Electrical Power and Energy Systems 171 (2025) 110940

Contents lists available at ScienceDirect TRy

POWER
AND ENERGY
SYSTEM:

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Check for

Parameter estimation of submarine power cables in offshore applications | el
using machine learning-based methods

Felipe P. de Albuquerque?, Rafael Nascimento °, Gabriel de Castro Biage ", Rooney
R.A. Coelho "™ Ronaldo F. Ribeiro Pereira “*?, Eduardo C. Marques da Costa "“-*, Mario L.
Pereira Filho ®“, Cassio G. Lopes ", José R. Cardoso "

a3 UFMT - Universidade Federal do Mato Grosso, Cuiabd, Brazil
b USP - University of Sdo Paulo, Polytechnic School, Sdo Paulo, Brazil
¢ UFAC - Federal University of Acre, Rio Branco, Brazil

ARTICLE INFO ABSTRACT

Keywords:

Submarine cables
Parameter estimation
Machine learning
Phasor measurements
Power transmission

Monitoring electrical parameters of power transmission systems is essential to ensure reliability and opti-
mal operating conditions. This research presents an accurate methodology for estimation of the sequence
parameters of submarine power cables using a data-driven approach based synchrophasor measurements.
Contrarily of conventional techniques, the proposed methodology is based on supervised machine learning
models trained on realistic simulations, which incorporate the physical and geometric characteristics of the
power cable, with its seven propagation modes. In practical conditions, the training dataset takes into account
noise patterns using well-established modeling methods for phasor measurements. These patterns include time-
correlated and statistically coherent disturbances, which are representative of those typically encountered in
systems employing Phasor Measurement Units (PMUs). A detailed statistical investigation was also conducted to
characterize the empirical distribution of the input data, supporting model design and validation. Remarkably,
the proposed algorithm achieves accurate parameter estimation even under elevated noise conditions, requiring
as few as 200 training samples. The maximum observed estimation error was approximately 1%, underscoring
the robustness, efficiency, and practical viability of the proposed framework for the electrical characterization
of submarine transmission systems.

1. Introduction time. Conventionally, the electrical parameters, which are determined
during the conception and design stages, are assumed to remain con-
stant throughout the entire operational life of the transmission system.
However, this assumption is not representative of actual conditions, as
overhead lines and cables are continuously exposed to aging processes

and environmental issues. In this context, the periodic and continuous

The previous knowledge on the electrical parameters of power
systems represents an important aspect for effective monitoring, fore-
casting, and operational analysis. The accuracy in which such param-
eters are identified is intrinsically related to the system’s performance,
including protection parameterization, fault detection and location in
overhead and underground networks, insulation coordination, wave
propagation analysis, operational state prediction, voltage stability as-

estimation of electrical parameters emerges as a valuable strategy for
monitoring power systems, enabling the detection of eventual devia-

sessment, loadability, and numerous other monitoring and diagnostic
applications [1-3] (see Table 1).

The electrical parameters of overhead and submerse (underground
or submarine) are conventionally calculated based on the physical
and geometric characteristics of the transmission systems, and sev-
eral approximations such as the earth-return current, as well as skin
and proximity effects [4]. For example, the electrical permittivity of
insulating materials is subject to variation due to factors such as
ambient humidity and the progressive degradation of insulation over
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tions from nominal conditions and supporting preventive maintenance
and operational reliability.

Basically, the technical literature presents two estimation proce-
dures: in the time domain and in the frequency domain by means of
synchrophasor measurements. The first is usually carried out based on
time-domain measurements and oscillographies, usually obtained from
digital relays during fault occurrences [3,5,6]. These methods cannot
provide a periodic and continuous parameter estimation, since they
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Table 1
List of symbols and their meanings.

Symbol Description

R Matrix of lumped resistances

r Matrix of lumped inductances

c’ Matrix of lumped capacitances

p Generic parameter of the power cable p € {R,L,C}
p* Generic actual parameter of the power cable

X Random variable x

f,(x) Probability density function of a random variable x
{Q,F, P} Probability space

v Propagation velocity of a electromagnetic wave

® Angular frequency of the signal

y Complex propagation constant

(k) Sequence measurement k € {0,1,2}

X s Phasor X of sequence k from sender end

X Phasor X of sequence k from receiver end

Rey Lgy> Ciy Electrical sequence parameters of the cable

RY d-dimensional real space

x® i-sample of the vector of features

y® i-sample of the target vector

D Matrix of data

L(f) Loss function of the function f

H Hypothesis class of machine learning algorithms
N (u,0) normal distribution with mean x and standard-deviation o
V'(a,b) Uniform distribution between interval [a, b]

depend on eventual fault occurrences to register oscillographies. In
contrast, frequency-domain methods require a phasorial measurement
series, which can be obtained by Phasor Measurement Units PMUs
synchronously at both terminals of the transmission system [7]. Sev-
eral techniques have been proposed to solve the estimation problem
with synchrophasor measurements, such as optimal filtering, nonlinear
optimization, metaheuristics, and others [8-10].

The research in [7] proposes a methodology for parameter estima-
tion of transmission lines and simultaneously modeling errors by using
a modified weighted least squares approach. Although this method
shows to be versatile, it requires synchronized measurements from both
ends of the transmission system and depends on a detailed under-
standing of the underlying complex algebraic equations. In contrast,
our proposed method builds upon this foundation by adopting a data-
centric approach that explicitly incorporates rigorous noise modeling,
thereby improving robustness and practicality in real-world scenarios.

In [8], the authors developed a methodology based on a Kalman
filter solution combined with the noise propagation model introduced
in [11] to estimate transmission line parameters. However, the re-
sults reported in the paper exhibit errors of approximately 10%. The
technical literature describes that the performance of Kalman filters is
highly dependent on precise knowledge of both the system model and
the statistical properties of the noise, which are usually unknown in
practical terms [12]. In contrast, our proposed approach uses regression
methods that do not require an explicit transmission line model or prior
assumptions about the noise characteristics.

