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Abstract 

This paper provides Bartlett corrections to improve likelihood ratio tests for 
heteroskedastic normal linear models when the error covariance matrix is nonscalar 
and depends on a set of unknown parameters. The Bartlett corrections are simple 
enough to be 11Bed algebraically to obtain several closed-form expressions in special 
cases. The corrections have also advantages for numerical purposes because they 
involve only simple operations on matrices and vectors. 
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1 Introduction 

We consider a normal heteroskedastic linear model 

y = X(3+u, (1) 

where y is an n-dimensional column vector of observed random variables, X is an n x p 

matrix of fixed known regressors, f3 is a p-dimensional column vector of unknown regression 

coefficients, and u is an n-dimensional column vector of unobserved errors. The random 
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error vector u is distributed normally with zero mean vector and a nonsingular n x n 

covariance matrix v-1. It will be more convenient to work with the n x n precision 

matrix V. The elements of V = V(-y) are known smooth functions of an unknown q­

dimensional parameter vector "Y. Thus, we have (p + q) parameters for the simultaneous 

modelling of the mean vector and the covariance structure. The vectors /3 and ")' are 

unrelated and can vary independently. 

The class of models (1) includes many of the important models of autocorrelation and 

heteroskedasticity discussed in the literature as, for instance, general ARMA models and 

multiplicative heteroskedastic regression models (Harvey, 1976). Expressions for V or 

v-1 for ARMA models are given in Sha.man (1973), Galbraith and Galbraith (1974) and 

Ljung and Box (1979). For the multiplicative heteroskedastic model, v-1 is a diagonal 

matrix with diagonal entries at ... , u!, where ul = exp(w;-y), w; being a 1 x q vector 

of exogenous variables. This model is quite useful in many fields, including engineering, 

economics, and the biological and physical sciences. 

A well developed exact statistical theory exists for hypothesis testing in the normal 

linear model when the errors are independent and homoskedastic. However, there is no 

general exact analysis for model (1) where the error covariance matrix is nonscalar and 

depends on a set of unknown parameters. Test statistics having an asymptotic chi-squared 

distribution a.re commonly used for testing hypotheses on the components of the vectors 

fJ and 'Y. Although the chi-squared distribution is known to approximate well the null 

distribution function of such test statistics for large sample sizes, there is no guarantee 

that it provides a reliable approximation in samples of small to moderate sizes. It has 

even been shown that asymptotically equivalent tests can deliver conflicting inference 

when applied to the same data set (Berndt and Savin, 1977; Evans and Savin, 1982). It 

is thus important to obtain corrected tests with better finite-sample behavior. 

The likelihood ratio (LR) statistic w is frequently used to test hypotheses of interest 
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in regression models. Under the null hypothesis Ho, w has an approximate x2 distribution 

with degrees of freedom given by the difference of the dimensions of the parameter spaces 

under the alternative and null hypotheses. Generally speaking, the main difficulty of 

testing a null hypothesis using the LR criterion lies not so much in deriving its closed­

form expression - when it has one - but in finding its exact distribution, or at least a good 

approximation for it, when the null hypothesis is true. In an influential pa.per, Bartlett 

(1937) proposed an improved LR statistic. His argument goes as follows. Suppose that 

under the null hypothesis E(w) = q{l + b + O(n-312
)}, where bis a constant that can be 

consistently estimated under H0. Then, the expected value of the transformed statistic 

w• = w/(1 + b) is closer to the one from a. x~ distribution than is the expected value 

of w. This became widely known a.s the Bartlett correction. Furthermore, it was shown 

by Lawley (1956) that all cumulants of w• agree with those of the reference chi-squared 

distribution with error of order n-2. Lawley's results appeared to be incompatible with 

the asymptotic expansion of the null distribution of the LR statistic obtained by Hayakawa 

(1977). This puzzle was apparently solved by Cordeiro (1987) who showed that a. certain 

coefficient in Hayaka.wa's expansion vanishes. However, this puzzle was recently revisited 

by Chesher and Smith (1995) who claimed that Cordeiro's proof is not correct and proved, 

using other arguments, that such coefficient is always zero. 

The purpose of this paper is to show how to obtain Bartlett corrections that can be 

directly applied to commonly used LR statistics for testing hypotheses on the components 

of the vectors /J and 'Yin model (1). In particular, Cordeiro's {1993a) results on Bartlett 

corrections for multiplicative heteroskedastic models a.re a special case of this paper. 

