





error vector u is distributed normally with zero mean vector and a nonsingular n x n
covariance matrix V-1. It will be more convenient to work with the n x n precision
matrix V. The elements of V = V(y) are known smooth functions of an unknown g¢-
dimensional parameter vector v. Thus, we have (p + ¢) parameters for the simultaneous
modelling of the mean vector and the covariance structure. The vectors 8 and - are
unrelated and can vary independently.

The class of models (1) includes many of the important models of autocorrelation and
heteroskedasticity discussed in the literature as, for instance, general ARMA models and
multiplicative heteroskedastic regression models (Harvey, 1976). Expressions for V or
V! for ARMA models are given in Shaman (1973), Galbraith and Galbraith (1974) and
Ljung and Box (1979). For the multiplicative heteroskedastic model, V! is a diagonal
matrix with diagonal entries o, ...,03, where 6 = exp(w;7), w; being a 1 x g vector
of exogenous variables. This model is quite useful in many fields, including engineering,
economics, and the biological and physical sciences.

A well developed exact statistical theory exists for hypothesis testing in the normal
linear model when the errors are independent and homoskedastic. However, there is no
general exact analysis for model (1) where the error covariance matrix is nonscalar and
depends on a set of unknown parameters. Test statistics having an asymptotic chi-squared
distribution are commonly used for testing hypotheses on the components of the vectors
B and «. Although the chi-squared distribution is known to approximate well the null
distribution function of such test statistics for large sample sizes, there is no guarantee
that it provides a reliable approximation in samples of small to moderate sizes. It has
even been shown that asymptotically equivalent tests can deliver conflicting inference
when applied to the same data set (Berndt and Savin, 1977; Evans and Savin, 1982). It
is thus important to obtain corrected tests with better finite-sample behavior.

The likelihood ratio (LR) statistic w is frequently used to test hypotheses of interest



in regression models. Under the null hypothesis Hy, w has an approximate y? distribution
with degrees of freedom given by the difference of the dimensions of the parameter spaces
under the alternative and null hypotheses. Generally speaking, the main difficulty of
testing a null hypothesis using the LR criterion lies not so much in deriving its closed-
form expression — when it has one - but in finding its exact distribution, or at least a good
approximation for it, when the null hypothesis is true. In an influential paper, Bartlett
(1937) proposed an improved LR statistic. His argument goes as follows. Suppose that
under the null hypothesis E(w) = ¢{1+ b+ O(n~%/2)}, where b is a constant that can be
consistently estimated under Hy. Then, the expected value of the transformed statistic

w*

= w/(1+b) is closer to the one from a xg distribution than is the expected value
of w. This became widely known as the Bartlett correction. Furthermore, it was shown
by Lawley (1956) that all cumulants of w* agree with those of the reference chi-squared
distribution with error of order n=2. Lawley’s results appeared to be incompatible with
the asymptotic expansion of the null distribution of the LR statistic obtained by Hayakawa
(1977). This puzzle was apparently solved by Cordeiro (1987) who showed that a certain
coefficient in Hayakawa’s expansion vanishes. However, this puzzle was recently revisited
by Chesher and Smith (1995) who claimed that Cordeiro’s proof is not correct and proved,
using other arguments, that such coefficient is always zero.

The purpose of this paper is to show how to obtain Bartlett corrections that can be
directly applied to commonly used LR statistics for testing hypotheses on the components
of the vectors § and -y in model (1). In particular, Cordeiro’s (1993a) results on Bartlett
corrections for multiplicative heteroskedastic models are a special case of this paper.

In recent years there has been a renewed interest in Bartlett corrections. Cordeiro
(1983, 1987) derived closed-form Bartlett, corrections in generalized linear models (Nelder
and Wedderburn, 1972) and discussed improved LR tests. Bartlett corrections for models

defined by any one-parameter distribution in which the mean is 2 known function of a



