating (non-inertial) coordinates the position q(t) 2 C of the satellite relative to

the second primary is given by z3(t) = (q(t) � �)ei t , from where it follows that

(9) q̈ + 2i q̇ � (q � �) = ��
q � 1

jq � 1j3
� (1 � �)

q

jqj3
:
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As is well known, if we set p = q̇ + i(q � �) and consider

(10) H�(q; p) =
1

2
jpj

2 + hq � �; ipi �
�

jq � 1j
�

1 � �

jqj
;

then (9) becomes Hamilton’s equations

(11) q̇ = rpH�; ṗ = �rqH�:

The function H� has five critical points. A sublevel set below its lowest critical value
defines three Hill regions in the configuration plane, two of which are bounded while the
third is a neighborhood of 1. Each bounded Hill region is topologically a punctured disk
and contains a primary, namely, one of them is a punctured neighborhood of the origin
and the other is a punctured neighborhood of 1. The boundaries of the Hill regions are
called ovals of zero velocity, since there we have (q��) = �ip , q̇ = 0. From now on
we restrict to subcritical cases, i.e. energy levelsH� = �c where �c is below the lowest
critical value ofH�. We focus on the bounded Hill region near the origin.

Following Poincaré, mathematicians first tried to understand the limiting behavior as
� ! 0+ or as � ! 1�. The limit as � ! 0+ is in some ways better behaved than
the limit � ! 1�, but sometimes it is just the other way around. In the limit � = 0 the
system describes the so-called rotating Kepler problem, where all mass is concentrated at
the origin. The boundary of the bounded Hill region about the origin converges to a circle
of definite radius. As � ! 1� the bounded Hill region about the origin collapses, and we
face a somewhat more singular situation.

Definition 4.1. A retrograde orbit is a periodic orbit t 7! (q(t); p(t)) such that q(t) is
in the Hill region about the origin, and describes a curve without self-intersections with
winding number �1 around the origin. Analogously, a direct orbit is a periodic orbit
t 7! (q(t); p(t)) such that q(t) is in the Hill region about the origin, and describes a
curve without self-intersections with winding number +1 around the origin.

The difficulty in finding direct orbits led Birkhoff to consider the following strategy
in Birkhoff [1914, section 19]. Firstly one should try to find a disk-like global surface of
section bounded by a (doubly covered) retrograde orbit. For this to make sense collision
orbits need to be regularized. Secondly, due to preservation of an area form with finite
total area, one can apply Brouwer’s translation theorem to the first return map and find
a fixed point that should correspond to a direct orbit. Two main difficulties are: (1) for
an arbitrary mass ratio it is hard to find global surfaces of section, and (2) it might be
hard to check that the fixed point corresponds to a direct orbit. The following is extracted
from Birkhoff [ibid., section 19]:
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“This state of affairs seems to me to make it probable that the restricted problem of
three bodies admit of reduction to the transformation of a discoid into itself as long as
there is a closed oval of zero velocity about J, and that in consequence there always exists
at least one direct periodic orbit of simple type.”

More recently this has been called a conjecture, which perhaps should be read as fol-
lowing: For any value of � and any subcritical energy value, there must be a way of
finding a disk-like global surface of section in order to understand the movement of the
satellite inside the Hill region about the origin. To implement the strategy of Birkhoff
this disk should be spanned by the retrograde orbit, in particular fixed points could be
good candidates for direct orbits. Again, all this only makes sense if collision orbits are
regularized.

Note that the smallest critical value of H� converges to �
3
2
both when � ! 0+ or

� ! 1�. Here is a good point to state and discuss our result concerning Birkhoff’s
conjecture.

Theorem 4.2. For every c > 3
2
there exists � > 0 such that the following holds.

(a) If 1 � � < � and collisions are regularized via Levi-Civita regularization, then
the double cover of every retrograde orbit inside the Hill region about the origin
bounds a disk-like global surface of section. Moreover, if we quotient by antipodal
symmetry then this disk descends to a rational disk-like global surface of section.

(b) If � < � and collisions are regularized via Moser regularization, then every retro-
grade orbit inside the Hill region about the origin bounds a rational disk-like global
surface of section.

