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Abstract

The growth of greenhouse gas emissions, driven by the use of internal combustion engines
(ICE), highlights the urgent need for sustainable solutions, particularly in the shipping
sector. Non-invasive predictive maintenance using acoustic signal analysis has emerged
as a promising strategy for fault diagnosis in ICEs. In this context, the present study
proposes a hybrid Deep Learning (DL) model and provides a novel publicly available
dataset containing real operational sound samples of ICEs, labeled across 12 distinct fault
subclasses. The methodology encompassed dataset construction, signal preprocessing
using log-mel spectrograms, and the evaluation of several Machine Learning (ML) and
DL models. Among the evaluated architectures, the proposed hybrid model, BIGRUT
(Bidirectional GRU + Transformer), achieved the best performance, with an accuracy of
97.3%. This architecture leverages the multi-attention capability of Transformers and the
sequential memory strength of GRUs, enhancing robustness in complex fault scenarios
such as combined and mechanical anomalies. The results demonstrate the superiority of DL
models over traditional ML approaches in acoustic-based ICE fault detection. Furthermore,
the dataset and hybrid model introduced in this study contribute toward the development
of scalable real-time diagnostic systems for sustainable and intelligent maintenance in
transportation systems.

Keywords: internal combustion engines; engine faults; predictive maintenance; acoustic fault
diagnosis; machine learning; deep learning; BiGRUT model; transformer-GRU architecture

1. Introduction

The climate crisis has brought to the forefront greenhouse gas emissions in the renewed
conversation regarding energy sustainability. In 2023, worldwide GHG emissions reached
57.1 gigatons of carbon dioxide equivalent, a 1.3% increase over the figure for 2022. The
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energy industry with 15.1 GtCO,e and the transport sector with an emissions volume of
8.4 GtCOze [1] were high level sources too. Maritime transport has particularly alarming
features with regard to emissions. Just 25,000 vessels—only representing 30% of the
world’s fleet—accounted for as much as 80% of carbon dioxide emissions from the industry,
according to a study conducted by Det Norske Veritas in 2019. Even more alarming is that
93% of today’s global fleet still runs exclusively on fossil fuels [2].

The International Maritime Organization released projections in 2020 showing that, if
we do not act, these emissions could reach 90% to 130% of the 2008 levels by 2050 [3]. With
this future, the IMO has ambitious goals: to significantly reduce carbon emissions by 2050;
to reduce emissions by 20% by 2030, and to reduce emissions by 70% by 2040 [3].

Nowadays, Brazil has a fleet of vehicles equipped with internal combustion engines,
and so does the rest of the world. From a technical standpoint, this dependence on the
sector teaches us exactly how urgent it is to originate green alternatives in this sector. Brazil
has committed to global targets under the 2030 Agenda for Sustainable Development, and
in relation to the Paris Agreement, with a goal of carbon neutrality by 2050 and reducing
CO;, emissions by 37% (2025) and 43% (2030) [4-6].

Internal combustion engines (ICEs) emerge as strategic tools to foster reduction emis-
sions and to improve the efficiency of ICEs. The use of Al-based methods helps in the
early recognition of operational irregularities, which helps to reduce energy loss and avoid
mechanical disfunction.

In this context, Artificial Intelligence (Al) offers the ability to process large volumes
of complex sensor data efficiently and in real time. Data-driven approaches such as
Machine Learning and Deep Learning have significantly advanced the ability to model and
understand such complexities, overcoming the limitations of analyses that are restricted to
generic information, such as basic ship characteristics. In particular, Deep Learning (DL)
models excel in handling audio signals by automatically extracting relevant features from
raw data, detecting temporal patterns, and enabling real-time scalable diagnostic systems.

The most frequently investigated faults include mechanical problems, lubrication
system faults, and cooling system faults. Mechanical faults may include valve clearance
difficulties, ignition faults, and fuel injection difficulties. Lubrication system failures are
often associated with variations in oil pressure and viscosity, while cooling system failures
include water leaks and engine overheating [6-8]. Some authors point out that vibration
and acoustic measurements are among the most effective non-invasive or non-destructive
techniques used to diagnose failures [9-13]. Regardless of the approach chosen, both
measures correspond to time series, which represent sequences of observations collected
at regular time intervals, allowing the analysis of temporal dependency patterns, such as
trend, zonality, and autocorrelation [14].