Several optimization and estimation methods, including those based
on metaheuristic strategies, have been applied to parameter estimation
problems. Among these, notable examples include the Multi-objective
Geometric Mean Optimizer (MOGMO), the Multi-objective Exponential
Distribution Optimizer (MOEDO), the Symbiotic Organism Search Algo-
rithm, Multi-objective Moth-Flame Optimizer as well as various other
bio-inspired optimization techniques [13-16]. These methodologies
have demonstrated promising results and competitive performance in
tackling complex estimation problems across various research domains.
Practical examples are given in [17,18], in which different machine
learning models are used for air-quality level forecasting in urban areas.

In addition to traditional model-based approaches, recent studies
have explored the application of advanced machine learning techniques
for parameter estimation in electrochemical and power systems. For
instance, in [19] proposed hybrid frameworks that combine adaptive

International Journal of Electrical Power and Energy Systems 171 (2025) 110940

filtering, multivariable decoupling, and real-time correction to estimate
state-of-charge and internal parameters of lithium-ion batteries under
severe temperature and noise conditions. Other relevant contributions
involve deep neural networks—such as LSTM and BiLSTM—combined
with Bayesian optimization and Kalman filtering strategies, aiming to
reduce the impact of noise and input uncertainty while improving
remaining useful life (RUL) prediction [20,21].

The solution presented in [3] provides an insightful analysis of the
relationship between errors in transmission line parameter estimation
and fault location. The proposed methodology is formulated in the
time domain and relies on numerical differentiation in the presence of
noise [22]. Furthermore, the study overlooks the impact of systematic
measurement errors, where the estimation errors exceed 4%, limiting
its applicability to high-precision processes.

An interesting estimation method, based on machine learning tech-
niques, is described in [23]. In this research, the parameters of a
three-phase distribution feeder are estimated using general regression
neural networks (GRNN). However, the approach is tailored to distribu-
tion line models that neglect the effect of shunt capacitance, limiting
its applicability to transmission systems. Furthermore, the method is
considerably more computationally intensive than the one proposed in
this paper. It is also important to highlight an average mean absolute
percentage error (MAPE) of 1% using 10000 samples, significantly
more data than required by the proposed approach to achieve lower
error rates.

In this context, this study presents a novel methodology to estimate
the electrical parameters of a typical submarine power cable with
seven phases by using several machine learning methods. Our proposed
methodology encompasses an end-to-end framework, starting from the
modeling of the cable using the FEM method, numerical simulation in
the time domain, phasor acquisition in real-world scenarios, i.e., con-
sidering the presence of random and systematic errors, and finally the
estimation using a regression approach.

Concerning the machine learning solution, diverse hypothesis
classes were tested during the process, including tree-based meth-
ods, generalized additive models, and linear regression. Also, best
practices of the pipeline for a data-centric solution were adopted,
including cross-validation, the use of a separate test dataset, and feature
engineering.

The parameters of the cable were obtained considering the current
models for synchronized phasor measurements obtained from PMUs [2,
71, i.e., considering Gaussian and systematic errors. Also, the model-
free approach based on a regression problem is able to estimate the
parameters using only one-side measurement of the cable, which is an
improvement over the classical solutions present in the literature [7,9,
24].

The main contributions of this paper can be summarized as follows:

* An end-to-end methodology to build a dataset for estimating
the parameters of a submarine power cable, from physical and
geometric properties to phasor measurements;

» The estimation of electrical parameters for a complex cable con-
figuration with seven propagation modes, which comprise three
phase conductors and four armor wires;

» The use of multiple machine learning methods that do not rely
on explicit physical models of the cable or predefined noise
distributions;

» A method capable of handling both random and systematic mea-
surement errors, as well as one-sided measurements of the cable.

2. Simulation of the synchrophasor dataset

This section outlines the procedure employed to simulate synchro-
nized voltage and current phasors at both terminals of the submarine
power cable. The process starts with the calculation of the impedance
and admittance parameters, which are essential for accurately modeling
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Fig. 1. Finite element mesh of a three-core high-voltage power cable.

the cable’s electrical behavior. Subsequently, these parameters are
used to simulate a synchrophasor measurement dataset. As previously
noted, the generation of this synthetic database is necessitated by the
unavailability of real phasor measurement data.

The theory of multi-conductor transmission lines is formulated in
terms of electrical circuit quantities, allowing for an abstraction from
the physical aspects of the electromagnetic fields and enabling a more
tractable analytical approach. Nevertheless, the governing equations
are fundamentally derived from Maxwell’s equations, thereby retaining
consistency with the underlying principles of electromagnetism [25].
The equations that model the multi-conductor transmission line are
characterized by a set of electric parameters that represents the cable
and can be accurately calculated by using the Finite Element Method
FEM, since the characteristics of its physical and structural cross section
are previously known. The technical literature shows several proce-
dures for calculating the electric parameters of cables with multiple
propagation modes and simulation [26-28]. Conventionally, a FEM-
base algorithm is applied to compute the electrical parameters of the
cable, and thereafter a well-established line or cable modeling is used
for transient or steady-state simulations.

The FEM has been widely used as an accurate and reliable ap-
proach for the calculation of series and transversal parameters of cables
with arbitrary and non-conventional cross-sectional geometries [27,
28]. This method offers substantial advantages in situations involv-
ing complex or irregular geometries, as it enables precise modeling
of the system’s physical behavior. In contrast, some well-established
analytical methods are available in the technical literature for similar
calculations [29,30]. However, these methods often rely on a series
of simplifying assumptions and approximations, which can lead to
inaccuracies, particularly when applied to cables with arbitrary cross
sections.