In recent yea.rs there has been a renewed interest in Bartlett corrections. Cordeiro 

{1983, 1987) derived closed-form Bartlett corrections in generalized linear models {Nelder 

and Wedderburn, 1972) and discussed improved LR tests. Bartlett corrections for models 

defined by any one-parameter distribution in which the mean is a known function of a 
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linear combination of unknown parameters were obtained by Cordeiro {1985), who gen­

eralized his own results of 1983. Cordeiro (1995) presented extensive simulation results 

on the performance of a Bartlett-corrected deviance in generalized linear models focusing 

on gamma and log-linear models. Attfield {1995) focused on models that involve systems 

of equations, and derived Bartlett corrections to the LR statistic in this case. Further 

Bartlett adjustments for ten multivariate normal testing problems concerning structured 

covariance matrices were derived by MflJller (1986). Many recent papers have focused 

on deriving closed-form Bartlett corrections for specific regression problems. For exam­

ple, Moulton, Weisafeld and St. Laurent {1993) obtained Bartlett corrections for logistic 

regressions; Attfield (1991) and Cordeiro (1993a) showed how to correct LR tests for het­

eroskedasticity; Wong (1991) obtained a Bartlett correction for testing several slopes in 

regression models whose independent variables are subject to error; Wang (1994) derived 

a Bartlett correction for testing the equality of normal variances against an increasing al­

ternative; Cordeiro, Paula and Botter (1994) derived corrections for the class of dispersion 

models proposed by JflJrgensen (1987); and Chesher and Smith (1997} obtained Bartlett 

corrections for LR specification tests. A correction to the LR statistic in regression mo­

dels with Student-terrors was obtained by Ferrari and Arellano-Valle {1996), and similar 

corrections to heteroskedastic linear models and multivariate regression were obtained by 

Cribari-Neto and Ferrari {1995) and Cribari-Neto and Zarkos (1995}, respectively. Fur­

thermore, Bartlett corrections for general models were discussed by a few authors. An 

algorithm for computing Bartlett corrections in general statistical models was given by 

Jensen (1993); see also Andrews and Stafford (1993) and Stafford and Andrews (1993). 

General matrix formulae for computing Bartlett corrections were developed by Cordeiro 

{1993b). 

The remainder of the paper is organized aB follows. Section 2 presents a general 

formula for the expected LR statistic in model (1). This formula. has advantage for 
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numerical purposes because it only requires simple operations on matrices and vectors. 

It is also simple enough to obtain several closed-form Bartlett corrections in a variety 

of important tests. This formula generalizes Cordeiro's (1993a) equations (3.6) - (3.8) . 

In Section 3, we discuss some special tests of interest in practical applications, such as 

those tests involving both mean and precision parameters, those ones for testing mean 

effects and precision effects separately and hypothesis tests for /3 and 'Y scalars. Finally, 

in Section 4, we present some simulation results which show that the Bartlett corrections 

derived here work well in small samples. 

2 General formula for the Bartlett correction 

We assume that the parameter space for f3 is the p-dimensional Euclidean space whereas 

the parameter space for 'Y is an open set r in a q-dimensional Euclidean space. Further, 

we require that p and q are small compared ton and that XTV X is positive definite for 

all ,yin r. Let l = l(B) be the total log-likelihood for 8 = (/3T,, T)T, the (p+q) vector of 

unknown parameters, given the observable data y. We then have 

(2) 

where we have dropped an irrelevant additive constant. We assume that the fuction t is 

regular (Cox and Hinkley, 1979; Chapter 9) with respect to all f3 and , derivatives up 

to and including those of third order. These regularity conditions are also stated in Rao 

(1973, p.364) and Serfling (1980, p.144). For every sample size, the elements of V are 

assumed to possess derivatives up to the second order everywhere in the parameter space 

r. In addition, the derivativs oft must behave nicely as n tends to infinity. 

Let~ and .:Y be the maximum likelihood estimates (MLEs) of /3 and 'Y, respectively, and 

let 8 = (,81", -y T) T. We must assume that the estimate 8 converges to the true parameter 

8 as n -+ oo and that its asymptotic distribution is multivariate normal with the usual 
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covariance matrix to the correct order. From now on we reserve subscripts r, s, t, u, v, w 

to denote elements of the (3 vector and R, S, T, U, V, W for the elements of the 'Y vector. 

We define the derivatives VR = oV/8-YR and yR = av-1/8-y8 . The maximum likelihood 

equations for ~ and 9 can be written as 

and 

tr(VVR) = (y - XP)TVR(Y - XP), 

for R = 1, ... , q, where V = V(-9) and VR = VR(-9). The estimates '/3 and 9 can be 

calculated numerically using an iterative algorithm (see Section 4). 