linear combination of unknown parameters were obtained by Cordeiro (1985), who gen-
eralized his own results of 1983. Cordeiro (1995) presented extensive simulation results
on the performance of a Bartlett-corrected deviance in generalized linear models focusing
on gamma and log-linear models. Attfield (1995) focused on models that involve systems
of equations, and derived Bartlett corrections to the LR statistic in this case. Further
Bartlett adjustments for ten multivariate normal testing problems concerning structured
covariance matrices were derived by Mgller (1986). Many recent papers have focused
on deriving closed-form Bartlett corrections for specific regression problems. For exam-
ple, Moulton, Weissfeld and St. Laurent (1993) obtained Bartlett corrections for logistic
regressions; Attfield (1991) and Cordeiro (1993a) showed how to correct LR tests for het-
eroskedasticity; Wong (1991) obtained a Bartlett correction for testing several slopes in
regression models whose independent variables are subject to error; Wang (1994) derived
a Bartlett correction for testing the equality of normal variances against an increasing al-
ternative; Cordeiro, Paula and Botter (1994) derived corrections for the class of dispersion
models proposed by Jgrgensen (1987); and Chesher and Smith (1997) obtained Bartlett
corrections for LR specification tests. A correction to the LR statistic in regression mo-
dels with Student-t errors was obtained by Ferrari and Arellano-Valle (1996), and similar
corrections to heteroskedastic linear models and multivariate regression were obtained by
Cribari-Neto and Ferrari (1995) and Cribari-Neto and Zarkos (1995), respectively. Fur-
thermore, Bartlett corrections for general models were discussed by a few authors. An
algorithm for computing Bartlett corrections in general statistical models was given by
Jensen (1993); see also Andrews and Stafford (1993) and Stafford and Andrews (1993).
General matrix formulae for computing Bartlett corrections were developed by Cordeiro
(1993b).

The remainder of the paper is organized as follows. Section 2 presents a general

formula for the expected LR statistic in model (1). This formula has advantage for



numerical purposes because it only requires simple operations on matrices and vectors.
It is also simple enough to obtain several closed-form Bartlett corrections in a variety
of important tests. This formula generalizes Cordeiro’s (1993a) equations (3.6) ~ (3.8).
In Section 3, we discuss some special tests of interest in practical applications, such as
those tests involving both mean and precision parameters, those ones for testing mean
effects and precision effects separately and hypothesis tests for 4 and v scalars. Finally,
in Section 4, we present some simulation results which show that the Bartlett corrections

derived here work well in small samples.

2 General formula for the Bartlett correction

We assume that the parameter space for 8 is the p-dimensional Euclidean space whereas
the parameter space for v is an open set I in a g-dimensional Euclidean space. Further,
we require that p and g are small compared to n and that X7V X is positive definite for
all yin T'. Let £ = £(6) be the total log-likelihood for § = (87,~7)7, the (» + q) vector of

unknown parameters, given the observable data y. We then have
1 1 T
(6) = 510g|V| - 5(u - XB) V(y - XB), 2

where we have dropped an irrelevant additive constant. We assume that the fuction ¢ is
regular (Cox and Hinkley, 1979; Chapter 9) with respect to all 8 and v derivatives up
to and including those of third order. These regularity conditions are also stated in Rao
(1973, p.364) and Serfling (1980, p.144). For every sample size, the elements of V are
assumed to possess derivatives up to the second order everywhere in the parameter space
T'. In addition, the derivativs of £ must behave nicely as n tends to infinity.

Let 5 and 7 be the maximum likelihood estimates (MLEs) of 4 and v, respectively, and
let 8 = (87, 57)T. We must assume that the estimate 8 converges to the true parameter

8 as n — oo and that its asymptotic distribution is multivariate normal with the usual



covariance matrix to the correct order. From now on we reserve subscripts r,8,t,u,v,w
to denote elements of the 8 vector and R,S,T,U,V,W for the elements of the y vector.
We define the derivatives Vg = 8V/8vg and VR = 8V ~1/dvg. The maximum likelihood

equations for B and 4 can be written as
=(X"Vx)xTVy

and
tr(V V) = (v — XB)" Valy - X ),

for R = 1,...,q, where V = V(§) and Vg = Vg(§). The estimates B and 7 can be
calculated numerically using an iterative algorithm (see Section 4).