For vibration analysis, Fast Fourier Transform (FFT) has proven crucial for the di-
agnosis of rotating machines. FFT is an efficient algorithm for computing the Discrete
Fourier Transform (DFT), enabling the decomposition of time-domain signals into their
spectral components while reducing the computational complexity from O(N?) to O(N log
N) [15]. FFT is particularly effective in detecting resonance frequencies and identifying
harmonic components associated with imbalances, misalignments, and other mechanical
faults common in ICEs.

Recent studies show that spectral analysis techniques using FFT can identify charac-
teristic failure patterns in internal combustion engines by analyzing vibration signals [16].
The study highlights that high vibration levels in centrifugal loop dryer machines hinder
real-time operational monitoring. The application of the FFT [15] addresses this issue by
decomposing vibration signals into their constituent frequencies, enabling the identifica-
tion of fault patterns and inadequate damping. Consequently, FFT reduces measurement
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uncertainty and supports structural and operational adjustments, thereby reinforcing the
study’s statistical and theoretical analysis [16].

On the other hand, a critical aspect that is often overlooked in the analysis of acoustic
and vibration signals is the consideration of noise and measurement errors. Accurate
determination of the instantaneous noise level and quantification of potential measurement
errors are fundamental to the development of reliable diagnostic systems. Recent studies
show that variations in noise levels can have a significant influence on the accuracy of
diagnostic models, particularly in dynamic operating environments [17]. Variables such
as the acceleration, speed, and operating density can induce sudden fluctuations in noise
levels, affecting the quality of the data collected for subsequent analysis.

In the acoustic domain, such spectral components, although attenuated by propagation
and masking, preserve correlations with operating conditions and failure mechanisms,
thereby justifying time—frequency representations (e.g., log-Mel) that capture both harmonic
content and transient events [18].

Under real operating conditions, variations in ambient noise and the dynamics of
adjacent traffic/flows directly affect the data quality and the reliability of inferences. Ap-
proaches for determining the instantaneous noise level and estimating measurement errors
demonstrate how acceleration, velocity, and operational density can induce abrupt fluctua-
tions in sound levels, compromising accuracy metrics if noise is not properly controlled
and modeled [15]. Consequently, strategies for data acquisition, calibration, and noise en-
richment become intrinsic components of robust pipelines for audio-based predictive main-
tenance.

Given these challenges and considering the advances in the use of Artificial Intelligence
(AI), there is a lack of studies that advance the development of solutions aimed at the
predictive maintenance of embedded systems, especially with ICE. There is also a scarcity
of public datasets containing structured and labeled faults that allow the development
of solutions using robust Deep Learning (DL) models [19]. Therefore, this study aims to
present and make available a new labeled dataset with ICE fault sound signals and, mainly,
to evaluate the performance of different ML and DL models in detecting these faults through
sound analysis. In addition, a new hybrid model based on GRU and Transformers [20] is
proposed to improve the detection capability, accuracy, and computational efficiency in
non-invasive ICE monitoring.

Traditional Al models, such as Artificial Neural Networks (ANNSs), have proven ef-
fective in capturing and recognizing complex patterns even with noisy data, providing
personalized diagnoses [21,22]. More recently, DL algorithms such as Support Vector
Machines (SVMs), Probabilistic Neural Networks (PNNs), Multi-Layer Perceptron (MLP),
Convolutional Neural Networks (CNNs), and Recurrent Networks, such as Long-Short
Term Network (LSTM) and Gated Recurrent Units (GRUs), have been successfully em-
ployed in different classification and fault prediction tasks [23-31]. Signal processing
techniques such as FFT and Discrete Wavelet Transform (DWT) are commonly used to filter
noise and identify patterns in acoustic signals, with FFT being particularly relevant for
analyzing vibration frequencies in rotating machinery [16,32]. Recent studies also highlight
the use of CNNs with transfer learning [14], multivariate LSTMs [26], and Variational
Autoencoders (VAEs) [33-35], as effective methods for detecting anomalies and operational
failures in vessels. However, there is a significant gap in terms of the scarcity and quality of
public datasets, including the number of failure types. In addition, most studies use private
data, limiting the reproducibility and comparison of results.