We adopt the following notation for any components of -y: V RS = {J2V / O"fRO,s, V RS = 

02v-1;a,Ro'Ys, vR = v-1vR, V
8 = V 8 V = -VR, VRS = v-1vRS, vRS = vRSv, 

V RST = v-1vRST, VRST = V.RSTV' etc., fflR = tr{V R), mR = tr(VR) = -mR, mRS = 
- RS r,;RS fi1 - R,S -R=S fi1 -

tr{VRS), m = tr\V ), fflR,S = tr,VRVs), m = tr(V V ), mRS,T = tr,VRSVT), 

RST -RS-T - - - R,ST fi1R-S-T 
m ' = tr(V V ), fflR,S,T = tr(VRVsVT), m ' = tr,v V V ), fflR,S,T,U = 

tr(VRVsVxVu), mR,S,T,u = tr(V~
8
VT'v') and so on. The m's defined above sat­

isfy certain equations which facilitate their calculations (see, Cordeiro and Klein, 1994). 

For example, mRS = 2mR,S -mRS, mRS = 2mR,s-mRS, mRS,T = mRS,T -mR,S,T -mR,T,S 

and mR,s,T = -mR,S,T_ 

Furthermore, we use the standard notation for the moments of the total log-likelihood 

derivatives with respect to both components of (3 and,, all assumed to be O(n) (see, for 

example, McCullagh, 1984, 1987): 
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and 

ICiJ,l,m = E [ ( ::J ( ::J ( ::i) (a~:) ] -K;JKl,m - K;,1Kj,m - ICj,mlCj,I , 

The derivatives of moments are represented by ic~;l = oic;;/801 and ici;mJ = 82ic;;/80180m, 

These ic's satisfy standard regularity equations given by Lawley (1956). 

The total Fisher information matrix of order (p + q) for 0 is K = {ic;;} and let 

K-1 = {-,c•i} be its inverse. All ic's with subscripts are assumed to be O(n). Then, all ic's 

with superscripts are O(n-1). Differentiating (2) and taking expectations we can find the 

moments of the derivatives of l(9) with respect to the elements of (J and 'Y· We can easily 

show that E(-o2e/o(3{J,y T) = O, i.e., the parameters (3 and I are globally orthogonal (Cox 

and Reid, 1987). The partition eT = (/3T, 1 T) induces a corresponding block diagonal total 

information matrix K = diag{Kp,p,K-y,-y} with submatrices Kp,fi = E(-82l/8/38/3T) for 

/3 and K-y,-y = E(-82l/o"'(O"'( T) for -y. The information for /3 is KpJJ = xTv X whose 

(r, B)th typical element is t<r,• = -t<ra = x;!'vx., where x0 is the Bth column of the matrix 

1 1 - -X. We also have K-y,-r = {icR,s} where KR,s = -icRS = 2mR,s = 2tr(V RVs) is the 

(R, S)th typical element of the information K-r,-r for 1 . 

We now need the following results: 

(i) 

(ii) 

(iii) 

vR = v-1vRv-1 and vR = -vvRv; 

_a _lo-'-g "'-IV--"I = tr(V R) = mR; 
O"'(R 

E{(y - µ)T A(y- µ)} = tr(V-1A), 

where E(y) =µand Cov(y) = v-1, for any positive definite matrix A. 

Differentiating (2) and making use of (i) - (ii), we can find the following log likelihood 

derivatives 
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8i 
= 

{)'YR 

a21. 
= 

{)'YR{)'YS 

{)31. 
= 

{)'Y R{)'YS{)'YT 

and 

{)3/. T {)4/. 

{)f3r{)'YS{)'YT = Xr VST(Y - X /3), 8/3r8f3,{)f3t{)'YU = 0, 

{)4t, - T {}4l, - X TV: ( - X R) 
{) R {JR {) {) - -Xr Vrux,, {)R {) {) {) - r STU y ,., ' 

/Jr ,-,, 'YT 'YU n 'YS 'YT 'YU 

½ { mR - ½(y - X,B)TVR(Y - X,B)}, 

-½ { mR,s - mRS + (y - X/3)TVRS(Y - X,8)}, 

1 
2 {mRST - fflRS,T - mia',S - fflST,R + fflR,S,T 

+mR,T,S - (y - X/3)TVRST(Y - X/3)} 

1 = 2 {mRSTu - fflRST,U - ffiRSU,T - ffiRTU,S - fflSTlJ,R 

-mRS,TU - ffiRT,SU - fflRU,ST + fiRS,U,T + ffiRS,T,U 

+"'RT,U,S + "'RT.S,U + "'ST,R,U + "'ST,U,R + "'TU,S,R 

+mTu,R,S + msu,R.,T + msu,T,R + ffiRU,T,S + ffiRU,S,T 

-ms,R.,T,U - ms,R,U,T - fiR,T,S,U - fflR,U,S,T - fflR,S,U,T 

-mR,s,T,U + (y - X /3) T VRSTU(Y - X /3)} . 

