Downloaded via UNIV OF SAO PAULO on January 19, 2026 at 18:14:18 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to |egitimately share published articles.

IEEAPPLIED
NANO MATERIALS

This article is licensed under CC-BY 4.0 @ @

www.acsanm.org Article

Electronic Tongue Based on Laser-Induced Graphene Electrodes for
Monitoring lons in Aqueous Media

Rafael C. Hensel, Xavier Cetd, Osvaldo N. Oliveira,* and Manel del Valle*

Cite This: ACS Appl. Nano Mater. 2026, 9, 962-971 I : I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information
ABSTRACT: This work describes the use of a portable 450 nm Sample#  » Sample 6 ry
wavelength laser system to fabricate an electronic tongue (e- o 0l SR o}
tongue) comprising an array of potentiometric laser-induced 2 sl ecames toameto X
graphene (LIG) sensors on polyimide. The sensing units were o ki
modified with ion-selective polymer membranes for the detection 3(5, 20 o " -
of Ca®, Na*, and K*. The sensors exhibited pseudo-Nernstian g .
behavior, with sensitivities of 32.7 + 0.8, 63 + 3, and 52 + 2 mV/ 3 e > 2%

dec for Ca’*, Na*, and K*, respectively, and limits of detection of LY 4 - 1deal (y=x)
4.5 uM for Ca®*, 606 uM for Na*, and 66 uM for K". The z |¢ . :\(l):
qualitative response of the e-tongue was evaluated using principal  o0s|A e

=
)

component analysis (PCA), which allowed a clear distinction 0 15 20 25 30

between monovalent and divalent ions based on the first two
principal components. Discrimination among the three ions at
concentrations of 20 #M, 220 uM, and 4.0 mM was achieved using the K-means clustering algorithm, with a silhouette coefficient of
0.946, close to the ideal value. Quantitative analysis using artificial neural networks (ANNs) was applied to ternary mixtures of the
three ions, enabling simultaneous and accurate prediction of individual ion concentrations down to 10 gM. Furthermore, we
demonstrate the capability of the e-tongue to provide reliable measurements even at trace ion concentrations in mineral water
samples, confirming its suitability for precise and sensitive ion monitoring in complex, real-world applications.

Expected Log Activity (logio pM)
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Bl INTRODUCTION E-tongues have been used for monitoring ions in water, which
is relevant for environmental control, water treatment, precision
agriculture, aquaculture, closed-loop water-space missions, and
industrial processes. For example, a commercial potentiometric
e-tongue could discriminate mineral water samples according to
their geographic origin using linear discriminant analysis
(LDA).** Five commercial drinking waters could be distin-
guished using principal component analysis (PCA) of the data
generated with a potentiometric e-tongue comprising hollow

The analysis of complex liquids is essential for characterizing and
quantifying industrial and environmental samples. This has
traditionally been performed using chromatography or other
instrumental methods, which are highly efficient but require
expensive equipment, controlled environments, and trained
personnel.’ There is thus a demand for simple, easy-to-use
analytical techniques that are also sensitive and selective. In this

context, electronic tongues (e-tongues) are an interesting glass and Teflon tubes containing polymer membranes.”® The
alternative for analyte identification and quantification by latter were made of poly(vinyl alcohol) (PVA) and poly(acrylic
mimicking the function of the human palate.””® E-tongues acid) (PAA) modified with phosphorylated hexadecyl trime-
combine the responses from a low-selectivity array of electrical, thylammonium chloride, phosphorylated and cross-linked
electrochemical, or optical sensors with machine learning or poly(vinyl-co-ethylene), and phosphorylated and cross-linked
pattern recognition algorithms.””' Potentiometric e-tongues, PVA. In another approach, ion-selective membranes (ISMs)
in particular, offer various advantages, including instrumental without ionophores were plasticized into a glass ring and further
simplicity, low energy consumption, stability, and good incorporated into commercial ion-selective electrodes (ISEs)."®
reproducibility.' "> They typically use commercial liquid-

junction electrodes made with ionophoric polymer mem- Received: September 23, 2025 i
branes,"® which are costly to produce and difficult to customize. Revised: ~ December 10, 2025 !
This is why these internal liquid reference electrodes are being Accepted: December 16, 2025

increasingly replaced by all-solid-state electrodes,'* where they Published: January 2, 2026

found applications in the industrial,"*~"” food,"®"* pharmaceut-
ical,***! biomedical,* agricultural,23 and environmental'” fields.
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An array of six sensing units was applied to the quantitative
measurement of chloride, nitrate, bicarbonate, sulfate, sodium,
calcium, and magnesium in nine mineral water samples by using
a straightforward linear calibration model. Despite their good
prediction for CI~, HCO;~, Mg**, and Ca*", within the studied
concentration ranges, the concentration of the other ions was
poorly predicted. Nevertheless, the design and rigidity of sensors
made from Teflon or hollow glass tubes limit their adaptability
to some specific applications. To address this, the use of flow
systems may be an advantage,”® but also the use of screen-
printed sensor arrays may facilitate the use.”” As an example,
Gutiérrez et al. reported a five-sensor array of screen-printed
ISEs on polycarbonate substrate, which were able to
quantitatively predict ammonium, potassium, and sodium
concentration in real and spiked water samples by artificial
neural networks (ANNs) modeling.27 Although screen-printed
ISEs are compatible with mass production, they rely on physical
screens that limit their customization. Moreover, the use of
carbon inks requires postprocessing for proper functioning of
the sensor and may suffer from variability within distinct
batches. Scalable and reproducible sensors have been produced
with the automated fabrication of ISEs using printing and laser-
based techniques.”® Herein, we adopted an alternative method
to fabricate an ISE-based e-tongue exploiting a more accessible,
scalable, customizable, and green approach based on laser-
induced graphene (LIG), which additionally takes profit of using
this nanotechnology element. LIG electrodes are suitable for
sensors because they can be obtained by directly scribing a
substrate, providing a customized manufacture of three-
dimensional graphene networks with complex designs, minimal
chemical use, and waste reduction.”” " The e-tongue based on
LIG electrodes was used for simultaneous multi-ion analysis.
The working electrodes were fabricated onto polyimide using a
portable 450 nm wavelength laser engraver and then coated with
an intermediate layer of poly(3,4-ethylenedioxythio-
phene):polystyrene sulfonate (PEDOT:PSS)**** and modified
with poly(vinyl chloride) (PVC) ISMs. Simultaneous detection
of Na*, K*, and Ca** was performed in deionized and mineral
water samples. The data were treated with PCA and ANNs for
qualitative and quantitative analyses, respectively.