Results of Albers, Fish, Frauenfelder, Hofer and van Koert from Albers, Fish, Frauen-
felder, Hofer, and van Koert [2012] imply that if 1 � � is small enough then Levi-Civita
regularization lifts the Hamiltonian flow on the corresponding component ofH�1

� (�c) to
the characteristic flow on a strictly convex hypersurface eΣ�;c , up to time reparametriza-
tion. Moreover, eΣ�;c is antipodal symmetric and each state is represented twice as a pair
of antipodal points. Results from Hofer, Wysocki, and Zehnder [1998] apply and give
disk-like global surfaces of section in eΣ�;c . Statement (a) above says that there is such a
global section in eΣ�;c spanned by the lift of every doubly covered retrograde orbit, and
that it descends to a global section in the quotient Σ�;c = eΣ�;c/f˙1g. If � = 0 then
Moser regularization applies to the rotating Kepler problem to compactify the Hamilto-
nian flow on H�1

� (�c) to the characteristic flow on a fiberwise starshaped hypersurface
Σ�;c inside TS2, up to time reparametrization. A proof of this statement can be found in
the paper Albers, Frauenfelder, van Koert, and Paternain [2012] where the contact-type
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property of energy levels of the PCR3BP is studied. Again we have Σ�;c ' RP 3. State-
ment (b) above says that every retrograde orbit bounds a rational disk-like global surface
of section in Σ�;c . A proof in this case would rely on the dynamical convexity obtained
in Albers, Fish, Frauenfelder, and van Koert [2013] for � = 0. Hence, for � close to
0 or 1 we can always apply Theorem 2.13 and obtain a pair of periodic orbits which are
2-unknotted and have self-linking number �1/2. These orbits are transversely isotopic to
(a quotient of) a Hopf link. Theorem 2.12 can also be applied and an annulus-like global
surface of section is obtained.

We end with a sketch of proof of (a) in Theorem 4.2. Fix c > 3/2. The component
Σ̇�;c � H�1

� (�c) which projects to the Hill region surrounding 0 2 C contains collision
orbits. These orbits are regularized with the aid of Levi-Civita coordinates (v; u) 2 C �C
given by q = 2v2 and p = �

u
v̄
, which are symplectic up to a constant factor. The

regularized Hamiltonian is

(12)
K�;c(v; u) := jvj

2(H�(p; q) + c)

=
1

2
juj

2 + 2jvj
2

hu; ivi � �=(uv) �
1 � �

2
� �

jvj2

j2v2 � 1j
+ cjvj

2;

and there is a two-to-one correspondence between a centrally symmetric sphere-like com-
ponent eΣ�;c � K�1

�;c(0) and Σ̇�;c , up to collisions.
Now we consider the re-scaled coordinates v = v̂

p
1 � � and u = û

p
1 � �; with

Hamiltonian

(13)
K̂�;c(v̂; û) :=

1

1 � �
K�;c(v; u)

=
1

2
jûj

2 + 2(1 � �)jv̂j
2

hû; i v̂i � �=(ûv̂) �
1

2
� �

jv̂j2

j2(1 � �)v̂2 � 1j
+ cjv̂j

2:

The component eΣ�;c � K�1
�;c(0) gets re-scaled and we denote it by Σ̂�;c � K̂�1

�;c(0).
Taking � ! 1� we see from (13) that Σ̂�;c converges in the C1 topology to a hyper-

surface satisfying

(14)
1

2
jûj

2
� =(ûv̂) + (c � 1)jv̂j

2 =
1

2
:

In order to have a better picture of the hypersurface in (14), we denote, for simplicity,
v̂ = v̂1 + i v̂2 and û = û1 + i û2. Then (14) is equivalent to

(15) (û1 � v̂2)
2 + (û2 � v̂1)

2 + 2

�
c �

3

2

�
(v̂21 + v̂

2
2) = 1:



GLOBAL SURFACES OF SECTION FOR REEB FLOWS 955

Taking new coordinates (w = w1 + iw2; z = z1 + iz2) 2 C � C with w1 = û1 � v̂2,
w2 = û2 � v̂1 and z = v̂

p
2c � 3, which are symplectic up to a constant factor, we see

that (15) is equivalent to w2
1 + w

2
2 + z

2
1 + z22 = 1:

We conclude that the regularized Hamiltonian flow on Σ̂�;c converges smoothly to the
standard Reeb flow on (S3; �0) as � ! 1� up to reparametrizations. Its orbits are the
Hopf fibers. Since the projection of the retrograde orbit winds once around 0 2 C in
q-coordinates, it is doubly covered by a simple closed orbit P�;c � eΣ�;c , which in z-
coordinates winds once around 0 2 C. Hence, P�;c converges smoothly to a Hopf fiber
in (w; z) and, in particular, it is unknotted and has self-linking number�1. The dynamical
convexity of the Hamiltonian flow on Σ̂�;c and Theorem 2.6 imply that it is the boundary
of a disk-like global surface of section. In view of Theorem 2.12, we may assume that this
global section descends to a rational disk-like global section on Σ�;c = eΣ�;c/f˙1g.