We adopt the following notation for any components of 7: Vgg = 3%V /0yrdvs, V
8%V 1/3ypdys, VR = V Vg, VR = VRV = —Vp, Vas = V"W, V% = vaSy,
Vasr = V" Wesr, V™7 = VBTV etc., mg = tr(Vg), mF = tr(V") = —~mpg, mps =
tr(Vrs), m® = tr(V"™), mps = tr(VaVs), m*S = tx(V'V°), masr = tr(VasVr),
mBST = tr(VRSVT), mpsr = tt(VaRVsVr), m®5T = tr(V RVSVT), MRSTU =

(-R—S ATl

tr(VeVsVrVy), mBST = ¢r(V V") and so on. The m’s defined above sat-

isfy certain equations which facilitate their calculations (see, Cordeiro and Klein, 1994).

RS RS mBST _RST _\RTS

For example, mRs=2mR’s-m = 2mpg—MmRs, MRST =M
and mpgr = —mFST,

Furthermore, we use the standard notation for the moments of the total log-likelihood
derivatives with respect to both components of 8 and «, all assumed to be O(n) (see, for

example, McCullagh, 1984, 1987):
9% a¢ o1
5= [gaag;| + =5 |(%) ()]
8% U oL
Rt = [ao ao,ao,} » mga=E [(aaiaoj) (‘a‘a’;)] '

Kisim=FE —_641 o =F &t 8% 3
iim = | 56,00,0000, | * ™= 7 |\ 06:00; ) \86:80,,) ] ~ "5
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el (eeN (et N _ . .
Fiatm =5 |\ 36, ) \ 90, | \ 80,00, Lftm

ot ot ot at \|
Kijim = E a6 ) \a8; ) \2a, ) \ 58, J — KijKim = KilKjm — KimKj1 .

The derivatives of moments are represented by ng) = 0ky;/06; and h:g-m) = 6219.-,- /86,00,,,.

and

These «’s satisfy standard regularity equations given by Lawley (1956).

The total Fisher information matrix of order (p + ¢) for 8 is K = {x;;} and let
K- = {—kY} be its inverse. All x’s with subscripts are assumed to be O(n). Then, all «’s
with superscripts are O(n™!). Differentiating (2) and taking expectations we can find the
moments of the derivatives of £(@) with respect to the elements of § and . We can easily
show that E(—02¢/0887") = 0, i.e., the parameters 3 and 7 are globally orthogonal (Cox
and Reid, 1987). The partition 87 = (87,7) induces a corresponding block diagonal total
information matrix K = diag{Kgg, K} with submatrices K3 = E(—8%4/08087) for
g and K., = E(—0%¢/3y07") for 4. The information for 8 is Kgs = X 'VX whose
(7, 8)th typical element is fiy5 = —frg = T, VT4, Where z, is the sth column of the matrix
X. We also have K., = {krs} where ks = —kgs = jmps = 3tr((VgVy) is the
(R, S)th typical element of the information K., for 7.

We now need the following results:

(i) VE=vgVv! and Vg=-VVRV;

.. dlog|V|
(ii) —a’m
(i) E{(y-p) Ay —p)) =t(V'4),

= tl‘(VR) = MmRg;

where E(y) = s and Cov(y) = V1, for any positive definite matrix A.
Differentiating (2) and making use of (i) — (ii), we can find the following log likelihood
derivatives

o4 3%

T =l Vsly— XB), ime— = —2; VrTs,
Bears o VS KB Gp s ey T VT



0% ; o
= 2] Ver(y - XB), 7rmemam— =0,
= Vorlv - XB), 35 ag.06aw

0607507
8% . ot .
— 7 TViyzs, =z Veruly — XB
F T A T X Soor, e o su(y = XB),
ot 1 1 . }
Z = Clmp-Zy-X8)TValy - X8)},
o 2 {mn 2(1/ B)' Va(y — X )
9% 1 -
= —= - ~XB) Vas(y - XB)},
F . 3 {mrs—mns+ (v~ XB8) Vas(y - X8)}
o -1 {m m -m -m +mpst
F - 5 {MRST ~ MRSy —Meng — msT.R+ MR,
+mprs — (¥ — XB) Vasr(y — XB)}
and
ot =l {m m -m -m -m
Brmdredrrdyy 2 URSTU MRSTU ~ MRSUT = MRTUS = MSTUR

—TMRS,TU — MRT,SU — MRUST + MRS UT + MRSTU
+mprys +mersy + merry + msrur + Mrusk
+mryRs + msyrT + MsuT,R+ MRUT,S + MARUST
—MgRTU — MSRUT — MRTSU — MRUST — MRSUT

—-mpsry+ (y— XB) Vasruly - Xﬂ)} .