B MATERIALS AND METHODS

Chemicals and Solutions

Ton-selective PVC membranes were prepared using high-molecular-
weight PVC and the plasticizers dioctyl sebacate (DOS), 2-nitro-
phenyloctyl ether (NPOE), and dioctyl phenyl phosphonate (DOPP)
(all from Fluka). The ionophores valinomycin (potassium ionophore I,
Fluka), bis[(12-crown-4)methyl]-2-dodecyl-2-methylmalonate
(CMDMM, Dojindo Laboratories), and hemicalcium bis[4-(1,1,3,3-
tetramethylbutyl)phenyl] phosphate (Ca®* ionophore, Fluka) were
used as recognition elements. We also used an ionophore with a generic
response to cations, the dibenzo-18-crown-6 (Fluka). All membrane
constituents were dissolved in tetrahydrofuran (THF, Fluka) for
membrane preparation. The composition of each ISM is summarized in
Table 1. The formulations of K* and Na* ISMs include 1% potassium
tetrakis(4-chlorophenyl)borate as an additive. CaCl,-2H,0, NH,C],
and NaCl were purchased from Panreac, and KCI and PEDOT:PSS
were acquired from Merck. Goldfinger high-temperature polyimide
films, 0.15 mm thick, were acquired from Henan Jinzhi Electrical
Insulation New Material Co., Ltd. Green polyester high-temperature
tape was purchased from Xiamen Aimo Technology Co., Ltd.,, and
electrically conductive epoxy paste EPO-TEK E4110 was obtained
from Epoxy Technology, Inc. The experiments were performed using
ultrapure water obtained from a Milli-Q purification system.
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Table 1. Composition of the ISMs Used to Build the LIG-
Based Potentiometric Electronic Tongue”’34

Sensor PVC (%) Plasticizer (%) Ionophore (%)
Ca** 30 DOPP - 63 7
Na* 22 NPOE - 70 6
K+ 30 DOS - 66 3
Generic 29 DOS - 67 4

Preparation and Characterization of LIG-Based
Potentiometric Sensor Array

To fabricate the LIG-based sensors, we used a portable 450 nm
wavelength DAJA laser engraver (Hefei, China), model DJ6, that
provides a maximum power of 3 W and a maximum resolution of 50 gm.
We adjusted the engraving parameters on polyimide to fine-tune the
device fabrication. The laser power, engraving speed, and focus position
were varied systematically to fabricate circular LIG patterns with a
diameter of 8 mm. Subsequently, the sheet resistance of the resulting
graphene surfaces was evaluated using an Ossila Four-Point Probe. The
morphology of the LIG surface was investigated by scanning electron
microscopy using a Zeiss EVO MAI0 scanning electron microscope.
The quality of the LIG structures was investigated by Raman
spectroscopy using a Renishaw inVia Raman microscope. The
electrochemical performance of LIG-based working electrodes, having
a geometric area of 12.57 mm?, was assessed in a 0.1 M KCl solution
containing 5 mM [Fe(CN)¢]*/*~ using a PalmSens MultiEmStat
potentiostat. A combined Ag/AgCl (3 M KCI) reference and platinum
counter electrode was used, along with the LIG-based working
electrode. Electrochemical impedance spectroscopy (EIS) measure-
ments were performed in a PalmSens MultiEmStat4 potentiostat by
applying an AC voltage with a 10 mV amplitude at the open-circuit
potential. The measurements were recorded over a frequency range of
100 kHz to 0.1 Hz.

An array of LIG electrodes on polyimide was prepared by using the
optimized engraving parameters. Figure la presents a sketch of the
engraving process. To define the active area of the electrodes, a
polyester insulating tape was cut by using a 450 nm wavelength laser, as
shown in Figure 1b. Then, the insulating tape was fixed onto the
devices, as depicted in Figure 1c. With the aim of performing multiple
measurements, robust electrical contacts were prepared by coating the
LIG tracks with the conductive epoxy EPO-TEK E4110. To improve
the stability of the ISEs comprising the e-tongue, reduce signal drift, and
promote eflicient ion-to-electron transduction, we deposited an
intermediate layer of PEDOT:PSS.**** 30 uL of a 10% PEDOT:PSS
solution (v/v) in deionized water was drop-cast onto the LIG surface
overnight at 25 °C (Figure 1d). PEDOT:PSS acts as a solid-contact
material between the LIG surface and the ISM. This conductive
polymer layer creates a smooth and uniform functional surface, which
also improves the adhesion of the ISM. Subsequently, the sensor array
was preconditioned in an aqueous solution containing 0.33 M CaCl,,
0.33 M NaCl, and 0.33 M KCl for 24 h to promote the ion-exchange
equilibrium of the conductive polymer layer. Before the deposition of
the ion-selective membranes (ISMs), the LIG sensor array was rinsed in
deionized water and left to dry overnight.

Each ISM cocktail was drop-cast on an LIG surface comprising the
sensor array (Figure le). After the addition of each 30 yL droplet, it was
left to dry for 1.5 h at 25 °C until 10 cycles were achieved. The
photograph of the final array of sensors is presented in Figure 1f. Note
that there is one additional sensor that was not coated by an ISM, which
was used just to monitor the proper functioning of the electrodes. After
the preparation of all ISEs, the sensor array was left to dry for 2 days to
evaporate the solvent. The devices were subsequently preconditioned
following the same procedure adopted after PEDOT:PSS deposition.

Each LIG-based ISE was characterized by the analyte addition
method in Milli-Q water at 25 °C using a multichannel electronic
system developed in the Sensors and Biosensors Group of UAB. This
setup permits up to eight simultaneous potentiometric measurements
and was coupled to a PicoLog multichannel data acquisition system
(Cambridge, UK). The potentiometric measurements were performed

https://doi.org/10.1021/acsanm.5c04417
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(A) (B)

Figure 1. Sketch of the fabrication process of an LIG-based potentiometric sensor array. (A) 450 nm wavelength laser engraving of an array of
electrodes having a diameter of 4 mm; (B) laser cutting of a polyester insulating tape to define the geometric area of the sensor; (C) positioning of the
cut polyester insulating tape onto the electrodes; deposition of (D) PEDOT:PSS and (E) ISM onto the electrodes; and (F) photograph of the final

device.
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Figure 2. Sheet resistance evaluation of a circle of 4 mm radius as a function of (a) laser focus and engraving speed for a fixed laser power of 0.9 W and
(b) laser power and engraving speed for a fixed defocus of 6 mm. (c) Two-probe resistance evaluation of a linear stripe of 1.1 mm X 16 mm as a function
of the laser power and engraving speed for a fixed defocus of 6 mm. (d) Raman spectra of an LIG circular shape having a diameter of 8 mm engraved
using a power of 0.9 W, engraving speed of 60 mm/s, and defocus values of 4, 6, and 8 mm. (e) Cyclic voltammetry curves of LIG electrodes at different
scan rates. (f) Nyquist plot of LIG electrodes; the red continuous curve corresponds to the equivalent circuit fit shown as an inset.

versus an Orion 900200 double liquid-junction Ag/AgCl reference
electrode, and the system was grounded with the measuring solution
through a stainless-steel wire. Following the immersion of the sensor
array and reference electrode in Milli-Q water at 25 °C, the open-circuit
potential was continuously recorded, while the solution was
homogenized using magnetic stirring. After a few minutes, once the
potential stabilized, the mean value obtained over the last 20 s was taken
as the baseline. Subsequently, after each analyte addition, the open-
circuit potential was continuously recorded, and the same time window
was used to define each measurement. To avoid drifts and recalibration,
each analyte measurement was subtracted from the baseline value
obtained in the presence of only Milli-Q water. At the end of the
experiment, the sensors were rinsed with Milli-Q water for a few
minutes to remove the residual species.