From the above log likelihood derivatives and using (iii) we obtain the following mo-

ments 

KRS = 

KR,t = 

KRST = 

KRSTU = 

1 
-2mR,s, 

-x:VRxt, 

1 - 2(mRS,T + ffiST,R + fflia',S - fflR,8,T - fflR,T,s), 

-½(mRST,U + ffiRSU,T + mmv,s + mSTU,R + mRS,TU + fflKJ',SU + fflRIJ,ST 

-mRS,T,U - fflRS,u,T- fflKJ',S,U - mRT,U,S - mST,R,U - fflST,U,R - msu,R,T 

-msu,T,R - fflRU,T,S - fflRIJ,S,T - mro,S,R - ffiTU,R,S + ffiR,S,T,U + ffiR,S,U,T 

+mR,u,s,T + mR,u;r,s + fiR,T,S,U + fiR,T,U,S ), 
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,_(T) r• 

It~ 

(TU) 
'-r• 

"~ 

and 

= 

= 

= 

= 

1 
-2(mST,R + fflK[,S - fflR,S,T - fflR,T,s) , 

-x~Vrux., 

-½(mSTU,R + fflKJ'U,S + fflRU,ST + fflRT,SU - fflST,R,U - msr,U,R - fflRT,U,S 

-mRT,s,u- msu,T,R - msu,R,r- mRU,s,r - mRU,T,s - mro,R,s- mru,s,R 

+m R,S,T,U + m R,S,U,T + m R,U,S,T + m R,U,T,S + m R,T,S,U + m R,T,U,S) 

(U) 1 ( 
"RST = -2 fflRSU,T + fflRTU,S + msru,R + fflRS,TU + fflRT,SU + fflRU,ST - fflRS,T,U 

-mRS,U,T - mRT,S,U - mRT,U,S - msr,R,U - fflST,U,R - msu,T,R - msu,R,T 

-mro,R,S - mru,S,R - fflRU,S,T - fflRU,T,S + fflR,S,T,U + fflR,S,U,T + fflR,T,S,U 

+m R,T,U,S + m R,U,S,T + m R,U,T,S) . 

From Lawley's (1956) expansion we can write the expected LR statistic to O(n-1) 

as 2E{£(fi, ::Y) - £(,8, 'Y)} = p + q + Ep+q, where l(,B, 'Y) is the log-likelihood at the true 

parameter point and E:p+q is a term of order n - 1 evaluated at the true parameter point 

given by 

E:p+q = I:0•1½•sio - l,1•••••~••111), (3) 
/3,"( 

where all indices ii, ... , i6 vary over both vectors f3 and -y and ~/3,'Y denotes the summation 

over all the combinations of the p + q parameters /31, •.. , /3p, "/1, ... , 'Yq· The notation on 

the right hand side of (3) follows Cordeiro {1987), the l's being obtained from 

(4) 

and 

(5) 
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The proof of (3) - (5) given in Lawley (1956) contains many references to the difficulty of 

the required symbolic manipulations and as he pointed out, it involves exceedingly com­

plicated and laborious algebra. Lawley's formula involves certain products of higher-order 

arrays called tensors but has no simple closed-form expression, since it is not explicitly 

written in terms of the unknown parameters. 

The important simplification for deriving a general formula for Ep+q from (3) in matrix 

notation is the block diagonality of the information matrix K. In fact, several of the mixed 

cumulants vanish due to the orthogonality between /J and "f. Further, the number of terms 

necessary to compute (3) is greatly reduced because of this orthogonality. 

Henceforth, any matrix with (i,j) element a1; will be represented by A = {a,;} 

and quantities that can be expressed solely in terms of the matrix V and its first two 

derivatives with respect to "f will be denoted with suffix 'Y, whereas those that also 

depend on the model matrix X are used with double suffices 'Y, /J. In order to find 

the general formula for Bartlett corrections in model (1) we need the following matri­

ces and vectors. Let r4R) = { t~'1,} and ut> = { u~~} be q x q matrices referring 

to the Rth component of 'Y with typical (S, T) elements given by t~'1, = mR,ST and 

u~1£, = mR,s,T, respectively. We also define the q x q matrices S7 = {s,.,RS}, A7 = 
{a,.,RS}, P7JJ = {p7JJRS} and M7,/J = {m7,/JRS} whose typical (R, S) elements are s7RS = 

tr(K.;:~ut>)tr(K.;:~u4S)), a,.,RS = 6tr(K.;:~rt>K.;:~r4S)) - 3tr(K.;:~rt>)tr(K.;:~{T4S) -