The schematic representation of the cross-section of the power ca-
ble, considering the finite element mesh, is shown in Fig. 1. In this fig-
ure, each conductor (orange) is enclosed by an insulation layer (yellow)
and additional shielding layers (light brown) to ensure proper electrical
performance and mechanical integrity. The outer sheath (blue) encap-
sulates the entire cable, providing environmental protection and elec-
trical insulation. The finely discretized triangular mesh enables precise
numerical analysis of the electric field distribution, thermal behavior,
and mechanical stress concentration. The results of the FEM-based
method is presented in Appendix A.1.

Since the reference electrical parameters are known, the phasorial
measurements can be simulated through the two-port network repre-
sentation of the cable. This model provides an accurate characterization
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of frequency-domain propagation and the characteristic impedance,
thereby enabling the precise simulation of voltage and current phasors
at both terminals of the cable [31,32].

The multi-phase representation can be analyzed using modal de-
composition, wherein the phase conductors, shields, and armor are
decoupled into seven independent propagation modes. These modes
are subsequently modeled through a two-port network representation,
enabling a precise characterization of the system’s electromagnetic
behavior [33].

Subsequently, random and systematic errors are applied to the
dataset, in order to reproduce the real behavior of the PMU measure-
ments [2,7]. The currents and voltages values, obtained from the intro-
duced cable model, are the synchrophasors that compose the dataset
to be applied in the learning process of the Al-based methodology for
parameter estimation.

3. The parameter estimation problem

The previous section provided a detailed description of the proce-
dure employed for generating the phasor measurements, as well as the
calculation of the reference parameters for this purpose. This section
introduces the building process of the synchrophasor dataset as well as
a general supervised learning approach for the parameter estimation by
various machine learning hypothesis classes.

3.1. Building the database

In a supervised learning framework, the process of constructing
the database represents a crucial to achieve an effective solution. The
technical literature addressing parameter estimation in transmission
systems, particularly through the application of machine learning tech-
niques, remains relatively limited and underexplored [34-36]. There-
fore, this study proposes an innovative approach for generating training
datasets, which capitalizes on characteristic patterns and statistical
properties extracted from historical data reported in the technical
literature.

According to the literature, parameter errors typically range from
approximately 10% to 30% of the true parameter value [37,38]. Con-
sequently, the database should include parameter values within this
interval. Thus, if p* denotes the exact value of a given parameter,
the inaccurate parameter p should be constrained within the following
bounds:

p*(1-0.30) < p < p*(14+0.30) = 0.7p* < p < 1.3p"

Since extreme parameter values occur less frequently than those
with smaller deviations, the Gaussian distribution is an appropriate
choice for data generation. This distribution naturally aligns with the
expected error pattern, where values farther from the mean occur with
lower frequency, reflecting the typical distribution of parameter devia-
tions. The probability density function (PDF) of a Gaussian distribution
is given by:

2
) = ——exp <—(”_ 1 ) , M
o\ 2x 20
where y represents the mean parameter value, and ¢ denotes the
standard deviation, which determines the spread of the distribution.
To establish a relationship between the standard deviation and the
range of parameter errors, the empirical 3¢ rule can be applied [39].
This rule states that approximately 99.7% of the values in a normal
distribution lie within three standard deviations from the mean:

Pu—30c <X<u+30)~0997,

where P(-) represents the probability function, and X is a Gaussian
random variable with mean u and standard deviation o.
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Fig. 2. Analysis of the residuals for sequence parameters.

Given that the maximum observed error is defined as E,,,, the
standard deviation can be expressed as:

Emax
~ . 2
c 3 (2)

Applying this formulation to the problem, where parameter values
range from 70% to 130% of the true value p*, we obtain:

p*+30 <1.3p" =06 =0.1p".

Therefore, to generate data for parameters with a mean value of
p* and observed maximum and minimum values of 1.3p* and 0.7p*,
respectively (with a probability of 0.997), a Gaussian distribution with
mean y = p* and standard deviation ¢ = 0.1p* should be used.

However, this methodology may yield physically invalid parameter
values, particularly with respect to the inherent limitation imposed
by the speed of light, which is intrinsically related to the electrical
parameters of the transmission line. Therefore, it becomes essential to
evaluate the resulting expressions to ensure their physical plausibility.
Specifically, with regard to the speed of light in vacuum c:

vy = ——— <c¢
o Im(y ;)
»

V= ——— <¢,
O™ Im(y))

where the index (1) represents the positive sequence, while (0) the zero
sequence.

Even after these verifications, the proposed methodology may still
result in inconsistent values across individual rows, i.e. bad data values
that might affect the performance of the machine learning method. In
this sense, the proposed method introduces a new approach to verify
whether each row of the dataset represents a consistent record of the
measurements. This new methodology is based on the equating of
sequence models for the submarine power cable.

Consider the equivalent circuit per sequence (k = 0 or 1) shown
in Fig. 2, where V,, and [, represent the voltage and current
of sequence k at the sending end, IA/,,(k) and f,.(k) are the voltage
and current of sequence k at the receiving end of the system. Terms
Ly, Ry, and Cy, are the lumped parameters of sequence k for the
equivalent circuit. If the measurements generated by the FEM method
associated with the propagation model are coherent, then f;, f,, and
/3 defined by (3), (4), and (5) should be null or then very close to zero.

def 4 S ~ 5 .
F1 = Loy = Ly = Vi + V) - JoCpy /2 &)
def - N . Ve = Viw
fo = Lgy+ Vg joCy /2 — ——— 4
r,(k) r,(k) (k) R(k) +ij(k)
def o . , Viw = Vew
f3 = Lygy = Vi - JoCuy/2 — : & )

Ry +joLy,
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3.2. Machine learning approach

To estimate the sequence parameters of a submarine power cable,
we propose a supervised regression framework using terminal phasor
measurements of voltage and current. Specifically, the input features
are constructed from three-phase voltage and current signals measured
at both the sending (s) and receiving (r) ends of the cable, covering
phases A, B, and C.