The sensor array comprising the electronic tongue was initially
evaluated for three distinct concentrations of each analyte, i.e., 20 uM,
220 uM, and 4 mM, considering seven independent measurements for
each sample and following the methodology described above. It is
important to highlight that after each measurement, the sensors were
rinsed as described previously. The qualitative response was assessed by
PCA using the machine learning software environment Orangva.36
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ANNs within the open-source machine learning library PyTorch for
Python®" " were used to quantitatively evaluate the performance of
the LIG-based potentiometric electronic tongue. For their training, two
complete factorial design and additional cross-validation sample
datasets were implemented. Each design included three analytes at
three concentrations, supplemented by three additional single-analyte
samples, resulting in a total of 60 training samples, as shown in Table S2
in the Supporting Information (SI). Twenty-two additional samples
randomly defined were used to externally validate the ANN model
(Table S3 in the SI). In addition, four commercial mineral water
samples were analyzed to predict their ion concentrations using the
trained ANN. Details regarding the source and composition are
provided in the SI. The order in which the measurements were
performed was randomly defined to avoid any bias. The architecture of
the ANN comprises an input layer, a single hidden layer with a
parametrizable activation function, and a linear output layer. The most
effective configuration of the ANN was identified through a grid search
to define the optimal values for the hyperparameters (e.g,, size of the
hidden layer, activation function, learning rate, momentum, and weight
decay) using PyTorch.””~*° For each combination of hyperparameters,
a new ANN instance was trained for S00 epochs using the stochastic

https://doi.org/10.1021/acsanm.5c04417
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Figure 3. Top view of SEM micrographs of LIG electrodes engraved using a power of 0.9 W, engraving speed of 60 mm/s, and defocus of 6 mm at (a) 1,
(b) S, and (c) 10 kX magnification. The red arrow in (a) indicates the engraving direction. SEM micrographs of LIG electrode cross-sections at (d) 1,
(e) S, and (f) 10 kX magnification. The blue arrow is simply the orthogonal.

gradient descent (SGD) optimizer and the mean squared error loss
function (MSELoss). After each configuration was trained, the model
was evaluated with respect to the validation set for minimizing the
validation mean squared error (MSE).

B RESULTS AND DISCUSSION

Development and Characterization of LIG Electrodes

Figure 2a,b shows how the sheet resistance varies with the
engraving parameters to improve the LIG performance. In
Figure 2a, for a fixed laser power of 0.9 W, it was already possible
to obtain a sheet resistance comparable to those reported in the
literature.* Moreover, by lowering the engraving speed, a
reduction of the size of the error bars was observed, indicating an
enhancement of the fabrication reproducibility. Also, increasing
the distance from the focal plane and the substrate, i.e.,
defocusing the laser up to 6 mm, caused a reduction of the sheet
resistance, with an increasing tendency for 8 mm. Figure 2b
shows that for a fixed defocus of 6 mm and a laser power of 0.6 W
(blue circles), the sheet resistance increases with the engraving
speed. Furthermore, the variation of the sheet resistance
decreases when increasing the laser power to 0.9 W (red stars)
and 1.2 W (green triangles). Nevertheless, for a laser power of
1.2 W and engraving speed of 60 mm/s, we observed that the
LIG layer started to detach, which decreased the fabrication
reproducibility, indicated by the increase in the size of the error
bar. For the lowest scan rate tested, viz. 50 mm/s, and a laser
power of 1.2 W, the devices were quite damaged, making it
difficult to evaluate their sheet resistance. Therefore, the lowest
sheet resistance was obtained for a laser power of 0.9 W and an
engraving speed between 50 and 70 mm/s. In addition to a low
sheet resistance, one must consider the conductive path of the
electrodes for the sensing performance. Noble metals are
normally incorporated in the conductive tracks to minimize
current losses, especially in carbon-based devices.*' ™ We did
not employ this metallization process but studied the depend-
ence of the conductive track resistance as a function of the
engraving parameters, as shown in Figure 2¢, for conductive
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linear stripes of 1.1 mm X 16 mm. One can observe that
increasing the engraving speed causes an increase in the
resistance of the track, as indicated by the dotted lines. Also,
increasing the laser power from 0.6 to 0.9 and 1.2 W reduces the
resistance. Although lower resistance values were obtained for a
power of 1.2 W, those patterns were quite fragile, limiting their
use. Therefore, improved results were obtained with a laser
power of 0.9 W and an engraving speed within 50—60 mm/s.
The smaller error bars (Figure 2b) for 0.9 W are related to a
more reproducible patterning.

The Raman spectra in Figure 2d feature three dominant bands
at 1351, 1586, and 2698 cm ™, identified as the D band, G band,
and 2D band, respectively. The D band designates sp® carbons
associated with structural defects, while the G band refers to the
stretching of C—C bonds of sp* carbons. The 2D band is related
to the scattering of two phonons with symmetric momenta in
aromatic rings; thus, it provides essential information about the
layer structure. Overlapped with the G band, the D’ band
involves one phonon and one defect resonance, being related to
distinct defects from the D band. In addition to the D’ band, the
D + D’ and D + D” bands are also defect-activated Raman
features, which are common in LIG due to its partially
graphitized and porous structure. For a defocus of 4 mm, I/
I; = 1.2, which decreased to I,/I; = 0.8 for a defocus of 6 mm
and increased to I /I = 0.85 for 8 mm. Typically, the ratio Iy /I
of LIG ranges between 0.6 and 1.4,% indicating defective but
conductive networks. The lower I,/I; = 0.8 was obtained for a
defocus of 6 mm, which agrees with the electrical character-
ization in Figure 2a—c. Moreover, the ratio I,p/I; = 0.82 for 4
and 6 mm defocus values indicates the presence of few-layer
graphene, while Lp/Ig 1.7 for 8 mm suggests bilayer
formation. Therefore, all devices used were prepared by fixing P
= 0.9 W, speed = 60 mm/s, and defocus = 6 mm.