5 Transverse foliations

We discuss the idea of transverse foliations adapted to a 3-dimensional flow based on
the concepts introduced by Hofer, Wysocki and Zehnder in Hofer, Wysocki, and Zehnder
[2003]. This generalizes the notion of open books and global sections.

Definition 5.1. Let �t be a smooth flow on an oriented closed 3-manifoldM . A transverse
foliation for �t is formed by:

(i) A finite set P of primitive periodic orbits of �t , called binding orbits.

(ii) A smooth foliation of M n [P2PP by properly embedded surfaces. Every leaf Σ̇
is transverse to �t , has an orientation induced by �t and M , and there exists a
compact embedded surface Σ ,! M so that Σ̇ = Σ n @Σ and @Σ is a union of
components of [P2PP . An end z of Σ̇ is called a puncture. To each puncture z
there is an associated componentPz 2 P of @Σ called the asymptotic limit of Σ̇ at z.
A puncture z of Σ̇ is called positive if the orientation on Pz induced by Σ̇ coincides
with the orientation induced by �t . Otherwise z is called negative.

The following theorem is a seminal result on the existence of transverse foliations for
Reeb flows on the tight 3-sphere. It is based on pseudo-holomorphic curve theory in
symplectic cobordisms.

Theorem 5.2 (Hofer, Wysocki, and Zehnder [ibid.]). Let �t be a nondegenerate Reeb flow
on (S3; �0). Then �t admits a transverse foliation. The binding orbits have self-linking
number �1 and their Conley–Zehnder indices are 1, 2 or 3. Every leaf Σ̇ is a punctured
sphere and has precisely one positive puncture. One of the following conditions holds:
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• The asymptotic limit of Σ̇ at its positive puncture has Conley-Zehnder index 3 and
the asymptotic limit of Σ̇ at any negative puncture has Conley-Zehnder index 1 or
2. There exists at most one negative puncture whose asymptotic limit has Conley-
Zehnder index 2.

• The asymptotic limit of Σ̇ at its positive puncture has Conley-Zehnder index 2 and
the asymptotic limit of Σ̇ at any negative puncture has Conley-Zehnder index 1.

The open books with disk-like pages constructed in Hofer, Wysocki, and Zehnder
[1995a, 1999a, 1998], Hryniewicz [2012, 2014], Hryniewicz, Licata, and Salomão [2015],
and Hryniewicz and Salomão [2011] for Reeb flows on (S3; �0) are particular cases of
transverse foliations with a single binding orbit. The main obstruction for the existence of
such an open book with a prescribed binding orbit P is the presence of closed orbits with
Conley-Zehnder index 2 which are unlinked to P . One particular transverse foliation of
interest which deals with such situations is the so called 3-2-3 foliation.

Definition 5.3. A 3-2-3 foliation for a Reeb flow �t on (S3; �0) is a transverse foliation
for �t with precisely three binding orbits P3, P2 and P 0

3. They are unknotted, mutually
unlinked and their respective Conley-Zehnder indices are 3; 2 and 3. The leaves are punc-
tured spheres and consist of

• A pair of planes U1 and U2, both asymptotic to P2 at their positive punctures.

• A cylinder V asymptotic to P3 at its positive puncture and to P2 at its negative
puncture; a cylinder V 0 asymptotic to P 0

3 at its positive puncture and to P2 at its
negative puncture.

• A one parameter family of planes asymptotic to P3 at their positive punctures; a
one parameter family of planes asymptotic to P 0

3 at their positive punctures.

The 3-2-3 foliations are the natural objects to consider if one studies Hamiltonian dy-
namics near certain critical energy levels.

Take a HamiltonianH on R4 which has a critical point p 2 H�1(0) with Morse index
1 and of saddle-center type. Its center manifold is foliated by the so called Lyapunoff
orbits P2;E � H�1(E); E > 0 small. Each one of them is unknotted, hyperbolic inside
its energy level and has Conley-Zehnder index 2.