The objective is to estimate the six real-valued sequence parameters:

{Roy Loy Co» Ray> Lay Coyhs

based on the observed terminal phasors:

{Vx’ IA" Vr’ IV}A,B,C'
Here, the phasor quantities are expressed as complex numbers with
magnitude and phase angle:

Vo=V, I =|ile/®, V,=V|e/%, I =\,

where j = \/—_1 and all magnitudes and angles are included as features.
The physical relation between voltages and currents along the cable
follows the frequency-domain telegrapher’s equations:
VO _z@ i,
dx
where Z(w) and Y(w) are the per-unit-length series impedance and
shunt admittance matrices obtained via FEM simulations. From these
matrices, it is performed the Kron reduction method and after is applied
the symmetrical components, resulting in the sequence parameters:

{Ro)» Loy Cop Ray Ly Cay -

The phasors obtained from the signal propagation model were in-
tentionally corrupted by introducing both random noise and systematic
errors into the original measurements. The resulting corrupted phasors
were used to construct the dataset with N samples:

D={a", YL,

where x() denotes the input features derived from the corrupted pha-
sors, and y® corresponds to the true electrical parameters.

Let x € R* denote the real-valued feature vector derived from the
corrupted phasors, and let y € R® represent the sequence parameters.
The estimation task is to learn a function f that maps input features to
the target parameters:

y = f(x).

The model is trained to minimize the Mean Squared Error (MSE)
between predicted and true parameters:

A~ Y@ .
dx

f i RF S RS,

N
_ 1 )y _ D)2
cm-N;wu>yn,

or equivalently:

N 6
1 Dy _ 0\
“”=ﬁ§ZK“”*%)-

Several model types are explored to approximate f, including lin-
ear regression, tree-based models, and Generalized Additive Models
(GAMs).

These models define the hypothesis space H over which the optimal
function is sought:

fr= Hgggﬁ(f)-

This approach enables direct estimation of sequence parameters
from terminal measurements, while being resilient to noise and model-
ing uncertainties. The complete methodology of the proposed solution
is presented in Fig. 3.
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Fig. 3. Flowchart of the parameter estimation methodology.

4. Results

The submarine power cable was simulated under the conditions
specified in Table 11. Initially, a total of 4285 valid samples were
obtained for generating the Gaussian distribution of the parameters,
following the verification procedures detailed in Section 3.1.

In terms of implementation, a dataset comprising 4285 samples can
be obtained in under two minutes of system observation, assuming a
typical PMU reporting rate of 60 Hz (i.e., one sample per cycle) [40].
This highlights the feasibility of rapidly collecting sufficient data for pa-
rameter estimation using phasor measurements. The machine learning
models were trained on a standard workstation equipped with an Intel
Core i7 processor (3.40 GHz) and 16 GB of RAM, without requiring
GPU acceleration. Given the lightweight nature of the linear regression
model, both training and inference procedures exhibit low computa-
tional overhead, making the proposed approach suitable for real-time
or near-real-time deployment in practical monitoring environments.

To demonstrate the effectiveness of the proposed methodology in
handling the residuals introduced in Section 3.1, the results for the
residuals associated with the positive and zero sequence components
were analyzed. The residuals corresponding to the positive sequence
are depicted in Fig. 4, whereas those related to the zero sequence are
presented in Fig. 5.

As expected from the theoretical analysis, the residuals (1}, f», f3)
are smaller for each sequence, demonstrating the coherence of the
measurements produced by the developed methodology, considering
the power cable models and the dataset construction. Additionally, it
is important to highlight that the presented approach can be used as
a bad data detection method, allowing the selection of only suitable
measurements for use in the estimation method. By setting a specific

threshold, rows with residuals exceeding the established limit can be
excluded.

The proposed method utilizes an 80%—20% data split, with 80% of
the dataset designated for training and 20% for testing. Model training
was conducted using k-fold cross-validation, where the dataset was
partitioned into k subsets. In each iteration, the model was trained on
k — 1 folds and validated on the remaining fold. This iterative process
improved the model’s generalization, enhancing its ability to perform
accurately on unseen data.

Moreover, this methodology reduces the risk of overfitting, i.e., the
tendency of the machine learning algorithm to memorize patterns
from the training dataset rather than learning generalizable features.
By repeatedly training on different subsets of the data, the model is
exposed to a broader variety of patterns, improving its robustness and
predictive performance.

The problem is a multi-output regression task, since it requires the
estimation of six parameters. The approach employed for this task
involves treating each parameter separately. Specifically, regression
models are fitted for each parameter individually, while the remain-
ing parameters are disregarded during the estimation process for the
parameter in question. This method is referred to as the single-target
method [41].

We have performed a comparison of different hypothesis classes
(H), this comparison should be done in the validation base, which
is part of the training process [42]. To evaluate and compare the
performance of the different methods, three metrics were applied: Mean
Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE),
and Mean Absolute Error (MAE), defined in (6). The results were
presented considering each different parameter (R, Ry, L, L, C,,Cy)
and can be seen in Tables 2, 3, 4,5, 6, and 7.
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Some considerations must be addressed regarding the obtained
results. The performance metrics were evaluated based on the com-
plete set of 19 regression models available in the PyCaret library.
However, for clarity and conciseness, only the nine best-performing
models were selected for presentation in this manuscript. The algo-
rithms were assessed using K-fold cross-validation with five folds,

g. 5. Residuals plots for f ), f5(), and f3 -

enabling a consistent comparison of the models based on the validation
dataset. Concerning the set of considered measurements, it can be fully
described as:
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Table 2
Performance comparison of regression models for predicting R1.
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Table 6
Performance comparison of regression models for predicting C1.