Figure 2e shows the cyclic voltammograms at diverse scan
rates v of a developed LIG device with a geometric area of 12.57
mm?” (Figure 1f). The anodic peak at E,, corresponds to the
oxidation of [Fe(CN)4]* to [Fe(CN)6T3_, and the cathodic

o
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Figure 4. (a) Calibration curves of the Ca**, Na*, and K" ISEs with respect to the corresponding ion in Milli-Q water at 25 °C. (b) Potentiometric
response of the generic sensor with respect to Ca**, Na*, and K* ions in Milli-Q water. (c) Sensitivity and (d) LOD evaluation of each ISE up to nine

consecutive days.

peak at E__ is due to the reduction of [Fe(CN),]*~ back to
[Fe(CN)é}j4_. The ratio between the anodic and cathodic
current peaks, ie., I,,/I,. = 1.02 £ 0.01, in Figure 2e is
independent of the chosen scan rate. For the lowest scan rate, v =
10 mV/s, AE, = 100 mV. This higher potential compared to
that of Nernstian behavior, i.e., 59 mV, can be ascribed to ohmic
drops that normally occur in these electric circuits. The linear
dependence of the anodic and cathodic currents with the square
root of the scan rate shown in Figure S1 in the Supporting
Information indicates a diffusion-controlled process, which can
be described by the Randles—Sevcik equation (eq 1). Applying
eq 1 to the data in Figure S1, we calculate the active area of the
LIG electrode as A = 1.7A,, with R* = 0.9996, while the
geometric area of the devices was A,, = 0.13 cm?,

1/2
FuD
I,= 0.4463nFAC( ks )
RT 1)
in which I, is the current peak [A], n is the number of electrons

transferred in the redox event, A is the electrode area [cm?], F =
96 485 C/mol is the Faraday constant, D = 6.32 X 107% cm*/s is
the diffusion coefficient, C is the concentration of the redox
species [mol/cm?], and v is the scan rate.

The electrochemical impedance characterization of the LIG
electrodes consisted of obtaining the Nyquist plots. Figure 2f
features a semicircle followed by a diffusion process, which was
interpreted using a modified Randles equivalent circuit, shown
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in the inset. The difference from the standard Randles circuit is
that the Warburg element, which describes the diffusion process,
was replaced by a constant phase element (CPE). The CPE is an
empirical circuit element that accounts for nonideal capacitive
behavior caused by surface roughness, porosity, or hetero-

ﬁ , in which
Q is the constant phase element admittance, j is the imaginary
number, @ is the angular frequency, and @ is an empirical
exponent that can assume values between 0 and 1. If & = O, the
CPE designates a resistive component. If a = 1, it defines a pure
capacitor, and if @ = 0.5, it behaves as a Warburg element. The
equivalent circuit analysis of the data in Figure 2f provided R, =
142 + 1 Q, which considers the resistance of the solution, cables,
electrical contacts, etc.; Cpy, = 5.6 + 0.2 uF, which describes the
double layer capacitance; Rcr = 56 + 1  for the charge transfer
resistance, also correlated to the diameter of the semicircle; and
Q=(622+7) x 1076 s%/Q, for a = 0.545 + 0.004. Thus, as
approaches 0.5, the CPE element behaves similarly to a Warburg
element. To summarize, the electrochemical characterization of
the LIG devices fabricated presented results comparable to
those in the literature, with the advantage of using a simpler 450
nm engraving setup.44

We investigated the morphology of the LIG devices by using
scanning electron microscopy (SEM). Figure 3a shows a groove
pattern in the direction perpendicular to the engraving one,
which corresponds to a laser resolution of ~50 ym. There is a

geneity. Its impedance can be written as Zcpg =

https://doi.org/10.1021/acsanm.5c04417
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and CaCl, in Milli-Q water at 25 °C.

second pattern in the engraving direction with a width of ~10
um that could be associated with the laser spot. Increasing the
magnification, as indicated in Figure 3b,c, one notes the
roughness characteristic of LIG. We have also obtained the
depth profile of LIG structures using cross-sectional SEM.
Figure 3d indicates that the LIG thickness is approximately 40
um, with a foam-like structure shown in Figure 3e,f.

Potentiometric Response of LIG-Based ISEs

Figure 4a displays the comparison of the potentiometric
response of the Ca®’, Na” and K' ISEs with respect to
accumulated microadditions of the corresponding analyte in
water, while Figure 4b shows the potential variation obtained
from the generic sensor for the three analytes. Since we did not
use a buffer to control the solution ionic strength, we calculated
the ionic activities from the nominal molar concentrations of
each ion using the extended Debye—Hiickel equation to
determine the activity coeflicients y, considering the ionic
strength of the solution obtained after the addition of each
analyte in Milli-Q water. Thus, the activity a was calculated from
a =7y X ¢, in which c is the molar concentration. To facilitate the
comparison between different devices, all of the potentiometric
measurements were presented by subtracting the initial
potential value, i.e, V — V;, in which V; corresponds to the
initial measurement in Milli-Q water. In Figure 4a, there is a
progressive potential increase with the initial addition of the
analyte, which can be represented by two straight lines of
different slopes. The small slope in the initial part of the curve
occurred because the measurements were performed in
deionized water instead of a buffer. The limit of detection
(LOD) is defined at the intercept of the two straight lines.'* The
higher slope obeys the pseudo-Nernst equation. A similar
behavior was observed for the generic ISE for the three analytes,
as shown in Figure 4b. Nevertheless, in this case, the slope before
reaching the pseudo-Nernstian onset was steeper, and the LOD
appeared at comparatively higher analyte concentrations, a trait
of its lower selectivity.

The figures of merit of the LIG-based ISEs, i.e., sensitivity and
LOD, were evaluated for up to nine consecutive days as shown in
Figure 4c,d, respectively. The Ca*" ISE presented the lowest
variation in sensitivity and LOD over the analyzed period, with
an average of 32.7 + 0.8 mV/dec and 4.2 + 0.3 uM, respectively.
Moreover, the mean sensitivity for the Na* and K* ISEs was 63 +
3 and 52 + 2 mV/dec, respectively. Although they present a
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slight deviation from pseudo-Nernstian behavior, these values
are compatible with the ones already reported in the literature
for screen-printed ISEs.”” The mean value of LOD over the nine
measuring days was 4.3 + 0.4, 51 + 16, and 401 + 241 uM for
Ca*, K*, and Na*, respectively. The LODs for Ca** and K* ISEs
are similar to those presented in the literature, but the LOD for
Na* ISE is almost 1 order of magnitude higher.”>**** This may
be attributed to the nonideal conditioning of the electrodes in a
mixture of the three ions of interest. Such an effect is less relevant
for Ca®* due to the lower interference with respect to
monocations.”!

