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1. Introduction

Binary Lie algebras (BL-algebras) were introduced by A.I. Malcev [8] as anticommu-
tative algebras in which any two elements generate a Lie subalgebra. This property is 
fulfilled in Malcev algebras, defined in the same paper (under the name of Moufang-Lie 
algebras) as the algebras satisfying the identities
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xy = −yx,

J(xy, z, x) = J(y, z, x)x,

where J(x, y, z) = (xy)z + (yz)x + (zx)y denotes the jacobian of the elements x, y, z.
Laterly, A.T. Gainov [3] characterized binary Lie algebras by identities: an anticom-

mutative algebra is a binary Lie algebra if and only if it satisfies the identity

J(xy, x, y) = 0. (1)

It is clear that every Lie algebra is a Malcev algebra and every Malcev algebra is a BL-
algebra. The most important example of a non-Lie Malcev algebra is the 7-dimensional 
algebra sl(O) of octonions with zero trace under the product defined by the commutator
[x, y] = xy − yx. The algebra sl(O) is simple, and V.T. Filippov proved [2] that every 
simple non-Lie Malcev algebra (of any dimension and of characteristic �= 2, 3) is isomor-
phic to sl(O). Moreover, it was proved by the first author in [4] that every simple finite 
dimensional BL-algebra over a field of characteristic 0 is a Malcev algebra, that is, is a 
Lie algebra or is isomorphic to sl(O).

The last author in [9] investigated prime Malcev superalgebras and proved that every 
non-trivial (that is, with nonzero odd part) prime Malcev superalgebra is a Lie one.

In this paper we continue the study of simple binary Lie superalgebras started in [6].
A Z2-graded algebra B = B0 ⊕B1 is called a binary-Lie superalgebra (SBL-algebra)

if it satisfies the following super-identities:

xy = −(−1)x̄ȳyx,

SBL(x, y, z, t) := (xy.z)t− x(y.zt)

+ (−1)x̄ȳ{y(xz.t) + y(x.zt) − (y.xz)t)}
+ (−1)z̄t̄{x(yt.z) − (xy.t)z − (x.yt)z} = 0,

where z̄ ∈ {0, 1} stands for the parity of a homogeneous element z: z̄ = i iff z ∈ Bi.
The problem of classification of finite dimensional simple SBL-algebras over the field 

C is open. We know a unique example of simple non-Malcev SBL-algebra B = B0 ⊕B1. 
It has dimension two with dimC B0 = dimC B1 = 1 (see [1]).

Conjecture 1.1. Let B = B0 ⊕ B1 be a finite dimensional simple SBL-algebra over the 
field C and dimB1 �= 0. Then B is a simple Lie superalgebra or dimB = 2.

We propose the following strategy for proving Conjecture 1.1 in four steps:

1. Reduction to the case when B0 is solvable.
2. Reduction to the case when B0 is nilpotent.
3. Reduction to the case when B0 is abelian.
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4. To prove Conjecture 1.1 for abelian even part.

In this paper we prove that if B1 �= 0 and B is not a Lie superalgebra then the even 
part B0 of B is solvable. Hence we realize the first step of the above strategy.

Note that in Conjecture 1.1 all the conditions: a) basic field is of characteristic 0; b) it 
is algebraically closed; c) the superalgebra has finite dimension, are important even in 
the case of abelian even part, as we showed in the paper [6].

2. Structure of B0

Recall the results on the structure of finite dimensional BL-algebras from [4], [5].

Theorem 2.1. Let P be a finite dimensional BL-algebra over the field C with the solvable 
radical G = G(P ). Then P contains a central ideal R(P ) such that

(i) there exists a subalgebra S of P containing R(P ) such that

P/R(P ) = S/R(P ) ⊕G/R(P ), a vector space direct sum,

where S/R(P ) is a semisimple Malcev algebra and G/R(P ) is a completely reducible 
Malcev S/R(P )-module;

(ii) R(P ) annihilates every finite dimensional binary-Lie P -module.

Corollary 2.1. Let B = B0 ⊕ B1 be a finite dimensional simple SBL-algebra over the 
field C and B1 �= 0. Then

(i) R(B0) = 0,
(ii) B0 = P ⊕G(B0), where P is a semisimple Malcev algebra and G(B0) is a completely 

reducible Malcev P -module.