From the above log likelihood derivatives and using (iii) we obtain the following mo-

ments
1
KRs = —EmR,S»
KRt = —2%. Vg,
KRST = —%(mgs,r +msT,R + MRAT,S ~ MRST — MRTS),
KRSTU = —%(mm,y +mRgsu,;r + mary,s + msru,g + Mas;y + MRT,SU + MERUST

~TRS,T,U — MRSU,T — MRT,SU — MRTU,S — MST,RU — MST,UR — MSURT
—Mgy,T,R — MRYU;T,S — MRU,ST — MTUSR — MIURS + MRSTU + MRSUT

+mpuysr+ meryrs+mrrsy+ mR,T,u,s),

8



T T
nﬁ,) = -z, Vrz,,

@ _ _1
kps = —5(msTR+mRrs = MRST —MRTS) )
U T
s = -z Vyz,,
an _ _1
kps ' = ‘E(mSTU,R + mgery,s + MRy,sT + MRT,SU — MST,RU — MST,U,R ~ MRTU,S
—MRT,S,U — MSU,T,R — MSURT — MRU,ST — MRUT,S — MTU,RS — MTUS,R
+mpsTy + MRSUT + MRUST +MRUTS + MRTSU + mR,T,U,S)
and
) 1
Krsp = ~3 (mnsu,r + MRTUS + MsTUR + MRS,TU + MRT,SU + MRUST — MRS TU

—MRSU,T — MRT,SU — MRT,U,S — MST,RU — MST,U,R — MSUT,R — MSU,RT
~MTU,RS — MTUSR — MRUST — MRUT,S + MRSTU + MRsyT + MRTSU
+mprUs+mprusT+ mR,U,T,S) .

From Lawley’s (1956) expansion we can write the expected LR statistic to O{n~?)

as 2E{£(,§, ¥) — £(B.7)} = p + q + £pq, where 1(B,~) is the log-likelihood at the true

parameter point and £,,4 is a term of order n~! evaluated at the true parameter point

given by

Eptq = ﬂz:(lﬁigisi‘ — biyigigiginia)s (3)
where all indices 13, . . ., i vary over b(;’ti:h vectors # and v and 3-g ., denotes the summation
over all the combinations of the p + ¢ parameters fy,...,8, V1,-..,7%- The notation on

the right hand side of (3) follows Cordeiro (1987), the I’s being obtained from

s .. K- o2 . . .
Liyigigiy = K'12K"% (——"‘4"’“ - nﬁﬁi, + m(:’:: )) (4)
and
liyigisisisia = n"“"n"a"‘n“"‘{lc.'ligi, (K’"’é‘k - 55;2)
SR ) WO RN S



The proof of (3) - (5) given in Lawley (1956) contains many references to the difficulty of
the required symbolic manipulations and as he pointed out, it involves exceedingly com-
plicated and laborious algebra. Lawley’s formula involves certain products of higher-order
arrays called tensors but has no simple closed-form expression, since it is not explicitly
written in terms of the unknown parameters.

The important simplification for deriving a general formula for €54 from (3) in matrix
notation is the block diagonality of the information matrix K. In fact, several of the mixed
cumulants vanish due to the orthogonality between g and +. Further, the number of terms
necessary to compute (3) is greatly reduced because of this orthogonality.

Henceforth, any matrix with (i,7) element a;; will be represented by A = {a;;}
and quantities that can be expressed solely in terms of the matrix V and its first two
derivatives with respect to 4 will be denoted with suffix v, whereas those that also
depend on the model matrix X are used with double suffices v, 3. In order to find
the general formula for Bartlett corrections in model (1) we need the following matri-
ces and vectors. Let T(R) = {t(R) } and UJ (R) = {u(R) } be g x g matrices referring
to the Rth component of v with typical (S,T) elements given by t.(g-)T = mpsr and
u.(,?T = mpggsr, respectively. We also define the ¢ x ¢ matrices Sy = {s,rs}, 4, =
{ayrs}, Pyp = {py,srs} and M, g = {m., grs} whose typical (R, S) elements are syps =
(KU (KUSD), aqrs = 6tr(KSATOKIITS) — 3tr(KIT®)e(KSHTS ~
AUDY) ~ ate(KUBTK UL + USTY), prgrs = tr(XTVRX K55XTVeX K55) and
My prs = tr{K 8. ﬁX TYreX ), respectively. Further, for any two Rth and Sth components
of y, we define the following ¢ x q matrices D{*) = {d %)} where their (T, U) elements
are d.(;}f} = 2mpr,su — MRS;TU + 4mpsTy — dmpsTy — 2mprsy. From these matrices
we can easily construct the ¢ x ¢ matrix N, = {n,rg} whose (R, S) element is given
by nyrs = tr(K;1D{S®). Finally, we define the ¢ x 1 vectors 7,4 and p, 5 whose Rth
components are tr(K ;53X TVeX) and 2tr(K 35X TVrX — K TP ~2U{P}), respectively.
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On inserting the moments x's given before in (4) — (5) and then summing over the
sample after evaluating the sums over the parameters, it can be shown from the matrices