Therefore, this study aims to develop and evaluate an efficient non-invasive fault
detection system for internal combustion engines (ICEs) based on acoustic signal analysis.
The research proposes and tests a new hybrid deep learning model—BiGRUT—capable of
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accurately identifying multiple types of ICE failures, even under complex and overlapping
conditions. Additionally, it introduces a new labeled and publicly available dataset to
support reproducible experimentation and benchmarking.

The main contributions of this work are summarized below: (i) Novel Dataset for
ICE Faults: a structured and labeled dataset of 2184 audio samples covering 12 fault
subclasses, recorded under controlled conditions and made publicly available for future
research. (ii) Comprehensive Model Evaluation: a comparative analysis of 10 ML and DL
models—including CNN, GRU, LSTM, and Transformer—using rigorous metrics such
as accuracy, precision, recall, F1-score, and MCC. (iii) Proposal of BiGRUT Architecture:
introduction of a hybrid model combining GRU and Transformer mechanisms, which
outperforms all evaluated baselines across most metrics. (iv) Robustness Across Fault Types:
detailed performance analysis by failure type (mechanical, misfires, and combined faults),
highlighting the model’s stability and generalization capability. (v) Sustainability-Oriented
Vision: discussion on how acoustic diagnostics can support predictive maintenance and
contribute to broader goals of CO, reduction and operational efficiency.

Finally, this study is structured into five sections covering the different aspects ex-
plored. Section 2 discusses the theoretical basis for vessel failures, the fundamentals of
audio-based predictive maintenance, and a review of DL architectures. Section 3 presents
the materials and methods used, detailing the database used and provided, the experimen-
tal procedures, the evaluation metrics applied, and the proposal for a new hybrid model
(BiGRUT) for fault classification. Section 4 presents the results obtained, comparing the
performance between the different architectures, with emphasis on the hybrid proposal.
Finally, Section 5 brings together the conclusions of the study, academic and practical
contributions, limitations, and future research.

2. Theoretical Background

This section presents the theoretical foundations necessary to understand the context
and challenges of fault diagnosis in internal combustion engines (ICE) using artificial
intelligence techniques. It first discusses the main categories of ICE faults and the principles
of predictive maintenance, with emphasis on non-invasive diagnostic approaches such
as vibration and acoustic analysis. Then, a review of traditional machine learning (ML)
models and recent advances in deep learning (DL) architectures is provided, focusing
on their application to fault classification tasks. This theoretical overview supports the
methodological choices and model development proposed in this paper and lays the
groundwork for the comparative evaluation presented in the following sections.

2.1. Faults in Internal Combustion Engines

Internal combustion engines (ICE) are subject to failures that compromise their opera-
tion, efficiency, and durability. In applications for the shipping sector, the most common
anomalies are of mechanical nature [6-8], lubrication [36,37], ignition [38,39], fuel injec-
tion [40], cooling [8], and combustion/emissions [41,42].

Predictive maintenance, based on the early detection of faults using operational data,
aims to anticipate failures and prevent breakdowns. Its benefits include cost reduction
and avoidance of unplanned downtime [43-46], as well as increased safety and asset
lifetime [44,47]. However, its implementation faces significant challenges: the need for
robust sensors, the complexity of signal analysis under variable conditions, the general-
ization of diagnostic models, and the scarcity of public datasets for the development of Al
algorithms [21-25,32,48].

Diagnostic methods are divided into invasive and non-invasive approaches. Inva-
sive methods (e.g., in-cylinder pressure measurement), although accurate, involve high
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costs, risks, and downtime [36,37]. In contrast, non-invasive methods monitor the engine
externally through sensors (vibration, sound, temperature), allowing continuous, safe, and
lower-cost diagnosis [6,7,9-13].

In data-driven automotive diagnostic systems, signal acquisition is a fundamental
step, with non-invasive approaches standing out, including the following: (i) acoustic
analysis via microphone, capable of identifying ignition or knocking faults with up to 99%
accuracy [49-51]; vibration measurement using accelerometers, effective in detecting valve
clearance issues and misalignments [32,39,52-54]; (ii) thermometry (mainly in exhaust
gases), where variations indicate combustion faults, including advanced techniques such as
ultrasonic thermometry [41,55,56]; (iii) current monitoring in actuators (e.g., fuel injectors)
for electromechanical failures [40]; and (iv) thermal imaging and ultrasound for oil thickness
assessment and hotspot detection [42,57].

