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 A B S T R A C T

Monitoring electrical parameters of power transmission systems is essential to ensure reliability and opti-
mal operating conditions. This research presents an accurate methodology for estimation of the sequence 
parameters of submarine power cables using a data-driven approach based synchrophasor measurements. 
Contrarily of conventional techniques, the proposed methodology is based on supervised machine learning 
models trained on realistic simulations, which incorporate the physical and geometric characteristics of the 
power cable, with its seven propagation modes. In practical conditions, the training dataset takes into account 
noise patterns using well-established modeling methods for phasor measurements. These patterns include time-
correlated and statistically coherent disturbances, which are representative of those typically encountered in 
systems employing Phasor Measurement Units (PMUs). A detailed statistical investigation was also conducted to 
characterize the empirical distribution of the input data, supporting model design and validation. Remarkably, 
the proposed algorithm achieves accurate parameter estimation even under elevated noise conditions, requiring 
as few as 200 training samples. The maximum observed estimation error was approximately 1%, underscoring 
the robustness, efficiency, and practical viability of the proposed framework for the electrical characterization 
of submarine transmission systems.
1. Introduction

The previous knowledge on the electrical parameters of power 
systems represents an important aspect for effective monitoring, fore-
casting, and operational analysis. The accuracy in which such param-
eters are identified is intrinsically related to the system’s performance, 
including protection parameterization, fault detection and location in 
overhead and underground networks, insulation coordination, wave 
propagation analysis, operational state prediction, voltage stability as-
sessment, loadability, and numerous other monitoring and diagnostic 
applications [1–3] (see Table  1).

The electrical parameters of overhead and submerse (underground 
or submarine) are conventionally calculated based on the physical 
and geometric characteristics of the transmission systems, and sev-
eral approximations such as the earth-return current, as well as skin 
and proximity effects [4]. For example, the electrical permittivity of 
insulating materials is subject to variation due to factors such as 
ambient humidity and the progressive degradation of insulation over 
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time. Conventionally, the electrical parameters, which are determined 
during the conception and design stages, are assumed to remain con-
stant throughout the entire operational life of the transmission system. 
However, this assumption is not representative of actual conditions, as 
overhead lines and cables are continuously exposed to aging processes 
and environmental issues. In this context, the periodic and continuous 
estimation of electrical parameters emerges as a valuable strategy for 
monitoring power systems, enabling the detection of eventual devia-
tions from nominal conditions and supporting preventive maintenance 
and operational reliability.

Basically, the technical literature presents two estimation proce-
dures: in the time domain and in the frequency domain by means of 
synchrophasor measurements. The first is usually carried out based on 
time-domain measurements and oscillographies, usually obtained from 
digital relays during fault occurrences [3,5,6]. These methods cannot 
provide a periodic and continuous parameter estimation, since they 
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Table 1
List of symbols and their meanings.
 Symbol Description  
 𝑹′ Matrix of lumped resistances  
 𝑳′ Matrix of lumped inductances  
 𝑪 ′ Matrix of lumped capacitances  
 𝑝 Generic parameter of the power cable 𝑝 ∈ {𝑅,𝐿, 𝐶}  
 𝑝 ∗ Generic actual parameter of the power cable  
 x Random variable x  
 𝑓𝑝(x) Probability density function of a random variable x  
 {𝛺, ,} Probability space  
 𝜈 Propagation velocity of a electromagnetic wave  
 𝜔 Angular frequency of the signal  
 𝛾 Complex propagation constant  
 (𝑘) Sequence measurement 𝑘 ∈ {0, 1, 2}  
 𝑋̂𝑠,(𝑘) Phasor 𝑋 of sequence k from sender end  
 𝑋̂𝑟,(𝑘) Phasor 𝑋 of sequence k from receiver end  
 𝑅(𝑘) , 𝐿(𝑘) , 𝐶(𝑘) Electrical sequence parameters of the cable  
 R𝑑 𝑑-dimensional real space  
 𝐱(𝑖) 𝑖-sample of the vector of features  
 𝐲(𝑖) 𝑖-sample of the target vector  
  Matrix of data  
 (𝑓 ) Loss function of the function 𝑓  
  Hypothesis class of machine learning algorithms  
  (𝜇, 𝜎) normal distribution with mean 𝜇 and standard-deviation 𝜎 
  (𝑎, 𝑏) Uniform distribution between interval [𝑎, 𝑏]  

depend on eventual fault occurrences to register oscillographies. In 
contrast, frequency-domain methods require a phasorial measurement 
series, which can be obtained by Phasor Measurement Units PMUs 
synchronously at both terminals of the transmission system [7]. Sev-
eral techniques have been proposed to solve the estimation problem 
with synchrophasor measurements, such as optimal filtering, nonlinear 
optimization, metaheuristics, and others [8–10].

The research in [7] proposes a methodology for parameter estima-
tion of transmission lines and simultaneously modeling errors by using 
a modified weighted least squares approach. Although this method 
shows to be versatile, it requires synchronized measurements from both 
ends of the transmission system and depends on a detailed under-
standing of the underlying complex algebraic equations. In contrast, 
our proposed method builds upon this foundation by adopting a data-
centric approach that explicitly incorporates rigorous noise modeling, 
thereby improving robustness and practicality in real-world scenarios.

In [8], the authors developed a methodology based on a Kalman 
filter solution combined with the noise propagation model introduced 
in [11] to estimate transmission line parameters. However, the re-
sults reported in the paper exhibit errors of approximately 10%. The 
technical literature describes that the performance of Kalman filters is 
highly dependent on precise knowledge of both the system model and 
the statistical properties of the noise, which are usually unknown in 
practical terms [12]. In contrast, our proposed approach uses regression 
methods that do not require an explicit transmission line model or prior 
assumptions about the noise characteristics.

Several optimization and estimation methods, including those based 
on metaheuristic strategies, have been applied to parameter estimation 
problems. Among these, notable examples include the Multi-objective 
Geometric Mean Optimizer (MOGMO), the Multi-objective Exponential 
Distribution Optimizer (MOEDO), the Symbiotic Organism Search Algo-
rithm, Multi-objective Moth–Flame Optimizer as well as various other 
bio-inspired optimization techniques [13–16]. These methodologies 
have demonstrated promising results and competitive performance in 
tackling complex estimation problems across various research domains. 
Practical examples are given in [17,18], in which different machine 
learning models are used for air-quality level forecasting in urban areas.

In addition to traditional model-based approaches, recent studies 
have explored the application of advanced machine learning techniques 
for parameter estimation in electrochemical and power systems. For 
instance, in [19] proposed hybrid frameworks that combine adaptive 
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filtering, multivariable decoupling, and real-time correction to estimate 
state-of-charge and internal parameters of lithium-ion batteries under 
severe temperature and noise conditions. Other relevant contributions 
involve deep neural networks—such as LSTM and BiLSTM—combined 
with Bayesian optimization and Kalman filtering strategies, aiming to 
reduce the impact of noise and input uncertainty while improving 
remaining useful life (RUL) prediction [20,21].