Proof. Assume that R(B0) �= 0. Since B1 is a finite dimensional binary-Lie B0-module, 
by item (ii) of Theorem 2.1 we get B1R(B0) = 0. Hence R(B0) is an abelian ideal of B
and R(B0) = 0. Now item (ii) of the Corollary follows from item (i) of Theorem 2.1. �
3. Supermodules over BL-algebra and its products

Recall the notion of a tensor algebra of a bimodule (see, for instance, [7]). Let A
be a (super)algebra in a variety M and V be a (super)bimodule over A in the variety 
M. Then the tensor algebra A[V ] of the bimodule V is defined as the quotient algebra 
FM[A ⊕V ]/I, where FM[A ⊕V ] is the free algebra in M over the vector space A ⊕V and 
I is its ideal generated by the set {a ∗b −ab, a ∗v−a ·v, v∗a −v ·a | a, b ∈ A, v ∈ V }. Here 
∗ and · stand for multiplication in the free algebra and action of A on V respectively.
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Observe that the generators of the ideal I are homogeneous with respect to V , hence 
we have

A[V ] = ⊕∞
i=0V

(i),

where V (0) = A, V (1) = V , and V (i) is the A-submodule of A[V ] generated by all 
monomials that contain i elements from V .

Let now V = U ⊕W be a direct sum of A-bimodules U and W . Then we have

V (2) = U (2) ⊕W (2) ⊕ (UW )A ⊕ (WU)A,

where (UW )A denotes the A-subbimodule generated by the set UW . We will denote this 
subbimodule as U⊗̂W and will call it the tensor product of the A-bimodules U and W .

Let A be an M-algebra and V be an M-bimodule over A. We can associate with V
two M-superbimodules over A: Veven and Vodd, where

(Veven)0 = V, (Veven)1 = 0; (Vodd)0 = 0, (Vodd)1 = V.

Clearly, Veven
∼= Vodd

∼= V as A-bimodules.

Proposition 3.1. Let S be a BL-algebra and V, W be BL-modules over S. Then we have 
the isomorphism of S-modules

Veven⊗̂Wodd
∼= Vodd⊗̂Weven

∼= (V ⊗̂W )odd,

Veven⊗̂Weven
∼= Vodd⊗̂Wodd

∼= (V ⊗̂W )even,

where the first two tensor products in both lines are considered as products of supermod-
ules.

Proof. Observe that in construction of the (super)product V ⊗̂W only the identities 
SBL(x, y, z, t) = 0 are used where at least two arguments are taken from S and at most 
one element from each of V and W is taken. Moreover, when we have v ∈ V and w ∈ W

among the arguments x, y, z, t then the remaining elements, say, a, b belong to S, and 
due to super-anticommutativity our identity may be rewritten in such a way that in all 
the monomials v precede w. For example,

SBL(a, b, v, w) = (ab.v)w − a(b.vw)

+ b(av.w) + b(a.vw) − (b.av)w)

+ a(bv.w) − (ab.v)w − (a.bv)w = 0,
SBL(w, a, v, b) = (−1)v̄w̄((va.w)b− v(a.wb)

+ a(vw.b) + a(v.wb) − (a.vw)b)

+ v(aw.b) − (va.w)b− (v.aw)b) = 0,
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where the sign (−1)v̄w̄ can be eliminated. All these identities are just versions of the full 
linearization of the identity

(xy · x)y + (yx · y)x = 0,

which is equivalent to (1). Therefore, the parity of the elements v, w do not matter, and 
all the considered tensor products are isomorphic, as S-modules, to V ⊗̂W . This proves 
the proposition. �

From this proposition and [4, Lemmas 5,6], we get the following useful corollary.

Corollary 3.1. Let B be a finite dimensional SBL-algebra over C and S ∼= sl2(C) ⊂ B0
be a subalgebra. Then for every homogeneous Lie S-submodules V and W of B we get 
(vw)a = (va)w + v(wa) for any a ∈ S, v ∈ V, w ∈ W .

Recall the structure of irreducible binary Lie modules over the Lie algebra S = sl(2, C)
with the basis {A, H, X | AX = H, AH = 2A, XH = −2X} (see [4]).