and vectors defined above that

Eprq = By + Oy (6)
where
1 _ 1 -
B, = -8—vec(K,';)Tvec(N.,) + ﬁur{K,,;(lzs7 —A)} (7
and
1 -1 1 -1 | Y
C‘Y:ﬂ = Evec(K.m)vec(N»,,ﬁ) - Etr(K'y,'yP’Y,ﬂ) + §T7,ﬂK7,'yp‘Y,ﬂ' (8)

The details involved in the derivation of the equations (6) ~ (8) are tedious and are
omitted here to save space but they follow from similar algebraic developments of Cordeiro
(1983, 1987, 1993a), Cordeiro, Paula and Botter (1994), Botter and Cordeiro (1997) and
Aubin and Cordeiro (1999). They can be obtained from the authors upon request. Clearly,
B, depends only on the vector y through the first two partial derivatives of V with respect
to this vector, whereas C, 4 is a function of X, and 4. Both expressions (7) and (8)
involve simple operations on matrices and vectors. Expressing epyq in matrix formulae
has great advantages to obtain closed-form Bartlett corrections for several special tests
of practical use such as those that will be discussed in Section 3. Also, the quantities
B, and C,g can be made computationally atractive using a computer algebra system
such as MATHEMATICA or MAPLE, or using a programming language with support
for matrix operations such as GAUSS, Ox or S-PLUS. Although these quantities are easy
to compute under the null hypothesis because they involve only simple operations on
matrices and vectors, they are not easy to interpret. The fundamental difficulty is that
the individual terms in equations (7) and (8) are not invariant under reparametrization
and therefore their interpretation depend on the coordinate system chosen. The entire

expression for &,,, is of course invariant under reparametrization. The main advantage
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of formulae (6) — (8) over Lawley’s equation is that we avoid computations involving
all possible products of higher-order arrays. In these formulae the matrices required are
given in a more readily computable form by exploiting special structures of the cumulants
involved. Moreover, the matrix notation provides some insights into the nature of the
Bartlett correction, especially in cases where K5 and K., have closed-form inverse. We
have checked formulae (6) — (8) in some specific situations and they work properly. Some

partial checks of £,44 are provided in Section 3.

3 Some special cases
3.1 Testing both mean and precision parameters

We first consider the hypothesis where both the parameter vector of interest and the
nuisance parameter vector may be regarded as being composed of some components of
g and +. Partitioning the parameters as 87 = (8],07) and 7' = (7,73 ), where
Br=(B1,1Bp)"s B2 =Boutts- - s Bp) s 1= (1., 7)" end 12 = Yartts -+ 7a) T
with p; < p and q; < g, we are interested in testing the null hypothesis H; : f) = {0),
m = 7{0) versus A;: violation of at least one equality, where ﬂ§°) and 7%0) are specified
vectors of dimensions p; and ¢, respectively. Following the partition induced by Hj,
let X = (X, X3) be the corresponding partitioned model matrix, where X; and X, are
respectively n x p; and n x py matrices of full ranks. Let B and 7 be the unrestricted
MLEs of 8 and v and B2 and F, be the restricted MLEs of 3; and v; under Hj.