4U4S)}) - 4tr(K.;:~uJR)T K.;:~{U4S) + u4S)T} ), P7,/JRS = tr(XTVRX Ki,}XTVsX Kj}) and 

m 7 JJRS = tr(Kj}XTVasX), respectively. Further, for any two Rth and 8th components 

of "f, we define the following q x q matrices D~RS} = { d~} where their (T, U) elements 

are d~ = 2m Kl',SU - m RS,TU + 4m RB,T,U - 4m R,S,T,U - 2m R,T ,s,u. From these matrices 

we can easily construct the q x q matrix N7 = {n,.,as} whose (R, S) element is given 

by n7RS = tr(K.,.~D~SR)). Finally, we define the q x 1 vectors r7,/J and p7JJ whose Rth 

components are tr(Kj}XTVRX) and 2tr(Kj}XTVRX -K.;:~{T4R>-w4R)} ), respectively. 
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On inserting the moments 11:'s given before in (4) - (5) and then summing over the 

sample after evaluating the sums over the parameters, it can be shown from the matrices 

and vectors defined above that 

E:p+q = B, + C,,p, (6) 

where 

B.., = ~vec(K,;:;f vec(N-,) + 
4
1

8 
tr{K,;:;{12S-, - A..,)} (7) 

and 

(8) 

The details involved in the derivation of the equations (6) - (8) are tedious and are 

omitted here to save space but they follow from similar algebraic developments of Cordeiro 

(1983, 1987, 1993a), Cordeiro, Paula and Hotter (1994), Hotter and Cordeiro (1997) and 

Aubin and Cordeiro (1999) . They can be obtained from the authors upon request. Clearly, 

B, depends only on the vector 'Y through the first two partial derivatives of V with respect 

to this vector, whereas C-,.fJ is a function of X, (:J and "f. Both expressions (7) and (8) 

involve simple operations on matrices and vectors. Expressing E:p+q in matrix formulae 

has great advantages to obtain closed-form Bartlett corrections for several special tests 

of practical use such as those that will be discussed in Section 3. Also, the quantities 

B., and C7 .13 can be made computationally a.tractive using a. computer algebra system 

such as MATHEMATICA or MAPLE, or using a programming language with support 

for matrix operations such as GAUSS, Ox or S-PLUS. Although these quantities are easy 

to compute under the null hypothesis because they involve only simple operations on 

matrices and vectors, they are not easy to interpret. The fundamental difficulty is that 

the individual terms in equations (7) and (8) are not invariant under reparametrization 

and therefore their interpretation depend on the coordinate system chosen. The entire 

expression for E:p+q is of course invariant under repara.metrization. The main advantage 
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of formulae (6) - (8) over Lawley's equation is that we avoid computations involving 

all possible products of higher-order arra)'.S. In these formulae the matrices required are 

given in a more readily computable form by exploiting special structures of the cumulants 

involved. Moreover, the matrix notation provides some insights into the nature of the 

Bartlett correction, especially in cases where KfJJJ and K7 ,7 have closed-form inverse. We 

have checked formulae (6) - (8) in some specific situations and they work properly. Some 

partial checks of ep+q are provided in Section 3. 

3 Some special cases 

3.1 Testing both mean and precision parameters 

We first consider the hypothesis where both the parameter vector of interest and the 

nuisance parameter vector may be regarded as being composed of some components of 

fJ and 'Y· Partitioning the parameters as pT = (fll, pl) and 'YT = (-rl,-rl), where 

/31 = (/31,•••,fl,,1)T, /32 = (flP1+1,··•,fl,.?, 'Y1 = bt,••·,'Yn? and 72 = ('Y91+1,··•,'Yq? 

with P1 ~ p and q1 ~ q, we are interested in testing the null hypothesis H1 : {31 = pf0>, 

-r1 = -,f0> versus A1: violation of at least one equality, where (3f0> and -yf> are specified 

vectors of dimensions Pi and qi, respectively. Following the partition induced by H1, 

let X = (X1,X2) be the corresponding partitioned model matrix, where X1 and X2 are 

respectively n x p1 and n x P2 matrices of full ranks. Let 'jj and 9 be the unrestricted 

MLEs of fi and -y and P2 and :Y2 be the restricted MLEs of {¾ and 72 under H 1. 