The solution presented in [3] provides an insightful analysis of the 
relationship between errors in transmission line parameter estimation 
and fault location. The proposed methodology is formulated in the 
time domain and relies on numerical differentiation in the presence of 
noise [22]. Furthermore, the study overlooks the impact of systematic 
measurement errors, where the estimation errors exceed 4%, limiting 
its applicability to high-precision processes.

An interesting estimation method, based on machine learning tech-
niques, is described in [23]. In this research, the parameters of a 
three-phase distribution feeder are estimated using general regression 
neural networks (GRNN). However, the approach is tailored to distribu-
tion line models that neglect the effect of shunt capacitance, limiting 
its applicability to transmission systems. Furthermore, the method is 
considerably more computationally intensive than the one proposed in 
this paper. It is also important to highlight an average mean absolute 
percentage error (MAPE) of 1% using 10000 samples, significantly 
more data than required by the proposed approach to achieve lower 
error rates.

In this context, this study presents a novel methodology to estimate 
the electrical parameters of a typical submarine power cable with 
seven phases by using several machine learning methods. Our proposed 
methodology encompasses an end-to-end framework, starting from the 
modeling of the cable using the FEM method, numerical simulation in 
the time domain, phasor acquisition in real-world scenarios, i.e., con-
sidering the presence of random and systematic errors, and finally the 
estimation using a regression approach.

Concerning the machine learning solution, diverse hypothesis
classes were tested during the process, including tree-based meth-
ods, generalized additive models, and linear regression. Also, best 
practices of the pipeline for a data-centric solution were adopted, 
including cross-validation, the use of a separate test dataset, and feature 
engineering.

The parameters of the cable were obtained considering the current 
models for synchronized phasor measurements obtained from PMUs [2,
7], i.e., considering Gaussian and systematic errors. Also, the model-
free approach based on a regression problem is able to estimate the 
parameters using only one-side measurement of the cable, which is an 
improvement over the classical solutions present in the literature [7,9,
24].

The main contributions of this paper can be summarized as follows:

• An end-to-end methodology to build a dataset for estimating 
the parameters of a submarine power cable, from physical and 
geometric properties to phasor measurements;

• The estimation of electrical parameters for a complex cable con-
figuration with seven propagation modes, which comprise three 
phase conductors and four armor wires;

• The use of multiple machine learning methods that do not rely 
on explicit physical models of the cable or predefined noise 
distributions;

• A method capable of handling both random and systematic mea-
surement errors, as well as one-sided measurements of the cable.

2. Simulation of the synchrophasor dataset

This section outlines the procedure employed to simulate synchro-
nized voltage and current phasors at both terminals of the submarine 
power cable. The process starts with the calculation of the impedance 
and admittance parameters, which are essential for accurately modeling 
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Fig. 1. Finite element mesh of a three-core high-voltage power cable.

the cable’s electrical behavior. Subsequently, these parameters are 
used to simulate a synchrophasor measurement dataset. As previously 
noted, the generation of this synthetic database is necessitated by the 
unavailability of real phasor measurement data.

The theory of multi-conductor transmission lines is formulated in 
terms of electrical circuit quantities, allowing for an abstraction from 
the physical aspects of the electromagnetic fields and enabling a more 
tractable analytical approach. Nevertheless, the governing equations 
are fundamentally derived from Maxwell’s equations, thereby retaining 
consistency with the underlying principles of electromagnetism [25]. 
The equations that model the multi-conductor transmission line are 
characterized by a set of electric parameters that represents the cable 
and can be accurately calculated by using the Finite Element Method 
FEM, since the characteristics of its physical and structural cross section 
are previously known. The technical literature shows several proce-
dures for calculating the electric parameters of cables with multiple 
propagation modes and simulation [26–28]. Conventionally, a FEM-
base algorithm is applied to compute the electrical parameters of the 
cable, and thereafter a well-established line or cable modeling is used 
for transient or steady-state simulations.

The FEM has been widely used as an accurate and reliable ap-
proach for the calculation of series and transversal parameters of cables 
with arbitrary and non-conventional cross-sectional geometries [27,
28]. This method offers substantial advantages in situations involv-
ing complex or irregular geometries, as it enables precise modeling 
of the system’s physical behavior. In contrast, some well-established 
analytical methods are available in the technical literature for similar 
calculations [29,30]. However, these methods often rely on a series 
of simplifying assumptions and approximations, which can lead to 
inaccuracies, particularly when applied to cables with arbitrary cross 
sections.

The schematic representation of the cross-section of the power ca-
ble, considering the finite element mesh, is shown in Fig.  1. In this fig-
ure, each conductor (orange) is enclosed by an insulation layer (yellow) 
and additional shielding layers (light brown) to ensure proper electrical 
performance and mechanical integrity. The outer sheath (blue) encap-
sulates the entire cable, providing environmental protection and elec-
trical insulation. The finely discretized triangular mesh enables precise 
numerical analysis of the electric field distribution, thermal behavior, 
and mechanical stress concentration. The results of the FEM-based 
method is presented in Appendix  A.1.

Since the reference electrical parameters are known, the phasorial 
measurements can be simulated through the two-port network repre-
sentation of the cable. This model provides an accurate characterization 
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of frequency-domain propagation and the characteristic impedance, 
thereby enabling the precise simulation of voltage and current phasors 
at both terminals of the cable [31,32].

The multi-phase representation can be analyzed using modal de-
composition, wherein the phase conductors, shields, and armor are 
decoupled into seven independent propagation modes. These modes 
are subsequently modeled through a two-port network representation, 
enabling a precise characterization of the system’s electromagnetic 
behavior [33].

Subsequently, random and systematic errors are applied to the 
dataset, in order to reproduce the real behavior of the PMU measure-
ments [2,7]. The currents and voltages values, obtained from the intro-
duced cable model, are the synchrophasors that compose the dataset 
to be applied in the learning process of the AI-based methodology for 
parameter estimation.

3. The parameter estimation problem

The previous section provided a detailed description of the proce-
dure employed for generating the phasor measurements, as well as the 
calculation of the reference parameters for this purpose. This section 
introduces the building process of the synchrophasor dataset as well as 
a general supervised learning approach for the parameter estimation by 
various machine learning hypothesis classes.

3.1. Building the database

In a supervised learning framework, the process of constructing 
the database represents a crucial to achieve an effective solution. The 
technical literature addressing parameter estimation in transmission 
systems, particularly through the application of machine learning tech-
niques, remains relatively limited and underexplored [34–36]. There-
fore, this study proposes an innovative approach for generating training 
datasets, which capitalizes on characteristic patterns and statistical 
properties extracted from historical data reported in the technical 
literature.