From now on, functions evaluated at the unrestricted MLEs will be denoted by the
addition of a circumflex and those evaluated at the restricted estimates by the addition

of a tilde. The LR statistic for testing H; is simply
wy = 2{¢(8,9) - (8", o, 1", 7))}
which is, under H;, asymptotically distributed as x,’,l +q,- The key to the evaluation of

12



the Bartlett correction to improve the test of H; is to write the LR statistic w; as the
difference of two LR statistics for testing hypotheses without nuisance parameters. More

specifically we have

E(w) = 2E{t(3,3) - (5, 2,7, 1)}

~2B8{¢(81", B2, 1", 72) - €8, B2, 1", 12)}.
Here 8, and 7y, represent the true values of these parameters. Using (6) we find under H;
Ew)=p+q+ B,+C,p-B,, - Cy 5,

where B, and C., 6, are obtained directly from equations (7) and (8) with K., and Kz 4
being substituted by K., ., and Kp, g,, respectively. All terms in E(w;) are determined
subject to 81 = /39’) VY= 'yfo). Clearly, the Bartlett correction ¢; = E(w;)/(p1 + ¢1) for

improving H; : f; = ﬂ{o) n = 'y§°) follows as

¢t =1+44By+ Cyp— By, = Cp.5,)/ (;1 + @), (9)

where the vector v should be evaluated at (7{°)T, 33 )T. Under Hj, the improved statistic
w} = &yl is distributed to order n! as xf,] +q- Therefore, the improved test compares
w] with the upper point of the xf,l +q distribution. The importance of equation (9) in ap-
plications is that it involves only simple matrix operations. Several formulae for Bartlett
corrections in special cases can be obtained by exploring models whose information ma-
trices Kpg, Kp, ,, Ky and K., ,, have closed-form inverses. Evidently, in the simplest
case p; = p and ¢, = g of little practical interest since H; becomes simple, the Bartlett
correction reduces to ¢; = 1+ (p +¢) (B, + C, ) with v being evaluated under the null
hypothesis.

Expression (9) can be reduced considerably for models with special structures for the

precision matrix (9). An important special case of (9) refers to a homoskedastic model
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where the n x n covariance matrix V! reduces to vI,, v & scalar parameter. In this
case, Kgg = 7 XX, Vy = =7y, Vo = 2731, K,y = n/2y? and after some
algebra we obtain P, g = p/7 Myg = 20/7%, Ty,8 = =P/, Pv8 = —29/7, D'(yw) = 6/~%,
U,s'” = —n/~3, T,$'7) = —2n/9%, N, = 12/+% A, = 112/4* and S, = 4/2. Finally, we
find from equations (7) and (8)

1
3n’

O = HELE), (10)

By=
Note that C, 4 in (10) depends on the model matrix only through its rank p. Expressions
(10) provide a partial check of equations (6) - (8) since, in this case, the Bartlett correction
to improve the test of Hy : § = B, v = 7 comes directly from the exact expected
value of the LR statistic given by 2E{l(,§, 3) - £(B,7)} = logn — E(log xi_p) if terms of
order n~? are neglected.

Unfortunately, when £ is a scalar parameter and V' is an arbitrary n x n precision ma-

trix depending on the g-dimensional parameter vector 7, there is no substantial reduction

in the expressions for 8, and C.,g.

3.2 Testing mean effects

We are now interested in testing a subset of parameters only in 8. In this situation, the
null hypothesis is Hy : g1 = ﬂ§°) to be tested against A, : By # ﬂio), where ﬁ§°’ isa
specified vector of dimension p; and Ba(pa X 1) and (g x 1) are the vectors of nuisance
parameters. The LR statistic for testing Hy is given by wz = 2{€(B1, B2, %) —l(ﬂfo), B2, )},
which is, under Hj, distributed to first order as x3,-

We can easily show that
E(wg) =p+q+ By +Cyp—(p2+0+By+Cqp) =p1+Cop— Cop,

where C., s, comes directly from (8) with K, 3, = X7 VX in place of Kgg = X 'V X. The

Bartlett correction associated with wy is ca = 1+ (Cy,g — C1y,8,)/P1, Where C. g and Cy g,
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are both evaluated at (6{”,57)7 and 7. Under Hj, the improved statistic w§ = &lwy
is distributed to order n~! a3 xZ. An important application corresponds to the test of
homogeneity of means assuming that the model (1) is homoskedastic. We are interested
in testing Ha : f1 = -+ = Bp, =0 withp; = p -1 and zip=1forl=1,...,n against
Az : Hj is not true. The Bartlett correction reduces to c3 = 1 + (Cyg — Cyp,)/(p— 1),
where S, is a scalar parameter. If the covariance matrix V! is y1,, C, s follows from (10)
and C. g, is also obtained from (10) by making p = 1. The Bartlett correction becomes
ez = 1+ (p? + 2p — 3)/{2n(p — 1)} which coincides with Cordeiro’s (1993a) expression
(4.3}, thus providing another check of equations (6) - (8).