From now on, functions evaluated at the unrestricted MLEs will be denoted by the 

addition of a circumflex and those evaluated at the restricted estimates by the addition 

of a tilde. The LR statistic for testing H1 is simply 

which is, under H1, asymptotically distributed as x!i+qi • The key to the evaluation of 
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the Bartlett correction to improve the test of H 1 is to write the LR statistic w1 as the 

difference of two LR statistics for testing hypotheses without nuisance parameters. More 

specifically we have 

E(wi) = 2E{l(,8,9)- l(.BI°>,/h-r~01 ,,,,2)} 

2E{l(R(O) ii (O) - ) ( (0) (0) )} - /JI , /J2, 'Y1 , 1'2 - l /J1 , .62, 'Yt , 1'2 • 

Here .62 and ,2 represent the true values of these parameters. Using (6) we find under H1 

where B"12 and C"12,fh are obtained directly from equations (7) and (8) with K 7 ,7 and Kp.13 

being substituted by K-nm and KfJ,J,fh, respectively. All terms in E(w1) are determined 

subject to /J1 = ,0f0>, 11 = ,I°>. Clearly, the Bartlett correction c1 = E{wi)/(,p1 + q1) for 

improving H 1 : /J1 = ,B[0l, 'Yt = ,f OJ follows as 

(9) 

where the vector I should be evaluated at (,~oJT,-rJ?. Under H 1, the improved statistic 

wi = ci1w1 is distributed to order n-1 as X~+qi. Therefore, the improved test compares 

wi with the upper point of the X~+<n distribution. The importance of equation (9) in ap­

plications is that it involves only simple matrix operations. Several formulae for Bartlett 

corrections in special cases can be obtained by exploring models whose information ma­

trices Kp.13, Kfh,P-A, K 7 ,7 and K"12m have closed-form inverses. Evidently, in the simplest 

case p1 = p and q1 = q of little practical interest since H1 becomes simple, the Bartlett 

correction reduces to c1 = 1 + (,p + q)-1(B7 + C7 _p) with , being evaluated under the null 

hypothesis. 

Expression (9) can be reduced considerably for models with special structures for the 

precision matrix {9). An important special case of {9) refers to a homoskedastic model 
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where the n x n covariance matrix v-1 reduces to -yin, 'Y a scalar parameter. In this 

case, Kp,fJ = 'Y-lxTx, v., = -'Y-2/n, Vn = 2'Y-3Jn, K.,,., = n/2-y2 and after some 

algebra we obtain P-,,/J = p/'Y2, M-,,p = 2p/'Y2
, T-,,ft = -ph, P-r,fJ = -2ph, D~77J = 6/'Y', 

u47) = -nh3, T47> = -2n/-y3, N., = 12/•·,2, A., = 112h2 and S7 = 4/'Y2
. Finally, we 

find from equations (7) and (8) 

1 
B.,=-, 

3n 
C-,.ft = p(p + 2). 

2n 

Note that C-,,{J in (10) depends on the model matrix only through its rank p. Expressions 

(10) provide a partial check of equations (6) - (8) since, in this case, the Bartlett correction 

to improve the test of H 1 : /3 = f3<0J, 'Y = -yC0J comes directly from the exact expected 

value of the LR statistic given by 2E { t(fJ, 9) - l(/3, 'Y)} = log n - E(log x!-p) if terms of 

order n - 2 are neglected. 

Unfortunately, when {J is a scalar parameter and Vis an arbitrary n x n precision ma­

trix depending on the q-dimensional parameter vector 'Y, there is no substantial reduction 

in the expressions for /37 and c.,,p. 

3.2 Testing mean effects 

We are now interested in testing a subset of parameters only in {J. In this situation, the 

null hypothesis is H2 : {J1 = /J~o) to be tested against A2 : /J1 # ,ai0>, where pf0l is a 

specified vector of dimension p1 and f32(p2 x 1) and -y(q x 1) are the vectors of nuisance 

parameters. The LR statistic for testing H2 is given by w2 = 2{ l(.81, .82, 9)-l{PI0), ,02, ~)}, 

which is, under H2, distributed to first order as x~. 

We can easily show that 

where C-,,P-J comes directly from (8) with Kfl2,fl2 = X:{V X2 in place of KtJ,fJ = XTV X. The 

Bartlett correction associated with w2 is c2 = 1 + {C-,,P - C-,,tJ-J)/p1 , where C7 ,/J and C-,JJ,, 
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a.re both evaluated at (pf0>,~JY and 1· Under H2, the improved statistic w2 = c;1w2 

is distributed to order n-1 as x~- An important application corresponds to the test of 

homogeneity of means assuming that the model (1) is homoskedastic. We are interested 

in testing H2 : fli = · · · = {3Pl = 0 with p1 = p - 1 and X/p = 1 for l = 1, ... , n against 

A2 : H2 is not true. The Bartlett correction reduces to c2 = 1 + {C,y,.s - C,y,{Jp)/(p - 1), 

where /3p is a scalar parameter. If the covariance matrix v-1 is "fln, C,y,/J follows from (10) 

and C,y,fjp is also obtained from {10) by making p = l. The Bartlett correction becomes 

c2 = 1 + (p2 + 2p - 3)/{2n(p - l)} which coincides with Cordeiro's (1993a) expression 

(4.3), thus providing another check of equations (6) - (8). 