According to the literature, parameter errors typically range from 
approximately 10% to 30% of the true parameter value [37,38]. Con-
sequently, the database should include parameter values within this 
interval. Thus, if 𝑝∗ denotes the exact value of a given parameter, 
the inaccurate parameter 𝑝 should be constrained within the following 
bounds:

𝑝∗(1 − 0.30) ≤ 𝑝 ≤ 𝑝∗(1 + 0.30) ⇒ 0.7𝑝∗ ≤ 𝑝 ≤ 1.3𝑝∗

Since extreme parameter values occur less frequently than those 
with smaller deviations, the Gaussian distribution is an appropriate 
choice for data generation. This distribution naturally aligns with the 
expected error pattern, where values farther from the mean occur with 
lower frequency, reflecting the typical distribution of parameter devia-
tions. The probability density function (PDF) of a Gaussian distribution 
is given by: 

𝑓𝑝(𝑝) =
1

𝜎
√

2𝜋
exp

(

−
(𝑝 − 𝜇)2

2𝜎2

)

, (1)

where 𝜇 represents the mean parameter value, and 𝜎 denotes the 
standard deviation, which determines the spread of the distribution.

To establish a relationship between the standard deviation and the 
range of parameter errors, the empirical 3𝜎 rule can be applied [39]. 
This rule states that approximately 99.7% of the values in a normal 
distribution lie within three standard deviations from the mean:
(𝜇 − 3𝜎 ≤ X ≤ 𝜇 + 3𝜎) ≈ 0.997,

where (⋅) represents the probability function, and 𝑋 is a Gaussian 
random variable with mean 𝜇 and standard deviation 𝜎.
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Fig. 2. Analysis of the residuals for sequence parameters.

Given that the maximum observed error is defined as 𝐸max, the 
standard deviation can be expressed as: 

𝜎 ≈
𝐸max
3

. (2)

Applying this formulation to the problem, where parameter values 
range from 70% to 130% of the true value 𝑝∗, we obtain:

𝑝∗ + 3𝜎 ≤ 1.3𝑝∗ ⇒ 𝜎 = 0.1𝑝∗.

Therefore, to generate data for parameters with a mean value of 
𝑝∗ and observed maximum and minimum values of 1.3𝑝∗ and 0.7𝑝∗, 
respectively (with a probability of 0.997), a Gaussian distribution with 
mean 𝜇 = 𝑝∗ and standard deviation 𝜎 = 0.1𝑝∗ should be used.

However, this methodology may yield physically invalid parameter 
values, particularly with respect to the inherent limitation imposed 
by the speed of light, which is intrinsically related to the electrical 
parameters of the transmission line. Therefore, it becomes essential to 
evaluate the resulting expressions to ensure their physical plausibility. 
Specifically, with regard to the speed of light in vacuum 𝑐:

𝜈(1) =
𝜔

Im(𝛾(1))
< 𝑐,

𝜈(0) =
𝜔

Im(𝛾(0))
< 𝑐,

where the index (1) represents the positive sequence, while (0) the zero 
sequence.

Even after these verifications, the proposed methodology may still 
result in inconsistent values across individual rows, i.e. bad data values 
that might affect the performance of the machine learning method. In 
this sense, the proposed method introduces a new approach to verify 
whether each row of the dataset represents a consistent record of the 
measurements. This new methodology is based on the equating of 
sequence models for the submarine power cable.

Consider the equivalent circuit per sequence (𝑘 = 0 or 1) shown 
in Fig.  2, where 𝑉𝑠,(𝑘) and 𝐼𝑠,(𝑘) represent the voltage and current 
of sequence 𝑘 at the sending end, 𝑉𝑟,(𝑘) and 𝐼𝑟,(𝑘) are the voltage 
and current of sequence 𝑘 at the receiving end of the system. Terms 
𝐿(𝑘), 𝑅(𝑘), and 𝐶(𝑘) are the lumped parameters of sequence 𝑘 for the 
equivalent circuit. If the measurements generated by the FEM method 
associated with the propagation model are coherent, then 𝑓1, 𝑓2, and 
𝑓3 defined by (3), (4), and (5) should be null or then very close to zero.

𝑓1
𝑑𝑒𝑓
= 𝐼𝑠,(𝑘) − 𝐼𝑟,(𝑘) − (𝑉𝑟,(𝑘) + 𝑉𝑠,(𝑘)) ⋅ 𝑗𝜔𝐶(𝑘)∕2 (3)

𝑓2
𝑑𝑒𝑓
= 𝐼𝑟,(𝑘) + 𝑉𝑟,(𝑘) ⋅ 𝑗𝜔𝐶(𝑘)∕2 −

𝑉𝑟,(𝑘) − 𝑉𝑟,(𝑘)
𝑅(𝑘) + 𝑗𝜔𝐿(𝑘)

(4)

𝑓3
𝑑𝑒𝑓
= 𝐼𝑠,(𝑘) − 𝑉𝑠,(𝑘) ⋅ 𝑗𝜔𝐶(𝑘)∕2 −

𝑉𝑟,(𝑘) − 𝑉𝑟,(𝑘)
𝑅 + 𝑗𝜔𝐿

(5)

(𝑘) (𝑘)
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3.2. Machine learning approach

To estimate the sequence parameters of a submarine power cable, 
we propose a supervised regression framework using terminal phasor 
measurements of voltage and current. Specifically, the input features 
are constructed from three-phase voltage and current signals measured 
at both the sending (𝑠) and receiving (𝑟) ends of the cable, covering 
phases A, B, and C.

The objective is to estimate the six real-valued sequence parameters:
{𝑅(0), 𝐿(0), 𝐶(0), 𝑅(1), 𝐿(1), 𝐶(1)},

based on the observed terminal phasors:
{𝑉𝑠, 𝐼𝑠, 𝑉𝑟, 𝐼𝑟}A,B,C.

Here, the phasor quantities are expressed as complex numbers with 
magnitude and phase angle:
𝑉𝑠 = |𝑉𝑠|𝑒

𝑗𝜃𝑠 , 𝐼𝑠 = |𝐼𝑠|𝑒
𝑗𝜑𝑠 , 𝑉𝑟 = |𝑉𝑟|𝑒

𝑗𝜃𝑟 , 𝐼𝑟 = |𝐼𝑟|𝑒
𝑗𝜑𝑟 ,

where 𝑗 =
√

−1 and all magnitudes and angles are included as features.
The physical relation between voltages and currents along the cable 

follows the frequency-domain telegrapher’s equations:
𝑑𝑽̂ (𝑥)
𝑑𝑥

= −𝒁(𝜔) 𝑰̂(𝑥), 𝑑𝑰̂(𝑥)
𝑑𝑥

= −𝒀 (𝜔) 𝑽̂ (𝑥),

where 𝒁(𝜔) and 𝒀 (𝜔) are the per-unit-length series impedance and 
shunt admittance matrices obtained via FEM simulations. From these 
matrices, it is performed the Kron reduction method and after is applied 
the symmetrical components, resulting in the sequence parameters:
{

𝑅(0), 𝐿(0), 𝐶(0), 𝑅(1), 𝐿(1), 𝐶(1)
}

.