If the null hypothesis specifies the whole vector 8, ie. Hy : 8 = 8O, the Bartlett
correction ¢z for improving the LR test of H is given by c3 = 1 + C,,8/p. Moreover, if
the model is homoskedastic, C., 3 comes from (10) and the Bartlett correction reduces to

a linear function ¢z = 1 + (p + 2)/2n of the dimension of the vector 3.

3.3 Testing precision effects

We now consider the LR statistic for testing Hz : y; = 'yfo) against A : 7; # 71(0) , where

7%0) is a specific vector of dimension ¢; and 8 and 4, are vectors of nuisance parameters.
It is given by
P IP = (0) ~
ws = 2{¢(B, 71,72} — £(B, v, 72)},

and, under Hj, the distribution of w3 is generally of order n~! away from ng' We obtain
E(ws) = q1+ By + Cyp— By — Copp.

The terms B., and C,, g come from equations (7) and (8) by substituting K., by K., -,
subject to v, = 7%0). The Bartlett correction determined by ¢3 = E(w3)/q; renders the
n~! term in E(ws) equal to zero and the error of the ng approximation to the distribution

of w} = & 'ws becomes of order n~2, the nuisance parameters v and S being evaluated at
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7o and (. If the null hypothesis specifies all components of the vector 7, ie., Hy:v=79,
the Bartlett correction for improving the test of H3 : v = +© based on the LR statistic
ws = 2{£(B,7) — £(8,7®} is given by c3 = 1+ (B + Cy,g)/q with v = +@_ If the model
is homoskedastic, the correction reduces to c3 = 1 + {3p(p + 2) + 2}/6n. This result is
the classical Bartlett correction for testing the variance in a homoskedastic normal linear

model,

3.4 Both g and v scalars

When both g and v are scalar parameters, i.e. p = ¢ = 1, the model (1) is homoskedastic
with n X n covariance matrix V™! = I, and 8 is the common mean, the information
matrix for 8 = (8,7)" reduces to K = diag {%, 537} For testing the mean Hj : g = f©
against A : 8 # B0, the LR statistic is given by wy = nlog {%”("T_f%z}, where 7 is
the mean of the observations. The Bartlett correction is simply cg = 1+ Cg,y, where Cgy
comes from the last expression of Section 3.2 with p = 1. We have ¢; = 1+ 3/(2n) and
the improved test of the mean compares wy = (1 + 2—3;) Fy wq with the x? distribution.
We can also consider the test of the common variance Hj : v = 7 against A3 : v #

4© in which the LR statistic is given by

(@ 5 ©)
_ 20N E=2
wg—n{log(;y\)+ ) },

where ¥ = ¥ (yi—%)?/n. The Bartlett correction follows directly from the result of Section
3.3 with p = 1. Thus, cs = 1+11/(6n) and the improved statistic wj = (1+ &)~ ws has,
under Hs, a x? distribution to order n~!. The results presented here are in agreement
with the classical Bartlett corrections to improve the LR tests of the mean and variance

of a normal distribution which can be obtained directly by Taylor series expansion.
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4 Simulation results

We now present some simulation results for two LR statistics and their corrected versions
for the normal heteroskedastic linear model (1) in which the components of the vector
of errors u follow the stationary AR(1) equation u; = pui_; + &, ol < 1, with &; ~

NID(0,0?%), for i = 1,...,n. The covariance matrix V! of the model has simple form

given by
1 p - pﬂ—l
— 02 -
1-p2 Pl pn.—2 1
with inverse

1 —p 0 0
Y 1+p2 —p 0
0 0 0o .- 1

The linear structure of the model is X8 = Byl, + 8171 + Boz3 + Paz3, where 1, is an
n X 1 vector of ones and the covariates z;,z; and z3 are chosen, respectively, as random
draws from the following distributions: U(0,1), N(0,1) and F(3,5). Their values were
held constant throughout the simulations with equal sample sizes.