Algorithm MAPE (%) RMSE (Q) MAE () Algorithm MAPE (%) RMSE (pF) MAE (pF)
Linear Regression 0.0383 0.000641 0.000401 Linear Regression 0.00164 0.0000791 0.0000532
Extra Trees Regressor 3.95 0.0330 0.0178 Extra Trees Regressor 0.787 0.0447 0.0248
Orthogonal Matching Pursuit 1.18 0.0191 0.0139 Orthogonal Matching Pursuit 0.0411 0.00186 0.00132
Gradient Boosting Regressor 4.15 0.0390 0.0267 Gradient Boosting Regressor 1.09 0.0499 0.0347
Huber Regressor 1.09 0.0209 0.0135 Huber Regressor 2.69 0.111 0.0873
Random Forest Regressor 5.21 0.0506 0.0310 Random Forest Regressor 1.21 0.0631 0.0382
Light Gradient Boosting Machine 6.26 0.0671 0.0390 Light Gradient Boosting Machine 1.28 0.0651 0.0418
Extreme Gradient Boosting 4.46 0.0479 0.0330 Extreme Gradient Boosting 1.32 0.0631 0.0426
Decision Tree Regressor 6.12 0.0765 0.0489 Decision Tree Regressor 1.88 0.0865 0.0606
Table 3 Table 7
Performance comparison of regression models for predicting RO. Performance comparison of regression models for predicting CO.
Algorithm MAPE (%) RMSE (Q) MAE () Algorithm MAPE (%) RMSE (pF) MAE (pF)
Linear Regression 0.1746 0.00394 0.00294 Linear Regression 1.04 0.0387 0.0263
Extra Trees Regressor 4.08 0.0817 0.0623 Extra Trees Regressor 5.41 0.172 0.138
Orthogonal Matching Pursuit 1.74 0.0407 0.0281 Orthogonal Matching Pursuit 5.42 0.175 0.138
Gradient Boosting Regressor 3.67 0.0752 0.0584 Gradient Boosting Regressor 5.24 0.173 0.134
Huber Regressor 2.82 0.0590 0.0459 Huber Regressor 6.01 0.205 0.157
Random Forest Regressor 4.38 0.0891 0.0667 Random Forest Regressor 5.27 0.171 0.134
Light Gradient Boosting Machine 4.72 0.0962 0.0699 Light Gradient Boosting Machine 5.39 0.177 0.138
Extreme Gradient Boosting 4.37 0.0895 0.0684 Extreme Gradient Boosting 5.51 0.180 0.141
Decision Tree Regressor 5.88 0.1204 0.0908 Decision Tree Regressor 7.22 0.235 0.179
Table 4 Table 8
Performance comparison of regression models for predicting L1. Performance of Linear Regression on the Test Dataset.
Algorithm MAPE (%) RMSE (mH) MAE (mH) Parameter MAPE (%) RMSE MAE
Linear Regression 0.0142 0.00165 0.00114
Extra Trees Regressor 0.562 0.1045 0.0404 Ry 0.144434 0.003230 [] 0.002437 [Q]
Orthogonal Matching Pursuit 0.408 0.0436 0.0312 Ry 0.032516 0.000554 [€] 0.000344 [©]
Gradient Boosting Regressor 0.847 0.1229 0.0651 Ly 0.117050 0.0121 [mH] 0.00921 [mH]
Huber Regressor 0.462 0.0506 0.0326 L, 0.011067 0.00151 [mH] 0.000995 [mH]
Random Forest Regressor 1.33 0.1733 0.0939 G 1.232133 0.0451 [pF] 0.0370 [pH]
Light Gradient Boosting Machine 2.30 0.3023 0.1419 G 0.001480 0.000079 [uF] 0.000049 [pF]
Extreme Gradient Boosting 1.32 0.1758 0.0976
Decision Tree Regressor 1.41 0.2338 0.1294
linear regression, followed by the Extremely Randomized Trees (Extra
Table 5 . . .
Performance comparison of regression models for predicting L0. Trees), an ensemble learning method based on the bagging technique.
Algorithm MAPE (%) | RMSE (mH) | MAE (mH) Furthermore, it was observed that the parameter C, exhibited the
Linear Regression 0.1588 0.0154 0.0118 poorest estimation performance. The best performance was observed
Extra Trees Regressor 218 0.221 0.164 for the linear regression, on the test dataset is detailed in Table 8.
g$?f§:§oxi;§21;ig§z::§;t ;:23 %?292322 06?;? To enhance th'e interprfetability of the propose.d approach wit.h re-
Huber Regressor 1.92 0.185 0.146 spect to the machine learning methodology, explainable Al techniques
Random Forest Regressor 3.06 0.264 0.193 can be employed, for instance, SHAP (SHapley Additive exPlanations)
Light Gradient Boosting Machine 4.36 0.348 0.221 values. SHAP is a game-theoretic method that quantifies the contri-
Extreme Gradient Boosting 287 0.258 0.188 bution of each feature by computing its average marginal effect on
Decision Tree Regressor 3.18 0.328 0.262

where the operator « denotes the phase angle of the complex number
associated with each phasor measurement. This way, initially, it was
considered 24 features for the multioutput regression problem. This
set can be divided into the features from the sender-end (s) and from
the receiver-end (r). It will be proved that our proposed methodology
requires only data from one side to achieve acceptable performance.
The magnitudes are expressed in per unit (p.u.), and therefore do not
require any additional scaling. Regarding the target variables, since
they exhibit different scales, a standardization procedure was adopted
to improve the numerical stability of the solution.

A TUES
MAPE = — ' 27 4100,  RMSE =
N & D
1 N
-1 G _ O
MAE = — 21 O =yl 6)
iz
(O . .
where Yored 18 the predicted target of the sample i.