The phasors obtained from the signal propagation model were in-
tentionally corrupted by introducing both random noise and systematic 
errors into the original measurements. The resulting corrupted phasors 
were used to construct the dataset with 𝑁 samples:

 =
{

(𝒙(𝑖), 𝒚(𝑖))
}𝑁
𝑖=1 ,

where 𝒙(𝑖) denotes the input features derived from the corrupted pha-
sors, and 𝒚(𝑖) corresponds to the true electrical parameters.

Let 𝒙 ∈ R𝑘 denote the real-valued feature vector derived from the 
corrupted phasors, and let 𝒚 ∈ R6 represent the sequence parameters. 
The estimation task is to learn a function 𝑓 that maps input features to 
the target parameters:
𝑓 ∶ R𝑘 → R6, 𝒚 = 𝑓 (𝒙).

The model is trained to minimize the Mean Squared Error (MSE) 
between predicted and true parameters:

(𝑓 ) = 1
𝑁

𝑁
∑

𝑖=1
‖𝑓 (𝒙(𝑖)) − 𝒚(𝑖)‖2,

or equivalently:

(𝑓 ) = 1
𝑁

𝑁
∑

𝑖=1

6
∑

𝑗=1

(

𝑓𝑗 (𝒙(𝑖)) − 𝑦
(𝑖)
𝑗

)2
.

Several model types are explored to approximate 𝑓 , including lin-
ear regression, tree-based models, and Generalized Additive Models 
(GAMs).

These models define the hypothesis space  over which the optimal 
function is sought:
𝑓 ∗ = arg min

𝑓∈
(𝑓 ).

This approach enables direct estimation of sequence parameters 
from terminal measurements, while being resilient to noise and model-
ing uncertainties. The complete methodology of the proposed solution 
is presented in Fig.  3.
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Fig. 3. Flowchart of the parameter estimation methodology.
4. Results

The submarine power cable was simulated under the conditions 
specified in Table  11. Initially, a total of 4285 valid samples were 
obtained for generating the Gaussian distribution of the parameters, 
following the verification procedures detailed in Section 3.1.

In terms of implementation, a dataset comprising 4285 samples can 
be obtained in under two minutes of system observation, assuming a 
typical PMU reporting rate of 60 Hz (i.e., one sample per cycle) [40]. 
This highlights the feasibility of rapidly collecting sufficient data for pa-
rameter estimation using phasor measurements. The machine learning 
models were trained on a standard workstation equipped with an Intel 
Core i7 processor (3.40 GHz) and 16 GB of RAM, without requiring 
GPU acceleration. Given the lightweight nature of the linear regression 
model, both training and inference procedures exhibit low computa-
tional overhead, making the proposed approach suitable for real-time 
or near-real-time deployment in practical monitoring environments.

To demonstrate the effectiveness of the proposed methodology in 
handling the residuals introduced in Section 3.1, the results for the 
residuals associated with the positive and zero sequence components 
were analyzed. The residuals corresponding to the positive sequence 
are depicted in Fig.  4, whereas those related to the zero sequence are 
presented in Fig.  5.

As expected from the theoretical analysis, the residuals (𝑓1, 𝑓2, 𝑓3)
are smaller for each sequence, demonstrating the coherence of the 
measurements produced by the developed methodology, considering 
the power cable models and the dataset construction. Additionally, it 
is important to highlight that the presented approach can be used as 
a bad data detection method, allowing the selection of only suitable 
measurements for use in the estimation method. By setting a specific 
5 
threshold, rows with residuals exceeding the established limit can be 
excluded.

The proposed method utilizes an 80%–20% data split, with 80% of 
the dataset designated for training and 20% for testing. Model training 
was conducted using 𝑘-fold cross-validation, where the dataset was 
partitioned into 𝑘 subsets. In each iteration, the model was trained on 
𝑘 − 1 folds and validated on the remaining fold. This iterative process 
improved the model’s generalization, enhancing its ability to perform 
accurately on unseen data.

Moreover, this methodology reduces the risk of overfitting, i.e., the 
tendency of the machine learning algorithm to memorize patterns 
from the training dataset rather than learning generalizable features. 
By repeatedly training on different subsets of the data, the model is 
exposed to a broader variety of patterns, improving its robustness and 
predictive performance.

The problem is a multi-output regression task, since it requires the 
estimation of six parameters. The approach employed for this task 
involves treating each parameter separately. Specifically, regression 
models are fitted for each parameter individually, while the remain-
ing parameters are disregarded during the estimation process for the 
parameter in question. This method is referred to as the single-target 
method [41].

We have performed a comparison of different hypothesis classes 
(), this comparison should be done in the validation base, which 
is part of the training process [42]. To evaluate and compare the 
performance of the different methods, three metrics were applied: Mean 
Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), 
and Mean Absolute Error (MAE), defined in (6). The results were 
presented considering each different parameter (𝑅1, 𝑅0, 𝐿1, 𝐿0, 𝐶1, 𝐶0)
and can be seen in Tables  2, 3, 4,5, 6, and 7.
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Fig. 4. Residuals plots for 𝑓1,(1), 𝑓2,(1), and 𝑓3,(1).
Fig. 5. Residuals plots for 𝑓1,(0), 𝑓2,(0), and 𝑓3,(0).
Some considerations must be addressed regarding the obtained 
results. The performance metrics were evaluated based on the com-
plete set of 19 regression models available in the PyCaret library. 
However, for clarity and conciseness, only the nine best-performing 
models were selected for presentation in this manuscript. The algo-
rithms were assessed using K-fold cross-validation with five folds, 
6 
enabling a consistent comparison of the models based on the validation 
dataset.  Concerning the set of considered measurements, it can be fully 
described as:
F = {|𝑉𝐴𝑠|, |𝑉𝐵𝑠|, |𝑉𝐶𝑠|,∠𝑉𝐴𝑠,∠𝑉𝐵𝑠,∠𝑉𝐶𝑠, |𝐼𝐴𝑠|, |𝐼𝐵𝑠|, |𝐼𝐶𝑠|,∠𝐼𝐴𝑠,∠𝐼𝐵𝑠,∠𝐼𝐶𝑠
|𝑉𝐴𝑟|, |𝑉𝐵𝑟|, |𝑉𝐶𝑟|,∠𝑉𝐴𝑟,∠𝑉𝐵𝑟,∠𝑉𝐶𝑟, |𝐼𝐴𝑟|, |𝐼𝐵𝑟|, |𝐼𝐶𝑟|,∠𝐼𝐴𝑟,∠𝐼𝐵𝑟,∠𝐼𝐶𝑟},
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Table 2
Performance comparison of regression models for predicting R1.
Algorithm MAPE (%) RMSE  (Ω) MAE  (Ω)
Linear Regression 0.0383 0.000641 0.000401
Extra Trees Regressor 3.95 0.0330 0.0178
Orthogonal Matching Pursuit 1.18 0.0191 0.0139
Gradient Boosting Regressor 4.15 0.0390 0.0267
Huber Regressor 1.09 0.0209 0.0135
Random Forest Regressor 5.21 0.0506 0.0310
Light Gradient Boosting Machine 6.26 0.0671 0.0390
Extreme Gradient Boosting 4.46 0.0479 0.0330
Decision Tree Regressor 6.12 0.0765 0.0489