In summary, the integration of vibration (FFT) and acoustics, combined with sensor
calibration practices, uncertainty quantification and noise modeling, constitutes the method-
ological basis for replicable non-invasive diagnostics. This integration informs choices
of Short-Time Fourier Transform (STFT) windows, honeybands, and sampling regimes,
which, in turn, preserve relevant harmonic and transient signatures in ECIs [16,17].

2.2. Machine Learning Predictive Models

Machine Learning (ML) models have been consolidated as powerful tools for ana-
lyzing, classifying, and predicting patterns in complex and high-dimensional data. Their
application in diagnostic systems, particularly in the context of mechanical and acoustic
engineering, enables automatic anomaly and fault detection with high accuracy, even in
noisy scenarios or under significant temporal variability [58].

Among the most widely used algorithms are traditional methods rooted in statistics
and decision theory, as well as more recent techniques incorporating nonlinear neural
architectures. Each model presents specific characteristics in terms of its generalization
capacity, noise sensitivity, interpretability, and computational cost. This justifies compara-
tive analyses of different approaches for specific tasks, such as acoustic fault classification
in ICEs [59]. The following subsections present some of the main ML models applied to
engine fault classification from audio signals.

2.2.1. Decision Tree

Decision Trees (DT) are hierarchical models that iteratively partition the feature space
based on impurity measures such as the Gini index or Entropy [60]. The resulting structure
is interpretable and allows for easy mapping of the decisions made to classify an instance,
making DTs particularly useful in environments where explainability is critical [19].

Despite their simplicity and computational efficiency, single decision trees tend to
overfit, especially in datasets with high noise or variability. However, when properly
parameterized (with limited depth, pruning, and balanced splitting), they can be effective in
identifying clear patterns in audio signals associated with different subclasses of mechanical
faults [19].

2.2.2. Gradient Boosting

Gradient Boosting (GB) is another ensemble method that sequentially builds weak
learners, typically shallow decision trees, by optimizing a loss function through gradient
descent. Unlike Random Forest, which explores parallelism, GB emphasizes iterative
correction of errors from previous models to build a more accurate predictor [19].

This method demonstrates excellent performance in supervised tasks with hetero-
geneous data and is sensitive to hyperparameter tuning, particularly the learning rate,
tree depth, and number of iterations. In the context of audio fault classification, its ability
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to capture residual patterns and handle noise can be leveraged to increase accuracy in
distinguishing subtle signal variations [19].

2.2.3. Random Forest

Random Forest (RF) is an ensemble learning technique based on decision trees that
improves the predictive accuracy by combining multiple trees trained independently on
random subsets of data and features. This approach reduces the variance and enhances the
generalization, particularly in multi-class tasks and noisy data, as commonly observed in
acoustic fault diagnostics [19].

Each tree in the forest is trained using bootstrap samples and a random subset of
features, promoting diversity within the ensemble. The final prediction is obtained by
majority voting among trees. In addition to robustness, RF provides variable importance
measures, which are valuable for interpretability and feature selection in acoustic signal
analysis [19].

2.2.4. K-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is an instance-based method that classifies
a new sample according to the categories of its k closest neighbors in the feature space [56].
Its simplicity lies in the absence of an explicit training phase: the model stores the data and
performs classification decisions during inference [19].

Although computationally expensive for large datasets, k-NN is effective when data
exhibit natural clustering and when the feature space is well normalized. In acoustic
fault recognition, k-NN can be particularly useful when fault patterns present spectral
and temporal similarities, provided that a well-defined distance metric (e.g., Euclidean or
Minkowski) is employed [19].

2.2.5. ANN-MLP

Using Artificial Intelligence (Al) [19], Artificial Neural Networks (ANNSs) form the
foundation for most Deep Learning (DL) models, being inspired by the functioning of
the human brain. An ANN is composed of layers of interconnected neurons, suitable for
learning complex patterns through the adjustment of synaptic weights during training [61].
The Multi-Layer Perceptron (MLP) is a type of ANN composed of densely connected
layers and trained with the backpropagation algorithm, which adjusts synaptic weights to
minimize the error between the predicted and true outputs [19].