Performance of the LIG-Based E-Tongue in Qualitative
Analysis

The ability of the individual LIG-based sensors to detect the ions
separately serves as motivation to combine the sensing units in
an e-tongue. This allowed one to distinguish the ions and even
quantify them in mixtures, as will be shown next. The sensor
array devised for the e-tongue was evaluated with pure solutions
of one analyte, comprising three distinct concentrations of each,
and seven replicate measurements for each sample. The
responses of this qualitative analysis were assessed by using
PCA. Figure Sa presents the bidimensional scatter plot of the
obtained scores considering the first two principal components,
namely PC1 and PC2. The variance explained by the first two
components is below 50%, which suggests there are additional
sources of variation of the measurements, for example, the
existence of different monovalent cations. The readings for pure
water were placed in the lower-left corner of the plot. Note that
PC2 effectively separates the divalent cations from the
monovalent ones, so the latter are aligned in the direction of
the water samples. The red arrow indicates the direction in
which samples with increasing concentrations of CaCl, were
distributed. Regarding the monovalent cations, PC1 is able to
separate them according to their concentration, so the green and
blue arrows indicate the increasing concentration tendency for
NaCl and KClI, respectively. Although the 2D plot in Figure Sa
indicates an overlap between the clusters comprising 20 yM KCl
and 220 yuM NaCl and between 4.0 mM NaCl and 220 uM KCl,
the 3D plot shown in Figure Sb permits a clearer separation
according to PC3. The discrimination among the three ions and
their three concentrations was also assessed by the K-means
clustering algorithm, which correctly separated each sample with

https://doi.org/10.1021/acsanm.5c04417
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compared with the ideal y = x line and the linear fit. Obs.: The case in which the analyte is absent (i.e., 0 uM) was set to a logarithmic value of 0.5 to

ensure proper data modeling and visualization.

a silhouette coeflicient of 0.946, a remarkable figure close to the
ideal value of 1.0.

Design and Training of the ANN Response Model

To investigate the quantitative response of the LIG-based e-
tongue for the three target ions, we chose an ANN model for
regression. First, the configuration was chosen with four input
neurons (the number of ISEs in the array), three output neurons
(the number of ions modeled), and one single hidden layer, as
this has been demonstrated to be enough for similar
situations.”””” The network topology was optimized using a
grid search, as the proper choice of hyperparameters plays a
crucial role in defining the ability of the ANN to capture the
analytical response of the array of sensors. The design
commenced by defining the fixed parameters, i.e., the number
of input and output neurons. Thus, the size of the single hidden
layer was varied from 1 to 10 neurons, and the learning rate was
tested for 0.001, 0.01, and 0.1; the momentum for 0.0, 0.4, and
0.8; and the weight decay for 0.0, 0.001, and 0.0001. We also
tested the rectified linear unit (ReLU) and tanh as the activation
functions. As a result, approximately 540 distinct ANN
configuration setups were evaluated, derived from a combina-
tion of 10 X 2 X 3 X 3 X 3 hyperparameters. The ionic activity
(mol/L) was converted to [umol/L] before applying the
logarithm function. This strategy optimizes the numerical range
and facilitates the interpretation of the results. Moreover, to deal
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with the absence of an analyte, i.e., 0 M, in which the logarithm is
undefined, a small arbitrary value was added to the activity
before logarithmic transformation, resulting in 0.5. This ensured
continuity of the mathematical validity of the data.

Figure 6 presents the validation MSE and R? obtained for
different sizes of the hidden layer and fixed optimized
parameters, namely activation function = ReLU, learning rate
= 0.1, momentum = 0.4, and weight decay = 0.0001. The
validation MSE decreased as the size of the hidden layer
increased from 1 to 5 neurons. As the number of neurons in the
hidden layer increased beyond §, the validation MSE presented a
minimum at 7 neurons, followed by a plateau up to 9 neurons.
This, along with the validation R* values, suggests that 7 neurons
offered the optimal balance between model complexity and
generalization performance for this data set. It is important to
highlight that the size of the hidden layer is correlated to the
representation capacity of the network. Thus, a low number of
neurons may not be enough to describe the data, resulting in
underfitting, while a large number will cause data memorization
and overfitting. This configuration provided a global validation
MSE of 0.0985 and R* = 0.9174.

The performance of the ANN on the validation set is shown in
Figure 7a—c, which presents the predicted versus the expected
logarithm of the ionic activity for K, Na*, and Ca®", respectively.
To ensure proper data modeling and visualization on a

https://doi.org/10.1021/acsanm.5c04417
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Table 2. Expected Concentrations and Predicted by the E-Tongue for the Three Ions in the Four Mineral Water Samples for Two

Dilutions and Binary Mixtures

Expected [K'] (uM) Predicted [K'] (uM)

Expected [Na'*] (uM)

Predicted [Na*] (uM) Expected [Ca®] (uM) Predicted [Ca®*] (uM)

Sample 1 0 23 33§ 137 461 830
Sample 2 27 45 315 47 964 1073
Sample 3 0 47 48 9s 67
Sample 4 0 8 49 29 1070 1346
Sample $ 0 22 170 171 246 179
Sample 6 14 9 161 121 526 503
Sample 7 0 S 24 32 49 35
Sample 8 0 8 25 32 580 332
Sample 9 0 14 191 125 774 232
Sample 10 14 10 183 83 1016 122
Sample 11 14 25 183 118 563 391

logarithmic scale, the case in which the analyte is absent, i.e., 0 sample  Sample 6 7

UM, was described by an arbitrary value of 0.5, which =3.0{ e samplel s+ Sample7 ’

corresponds to the lowest values in the plots. The linear %_ T Sample2 o Sample 8 o -

regression between expected and predicted values is provided y o + Sample3 v Sample 9 %

= (0.92 + 0.06)x + (0.1 £ 0.1), R? = 0.927 for K*; y = (0.87 + S O P B

0.05)x + (0.3 +0.1), R*=0.957 for Na%; and y = (1.01 £0.03)x ~ =22.57 ¢ e sample 10—

— (0.01 + 0.05), R* = 0.988 for Ca®". Thus, despite the large > + Samples »  Sample 11 *'/ v

dispersion observed for K" and Na', a unit slope and zero S R O <

intercept are almost all achieved within the 95% confidence C 2.01 e

interval. Moreover, the largest deviation from ideality was < A <

obtained for K" and Na" in the absence of the target analyte in g m A m

the mixture. This indicates that the model provides less reliable _B' 1.5 ,.//' ‘

predictions in these low ionic activity regimes due to the lower 9 o > 7

representation of zero concentrations in the training data set. L e

One could also speculate as to whether the pseudo-Nernst k5 v . --=- ldeal (y=x)

equation, i.e., univariate application using the mean sensitivity a 1.0 0 /, 8 lon

presented in Figure 4c, could be employed for quantitative % * rd ° K++

analysis of the validation set of samples. Figure S2a—c in the < A7’ ® Na2+

Supporting Information shows the comparison between the 0.57,7 ca

calculated versus real logarithm of the ionic activity for K, Na®, 05 1.0 15 20 55 30

and Ca?", respectively. Despite the acceptable results for Ca®", it
is clear that the univariate method fails in determining the ionic
activity of K™ and Na*. This occurred because some of the
validation samples have a concentration lower than the LOD of
the univariate analysis. The failures in prediction using the
univariate analysis with the Nernst equation reinforce the
usefulness of the ANN model for quantitative analysis.