Table 3
Performance comparison of regression models for predicting R0.
Algorithm MAPE (%) RMSE (Ω) MAE (Ω)
Linear Regression 0.1746 0.00394 0.00294
Extra Trees Regressor 4.08 0.0817 0.0623
Orthogonal Matching Pursuit 1.74 0.0407 0.0281
Gradient Boosting Regressor 3.67 0.0752 0.0584
Huber Regressor 2.82 0.0590 0.0459
Random Forest Regressor 4.38 0.0891 0.0667
Light Gradient Boosting Machine 4.72 0.0962 0.0699
Extreme Gradient Boosting 4.37 0.0895 0.0684
Decision Tree Regressor 5.88 0.1204 0.0908

Table 4
Performance comparison of regression models for predicting L1.
Algorithm MAPE (%) RMSE (mH) MAE (mH)
Linear Regression 0.0142 0.00165 0.00114
Extra Trees Regressor 0.562 0.1045 0.0404
Orthogonal Matching Pursuit 0.408 0.0436 0.0312
Gradient Boosting Regressor 0.847 0.1229 0.0651
Huber Regressor 0.462 0.0506 0.0326
Random Forest Regressor 1.33 0.1733 0.0939
Light Gradient Boosting Machine 2.30 0.3023 0.1419
Extreme Gradient Boosting 1.32 0.1758 0.0976
Decision Tree Regressor 1.41 0.2338 0.1294

Table 5
Performance comparison of regression models for predicting L0.
Algorithm MAPE (%) RMSE (mH) MAE (mH)
Linear Regression 0.1588 0.0154 0.0118
Extra Trees Regressor 2.18 0.221 0.164
Orthogonal Matching Pursuit 1.04 0.0932 0.0642
Gradient Boosting Regressor 2.49 0.222 0.170
Huber Regressor 1.92 0.185 0.146
Random Forest Regressor 3.06 0.264 0.193
Light Gradient Boosting Machine 4.36 0.348 0.221
Extreme Gradient Boosting 2.87 0.258 0.188
Decision Tree Regressor 3.18 0.328 0.262

where the operator ∠ denotes the phase angle of the complex number 
associated with each phasor measurement. This way, initially, it was 
considered 24 features for the multioutput regression problem. This 
set can be divided into the features from the sender-end (𝑠) and from 
the receiver-end (𝑟). It will be proved that our proposed methodology 
requires only data from one side to achieve acceptable performance. 
The magnitudes are expressed in per unit (p.u.), and therefore do not 
require any additional scaling. Regarding the target variables, since 
they exhibit different scales, a standardization procedure was adopted 
to improve the numerical stability of the solution. 

MAPE = 1
𝑁

𝑁
∑

𝑖=1

|𝑦(𝑖) − 𝑦(𝑖)𝑝𝑟𝑒𝑑 |

|𝑦(𝑖)|
∗ 100, RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦(𝑖) − 𝑦(𝑖)𝑝𝑟𝑒𝑑 )

2,

MAE = 1
𝑁

𝑁
∑

𝑖=1
|𝑦(𝑖) − 𝑦(𝑖)𝑝𝑟𝑒𝑑 | (6)

where 𝑦(𝑖)𝑝𝑟𝑒𝑑 is the predicted target of the sample 𝑖.
An analysis of the results presented in Tables  2, 3, 4, 5, 6, and 7 

indicates that the best-performing algorithm for the studied case was 
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Table 6
Performance comparison of regression models for predicting C1.
Algorithm MAPE (%) RMSE (μF) MAE (μF)
Linear Regression 0.00164 0.0000791 0.0000532
Extra Trees Regressor 0.787 0.0447 0.0248
Orthogonal Matching Pursuit 0.0411 0.00186 0.00132
Gradient Boosting Regressor 1.09 0.0499 0.0347
Huber Regressor 2.69 0.111 0.0873
Random Forest Regressor 1.21 0.0631 0.0382
Light Gradient Boosting Machine 1.28 0.0651 0.0418
Extreme Gradient Boosting 1.32 0.0631 0.0426
Decision Tree Regressor 1.88 0.0865 0.0606

Table 7
Performance comparison of regression models for predicting C0.
Algorithm MAPE (%) RMSE (μF) MAE (μF)
Linear Regression 1.04 0.0387 0.0263
Extra Trees Regressor 5.41 0.172 0.138
Orthogonal Matching Pursuit 5.42 0.175 0.138
Gradient Boosting Regressor 5.24 0.173 0.134
Huber Regressor 6.01 0.205 0.157
Random Forest Regressor 5.27 0.171 0.134
Light Gradient Boosting Machine 5.39 0.177 0.138
Extreme Gradient Boosting 5.51 0.180 0.141
Decision Tree Regressor 7.22 0.235 0.179

Table 8
Performance of Linear Regression on the Test Dataset.
 Parameter MAPE (%) RMSE MAE  
 𝑅0 0.144434 0.003230 [Ω] 0.002437 [Ω]  
 𝑅1 0.032516 0.000554 [Ω] 0.000344 [Ω]  
 𝐿0 0.117050 0.0121 [mH] 0.00921 [mH]  
 𝐿1 0.011067 0.00151 [mH] 0.000995 [mH] 
 𝐶0 1.232133 0.0451 [μF] 0.0370 [μH]  
 𝐶1 0.001480 0.000079 [μF] 0.000049 [μF]  

linear regression, followed by the Extremely Randomized Trees (Extra 
Trees), an ensemble learning method based on the bagging technique. 
Furthermore, it was observed that the parameter 𝐶0 exhibited the 
poorest estimation performance. The best performance was observed 
for the linear regression, on the test dataset is detailed in Table  8.

To enhance the interpretability of the proposed approach with re-
spect to the machine learning methodology, explainable AI techniques 
can be employed, for instance, SHAP (SHapley Additive exPlanations) 
values. SHAP is a game-theoretic method that quantifies the contri-
bution of each feature by computing its average marginal effect on 
the model’s output across all possible combinations of input features. 
This allows for a consistent and theoretically grounded interpretation 
of how each input influences the model’s predictions. The SHAP value 
𝜙𝑖 is defined as the average marginal contribution of feature 𝑖 across 
all possible subsets of the remaining features by using (7). The results 
of such analysis are presented in Fig.  6. 

𝜙𝑖 =
∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|! ⋅ (𝑀 − |𝑆| − 1)!
𝑀!

[

𝑓𝑆∪{𝑖}(𝒙𝑆∪{𝑖}) − 𝑓𝑆 (𝒙𝑆 )
]

(7)

where:

• 𝑀 is the total number of features.
• 𝑆 is any subset of 𝑁 ⧵ {𝑖}.
• 𝑓𝑆 (𝒙𝑆 ) denotes the expected value of the model output when 
only the features in 𝑆 are known, with the remaining features 
marginalized.