Every finite dimensional irreducible S-module is either a Lie module Ln with a basis 
{v−n, v2−n, . . . , vn−2, vn} and the following S-action for i ≥ −n, j > −n, k ≥ −n:

vi ·H = ivi, vj ·X = vj−2, vk ·A = (n + k + 2)(k − n)
4 vk+2, v−n ·X = 0,

or is isomorphic to the 2-dimensional non-Lie Malcev module M2 = C · m−2 + C · m2
with the following action of S:

m−2 ·A = m2 ·X = 0, m−2 ·X = 2m2, m2 ·A = −2m−2, mi ·H = imi.

We will also need the following binary Lie module over S from [4]. Let V, U be vector 
spaces, V̄ be an isomorphic copy of V with the isomorphism v 
→ v̄, and let the following 
linear mappings be defined:

α : V ⊕ V̄ → U, β : V ⊕ V̄ → U.

Then the direct vector space sum V ⊕ V̄ ⊕ U with the following action of S

vH = 2v, v̄H = −2v̄,

vA = −2v̄ + α(v),

v̄X = 2v + β(v̄),

v̄A = α(v̄), vX = β(v),

U · S = 0,
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for v ∈ V , forms a binary Lie module which is called a module of type (n, m, α, β), where 
m = dimU, n = dimV .

It is easy to see that if W is an S-module of type (m, n, α, β) with α = β = 0 then W
is a direct sum of n Malcev modules M2 and of m one-dimensional modules L0.

The following proposition follows from the results of [4] and Proposition 3.1.

Proposition 3.2. Let S = sl(2, C) and let α, β ∈ {even, odd}. Then

(i) (Ln)α⊗̂(M2)β = 0 if n �= 2;
(ii) (Ln)α⊗̂(Lm)β is a Lie S-module;
(iii) (L2)α⊗̂(M2)β ∼= (M2)γ , where γ ∈ {even, odd} is uniquely defined by α, β. More-

over, if v−2, v0, v2 and m−2, m2 are canonical bases of L2 and M2, respectively, then 
the elements t−2 = v2⊗̂m2, t2 = −v−2⊗̂m−2 form a canonical base of (L2)α⊗̂(M2)β
as a module of type M2.

4. Structure of B as an S-module

In this section we prove the following

Proposition 4.1. Let B = B0 ⊕ B1 be a simple finite dimensional SBL-algebra over the 
field C such that B1 �= 0, B is not a Lie superalgebra, and B0 is not solvable. Then B0
contains a simple Lie subalgebra S ∼= sl(2, C), and B = (

∑
i ⊕Vi) ⊕ (

∑
j ⊕Wj), where 

all Vi
∼= L2 and all Wj

∼= M2.

We will need the following lemmas.

Lemma 4.1. Let B be a finite dimensional SBL-algebra over C and S ∼= sl2(C) ⊂ B0 be 
a subalgebra. Then B is a completely reducible S-module.

Proof. By [4, Theorem 3], every finite dimensional BL-module V over S has the form

V = Vl ⊕M,

where Vl is a Lie S-module and M is a module of type (n, m, α, β). The module Vl

is completely reducible, and if α = β = 0 then M is completely reducible as well. 
Assume that B is not completely reducible S-module, then by the above B contains 
an S-submodule I of type (n, m, α, β) with α �= 0 or β �= 0. Denote Z = α(I) + β(I), 
then Z · S = 0 by definition of α and β. It is also clear that Z = Z0 ⊕ Z1, where 
Zi = Z ∩ Bi, i = 0, 1. By [4, lemmas 7, 8, 10] and Proposition 3.1 we have Zi⊗̂Bj = 0
for all i, j = 0, 1. (Though lemmas 7, 8, 10 in [4] were proved for some particular values 
of n, m of modules of type (n, m, α, β), the proofs in fact are valid for arbitrary n, m.) 
As a corollary, we have ZiBj = 0 and eventually ZB = 0. Since B is simple, this implies 
Z = 0. Therefore, we have α = β = 0 and B is completely reducible. �
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Lemma 4.2. Let B = B0 ⊕ B1 be a finite dimensional SBL-algebra over C, S 
 sl2(C)
be a subalgebra of B0 and B a Lie S-module. Then the ideal of B generated by S is a 
Lie superalgebra.