The ability of MLPs to model complex nonlinear relationships makes them applicable
to high-dimensional data and non-stationary signals, such as those found in audio-based
diagnostics. The performance of MLPs depends on the architecture (number of layers and
neurons), activation function, regularization, and learning rate, requiring careful tuning to
avoid overfitting and ensure good generalization [19].

2.3. Deep Learning Predictive Models

Deep Learning (DL) predictive models consist of more than one hidden layer, orga-
nized in deeply nested network architectures. Moreover, they typically contain advanced
neurons, in contrast to simple ANNSs. In other words, DL models may employ advanced
operations (e.g., convolutions) or multiple activations within a neuron, rather than a sin-
gle activation function. These features enable DL models to be fed with raw input data
and automatically discover the necessary representation for the corresponding learning
task [53].

Machine learning is particularly useful in domains with large-scale high-dimensional
data, which explains why DL outperforms shallow ML algorithms in most applications
where text, image, video, speech, and audio data must be processed [61]. The following
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subsections present some of the main DL models employed in the classification of ICE
faults from audio signals.

2.3.1. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are architectures designed to model sequential
data, using recurrent connections between neurons that feed the output of a given time
step as input to the next [62]. They are well-suited for capturing temporal dependencies in
tasks such as speech recognition, time-series prediction, and natural language processing.
However, they suffer from the vanishing gradient problem in long sequences, where train-
ing gradients become negligible when propagated backward through layers, preventing
efficient weight updates and hindering the retention of long-term information [63,64].

Long Short-Term Memory (LSTM) networks were introduced to overcome the vanish-
ing gradient problem in RNNs [65], allowing for the effective modeling of long-term depen-
dencies [66]. They operate through three gates (input, forget, and output) that selectively
control information flow, maintaining and updating an extended internal state [66-69].
LSTMs are widely used for modeling complex sequences (e.g., machine translation, tem-
poral analysis), though they require higher computational cost due to the complexity of
gating mechanisms [67].

Gated Recurrent Units (GRUs) were proposed as a simplified alternative to LSTMs,
while still effectively capturing temporal dependencies [70]. GRUs employ only two
gates (update and reset) and a single hidden state to retain relevant information and
discard redundancies [66—69,71]. They achieve performance comparable to LSTMs in tasks
such as natural language processing, while reducing the computational complexity by
eliminating the separate cell state, resulting in faster training without significant loss of
effectiveness [72].

The choice between LSTM and GRU depends on the balance required between the
architectural complexity and task-specific demands [66]. A graphical representation of
RNN, LSTM, and GRU architectures is provided in Figure 1.

LSTM GRU

X¢

X X

E sigmoid function hyperbolic tangent function =~ @& subtract from one

@ pointwise addition ®  pointwise multiplication @  vector concatenation

Figure 1. Computation comparison of RNN, LSTM and GRU nodes [67].

2.3.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNSs) are specialized architectures designed to
process data with spatial structure, such as images or time—frequency representations of
signals (e.g., audio MFCCs) [61]. They are mainly applied to classification tasks in computer
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vision (autonomous vehicles, drones, medical diagnostics) and are extensively used for
industrial signal analysis (vibration, sound), leveraging their ability to automatically extract
hierarchical discriminative features through convolutional and pooling operations [61,73].

Their operation is based on sequential layers: convolutional layers apply filters to
detect local patterns; pooling layers reduce dimensionality, ensuring invariance to small
variations; and fully connected layers perform the final classification. As exemplified in
Figure 2, a typical CNN (e.g., LeNet for digit recognition) begins with progressive feature
extraction (C1, S2, C3, S4), followed by higher-level abstraction layers (C5, F6), and a
classification output [74].

C1: feature maps 6

INPUT
32x32

Convolutions

28x28

C3:f. maps 16  S4: f. mapsl6

10X10 5x5 C5: layer Fé: layer

TS 120 84

Output
1o

52: f. maps 6
14x14

Full Gaussian

Subsampling Convolutions Subsampling connection connectios

Figure 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition.
Source: Adapted from [74].

CNNs address the problem of complex pattern recognition in multidimensional data,
offering superior generalization and parameter efficiency compared to dense networks,
due to weight sharing and the hierarchical nature of learned features [74]. However, their
effectiveness can be compromised by overfitting in small or imbalanced datasets, requiring
techniques such as data augmentation and regularization [75,76].