• The weight |𝑆|!(𝑀−|𝑆|−1)!
𝑀!  corresponds to the fraction of all possible 

orderings in which the subset 𝑆 precedes feature 𝑖.

The results presented in Fig.  6 indicate that the most relevant 
features for parameter estimation are the magnitude and phase of the 
current phasors in phases A and B. This highlights the crucial role 
of PMUs in the estimation process, as such high-resolution phasor 



F.P. de Albuquerque et al. International Journal of Electrical Power and Energy Systems 171 (2025) 110940 
Fig. 6. Mean absolute SHAP value for each feature.
Table 9
Performance of Linear Regression on the Test Dataset using measurements from only 
one terminal.
 Parameter MAPE (%) RMSE MAE  
 𝑅0 0.61 1.3513 ⋅ 10−2 [Ω] 1.0590 ⋅ 10−2 [Ω]  
 𝑅1 0.26 5.0426 ⋅ 10−3 [Ω] 3.8012 ⋅ 10−3 [Ω]  
 𝐿0 0.09 1.0106 ⋅ 10−2 [mH] 7.1696 ⋅ 10−3 [mH] 
 𝐿1 0.06 7.0576 ⋅ 10−3 [mH] 4.9921 ⋅ 10−3 [mH] 
 𝐶0 4.88 1.5890 ⋅ 10−1 [μF] 1.2519 ⋅ 10−1 [μF]  
 𝐶1 0.01 5.8761 ⋅ 10−4 [μF] 4.4256 ⋅ 10−4 [μF]  

measurements are exclusively available through phasor measurement 
units.

The presented solution has employed data from both ends of the 
cable. However, in certain situations, measurements may be available 
from only one side. Therefore, the parameter estimation methodology 
must be capable of handling this constraint, that is, estimating the 
parameters using one-sided measurements. In classical approaches [7,
9,43,44], which rely on the explicit modeling and equation, based 
representation of the cable, such estimation is not feasible when only 
one side is observed. Nevertheless, by adopting a data-centric approach, 
it becomes possible to estimate the electrical parameters even with 
one-sided measurements. Therefore, we have considered available the 
measurements only from the sender-end of the power cable. The results 
of such analysis are presented in Table  9.

The results presented in Table  9 show that the performance of 
the method decreases when only the measurements from one side of 
the power cable are considered. This outcome was expected, since 
the performance of a machine learning-based method depends on the 
variability of the features present in the dataset. Furthermore, the 
exclusive use of sender-end data naturally reduces the method’s ac-
curacy, as observed. However, even under this condition, the method 
still achieved suitable performance for steady-state applications (errors 
below 5%) [45], demonstrating its ability to estimate the parameters 
using measurements from a single terminal.

Although the proposed methodology has shown promising results in 
estimating electrical parameters of submarine cables under controlled 
conditions, some practical scenarios may present additional challenges. 
For instance, in configurations involving multi-segment cables with 
different physical or electromagnetic characteristics along their length, 
the estimation model may require re-training or feature re-engineering 
to account for the varying propagation dynamics. Furthermore, the 
presence of underwater disturbances such as sea currents, temperature 
gradients, or biofouling can introduce additional noise and variability 
into the phasor measurements, potentially reducing the estimation 
accuracy. For example, this kind of disturbance might lead the random 
8 
errors to follow non-stationary and non-Gaussian distributions [12]. 
Even though these conditions require adjustments in the estimation 
process, the data-centric approach can still be adapted through modi-
fications in the dataset, allowing the parameters to be estimated under 
these new configurations.

5. Estimation considering errors in the measurements

Error modeling represents a crucial aspect during parameter estima-
tion process using PMU measurements. Several studies have examined 
the measurement models generated by the data acquisition chain in 
which PMUs are integrated [2,46–48]. Essentially, errors in PMU mea-
surements can be divided into two categories: random errors and 
systematic errors. Random errors are typically modeled as a Gaussian 
noise term, whereas systematic errors are modeled by a uniform distri-
bution, meaning that their contribution is equally distributed across all 
frequencies [7].

In the technical literature, measurement uncertainties are typically 
categorized into two distinct types: random errors, which are inherently 
associated with PMUs, and systematic errors, which are primarily at-
tributed to the limited precision of Instrument Transformers (ITs), such 
as current and voltage transformers [2,7]. Using the values presented 
in [2]:

• ITs are assumed to be of class 0.5, thus using 0.5% for maximum 
voltage and current ratio errors, 0.9 crad for maximum CT phase-
angle displacement, and 0.6 crad for maximum VT phase-angle 
displacement;

• For the errors associated with PMUs, a maximum amplitude error 
of 0.1% (𝛼𝑃𝑀𝑈 ) and a maximum phase-angle error of 0.1 crad 
(𝛽𝑃𝑀𝑈 ) are usually considered.

The systematic error is modeled using a uniform distribution. Thus, 
since the values are given by their maximum deviations, the distri-
bution limits can simply be adjusted to account for the maximum 
possible errors. For random errors, the maximum values must be set 
to the standard deviation of the Gaussian distribution. Following a 
methodology analogous to that described in Section 3.1, the standard 
deviation of the distribution can be estimated from the maximum 
allowable deviations in the PMU magnitude and phase measurements, 
as given by the following expressions:

𝜎𝑚𝑎𝑔 =
𝛼𝑃𝑀𝑈

3
, 𝜎𝑝ℎ𝑎𝑠𝑒 =

𝛽𝑃𝑀𝑈
3

,

where 𝜎𝑚𝑎𝑔 is the standard-deviation of the distribution that models 
the magnitude and 𝜎𝑝ℎ𝑎𝑠𝑒 is related to the Gaussian distribution for the 
phase.
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Fig. 7. Histogram for |𝐼𝐴𝑠|.

The field measurements can be simulated by using the following 
model: 
{

Ṽℎ = (1 + 𝜉𝑠𝑦𝑠ℎ + 𝜉𝑟𝑎𝑛𝑑𝑜𝑚ℎ )|𝑉ℎ| 𝑒
𝑗(𝜃ℎ+𝛼

𝑠𝑦𝑠
ℎ +𝛼𝑟𝑎𝑛𝑑𝑜𝑚ℎ )