We wish to test the null hypotheses Hy : 5y = 2,8; = 1 and Hj : p = 0.6 against
the hypothesis of violation of at least one equality. For the simulations the nuisance
parameters Jy and g3 were fixed at Sy = 4, 3 = 3 and the variance ¢? was taken as
1,4 and 16. For testing Hz, p was set equal to 0.4 and for testing Hg, 8, and By were
taken as 3 and 2, respectively. The number of observations was set at 20, 30 and 40. The
simulations run-size was 10,000 in each case and calculations were performed using the
GLIM environment.

In each simulation, we generate u and calculate the MLEs of 3 and 7 iteratively using

Fisher scoring method given by
gt = glm) 4 (XTV("‘)X)“IXTV('")(Xﬂ('") +u),
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p(m+1)
o2(m+1)

(m)
P =ler(m
(52 e

where U,, and K., are the 2x1 score vector and the 2x2 information matrix for y = (p 02)

given by
Uy

and

K’T,’Y

( T —u U )

1
1 g%(n-2+i_%,-)—uTV,zu

("“ﬁ*"‘ =2 )
P ) s

respectively. Then we obtain the LR statistics wy and wg for testing Ho and Hs and the

modified statistics wj = &'w; and w} = 73 lws, where the Bartlett corrections c; and

cs are evaluated under Hy and Hj, respectively. Further, we investigate the rejection

rates of we and wj and w3 and w3 at the nominal 10% and 5% levels of the references x32

and x'f distributions, respectively. The simulated rejection rates of these statistics, ie.,

the percentage of times that they exceed the appropriate upper points of the chi-squared

distributions are given in Tables 1 and 2 (entries are percentages) for the tests of A2 and

Hj, respectively.

Table 1: Rejection rates of wq and w3 for the hy-
pothesis Hy: 1 =2, B2 = L.
nominal o*=1 o' =4 a* =16
n level wa w3 wa w3 wa wy
(a%)
20 10 13.22 11.83 14.15 11.77 14.83 12.04
5 688 551 784 562 835 558
30 10 11.87 10.74 1221 10.83 12.97 10.94
5 651 6.17 735 589 776 6.19
40 10 11.79 10.89 1192 10.69 1249 10.73
5 640 533 681 547 712 5.76
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Table 2: Rejection rates of w3 and wj for the hy-
pothesis Hs : p = 0.6.

nominal g’ =1 ot =4 o’ =16
n level w3 wy w3 wy w3 w3
(a%)

20 10 13.68 11.56 1422 1214 1541 12.43
5 694 585 719 592 847 5.93
30 10 12.87 11.15 13.16 12.25 13.73 11.82
5 5.88 541 638 560 7.84 579
40 10 1244 10.87 12.87 11.29 13.28 11.88
5 552 540 593 538 645 552

The figures in these tables convey important information. First, it is clear that the
usual LR statistics tend to reject the null hypothesis more often than the expected based
on the nominal sizes. In fact, for all 18 cases reported, the rejection rates of the unmodified
statistics wy and wj are greater than the corresponding nominal leveis. The asymptotic chi-
squared distribution usually delivers a very poor approximation to the null distributions
of the unmodified statistics ws and wj for small values of n and large values of o2. Second,
the empirical sizes of the tests based on the modified statistics wj and w} are closer to
the nominal levels than the empirical sizes of the corresponding unmedified statistics we
and wj. Thus, there is strong evidence that the chi-squared distribution provides a better
approximation to the distributions of w; and wj than to the distributions_ of wy and wj,
respectively. This means that the Bartlett corrections c; and c3 are ver);' effective in
pushing the rejection rates of the modified statistics wj and wj toward to the nominal
levels. Third, the asymptotic chi-squared approximation for all statistics works better for
large values of n and small values of o2, i.e., when the variability of the normal distribution
is emall, in agreement with the so-called “small-dispersion asymptotic result”. Overall, the
simulation results presented in this section suggest that the first order asymptotics usually
employed with asymptotic chi-squared LR criteria can deliver inaccurate inferences for

normal heteroskedastic linear models with samples of small to moderate sizes and when
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