Validation in Mineral Water

The four commercial mineral waters were diluted with Milli-Q_
water to concentrations of 77% and 38.5%, as described for
samples 1—8 in Table 2. The concentrations of Ca**, K*, and
Na® in samples 1—4 were quantified by inductively coupled
plasma optical emission spectrometry (ICP-OES) using an
Agilent 5900 instrument, following the procedure detailed in the
SI. The resulting concentrations are provided in Table S1 of the
SI. Also, samples 9—11 correspond to the binary mixtures of
samples 1 and 4, samples 2 and 4, and samples 2 and 3,
respectively. Figure 8 presents a visual comparison between the
ANN-predicted and expected logarithms of the ionic activity for
K*, Na*, and Ca*" in real samples of mineral water. As already
observed in Figure 7, the ANN model cannot accurately
determine the concentration of K* in the samples in which this
ion was absent. Nevertheless, there is a good capability of
predicting the concentrations of the three ions for the other
samples, as presented in Table 2. Moreover, our devices
performed better on the determination of K* and Na* when
compared to screen-printed carbon ISEs used for the
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Expected Log Activity (log1g uM)

Figure 8. Comparison of ANN-predicted versus expected logarithm of
the ionic activity for K*, Na*, and Ca®* in real samples of mineral water
diluted in Milli-Q water at 25 °C, compared with the ideal y = x line.
Obs.: The case in which the analyte is absent (i.e,, 0 uM) was set to a
logarithmic value of 0.5 to ensure proper data modeling and
visualization.

determination of these ions in real water and spiked samples.””
It is also worth noting that the univariate analysis using the
Nernst equation with the individual calibration curves was
largely ineftective, as shown in Figure S3 in the Supporting
Information.

Bl CONCLUSIONS

We developed an LIG-based potentiometric e-tongue, whose
ability to perform multi-ion analysis in aqueous media was
shown. Electrochemical characterization revealed pseudo-
Nernstian behavior for the LIG-based ISEs, with stable
sensitivities of 32.7 + 0.8, 63 + 3, and 52 + 2 mV/dec for
Ca’", Na" and K, respectively, over nine days. PCA successfully
distinguished between monovalent and divalent cations, also
indicating concentration-dependent trends. Moreover, K-means
clustering provided a silhouette coefficient of 0.946, which
indicates excellent classification of the three concentrations of
the three ions. Quantitative analysis performed with ANNs

https://doi.org/10.1021/acsanm.5c04417
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demonstrated good predictive performance in estimating the
logarithm of ionic activity of the three ions, indicated by the
regression parameters closely matching the unit slope and zero
intercept within the 95% confidence interval. This indicates that
the ANN output remained statistically consistent with the
expected behavior. Furthermore, the network successfully
learned the underlying relationship between the sensor array
inputs and the ionic activity values for K*, Na*, and Ca*" in real
mineral water samples. To be noted was the systematic deviation
in the prediction of K* for samples that did not contain K ions,
which may also have affected the overall predictive accuracy of
the model. Overall, these results highlight the feasibility of
integrating LIG-based potentiometric sensors into flexible and
miniaturized e-tongue platforms for advanced chemical sensing,
also opening perspectives for wearable applications.

B ASSOCIATED CONTENT
© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsanm.5c04417.

Details regarding the source and composition of the
mineral water samples; concentration of ions in
commercial mineral water samples; composition of the
60 solutions that formed the randomly defined ANN
training set; composition of the 22 solutions comprising
the randomly selected ANN validation set; linear
dependence of the anodic and cathodic currents of
[Fe(CN)s]*/>~ with the square root of the scan rate;
comparison between the calculated versus real logarithm
of the ionic activity for K*, Na*, and Ca**, respectively,
exploiting the pseudo-Nernst equation with the individual
calibration curves; and univariate analysis of mineral
water samples using the Nernst equation with the
individual calibration curves (PDF)

B AUTHOR INFORMATION
Corresponding Authors

Manel del Valle — Sensors and Biosensors Group - Department
of Chemistry, Autonomous University of Barcelona (UAB),
Bellaterra, Barcelona 08193, Spain; ® orcid.org/0000-0002-
1032-8611; Email: manel.delvalle@uab.es

Osvaldo N. Oliveira — Sao Carlos Institute of Physics,
University of Sao Paulo (USP), Sao Carlos, SP 13566-590,
Brazil; ® orcid.org/0000-0002-5399-5860; Email: chu@
ifsc.usp.br

Authors

Rafael C. Hensel — Sao Carlos Institute of Physics, University of
Sao Paulo (USP), Sao Carlos, SP 13566-590, Brazil; Sensors
and Biosensors Group - Department of Chemistry,
Autonomous University of Barcelona (UAB), Bellaterra,
Barcelona 08193, Spain; ©® orcid.org/0000-0001-7060-
6604

Xavier Ceto — Sensors and Biosensors Group - Department of
Chemistry, Autonomous University of Barcelona (UAB),
Bellaterra, Barcelona 08193, Spain

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsanm.5c04417

970

Author Contributions

The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.

Funding

This work was supported by INEO, CNPq, CAPES and
FAPESP (2018/22214-6, 2020/15095-0, 2023/07812-2), and
by MCIN/AEI/10.1303/501100011033, through the project
PID2022-1367090B-C21 and the network Electrobionet
(RED2022-134120-T).

Notes

The authors declare no competing financial interest.

B ABBREVIATIONS

ANNSs, artificial neural networks; CMDMM, bis[(12-crown-
4)methyl]-2-dodecyl-2-methylmalonate; CPE, constant phase
element; DOPP, dioctyl phenyl phosphonate; DOS, dioctyl
sebacate; ISE, ion-selective electrode; ISMs, ion-selective
membranes; LDA, linear discriminant analysis; LIG, laser-
induced graphene; LOD, limit of detection; MSE, mean squared
error; MSELoss, mean squared error loss function; NPOE, 2-
nitrophenyloctyl ether; PAA, poly(acrylic acid); PCA, principal
component analysis; PEDOT:PSS, poly(3,4-ethylenedioxythio-
phene):polystyrene sulfonate; PVA, poly(vinyl alcohol); PVC,
poly(vinyl chloride); ReLU, rectified linear unit; SEM, scanning
electron microscopy; SGD, stochastic gradient descent; THF,
tetrahydrofuran

B REFERENCES

(1) Nez, O.; Gallart-Ayala, H.; Martins, C. P.B.; Lucci, P. New Trends
in Fast Liquid Chromatography for Food and Environmental Analysis.
J. Chromatogr A 2012, 1228, 298—323.