Ĩℎ = (1 + 𝜂𝑠𝑦𝑠ℎ + 𝜂𝑟𝑎𝑛𝑑𝑜𝑚ℎ )|𝐼ℎ| 𝑒
𝑗(𝜑ℎ+𝜓

𝑠𝑦𝑠
ℎ +𝜓𝑟𝑎𝑛𝑑𝑜𝑚ℎ ) (8)

where ℎ represents the phase {𝐴,𝐵, 𝐶}, 𝑉ℎ and 𝐼ℎ represent the phasors 
corrupted by noise, the term ‘‘sys’’ denotes systematic error, while 
‘‘random’’ pertains to the random errors inherent in the measurements. 
The terms 𝜉, 𝛼, 𝜂, and 𝛹 are uncorrelated and separately modeled 
for each magnitude and phase in complex data. The key distinction 
between systematic and random errors lies in their behavior: systematic 
errors contribute consistently across all samples, whereas random er-
rors fluctuate throughout the time series. As the errors are uncorrelated, 
it is possible to write the following:
E[XY] = 0,

for X,Y ∈ {𝜉𝑠𝑦𝑠ℎ , 𝜉𝑟𝑎𝑛𝑑𝑜𝑚ℎ , 𝜂𝑠𝑦𝑠ℎ , 𝜂𝑟𝑎𝑛𝑑𝑜𝑚ℎ , 𝛼𝑠𝑦𝑠ℎ , 𝛼𝑟𝑎𝑛𝑑𝑜𝑚ℎ , 𝜓𝑠𝑦𝑠ℎ , 𝜓𝑟𝑎𝑛𝑑𝑜𝑚ℎ }. As an 
example, the random error and systematic error for phase 𝐴 in voltage 
is calculated as:
𝜉𝑟𝑎𝑛𝑑𝑜𝑚𝐴 ∼  (0, 𝛼𝑃𝑀𝑈 |𝑉𝐴|∕3), 𝜉𝑠𝑦𝑠𝐴 ∼  (−0.005|𝑉𝐴|, 0.005|𝑉𝐴|).

To generate the synthetic dataset, 1000 Monte Carlo (MC) trials 
were performed for each original measurement. In each trial, a cor-
rupted measurement window consisting of 200 samples was created. 
The original measurement remained constant within this window; how-
ever, after the addition of noise, the resulting signal varied according 
to the error model described earlier. Specifically, each trial included 
a fixed systematic error applied uniformly across the 200 samples, 
and a random Gaussian component independently applied to each 
sample. Fig.  7 illustrates the result of a single MC trial, showing all 
200 corrupted samples generated within that window. Notably, the 
resulting distribution deviates significantly from Gaussianity due to the 
combined influence of the Gaussian and Uniform error components, 
as further analyzed in Appendix  A.3. This non-Gaussian behavior is 
consistent with observations reported in recent literature [12,24].

Let 𝜽̂𝑖 denote the estimated parameter vector obtained in the 𝑖th 
Monte Carlo trial, and let 𝑁𝑇  be the total number of trials. The final 
estimated parameter vector 𝜽̂ is then computed as the average over all 
trials:

𝜽̂ = 1
𝑁𝑇

𝑁𝑇
∑

𝑖=1
𝜽̂𝑖

For simplicity, we will omit the notation indicating that the reported 
results correspond to the average over the Monte Carlo realizations.

Considering this noise modeling, the results employing the metric 
MAPE considering 5-fold cross-validation for all the parameters are 
presented in Table  10, where the abbreviations are Linear Regression 
(LR), ETR (Extra Tree Regressor), Orthogonal Matching Pursuit (OMP), 
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Table 10
Comparison of the algorithms considering noise.
Algorithm 𝑅0 𝑅1 𝐿0 𝐿1 𝐶0 𝐶1 Mean MAPE
LR 3.06 2.92 1.62 0.88 5.64 0.56 2.78
ETR 2.47 7.50 1.54 2.07 5.62 1.39 3.43
OMP 7.94 10.19 3.52 2.82 5.64 1.04 5.86
GBR 2.77 7.12 1.54 1.99 5.74 1.17 3.72
HR 5.42 5.86 2.32 1.61 5.61 0.58 3.23
LGBM 2.78 6.76 1.67 1.84 5.63 1.12 3.30

Gradient Boosting Regressor (GBR), Huber Regressor (HR), and LGBM 
(Light Gradient Boosting Machine).

Analyzing Table  10, the best algorithm varies depending on the pa-
rameter considered. However, the Linear Regressor consistently demon-
strates the best performance in most cases and achieves the lowest 
average MAPE across all parameters. It is important to note that 
linear regression, despite being simpler than the other algorithms, 
also imposes a lower computational burden. Another key aspect is 
that linear regression requires fewer samples to achieve satisfactory 
performance. To verify this behavior, we conducted an analysis by 
varying the number of samples and evaluating the average MAPE across 
all parameters. The results are presented in Fig.  8.

Fig.  8 shows that the method achieved acceptable performance with 
a reduced number of samples, approximately 200. This demonstrates 
that a high-accuracy solution could be obtained while accounting for 
both random and systematic errors, with lower computational cost 
and a smaller dataset. Therefore, the proposed methodology makes a 
significant contribution to power cable parameter estimation by con-
sidering both the complete modeling of the equipment and the estima-
tion of electrical parameters using a non-invasive, measurement-based 
approach.

As a direction for future work, the proposed methodology will 
be validated using real-world data obtained from operational power 
systems. This includes leveraging PMU measurements collected from 
submarine cables through collaborations with utility companies or, 
alternatively, by employing a scaled prototype in a controlled labora-
tory environment. Such partnerships will enable the evaluation of the 
model under realistic conditions, including environmental variability, 
measurement noise, and hardware constraints. This step is essential 
to assess the robustness and generalizability of the approach beyond 
synthetic data scenarios.

6. Conclusion

This research presented two main contributions: the proposal of a 
novel parameter estimation methodology for submarine power cables 
based on machine learning techniques, and the performance ranking of 
different hypothesis classes applied to the estimation process.

The phasorial measurements were simulated at the terminals of 
the submarine cable through modeling based on FEM, which was 
also applied to calculate the reference values of the cable parameters. 
Phasor measurement series were considered both with and without 
noise, which was modeled with a Gaussian distribution. In this con-
text, the framework combines FEM-based modeling, frequency-domain 
simulations with multi-mode propagation, and realistic noise insertion 
aligned with PMU measurement characteristics.

Most linear and tree-based regression models demonstrated accurate 
parameter estimations both in the presence and absence of noise in 
the phasor measurements. Furthermore, linear regression proved to be 
notably accurate and robust for parameter estimation even when noisy 
measurements were available at only one terminal of the power cable. 
This characteristic represents a significant advantage of the proposed 
methodology, particularly in scenarios where measurement series are 
accessible exclusively at a single end of the submarine cable. For 
example, even with a limited dataset composed of only 200 training 
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Fig. 8. Analysis of the method considering different samples.
3-

-

samples under severe noise conditions, the estimation errors remained 
below 1%, thereby demonstrating the robustness and accuracy of the 
proposed methodology for real-world offshore transmission systems. 
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Appendix

A.1. Parameters of the cable using FEM-based method

The cable is composed of three similar phase conductors, which 
are covered by three similar shields, and an external armor. Thus, the 
cable is characterized by three square matrices with dimension seven: 
resistance 𝑹′, inductance 𝑳′, and capacitance 𝑪 ′.

The resistance matrix (9) is determined from the current density 
and magnetic flux, and given in 𝛺∕𝑘𝑚. The first three elements in the 
main diagonal are the longitudinal resistance of the phase conductors, 
whereas the following three are the same values for the respective 
shields. The last term in the main diagonal is the external armor of 
the cable. The terms out of the main diagonal are mutual resistance 
between conductors, shield and external armor.

