

Luminescent Thermometry Performance in Glasses and Glass-Ceramics: The Role of Material Structure in Emission Behavior

Henrique Fabrega Fazan¹, Ricardo Santos Baltieri¹, Danilo Manzani¹

¹São Carlos Institute of Chemistry, University of São Paulo

e-mail: h.fazan@usp.br

Glass-ceramics combine compositional versatility of glasses with mechanical stability of ceramics, enabling advanced applications like waveguides and sensors.[1] Rare-earth-doped (RE3+) glasses and glass-ceramics are of interest for luminescent thermometry due to narrow emission bands and broad with matrix compatibility. This study examines the influence of material on temperature-dependent upconversion emission in glasses and glassceramics with different Yb³⁺/Er³⁺ ratios. Differential Scanning Calorimetry (DSC) analysis showed relatively low characteristic temperatures for the glasses ($T_g \sim 350$ °C, $T_x \sim 450$ °C, $T_p \sim 500$ °C), which increased with RE³⁺ addition. High thermal stability above 100 °C enabled glass-ceramic formation through controlled heat treatments between T_{α} and T_{ν} . Using the Kissinger method, the crystallization activation energy was estimated to be ~89 $kJ/mol\ for\ T_{_{p}}$ in the fluorophosphate glass-ceramics. This method will be an important parameter for investigating the volumetric crystallization processes in glass-ceramics.[2] The samples exhibited absorption ~ 250 nm and bands corresponding to the Yb³⁺/Er³⁺ pair, especially at 980 nm, which sensitizes Er³⁺ to produce green (525, 546 nm) and red (659 nm) emissions. The populations of thermally coupled levels ${}^2H_{11/2}$ and ${}^4S_{3/2}$ followed a Boltzmann distribution.[3] The thermometers showed relative sensitivities of 0.69% K⁻¹ and $0.60\%~\mathrm{K^{-1}}$, and absolute sensitivities of $3.3\times10^{-3}~\mathrm{K^{-1}}$ and $2.9\times10^{-3}~\mathrm{K^{-1}}$ for glasses and glassceramics, respectively.

Acknowledgements

FAPESP grants 2023/02179-0, 2020/11038-2, 2023/05994-6, and CAPES 88887.495341/2020-00.

References

- [1] Y. Ledemi et al. J. Am. Ceram. Soc., vol. 96, p. 825 (2013).
- [2] H. Kissinger. J. Res. Natl. Bur. Stand., vol. 57, p. 217 (1956).
- [3] D. Manzani et al. Sci. Rep., vol. 7, p. 41596 (2017).