(2) Riul, A, Jr.; Dantas, C. A. R;; Miyazaki, C. M.; Oliveira, O. N., Jr.
Recent Advances in Electronic Tongues. Analyst 2010, 135 (10),
2481-2495.

(3) del Valle, M. Electronic Tongues Employing Electrochemical
Sensors. Electroanalysis 2010, 22 (14), 1539—1555.

(4) Labanska, M.; Ciosek-Skibifska, P.; Wréblewski, W. Critical
Evaluation of Laboratory Potentiometric Electronic Tongues for
Pharmaceutical Analysis—an Overview. Sensors 2019, 19 (24), 5376.

(5) Ciosek, P.; Wréblewski, W. Potentiometric and Hybrid Electronic
Tongues for Bioprocess Monitoring — an Overview. Anal. Methods
2015, 7 (9), 3958—3966.

(6) Rudnitskaya, A.; Lvova, L. Chapter 32 - Gustatory-Based
Electronic Tongues. In Nature-Inspired Sensors; Haick, H., Ed.; Elsevier,
2025; pp 467—486. DOI: 10.1016/B978-0-443-15684-7.00037-3.

(7) Shimizu, F. M.; Braunger, M. L.; Riul, A. Heavy Metal/Toxins
Detection Using Electronic Tongues. Chemosensors 2019, 7 (3), 36.

(8) Han, F.; Zhang, D.; Rashed, M. M. A; Dai, C.; Zhang, X,; Jiang, B.;
Zhang, X.; Huang, X. Machine Learning-Enhanced Taste Sensing for
Dual Additive Quantification: Simultaneous Salt and MSG Prediction
in Complex Food Liquid. Food Bioproc Tech 2025, 18, 8569—8584.

(9) Shojaeifard, Z.; Moslehipour, A.; Hemmateenejad, B. Chapter S -
Optical and Electronic Nose and Tongue. In Nature-Derived Sensors;
Hemmateenejad, B., Altintas, Z., Rafatmah, E., Eds.; Elsevier, 2025; pp
173—-200. DOI: 10.1016/B978-0-443-22002-9.00010-5.

(10) Han, F.; Huang, X; Teye, E. Novel Prediction of Heavy Metal
Residues in Fish Using a Low-Cost Optical Electronic Tongue System
Based on Colorimetric Sensors Array. J. Food Process Eng. 2019, 42 (2),
No. e12983.

(11) Cho, S.; Moazzem, M. S. Recent Applications of Potentiometric
Electronic Tongue and Electronic Nose in Sensory Evaluation. Prev
Nutr Food Sci. 2022, 27 (4), 354—364.

(12) Mimendia, A,; Gutiérrez, J. M.; Leija, L.; Herndndez, P. R;;
Favari, L.; Mufioz, R;; del Valle, M. A Review of the Use of the

https://doi.org/10.1021/acsanm.5c04417
ACS Appl. Nano Mater. 2026, 9, 962—971



ACS Applied Nano Materials

www.acsanm.org

Potentiometric Electronic Tongue in the Monitoring of Environmental
Systems. Environmental Modelling & Software 2010, 25 (9), 1023—
1030.

(13) Durst, R. A. Ion-Selective Electrodes — The Early Years.
Electroanalysis 2012, 24 (1), 15-22.

(14) Criscuolo, F.; Hanitra, M. I. N.; Taurino, 1; Carrara, S.; De
Micheli, G. All-Solid-State Ion-Selective Electrodes: A Tutorial for
Correct Practice. IEEE Sens J. 2021, 21 (20), 22143—22154.

(15) Pérez-Gonzalez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Dias,
L.; Rodriguez-Perez, M. A,; Garcia-Cabezon, C.; Rodriguez-Mendez,
M. L. Analysis of Milk Using a Portable Potentiometric Electronic
Tongue Based on Five Polymeric Membrane Sensors. Front Chem.
2021, 9, 907460.

(16) Ceté, X,; Gutiérrez-Capitdn, M.; Calvo, D.; del Valle, M. Beer
Classification by Means of a Potentiometric Electronic Tongue. Food
Chem. 2013, 141 (3), 2533—2540.

(17) Damarla, S. K; Zhu, X; Kundu, M. Classification and
Authentication of Mineral Water Samples Using Electronic Tongue
and Deep Neural Networks. In 2021 IEEE Third International
Conference on Cognitive Machine Intelligence (CogMI); IEEE, 2021; pp
11-16..

(18) Cuartero, M.; Ruiz, A.; Galian, M.; Ortuiio, J. A. Potentiometric
Electronic Tongue for Quantitative Ion Analysis in Natural Mineral
Waters. Sensors 2022, 22 (16), 6204.

(19) Perez-Gonzalez, C.; Garcia-Hernandez, C.; Garcia-Cabezon, C.;
Rodriguez-Mendez, M. L.; Dias, L.; Martin-Pedrosa, F. Analysis of Milk
Adulteration by Means of a Potentiometric Electronic Tongue. J. Dairy
Sci. 2024, 107 (11), 9135—9144.

(20) Broncové, G.; Prokopec, V.; Shishkanova, T. V. Potentiometric
Electronic Tongue for Pharmaceutical Analytics: Determination of
Ascorbic Acid Based on Electropolymerized Films. Chemosensors 2021,
9 (5), 110.

(21) Pein, M.; Kirsanov, D.; Ciosek, P.; del Valle, M.; Yaroshenko, L;
Wesoly, M.Ig.; Zabadaj, M.; Gonzalez-Calabuig, A.; Wroblewski, W.;
Legin, A. Independent comparison study of six different electronic
tongues applied for pharmaceutical analysis. J. Pharm. Biomed. Anal.
2015, 114, 321—329.

(22) Lvova, L.; Martinelli, E.; Dini, F.; Bergamini, A.; Paolesse, R.; Di
Natale, C.; D’Amico, A. Clinical Analysis of Human Urine by Means of
Potentiometric Electronic Tongue. Talanta 2009, 77 (3), 1097—1104.

(23) Gutiérrez, M.; Alegret, S.; Ciceres, R.; Casadests, J.; Marfa, O.;
del Valle, M. Nutrient solution monitoring in greenhouse cultivation
employing a potentiometric electronic tongue. J. Agr. Food Chem. 2008,
56 (6), 1810—1817.