An analysis of the results presented in Tables 2, 3, 4, 5, 6, and 7
indicates that the best-performing algorithm for the studied case was

the model’s output across all possible combinations of input features.
This allows for a consistent and theoretically grounded interpretation
of how each input influences the model’s predictions. The SHAP value
¢, is defined as the average marginal contribution of feature i across
all possible subsets of the remaining features by using (7). The results
of such analysis are presented in Fig. 6.

|S|t- (M —|S]— D!

¢ = M)

SCN\{i}

[fSU{i)(xSu(i}) - fs(xs)] ()

where:

» M is the total number of features.

+ S is any subset of N \ {i}.

* fg(xg) denotes the expected value of the model output when
only the features in S are known, with the remaining features
marginalized.

» The weight W corresponds to the fraction of all possible
orderings in which the subset S precedes feature i.

The results presented in Fig. 6 indicate that the most relevant
features for parameter estimation are the magnitude and phase of the
current phasors in phases A and B. This highlights the crucial role
of PMUs in the estimation process, as such high-resolution phasor
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mean(|SHAP value|) 102

Fig. 6. Mean absolute SHAP value for each feature.

Table 9
Performance of Linear Regression on the Test Dataset using measurements from only
one terminal.

Parameter MAPE (%) RMSE MAE

R, 0.61 1.3513- 1072 [Q] 1.0590 - 1072 [Q]
R, 0.26 5.0426 - 1073 [Q] 3.8012- 1073 [Q]
L, 0.09 1.0106 - 1072 [mH] 7.1696 - 103 [mH]
L, 0.06 7.0576 - 1073 [mH] 4.9921 - 1073 [mH]
Cy 4.88 1.5890 - 107! [pF] 1.2519 - 107! [pF]
C, 0.01 5.8761 - 107* [pF] 4.4256 - 1074 [pF]

measurements are exclusively available through phasor measurement
units.

The presented solution has employed data from both ends of the
cable. However, in certain situations, measurements may be available
from only one side. Therefore, the parameter estimation methodology
must be capable of handling this constraint, that is, estimating the
parameters using one-sided measurements. In classical approaches [7,
9,43,44], which rely on the explicit modeling and equation, based
representation of the cable, such estimation is not feasible when only
one side is observed. Nevertheless, by adopting a data-centric approach,
it becomes possible to estimate the electrical parameters even with
one-sided measurements. Therefore, we have considered available the
measurements only from the sender-end of the power cable. The results
of such analysis are presented in Table 9.

The results presented in Table 9 show that the performance of
the method decreases when only the measurements from one side of
the power cable are considered. This outcome was expected, since
the performance of a machine learning-based method depends on the
variability of the features present in the dataset. Furthermore, the
exclusive use of sender-end data naturally reduces the method’s ac-
curacy, as observed. However, even under this condition, the method
still achieved suitable performance for steady-state applications (errors
below 5%) [45], demonstrating its ability to estimate the parameters
using measurements from a single terminal.

Although the proposed methodology has shown promising results in
estimating electrical parameters of submarine cables under controlled
conditions, some practical scenarios may present additional challenges.
For instance, in configurations involving multi-segment cables with
different physical or electromagnetic characteristics along their length,
the estimation model may require re-training or feature re-engineering
to account for the varying propagation dynamics. Furthermore, the
presence of underwater disturbances such as sea currents, temperature
gradients, or biofouling can introduce additional noise and variability
into the phasor measurements, potentially reducing the estimation
accuracy. For example, this kind of disturbance might lead the random

errors to follow non-stationary and non-Gaussian distributions [12].
Even though these conditions require adjustments in the estimation
process, the data-centric approach can still be adapted through modi-
fications in the dataset, allowing the parameters to be estimated under
these new configurations.

5. Estimation considering errors in the measurements

Error modeling represents a crucial aspect during parameter estima-
tion process using PMU measurements. Several studies have examined
the measurement models generated by the data acquisition chain in
which PMUs are integrated [2,46-48]. Essentially, errors in PMU mea-
surements can be divided into two categories: random errors and
systematic errors. Random errors are typically modeled as a Gaussian
noise term, whereas systematic errors are modeled by a uniform distri-
bution, meaning that their contribution is equally distributed across all
frequencies [7].

In the technical literature, measurement uncertainties are typically
categorized into two distinct types: random errors, which are inherently
associated with PMUs, and systematic errors, which are primarily at-
tributed to the limited precision of Instrument Transformers (ITs), such
as current and voltage transformers [2,7]. Using the values presented
in [2]:

« ITs are assumed to be of class 0.5, thus using 0.5% for maximum
voltage and current ratio errors, 0.9 crad for maximum CT phase-
angle displacement, and 0.6 crad for maximum VT phase-angle
displacement;

» For the errors associated with PMUs, a maximum amplitude error
of 0.1% (apyy) and a maximum phase-angle error of 0.1 crad
(Bpyy) are usually considered.

The systematic error is modeled using a uniform distribution. Thus,
since the values are given by their maximum deviations, the distri-
bution limits can simply be adjusted to account for the maximum
possible errors. For random errors, the maximum values must be set
to the standard deviation of the Gaussian distribution. Following a
methodology analogous to that described in Section 3.1, the standard
deviation of the distribution can be estimated from the maximum
allowable deviations in the PMU magnitude and phase measurements,
as given by the following expressions:

_ Ppmu
aphase - 3 ’

_ % mu
O-mag - 3 )

where o,,,, is the standard-deviation of the distribution that models
the magnitude and o is related to the Gaussian distribution for the

phase.

phase
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Fig. 7. Histogram for |I,].