If the null hypothesis specifies the whole vector {J, i.e. H 2 : /j = p<0>, the Bartlett 

correction c2 for improving the LR test of H2 is given by c2 = 1 + C,y,p/p. Moreover, if 

the model is homoskedastic, C,y,.s comes from (10) and the Bartlett correction reduces to 

a linear function c2 = 1 + (p + 2)/2n of the dimension of the vector {3. 

3.3 Testing precision effects 

We now consider the LR statistic for testing H3 : 'YI = 'Yf
0l against A : 'YI ,:j: -y}0l, where 

'Yf o) is a specific vector of dimension q1 and /3 and "12 are vectors of nuisance parameters. 

It is given by 

and, under H3 , the distribution of w3 is generally of order n-1 away from x~. We obtain 

E(wa) = q1 + B.., + C-,,IJ - B"'12 - C'Y'JJJ· 

The terms B'Y'J and C"n,/J come from equations (7) and (8) by substituting K-r,-r by K"nm 

subject to , 1 = ,f0>. The Bartlett correction determined by ca = E(wa)/q1 renders the 

n-1 term in E(w3) equal to zero and the error of the x~
1 

approximation to the distribution 

of w; = c;-1w3 becomes of order n - 2, the nuisance parameters 'Y2 and {3 being evaluated a.t 

15 



72 and 'iJ. If the null hypothesis specifies all components of the vector 'Y, i.e., Hs : 'Y = ,yCO), 

the Bartlett correction for improving the test of H3 : 'Y = ,yC0l based on the LR statistic 

w3 = 2{ l(ft, 9) - l(P, -yC0l} is given by ca = 1 + (B-, + C-,,,,)/ q with 7 = -yCO). If the model 

is homoskedastic, the correction reduces to c3 = 1 + {3p(p + 2) + 2}/6n. This result is 

the classical Bartlett correction for testing the variance in a homoskedastic normal linear 

model. 

3.4 Both f3 and 'Y scalars 

When both p and 7 are scalar parameters, i.e. p = q = 1, the model (1) is homoskedastic 

with n x n covariance matrix v-1 = -rln and /J is the common mean, the information 

matrix for 8 = (/J, 1? reduces to K = diag { ~' ~ }- For testing the mean H2 : /J = p(O) 

against A2 : f3 #- p<0>, the LR statistic is given by w2 = n log { (~;~>2

}, where fl is 

the mean of the observations. The Bartlett correction is simply c2 = 1 + CfJ,'Y> whei:e C(J,-, 

comes from the last expression of Section 3.2 with p = 1. We have c2 = 1 + 3/(2n) and 

the improved test of the mean compares w:i = ( 1 + :!. r1 
w2 with the x¥ distribution. 

We can also consider the test of the common variance H3 : 'Y = -y(O) against A3 : 'Y # 

-yC0
) in which the LR statistic is given by 

{ (
1 co>) 9 _ 1 co)} 

w3 = n log T + -y(O) , 

where 9 = E(1,1;-y)2 /n. The Bartlett correction follows directly from the result of Section 

3.3 with p = 1. Thus, ca = 1 + 11/(6n) and the improved statistic w3 = ( 1 + !!)-1 
w3 has, 

under Ha, ax~ distribution to order n-1• The results presented here are in agreement 

with the classical Bartlett corrections to iniprove the LR tests of the mean and variance 

of a normal distribution which can be obtained directly by Taylor series expansion. 
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4 Simulation results 

We now present some simulation results for two LR statistics and their corrected versions 

for the normal heteroskedastic linear model (1) in which the components of the vector 

of errors u. follow the stationary AR(l) equation U.i = /J'Ui-1 + E;, IPI < 1, with E, ~ 
NI D(O, u2), for i = 1, ... , n. The covariance matrix v-1 of the model has simple form 

given by 

2 ( 1 P V=-u- : 1 2 • 
- P Pn-1 pn-2 

with inverse 

V - •' ( t 1 f '' t : n 
The linear structure of the model is X f3 = f3oln + /31x1 + f32x2 + f3ax3, where ln is an 

n x 1 vector of one,s and the covariates x1, x2 and x3 are chosen, respectively, as random 

draws from the following distributions: U(O, 1), N(O, 1) and F(3, 5). Their values were 

held constant throughout the simulations with equal sample sizes. 