(24) Sipos, L.; Kovécs, Z.; Sagi-Kiss, V.; Csiki, T.; Kokai, Z.; Fekete,
A.; Héberger, K. Discrimination of Mineral Waters by Electronic
Tongue, Sensory Evaluation and Chemical Analysis. Food Chem. 2012,
135 (4), 2947-2953.

(25) Mahato, M.; Adhikari, B. Monitoring of Drinking Water Quality:
A Preliminary Approach by an Electronic Tongue Based on
Functionalized Polymer Membrane Electrodes. Anal. Methods 2017,
9 (42), 6019—6031.

(26) Calvo, D.; Duran, A.; del Valle, M. Use of Sequential Injection
Analysis to Construct an Electronic-Tongue: Application to Multi-
determination Employing the Transient Response of a Potentiometric
Sensor Array. Anal. Chim. Acta 2007, 600 (1), 97—104.

(27) Gutiérrez, M.; Moo, V. M.; Alegret, S.; Leija, L.; Hernandez, P.
R.; Mufioz, R.; del Valle, M. Electronic Tongue for the Determination
of Alkaline Ions Using a Screen-Printed Potentiometric Sensor Array.
Microchimica Acta 2008, 163 (1-2), 81—88.

(28) Teekayupak, K.; Lomae, A.; Agir, L; Chuaypen, N.; Dissayabutra,
T.; Henry, C. S.; Chailapakul, O.; Ozer, T.; Ruecha, N. Large-Scale
Fabrication of Ion-Selective Electrodes for Simultaneous Detection of
Na+, K+, and Ca2+ in Biofluids Using a Smartphone-Based
Potentiometric Sensing Platform. Microchimica Acta 2023, 190 (6),
237.

(29) Santos, N. F.; Pereira, S. O.; Moreira, A.; Girao, A. V.; Carvalho,
A. F,; Fernandes, A. J. S;; Costa, F. M. IR and UV Laser-Induced

971

Graphene: Application as Dopamine Electrochemical Sensors. Adv.
Mater. Technol. 2021, 6 (6), 2100007.

(30) Vivaldi, F.; Dallinger, A.; Poma, N.; Bonini, A.; Biagini, D.; Salvo,
P.; Borghi, F.; Tavanti, A.; Greco, F.; Di Francesco, F. Sweat Analysis
with a Wearable Sensing Platform Based on Laser-Induced Graphene.
APL Bioeng 2022, 6 (3), No. 036104.

(31) Choudhury, S.; Zafar, S.; Deepak, D.; Panghal, A.; Lochab, B;
Roy, S. S. A Surface Modified Laser-Induced Graphene Based Flexible
Biosensor for Multiplexed Sweat Analysis. J. Mater. Chem. B 2024, 13
(1), 274—287.

(32) Nyein, H. Y. Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.;
Chen, K; Fahad, H. M,; Tai, L.-C.; Ota, H.; Davis, R. W.; Javey, A. A
Wearable Electrochemical Platform for Noninvasive Simultaneous
Monitoring of Ca2+ and pH. ACS Nano 2016, 10 (7), 7216—7224.

(33) Bobacka, J. Conducting Polymer-Based Solid-State Ion-Selective
Electrodes. Electroanalysis 2006, 18 (1), 7—18.

(34) Craggs, A;; Moody, G.J.; Thomas, J. D. R. Calcium Ion-Selective
Electrode Measurements in the Presence of Complexing Ligands.
Analyst 1979, 104 (1243), 961-972.

(35) Liao, J.; Zhang, X.; Sun, Z.; Chen, H.; Fu, J.; Si, H.; Ge, C; Lin, S.
Laser-Induced Graphene-Based Wearable Epidermal Ion-Selective
Sensors for Noninvasive Multiplexed Sweat Analysis. Biosensors
(Basel) 2022, 12 (6), 397.

(36) Orange Data Mining. https://orangedatamining.com (accessed
2025-11-11).

(37) Imambi, S.; Prakash, K. B.; Kanagachidambaresan, G. R.
PyTorch. In Programming with TensorFlow: Solution for Edge Computing
Applications; Prakash, K. B. Kanagachidambaresan, G. R, Eds,;
Springer International Publishing, Cham, 2021; pp 87-104.
DOI: 10.1007/978-3-030-57077-4_10.

(38) Mishra, P. Introduction to Neural Networks Using PyTorch. In
PyTorch Recipes: A Problem-Solution Approach to Build, Train and
Deploy Neural Network Models; Mishra, P., Ed.; Apress, Berkeley, CA,
2023; pp 117—133. DOI: 10.1007/978-1-4842-8925-9 4.

(39) Jagtap, A. D.; Karniadakis, G. E. How Important Are Activation
Functions in Regression and Classification? A Survey, Performance
Comparison, and Future Directions. Journal of Machine Learning for
Modeling and Computing 2023, 4 (1), 21-75.

(40) Murray, R; Burke, M.; Iacopino, D.; Quinn, A. J. Design of
Experiments and Optimization of Laser-Induced Graphene. ACS
Omega 2021, 6 (26), 16736—16743.

(41) Shamili, C,; Pillai, A. S.; Saisree, S; Chandran, A.; Varma, M. R;
Kuzhichalil Peethambharan, S. All-Printed Wearable Biosensor Based
on MWCNT-Iron Oxide Nanocomposite Ink for Physiological Level
Detection of Glucose in Human Sweat. Biosens Bioelectron 2024, 258,
No. 116358.

(42) Ploner, M.; Shkodra, B.; Altana, A.; Petrelli, M.; Tagliaferri, A.;
Resnati, D.; Lugli, P.; Angeli, M. A. C.; Petti, L. Flexible Electrochemical
Sensor for Interleukin-6: Toward Wearable Cytokine Monitoring. IEEE
Sens Lett. 2024, 8 (8), 1—4.

(43) Xu, W.; Hong, L.; Zheng, J.; Li, M.; Hua, Y.; Zhao, X. Wearable
Smart Sensor System for Monitoring and Intelligent Prediction of
Sodium Ions in Human Perspiration. IEEE Internet Things ]. 2024, 11
(5), 8146—8155.

(44) Kongkaew, S.; Thipwimonmas, Y.; Hayeeabu, M.; Limbut, W.
Fabrication of a 96-Electrode Array Using Carbon Dioxide Laser
Ablation. Talanta 2024, 274, No. 125912.

(45) Calvo, D.; Bartroli, J.; del Valle, M. EIS Study of Potentiometric
Membranes Selective to Ca2+ Employing the New Ionophoric
Antibiotic Tetronasin. Electrochim. Acta 2006, 51 (8), 1569—1575.

https://doi.org/10.1021/acsanm.5c04417
ACS Appl. Nano Mater. 2026, 9, 962—971