The field measurements can be simulated by using the following
model:

random
n )

{Vh = (L& 4 eIV, | O v ®
randarn)
h

_ - n ior Y+
Ih =1+ n;}" + n;landam)llhl el((ﬂh v, 1

where h represents the phase {4, B,C}, V,, and I, represent the phasors
corrupted by noise, the term “sys” denotes systematic error, while
“random” pertains to the random errors inherent in the measurements.
The terms &, a, 1, and ¥ are uncorrelated and separately modeled
for each magnitude and phase in complex data. The key distinction
between systematic and random errors lies in their behavior: systematic
errors contribute consistently across all samples, whereas random er-
rors fluctuate throughout the time series. As the errors are uncorrelated,
it is possible to write the following:

E[XY] =0,

for X, Y € {5}?’5’ §;andom’ n;,ys’ n;'landom’ a;ys’ a;landam7 ‘I/;ys, lI/}i;andom } As an

example, the random error and systematic error for phase A in voltage
is calculated as:

gramdom » N'O,apyy [Val/3), €7~ U(=0.005]V4],0.005|V4).

To generate the synthetic dataset, 1000 Monte Carlo (MC) trials
were performed for each original measurement. In each trial, a cor-
rupted measurement window consisting of 200 samples was created.
The original measurement remained constant within this window; how-
ever, after the addition of noise, the resulting signal varied according
to the error model described earlier. Specifically, each trial included
a fixed systematic error applied uniformly across the 200 samples,
and a random Gaussian component independently applied to each
sample. Fig. 7 illustrates the result of a single MC trial, showing all
200 corrupted samples generated within that window. Notably, the
resulting distribution deviates significantly from Gaussianity due to the
combined influence of the Gaussian and Uniform error components,
as further analyzed in Appendix A.3. This non-Gaussian behavior is
consistent with observations reported in recent literature [12,24].

Let O, denote the estimated parameter vector obtained in the ith
Monte Carlo trial, and let N be the total number of trials. The final
estimated parameter vector 6 is then computed as the average over all
trials:

For simplicity, we will omit the notation indicating that the reported
results correspond to the average over the Monte Carlo realizations.

Considering this noise modeling, the results employing the metric
MAPE considering 5-fold cross-validation for all the parameters are
presented in Table 10, where the abbreviations are Linear Regression
(LR), ETR (Extra Tree Regressor), Orthogonal Matching Pursuit (OMP),
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Table 10

Comparison of the algorithms considering noise.
Algorithm R, R, L, L, C, C, Mean MAPE
LR 3.06 2.92 1.62 0.88 5.64 0.56 2.78
ETR 2.47 7.50 1.54 2.07 5.62 1.39 3.43
OMP 7.94 10.19 3.52 2.82 5.64 1.04 5.86
GBR 2.77 7.12 1.54 1.99 5.74 1.17 3.72
HR 5.42 5.86 2.32 1.61 5.61 0.58 3.23
LGBM 2.78 6.76 1.67 1.84 5.63 1.12 3.30

Gradient Boosting Regressor (GBR), Huber Regressor (HR), and LGBM
(Light Gradient Boosting Machine).

Analyzing Table 10, the best algorithm varies depending on the pa-
rameter considered. However, the Linear Regressor consistently demon-
strates the best performance in most cases and achieves the lowest
average MAPE across all parameters. It is important to note that
linear regression, despite being simpler than the other algorithms,
also imposes a lower computational burden. Another key aspect is
that linear regression requires fewer samples to achieve satisfactory
performance. To verify this behavior, we conducted an analysis by
varying the number of samples and evaluating the average MAPE across
all parameters. The results are presented in Fig. 8.

Fig. 8 shows that the method achieved acceptable performance with
a reduced number of samples, approximately 200. This demonstrates
that a high-accuracy solution could be obtained while accounting for
both random and systematic errors, with lower computational cost
and a smaller dataset. Therefore, the proposed methodology makes a
significant contribution to power cable parameter estimation by con-
sidering both the complete modeling of the equipment and the estima-
tion of electrical parameters using a non-invasive, measurement-based
approach.

As a direction for future work, the proposed methodology will
be validated using real-world data obtained from operational power
systems. This includes leveraging PMU measurements collected from
submarine cables through collaborations with utility companies or,
alternatively, by employing a scaled prototype in a controlled labora-
tory environment. Such partnerships will enable the evaluation of the
model under realistic conditions, including environmental variability,
measurement noise, and hardware constraints. This step is essential
to assess the robustness and generalizability of the approach beyond
synthetic data scenarios.

6. Conclusion

This research presented two main contributions: the proposal of a
novel parameter estimation methodology for submarine power cables
based on machine learning techniques, and the performance ranking of
different hypothesis classes applied to the estimation process.

The phasorial measurements were simulated at the terminals of
the submarine cable through modeling based on FEM, which was
also applied to calculate the reference values of the cable parameters.
Phasor measurement series were considered both with and without
noise, which was modeled with a Gaussian distribution. In this con-
text, the framework combines FEM-based modeling, frequency-domain
simulations with multi-mode propagation, and realistic noise insertion
aligned with PMU measurement characteristics.

Most linear and tree-based regression models demonstrated accurate
parameter estimations both in the presence and absence of noise in
the phasor measurements. Furthermore, linear regression proved to be
notably accurate and robust for parameter estimation even when noisy
measurements were available at only one terminal of the power cable.
This characteristic represents a significant advantage of the proposed
methodology, particularly in scenarios where measurement series are
accessible exclusively at a single end of the submarine cable. For
example, even with a limited dataset composed of only 200 training
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Fig. 8. Analysis of the method considering different samples.

samples under severe noise conditions, the estimation errors remained
below 1%, thereby demonstrating the robustness and accuracy of the
proposed methodology for real-world offshore transmission systems.
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Appendix

A.1. Parameters of the cable using FEM-based method

The cable is composed of three similar phase conductors, which
are covered by three similar shields, and an external armor. Thus, the
cable is characterized by three square matrices with dimension seven:
resistance R’, inductance L', and capacitance C’.