We wish to test the null hypotheses H2 : /31 = 2, /32 = 1 and Ha : p = 0.6 against 

the hypothesis of violation of at least one equality. For the simulations the nuisance 

parameters /30 and /33 were fixed at f3o = 4, /33 = 3 and the variance u 2 was taken as 

1,4 and 16. For testing H2, p was set equal to 0.4 and for testing Ha, /31 and /32 were 

taken as 3 and 2, respectively. The number of observations was set at 20, 30 and 40. The 

simulations run-size was 10,000 in each case and calculations were performed using the 

GLIM environment. 

In each simulation, we generate u. and calculate the MLEs of f3 and , iteratively using 

Fisher scoring method given by 
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where U-, and K-,,-, are the 2x 1 score vector and the 2 x 2 information matrix for 'Y = (p o-2) 

given by 

and 

( 

n(l-p2)+3(-l _.;:::.e.._ ) 
K - (1-i,'j "'(1-l"J 

'Y,'Y - __:;,,I!,...._. n ' 
u•(l-P') 2u1 

respectively. Then we obtain the LR statistics w2 and w3 for testing H2 and H3 and the 

modified statistics w2 = c;-1w2 and w3 = c3 
1w3, where the Bartlett corrections c2 and 

c3 are evaluated under H2 and H3, respectively. Further, we investigate the rejection 

rates of w2 and w2 and w3 and w3 at the nominal 10% 11,lld 5% levels of the references ::d 

and xf distributions, respectively. The simulated rejection rates of these statistics, i.e., 

the percentage of times that they exceed the appropriate upper points of the chi-squared 

distributions are given in Tables 1 and 2 ( entries are percentages) for the tests of H 2 and 

Hs, respectively. 

Table 1: Rejection rates of w2 and w; for the hy-

pothesis H 2 : /31 = 2, /32 = 1. 

nominal 0'2 = 1 o-1 =4 o-2 = 16 
n level W'], w:! W2 w; W2 w; 

(o:%) 
20 10 13.22 11.83 14.15 11.77 14.83 12.04 

5 6.88 5.51 7.84 5.62 8.35 5.58 

30 10 11.87 10.74 12.21 10.83 12.97 10.94 
5 6.51 6.17 7.35 5.89 7.76 6.19 

40 10 11.79 10.89 11.92 10.69 12.49 10.73 
5 6.40 5.33 6.81 5.47 7.12 5.76 
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--
Table 2: Rejection rates of w3 and w3 for the hy-

pothe.sis H3 : p = 0.6. 

nominal 0'2 = 1 0'2 = 4 u2 = 16 
n level W3 w; W3 w• 3 W3 W3 

(a%) 
20 10 13.68 11.56 14.22 12.14 15.41 12.43 

5 6.94 5.85 7.19 5.92 8.47 5.93 
30 10 12.87 11.15 13.16 12.25 13.73 11.82 

5 5.88 5.41 6.38 5.60 7.84 5.79 
40 10 12.44 10.87 12.87 11.29 13.28 11.88 

5 5.52 5.40 5.93 5.38 6.45 5.52 

The figures in these tables convey important information. First, it is clear that the 

usual LR statistics tend to reject the null hypothesis more often than the expected based 

on the nominal sizes. In fact, for all 18 cases reported, the rejection rates of the unmodified 

statistics w2 and w3 are greater than the corresponding nominal levels. The asymptotic chi­

squared distribution usually delivers a very poor approximation to the null distributions 

of the unmodified statistics w2 and w3 for small values of n and large values of u2• Second, 
' the empirical sizes of the tests based on the modified statistics w2 and w3 are closer to 

'' 
the nominal levels than the empirical sizes of the corresponding unmodified statistics w2 

and w3. Thus, there is strong evidence that the chi-squared distribution provides a better 

approximation to the distributions of w2 and w3 than to the distribut.k,l~i w2 and w3, 
-... _·1,..~• ~.~ . 

respectively. This means that the Bartlett corrections c2 and C3 are very' effective in 

pushing the rejection rates of the modified statistics w2 and w3 toward to the nominal 

levels. Third, the asymptotic chi-squared approximation for all statistics works better for 

large values of n and small values of u2, i.e., when the variability of the normal distribution 

is small, in agreement with the so-called "small-dispersion asymptotic result". Overall, the 

simulation results presented in this section suggest that the first order asymptotics usually 

employed with asymptotic chi-squared LR criteria can deliver inaccurate inferences for 

normal heteroskedastic linear models with samples of small to moderate sizes and when 
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the variability of the data is large. Bartlett corrections based on second order asymptotic 

theory can then be used to obtain tests with more reliable finite-sample size behaviour. 
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