Analogously, the inductance matrix 𝑳′ is expressed in 𝑚𝐻∕𝑘𝑚. 

𝑹′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1066 0.0580 0.0580 0.0639 0.0580 0.0580 0.0598
0.0580 0.1066 0.0580 0.0580 0.0639 0.0580 0.0598
0.0580 0.0580 0.1066 0.0580 0.0580 0.0639 0.0598
0.0639 0.0580 0.0580 0.0926 0.0580 0.0580 0.0598
0.0580 0.0639 0.0580 0.0580 0.0926 0.0580 0.0598
0.0580 0.0580 0.0639 0.0580 0.0580 0.0926 0.0598
0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0828

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

𝑳′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0021 0.0017 0.0017 0.0018 0.0017 0.0017 0.0017
0.0017 0.0021 0.0017 0.0017 0.0018 0.0017 0.0017
0.0017 0.0017 0.0021 0.0017 0.0017 0.0018 0.0017
0.0018 0.0017 0.0017 0.0018 0.0017 0.0017 0.0017
0.0017 0.0018 0.0017 0.0017 0.0018 0.0017 0.0017
0.0017 0.0017 0.0018 0.0017 0.0017 0.0018 0.0017
0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)
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Table 11
Transmission system parameters used to simulate the measurements in 
a computational environment.
 Parameter Value  
 𝑉̇𝐴,𝑛; 𝑉̇𝐵,𝑛; 𝑉̇𝐶,𝑛 69 kV  
 𝑟(1) 0.0589 Ω/km  
 𝑙(1) 0.347 mH/km  
 𝑐(1) 77.4 nF/km  
 𝑟(0) 0.0665 Ω/km  
 𝑙(0) 0.325 mH/km  
 𝑐(0) 52.1 nF/km  
 Rated frequency (𝑓 ) 60 Hz  
 Length (𝓁𝑠𝑒𝑐 ) 30 km  
 Power factor 𝑓𝑝 = 0.83  
 Unbalance factor 𝑓𝑎𝑐 = 0.1  
 𝑍𝐶 70.19 Ω  
 𝑃𝐴 (1) ⋅ P𝐶  
 𝑃𝐵 (1 − 𝑓𝑎𝑐 ) ⋅ P𝐶  
 𝑃𝐶 (1 + 𝑓𝑎𝑐 ) ⋅ P𝐶  
 𝑄𝐴 𝑃𝐴 ⋅

√

1 − 𝑓𝑝2∕𝑓𝑝 
 𝑄𝐵 𝑃𝐵 ⋅

√

1 − 𝑓𝑝2∕𝑓𝑝 
 𝑄𝐶 𝑃𝐶 ⋅

√

1 − 𝑓𝑝2∕𝑓𝑝 

The self and mutual capacitances in 𝑪 ′ are determined from the 
electric field and difference of potential among phase conductors, 
shields and armor. Eq. (11) expresses the longitudinal capacitance in 
𝑛𝐹∕𝑘𝑚. 

𝑪 ′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

94.3 0 0 −94.3 0 0 0
0 94.3 0 0 −94.3 0 0
0 0 94.3 0 0 −94.3 0

−94.3 0 0 425 −101 −101 −129
0 −94.3 0 −101 425 −101 −129
0 0 −94.3 −101 −101 425 −129
0 0 0 −129 −129 −129 3980

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

A.2. Parameters of the system

A.3. Statistical behavior of the measurements

Understanding the statistical behavior of the corrupted phasor mea-
surements is essential to properly assess the performance and robust-
ness of estimation and monitoring techniques. In particular, many 
classical estimation methods and data-driven approaches rely on the 
assumption that the measurement noise follows a Gaussian distribution. 
However, the presence of both random and systematic errors in the 
proposed noise model leads to a more complex statistical profile.

To demonstrate that the magnitude measurements do not follow a 
Gaussian distribution, various methodologies can be applied. These can 
be broadly categorized into graphical and statistical hypothesis-based 
approaches.

The first graphical method is the histogram, as illustrated in Fig.  7, 
which already suggests the presence of asymmetry and deviations from 
normality. Another powerful graphical tool is the Quantile-Quantile 
(QQ) plot [47], shown in Fig.  9 for the magnitude of 𝐼𝐴𝑠. From this 
figure, it becomes evident that the data deviates from a normal distri-
bution in multiple regions, particularly in the tails. These deviations 
are indicative of heavy-tailed behavior or skewness, which are not 
consistent with Gaussian statistics.

In addition to graphical techniques, formal statistical tests can be 
employed to assess normality. According to [49], the Shapiro–Wilk 
test is among the most powerful tests for detecting departures from 
normality, particularly for sample sizes smaller than 5000. This test was 
applied to the simulated magnitude measurements, and the results are 
11 
Fig. 9. QQ-plot analysis of |𝐼𝐴𝑠| for a single MC realization.

Table 12
Results of the Shapiro–Wilk normality test for different mea-
surements.

 Measurement Statistic p-value  
 |𝐼𝐴𝑠| 0.9547 9.76 ⋅ 10−10 
 |𝑉𝐴𝑠| 0.9562 1.56 ⋅ 10−9  
 |𝐼𝐴𝑟| 0.9643 2.66 ⋅ 10−8  
 |𝑉𝐴𝑟| 0.9598 5.26 ⋅ 10−9  
 |𝐼𝐵𝑠| 0.9665 6.18 ⋅ 10−8  
 |𝑉𝐵𝑠| 0.9496 1.96 ⋅ 10−10 
 |𝐼𝐵𝑟| 0.9483 1.30 ⋅ 10−10 
 |𝑉𝐵𝑟| 0.9609 8.11 ⋅ 10−9  
 |𝐼𝐶𝑠| 0.9668 7.02 ⋅ 10−8  
 |𝑉𝐶𝑠| 0.9653 6.88 ⋅ 10−9  
 |𝐼𝐶𝑟| 0.9669 7.29 ⋅ 10−8  
 |𝑉𝐶𝑟| 0.9541 7.80 ⋅ 10−10 

summarized in Table  12. The rejection of the normality hypothesis at 
a 5% significance level reinforces the graphical evidence and supports 
the conclusion that the corrupted measurements exhibit non-Gaussian 
behavior.

This observation is particularly relevant for the monitoring and 
estimation problem, as it justifies the need for robust or non-Gaussian-
aware methods. By characterizing the statistical behavior of the inputs, 
the study provides useful insights into the limitations of traditional as-
sumptions and motivates the development or application of techniques 
that are resilient to such deviations.

In Shapiro–Wilk test, the statistic is calculated using the samples and 
very close to 1 (greater than 0.98) suggest that the data has a normal 
distribution. For the 𝑝-value, if the calculated value is smaller than 
the significance level, typically 5%, the null hypothesis is rejected and 
the data are assumed non-Gaussian. This way, considering the results 
shown in Table  12, it is possible to conclude that there is no statistical 
evidence that the data presents a Gaussian distribution.

Data availability

Data will be made available on request.
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