Assume that for every E < 0 the energy levelH�1(E) contains two sphere-like com-
ponents SE and S 0

E which develop a common singularity at p as E ! 0�. This means
that SE converges in the Hausdorff topology to S0 � H�1(0) as E ! 0�, where S0 is
homeomorphic to the 3-sphere and contains p as its unique singularity. The analog holds
for S 0

E . Therefore, S0 \ S 0
0 = fpg and, for E > 0 small,H�1(E) contains a sphere-like

componentWE close to S0 [ S 0
0. We observe thatWE contains the Lyapunoff orbit P2;E

and is in correspondence with the connected sum of SE and S 0
E .
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Definition 5.4. We say that S0 is strictly convex if S0 bounds a convex domain in R4 and
all the sectional curvatures of S0 n fpg are positive. We say that S 0

0 is strictly convex if
analogous conditions hold.

The following theorem is inspired by results in Hofer, Wysocki, and Zehnder [2003].

Theorem 5.5 (de Paulo and Salomão [2018, n.d.]). IfH is real analytic and both S0 and
S 0
0 are strictly convex then, for every E > 0 small, the Hamiltonian flow on the sphere-

like componentWE � H�1(E) admits a 3-2-3 foliation. The Lyapunoff orbit P2;E is one
of the binding orbits and there exist infinitely many periodic orbits and infinitely many
homoclinics to P2;E in WE .

One difficulty in proving Theorem 5.5 is that there are no non-degeneracy assumptions
of any kind. A criterium for checking strict convexity of the subsets S0 and S 0

0 is found
in Salomão [2003].

The notion of 3-2-3 foliation is naturally extended to Reeb flows on connected sums
RP 3#RP 3. In this case the binding orbits P3 and P 0

3 are non-contractible and the fam-
ilies of planes are asymptotic to their respective double covers. The existence of 3-2-3
foliations for Reeb flows on RP 3#RP 3 is still an object of study and it is conjectured that
they exist for some Hamiltonians in celestial mechanics such as the Euler’s problem of
two centers in the plane and the planar circular restricted three body problem for energies
slightly above the first Lagrange value.

A more general theory of transverse foliations for Reeb flows still needs to be devel-
oped. If one wishes to use holomorphic curves then one step is implemented by Fish and
Siefring [2013], who showed persistence under connected sums. Transverse foliations on
mapping tori of disk-maps were constructed by Bramham [2015a,b] to study questions
about rigidity of pseudo-rotations.

6 A Poincaré-Birkhoff theorem for tight Reeb flows on S3

Poincaré’s last geometric theorem is nowadays known as the Poincaré-Birkhoff theorem.
In its simplest form it is a statement about fixed points of area-preserving annulus homeo-
morphisms f : R/Z� [0; 1] ! R/Z� [0; 1] preserving orientation and boundary compo-
nents. Themap f can be lifted to the universal coveringR�[0; 1]. Let us denote projection
onto the first coordinate by p : R � [0; 1] ! R. Then f is said to satisfy a twist condition
on the boundary if it admits a lift to the universal covering F : R � [0; 1] ! R � [0; 1]

such that the rotation numbers

lim
n!1

p ı F n(x; 0)

n
lim
n!1

p ı F n(x; 1)

n

differ. We call the open interval I bounded by these numbers the twist interval.
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Theorem 6.1 (Poincaré-Birkhoff Birkhoff [1913] and Poincaré [1912]). If I \ Z ¤ ¿
then f has at least two fixed points.

Poincaré [1912] found annulus-like global surfaces of section for the PCR3BP for en-
ergies below the lowest critical value of the Hamiltonian, and when the mass is almost all
concentrated in the primary around which the satellite moves. The boundary orbits form a
Hopf link in the three-sphere. For generic values of the parameters, the Poincaré-Birkhoff
theorem applies to the associated return map and proves the existence of infinitely many
periodic orbits.

One also finds such pair of orbits for the Hamiltonian flow on a smooth, compact and
strictly convex energy level inside (R4; !0). In fact, the fundamental result of Hofer,
Wysocki, and Zehnder [1998] provides an unknotted periodic orbit P0 that bounds a disk-
like global surface of section. Brouwer’s translation theorem yields a second periodic
orbit P1 simply linked to P0, but much more can be said. The orbit P0 is the binding of
an open book decomposition whose pages are disk-like global surfaces of section. It turns
out that the following statement follows: the flow is smoothly conjugated to a Reeb flow
on (S3; �0) in such a way that P0 [ P1 corresponds to a link transversely isotopic to the
standard Hopf link

el0 = f(x1; y1; x2; y2) 2 S3
j x1 = y1 = 0 or x2 = y2 = 0g

If the fixed point corresponding toP1 is removed from the disk-like global section spanned
byP0, then we obtain a diffeomorphism of the open annulus that preserves a standard area-
form and can be continuously extended to the boundary. It is interesting to study the twist
condition for this map. We need to consider the transverse rotation numbers �0 and �1 of
P0 and P1 with respect to Seifert surfaces (disks). In terms of Conley-Zehnder indices,
these can be read as follows:

(16) 1 + �0 = lim
n!1

CZ(P n0 )
2n

1 + �1 = lim
n!1

CZ(P n1 )
2n

Here CZ(P ni ) denotes the Conley-Zehnder index of the n-iterated orbit Pi computed with
respect to a global trivialization of �0. The open book singles out a lift of the map to
the strip such that the rotation numbers on the boundary are precisely 1/�0 and �1. The
Poincaré-Birkhoff theorem proves the following non-trivial statement: If �1 ¤ 1/�0 then
there are infinitely many periodic orbits in the complement of P0 [ P1. These orbits are
distinguished by their homotopy classes in the complement of P0 [ P1.

Onemotivation for the main result of this section is to study the possibility of extending
the above discussion to situations where neither P0 nor P1 bound global sections. Before
the statement we need some notation. The termHopf linkwill be referred to any transverse
link in (S3; �0) that is transversely isotopic to the standard Hopf linkel0. Given non-zero
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vectors u; v 2 R2 in the complement of the third quadrant, we write u > v (or v < u) if
the argument of u is larger than that of v in the counter-clockwise sense.

Theorem6.2 (Hryniewicz,Momin, and Salomão [2015]). Consider a Reeb flow on (S3; �0)

that admits a pair of periodic orbits P0; P1 forming a Hopf link. Denote by �0; �1 their
transverse rotation numbers computed with respect to Seifert surfaces. If (p; q) is a pair
of relatively prime integers satisfying

(�0; 1) < (p; q) < (1; �1) or (1; �1) < (p; q) < (�0; 1)

then there is a periodic orbit P � S3 n (P0 [ P1) such that p = link(P;P0) and q =

link(P;P1).

The main tools in the proof are the contact homology theory introduced by Momin
[2011] and the intersection theory of punctured holomorphic curves in dimension four
developed by Siefring [2011].

Another source of motivation for Theorem 6.2 is a result due to Angenent [2005] which
we now recall. It concerns geodesic flows on Riemannian two-spheres. Let g be a Rie-
mannian metric on S2, and let 
 : R ! S2 be a closed geodesic of lengthL parametrized
with unit speed. In particular 
(t) is L-periodic. Jacobi fields along 
 are characterized
by the second order ODE y00(t) = �K(
(t))y(t) where K denotes the Gaussian curva-
ture. Given a (non-trivial) solution y(t) we can write y0(t) + iy(t) = r(t)ei�(t) in polar
coordinates. The Poincaré inverse rotation number of 
 is defined as

(17) �(
) =
L

2�
lim

t!+1

�(t)

t

The special case of the results from Angenent [ibid.] that we would like to emphasize
concerns the case when 
 is simple, that is, 
 j[0;L) is injective. Denote by n(t) a normal
vector along 
(t). Given relatively prime integers p, q ¤ 0 and � > 0 small, a (p; q)-
satellite about 
 is the equivalence class of the immersion ˛� : R/Z ! S2

(18) ˛�(t) = exp
(qtL) (� sin(2�pt) n(qtL)) :

Two immersions are equivalent if they are homotopic through immersions, but self-tangencies
and tangencies with 
 are not allowed.

Theorem 6.3 (Angenent [ibid.]). If a rational number p0/q0 strictly between �(
) and 1

is written in lowest terms then there exists a closed geodesic which is a (p0; q0)-satellite
about 
 .