Proof. Let B =
∑

i ⊕B(i) be a decomposition of B into a sum of eigen-superspaces with 
respect to H, that is, B(i) = {v ∈ B | v · H = iv}. Choose homogeneous v ∈ B(i), w ∈
B(j), u ∈ B(k), then for any a ∈ S by the super-linearization of (1) we have

Js(ua, v, w) + (−1)ūv̄Js(va, u, w) + (−1)v̄w̄Js(uw, v, a)

+ (−1)ū(v̄+w̄)Js(vw, u, a) = 0,

where Js(v, w, u) = vw · u − (−1)w̄ūvu · w − v · wu is the super-jacobian of the elements 
v, w, u. By Corollary 3.1 we have

Js(uw, v, a) = (uw · v)a + (a · uw)v + (−1)v̄(ū+w̄)(va)(uw)

= (ua · w)v + (u · wa)v + (uw)(va)

+ (au · w + u · aw)v − (uw)(va) = 0.

Therefore, we have

Js(ua, v, w) + (−1)ūv̄Js(va, u, w) = 0. (2)

Assume first that among the numbers i, j, k there are at least two different, say, i �= k. 
Substituting a = H in (2), we get

0 = Js(u ·H, v,w) − Js(u, v ·H,w) = (k − i)Js(v, w, u),

which implies Js(u, v, w) = 0.
Let now i = j = k > 0. Then there exists t ∈ B(i−2) such that u = t · A, and 

substituting u = t, a = A in (2), we get

Js(u, v, w) = Js(t ·A, v, w) = Js(t, v ·A,w).

Since t ∈ B(i−2), v ·A ∈ B(i+2), by the previous case Js(u, v, w) = 0.
Furthermore, let i = j = k < 0, then there exists t ∈ B(i+2) such that u = t · X. 

Substituting a = X, u = t in (2), we get

Js(u, v, w) = Js(t ·X, v,w) = Js(t, v ·X,w).

Since t ∈ B(i+2), v ·X ∈ B(i−2), we again obtain Js(u, v, w) = 0.
Finally, consider the case i = j = k = 0. We may write u = u1 + u2, where for 

u1 there exists t ∈ B(−2) such that u1 = t · A, and u2 · S = 0. For u1, as before, we 
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have Js(u1, v, w) = Js(t · A, v, w) = 0. Therefore, it remains to consider the case when 
u, v, w ∈ B(0) and u · S = v · S = w · S = 0.

Note that if I is the ideal, generated by S, then I =
∑

i SB
i. Here SB0 =

S, SBi+1 = (SBi)B. Let u ∈ SBs \ SBs−1 ⊆ I, we prove that u =
∑

j �=0 ajb−j , where 
aj ∈ B(j), b−j ∈ B(−j).

We will use induction on s. It is clear that s > 0 since uS = 0. If s = 1 then 
u = Ab−2 + Xb2, which gives the base of the induction. Hence u =

∑
j ajb−j , where 

aj ∈ SBs−1 and aj ∈ B(j), b−j ∈ B(−j). Assume first that a0S = 0, then by induction 
a0 =

∑
j �=0 cjd−j , where cj ∈ B(j), d−j ∈ B(−j). By the previous cases, Js(cj , d−j , B) =

0, hence

a0b0 = (
∑

j �=0

cjd−j)b0 =
∑

j �=0

(−1)b̄j d̄−j (cjb0)d−j +
∑

j �=0

cj(d−jb0)

∈
∑

j �=0

B(j)B(−j).

If a0S �= 0, then without loss of generality we may assume that there exists t ∈ B(−2)

such that a0 = t ·A, and we have by (2)

a0b0 = (tA)b0 = −t(b0A) + (tb0)A ∈ B(−2)B(2).

Now we have by the super-linearization of (1)

Js(u, v, w) =
∑

j �=0

Js(ajb−j , v, w)

=
∑

j �=0

(±Js(vb−j , aj , w) ± Js(ajw, v, b−j) ± Js(vw, aj , b−j))

∈
∑

j �=0

Js(B(j), B(−j), B(0)) = 0.

Therefore, Js(I ∩B(0), B, B) = 0. Since I = I ∩B(0) +
∑

i�=0 B
(i), this finishes the proof 

of the lemma. �
Lemma 4.3. In the notations of Lemma 4.2 (without assumption that B is a Lie S-
module) let V ⊂ B be an irreducible Lie S-module of type Ln, n �= 2, and I be the ideal 
generated by V . Then I is a Lie S-module.