The resistance matrix (9) is determined from the current density
and magnetic flux, and given in Q/km. The first three elements in the
main diagonal are the longitudinal resistance of the phase conductors,
whereas the following three are the same values for the respective
shields. The last term in the main diagonal is the external armor of
the cable. The terms out of the main diagonal are mutual resistance
between conductors, shield and external armor.

Analogously, the inductance matrix L' is expressed in mH /km.

[0.1066  0.0580 0.0580 0.0639 0.0580 0.0580 0.0598]
0.0580 0.1066 0.0580 0.0580 0.0639 0.0580 0.0598
0.0580 0.0580 0.1066 0.0580 0.0580 0.0639 0.0598
R’ =10.0639 0.0580 0.0580 0.0926 0.0580 0.0580 0.0598
0.0580 0.0639 0.0580 0.0580 0.0926 0.0580 0.0598
0.0580 0.0580 0.0639 0.0580 0.0580 0.0926 0.0598
0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0828

)
[0.0021 00017 00017 0.0018 0.0017 0.0017 0.0017]
0.0017 0.0021 0.0017 0.0017 0.0018 0.0017 0.0017
0.0017 0.0017 0.0021 0.0017 0.0017 0.0018 0.0017
L' ={0.0018 0.0017 0.0017 0.0018 0.0017 0.0017 0.0017
0.0017 0.0018 0.0017 0.0017 0.0018 0.0017 0.0017
0.0017 0.0017 0.0018 0.0017 0.0017 0.0018 0.0017
0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

(10)
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Table 11

Transmission system parameters used to simulate the measurements in

a computational environment.

Parameter Value

Vi Vans Veu 69 kv

o 0.0589 Q/km

oy 0.347 mH/km
cay 77.4 nF/km

o) 0.0665 Q/km

I 0.325 mH/km
o) 52.1 nF/km
Rated frequency (f) 60 Hz

Length (¢,,.) 30 km

Power factor f,=083
Unbalance factor Jfae =0.1

Ze 70.19 Q

P, (1)-P¢

Py (1= fa)-Pc

P I+ fae) - Pe

[ PA'V]_fPZ/fP
Op Py-\1-fp*/fp
Oc Po-\1-fP/fp

The self and mutual capacitances in C’ are determined from the
electric field and difference of potential among phase conductors,
shields and armor. Eq. (11) expresses the longitudinal capacitance in
nF [km.

[943 0 0  -943 0 0 0 |
0 943 0 0 943 0 0
0 0 943 0 0 -943 0
C'=|-943 0 0 425 —101 —101 -129| @1
0 —943 0  —101 425 —101 —129
0 0  —943 —101 —101 425 —129
0 0 0  —120 —129 —129 3980

A.2. Parameters of the system
A.3. Statistical behavior of the measurements

Understanding the statistical behavior of the corrupted phasor mea-
surements is essential to properly assess the performance and robust-
ness of estimation and monitoring techniques. In particular, many
classical estimation methods and data-driven approaches rely on the
assumption that the measurement noise follows a Gaussian distribution.
However, the presence of both random and systematic errors in the
proposed noise model leads to a more complex statistical profile.

To demonstrate that the magnitude measurements do not follow a
Gaussian distribution, various methodologies can be applied. These can
be broadly categorized into graphical and statistical hypothesis-based
approaches.

The first graphical method is the histogram, as illustrated in Fig. 7,
which already suggests the presence of asymmetry and deviations from
normality. Another powerful graphical tool is the Quantile-Quantile
(QQ) plot [47]1, shown in Fig. 9 for the magnitude of I 4s- From this
figure, it becomes evident that the data deviates from a normal distri-
bution in multiple regions, particularly in the tails. These deviations
are indicative of heavy-tailed behavior or skewness, which are not
consistent with Gaussian statistics.

In addition to graphical techniques, formal statistical tests can be
employed to assess normality. According to [49], the Shapiro-Wilk
test is among the most powerful tests for detecting departures from
normality, particularly for sample sizes smaller than 5000. This test was
applied to the simulated magnitude measurements, and the results are
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Fig. 9. QQ-plot analysis of |,,| for a single MC realization.

Table 12

Results of the Shapiro-Wilk normality test for different mea-

surements.
Measurement Statistic p-value
|11 0.9547 9.76 - 10-10
Vsl 0.9562 1.56-107°
11,1 0.9643 2.66-1078
1Vl 0.9598 5.26-107°
1,1 0.9665 6.18- 1078
Vsl 0.9496 1.96 - 10710
|1, 0.9483 1.30-10710
|V, | 0.9609 8.11-107°
1Tl 0.9668 7.02-1078
Ve, 0.9653 6.88-107°
|1l 0.9669 7291078
Vel 0.9541 7.80- 10710

summarized in Table 12. The rejection of the normality hypothesis at
a 5% significance level reinforces the graphical evidence and supports
the conclusion that the corrupted measurements exhibit non-Gaussian
behavior.

This observation is particularly relevant for the monitoring and
estimation problem, as it justifies the need for robust or non-Gaussian-
aware methods. By characterizing the statistical behavior of the inputs,
the study provides useful insights into the limitations of traditional as-
sumptions and motivates the development or application of techniques
that are resilient to such deviations.

In Shapiro-Wilk test, the statistic is calculated using the samples and
very close to 1 (greater than 0.98) suggest that the data has a normal
distribution. For the p-value, if the calculated value is smaller than
the significance level, typically 5%, the null hypothesis is rejected and
the data are assumed non-Gaussian. This way, considering the results
shown in Table 12, it is possible to conclude that there is no statistical
evidence that the data presents a Gaussian distribution.

Data availability

Data will be made available on request.
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