Let us explain the connection between theorems 6.2 and 6.3. The unit tangent bundle
T 1S2 = fv 2 TS2 j g(v; v) = 1g admits a contact form �g whose Reeb flow coincides
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with the geodesic flow. It is given by the restriction to T 1S2 of the pull-back of the
tautological 1-form on T �S2 by the associated Legendre transform. TheL-periodic orbits

̇(t) and �
̇(�t) form a link l
 on T 1S2 transverse to the contact structure ker�g . There
exists a double cover S3 ! T 1S2 that pulls back the Reeb flow of �g to a Reeb flow
on (S3; �0). Moreover, it pulls back the link l
 to a Hopf link consisting of periodic
orbits P0 [ P1 just like in the statement of Theorem 6.2. Note that �(
) ¤ 1 forces the
vectors (�0 = 2�(
) � 1; 1) and (1; �1 = 2�(
) � 1) to span a non-empty sector. Then
Theorem 6.2 captures the contractible (p0; q0)-satellites of Theorem 6.3 up to homotopy,
and a refinement for Reeb flows on the standard RP 3 (Hryniewicz, Momin, and Salomão
[2015, Theorem 1.9]) captures all the (p0; q0)-satellites of Theorem 6.3 up to homotopy.
Of course, we do not hope to capture geodesics up to equivalence of satellites because
Theorem 6.2 deals with more general flows than those dealt by Theorem 6.3. For instance,
it handles non-reversible Finsler geodesic flows with a pair of closed geodesics homotopic
to a pair of embedded loops through immersions without positive tangencies. In particular,
it covers reversible Finsler metrics with a simple closed geodesic.

Finally, a pair of closed Reeb orbits forming a Hopf link is not known to exist in general
for a Reeb flow on (S3; �0). Each of its components is unknotted, transverse to �0 and has
self-linking number�1; we refer to such a closed curve as a Hopf fiber. The existence of at
least one closed Reeb orbit on (S3; �0) which is a Hopf fiber is proved in Hofer, Wysocki,
and Zehnder [1996b]; this is a difficult result. If P is a nondegenerate closed orbit which
bounds a disk-like global surface of section then P is a Hopf fiber and its rotation number
is > 1. Moreover, a fixed point of the first return map, assured by Brouwer’s translation
theorem, determines a closed orbit P 0 which forms a Hopf link with P . One may ask
whether every closed orbit which is a Hopf fiber and has rotation number > 1 admits
another closed orbit forming together a Hopf link. In that direction we have the following
result which may be seen as a version of Brouwer’s translation theorem for Reeb flows on
(S3; �0).

Theorem 6.4 (Hryniewicz, Momin, and Salomão [n.d.]). Assume that a Reeb flow on
(S3; �0) admits a closed Reeb orbit P which is a Hopf fiber. If the transverse rotation
number �(P ) belongs to (1;+1) n

˚
1 + 1

k
: k 2 N

	
then there exists a closed orbit P 0

simply linked to P .

The closed orbit P 0 in Theorem 6.4 is not even known to be unknotted.

A Closed geodesics on a Riemannian two-sphere

The purpose of this appendix is to describe the steps of a new proof of the existence of
infinitely many closed geodesics on any Riemannian two-sphere. The argument is based
on a combination of Angenent’s theorem (Theorem 6.3) and the work of Hingston [1993],
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it serves as an alternative to the classical proof that combines results of Victor Bangert
and John Franks. We recommend Oancea [2015] for an account of the closed geodesic
problem on Riemannian manifolds.

Theorem A.1 (Bangert [1993] and Franks [1992]). Every Riemannian metric on S2 ad-
mits infinitely many closed geodesics.

We start with a remark from Hingston [1993]. The space of embedded loops in the two-
sphere carries a 3-dimensional homology classmodulo short loops. One can useGrayson’s
curve shortening flow to run a min-max argument over this class and obtain a special
simple closed geodesic 
�. The crucial fact here is that Grayson’s curve shortening flow
preserves the property of being embedded. The sum of the Morse index and the nullity of

� is larger than or equal to 3, in particular �(
�) � 1.

If �(
�) = 1 (Hingston’s non-rotating case) then 
� is a very special critical point of the
energy functional. The growth of Morse indices under iterations of 
� follows a specific
pattern. Index plus nullity of 
� is equal to 3, and if 
� is isolated then its local homology
is non-trivial in degree 3. If every iterate of 
� is isolated then the analysis of Hingston
[ibid.] shows that there are infinitely many closed geodesics. If some iterate 
� is not
isolated then already there are infinitely many closed geodesics. Hence we are left with
the case �(
�) > 1, which is covered by Theorem 6.3. Theorem A.1 is proved. The case
�(
�) > 1 is handled independently by Theorem 6.2.

The work of Hingston [ibid.] triggered many developments, including a proof of the
Conley conjecture for standard symplectic tori in Hingston [2009]. In Ginzburg [2010]
used Floer homology and Hingston’s methods to prove the Conley conjecture for aespher-
ical symplectic manifolds.
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