Proof. First we prove that I ·M2 = 0, where M2 ⊂ B is a non-Lie S-module of type M2
with a canonical basis {m2, m−2}. By Proposition 3.2, V ·M2 = 0. Hence, if V ·W �= 0
for some irreducible S-module W , then W is a Lie S-module.

Let us prove that (V ·W )M2 = 0. Recall that B is a completely reducible S-module 
(see Lemma 4.1). Hence by Proposition 3.2(ii), V ·W =

∑
i ⊕Vi, where Vi are irreducible 
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Lie S-modules. If Vi � L2 then Vi ·M2 = 0 by Proposition 3.2(i). Let Vk
∼= L2. Then for 

some v ∈ V, u ∈ W , such that vH = iv, uH = ju, i + j = 2, by Proposition 3.2(iii) we 
have vu ·m2 = t−2, where t−2, t−2X form a basis of an irreducible non-Lie S-module of 
type M2. Observe that by Proposition 3.2 we have vw2 = uw2v = 0. Now by applying 
the defining identity SBL(x, y, z, t) = 0 we have

0 = vuw2H ± vw2uH ±Huw2v ±Hw2uv

+ (−1)v̄ū(uvHw2 + uHvw2) ± w2Hvu± w2vHu

= −2vuw2 + (−1)v̄ū(2uvw2 + juvw2) = −(j + 4)t−2;

0 = vuHw2 + vHuw2 ± w2uHv ± w2Huv

+ (−1)v̄ūuvw2H ± uw2vH ± w2vu± vw2u

= 2vuw2 + ivuw2 − 2(−1)v̄ūuvw2 = (i + 4)t−2.

Hence i = j = −4, a contradiction.
We proved that (VW )M2 = 0 for any irreducible S-submodule W of B. As-

sume that (...(VW1)...)Wn)M2 = 0 for any irreducible S-submodules W1, ..., Wn of 
B, n > 0. Let (...(VW1)...)Wn) =

∑
k ⊕Uk, where Uk are irreducible Lie S-modules 

and UkM2 = 0. Hence every Uk has the same property as V , and we can prove as 
above that (UkWn+1)M2 = 0 for every irreducible S-submodule Wn+1 of B. Then 
((
∑

k ⊕Uk)Wn+1)M2 = (...(VW1)...)Wn)Wn+1))M2 = 0.
Hence IM2 = 0. Since I =

∑
n(...(VW1)...)Wn) where all Wi are Lie S-modules, then 

I is a Lie S-module. �
Proof of Proposition 4.1. Assume that B as S-module contains an irreducible Lie sub-
module V of type Ln, n �= 2. Then the ideal I generated by V would be a non-zero ideal 
of B. Since B is simple then I = B, and by Lemma 4.3 B is a Lie S-module. Then by 
Lemma 4.2 B is a Lie superalgebra, a contradiction. �
5. The main theorem

Theorem 5.1. Let B = B0⊕B1 be a finite dimensional simple SBL-algebra over the field 
C. If B1 �= 0 and B is not a Lie superalgebra, then the even part B0 of B is solvable.

Proof. Assume that B0 is not solvable and B is not a Lie superalgebra, then by Propo-
sition 4.1 we get that B0 contains a simple Lie subalgebra S ∼= sl(2, C) such that 
B = (

∑
i ⊕Vi) ⊕ (

∑
j ⊕Wj), where Vi

∼= L2 and Wj
∼= M2 for all i, j. Consider the 

Grassmann envelope M = Γ(B) = B0 ⊗ Γ0 ⊕ B1 ⊗ Γ1, of the superalgebra B, where 
Γ = Γ0 ⊕Γ1 is the Grassmann algebra. Then Γ(B) is a binary Lie algebra. By construc-
tion, the BL-algebra M has a subalgebra S0 = S ⊗ C1 
 sl2(C), where 1 is the unit 
element of the Grassmann algebra Γ. Moreover, the algebra M as an S0-module has a 
decomposition into a direct sum of 3- and 2-dimensional S0-modules. By Theorem 1 of 
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[5], M is a Malcev algebra. Hence B is a Malcev superalgebra, but by [9] any non-trivial 
simple Malcev superalgebra is a Lie superalgebra. �
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