2.3.3. Transformers

Another approach introduced by Vaswani et al. [20] in 2017 is the Transformer ar-
chitecture, which is based on self-attention mechanisms designed to capture long-range
dependencies in sequential data. Transformers serve as an efficient alternative to RNNs by
overcoming the limitations of sequential processing, as they allow parallel computation
across the entire sequence. This significantly improves the computational efficiency and
reduces the training time [77].

The encoder processes the input through multi-head self-attention layers (calculated
using Equation (1)), followed by fully connected feed-forward networks, employing resid-
ual connections [78] and normalization techniques to stabilize training [79].

Attention(Q, K, V) = softmax Q x KT+/di XV, (1)

where Q, K, and V are the query, key, and value matrices, respectively, and dy is the
dimensionality of the keys. Subsequently, the decoder generates the sequential output,
incorporating a third sublayer that applies attention over the encoder’s output [20,80-83].
This architecture eliminates the need for the iterative processing typical of RNNs, enabling
simultaneous and robust contextual learning in tasks such as machine translation and
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language analysis, with remarkable performance gains in long sequences [20,68]. The

Transformer architecture is illustrated in Figure 3.

Output
Probabilities

I

Add & Norm

Feed
Forward

s 1 B
G RN Multi-Head
Feed Attention
Forward D) Nx
(CAdd & Norm |<-\

)

| Add & Norm ;

\

Nx | —(Add & Norm ) ——r—
Multi-Head Multi-Head
Attention Attention
At At
1 J \_ —
Positional Positional
Encod P ¢ |
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
Figure 3. Architecture of the Transformer model [20].

2.4. Classification Measures

In the evaluation of DL models applied to classification tasks, standardized metrics are
employed to quantify different aspects of predictive performance. The confusion matrix is
an essential tool for interpretative analysis, allowing the identification of systematic errors,
prioritization of critical classes, and validation of data-balancing strategies [84—87].

In a confusion matrix (Appendix A, Table A1), the predictions of a binary classification
model are compared across four categories: True Positive (TP): cases where the model
correctly predicted the positive class, and the true class is also positive. False Positive
(FP): cases where the model incorrectly predicted the positive class, while the true class
is negative. True Negative (TN): cases where the model correctly predicted the negative
class, and the true class is also negative. and False Negative (FN): cases where the model
incorrectly predicted the negative class, while the true class is actually positive.

From the confusion matrix, it is possible to derive metrics such as accuracy, precision,
recall, F1-score, and Matthews Correlation Coefficient (MCC). Accuracy represents the
proportion of correct predictions relative to the total number of samples, as shown in
Equation (2). However, this metric can be influenced by imbalanced datasets, favoring
majority classes. Precision (Equation (3)) evaluates the model’s ability to minimize false
positives, indicating the proportion of correctly classified positive samples relative to all
positive predictions. Recall (Sensitivity) (Equation (4)) measures the model’s efficiency
in identifying all true positive instances, being less sensitive to imbalanced distributions.
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Fl-score (Equation (5)) combines precision and recall as a harmonic mean, providing a
single measure of performance. Matthews Correlation Coefficient (MCC) (Equation (6)) is a
robust evaluation metric for binary classifiers, as it considers all elements of the confusion
matrix (TP, TN, FP, EN) [88-90]. Unlike accuracy or Fl-score, MCC is immune to class
imbalance and ranges from -1 (total disagreement/inverse classification) to +1 (perfect
classification), with 0 indicating random prediction.

Acur. _ TP + TN o
curaccy = TN T EP T EN
. TP;
Precision = m .
TP
Recall = TP TN W
Recall * Precisi
Flscore = 2 % — o0 * Frecision -

Recall + Precision
TN * TP — EN * FP

MCC = (6)
/(TP +FP) (TP + FN) * (TN + FP) % (TN + EN)

Taken together, these metrics provide a robust and multidimensional assessment of
classification model effectiveness.

2.5. Key Studies in the Scientific Literature

Non-invasive methods combined with Al have proven increasingly effective in de-
tecting faults in ICEs. The review study presented in [48] highlights that 47% of the works
analyzed address mechanical faults, 21% ignition faults, 16% combined ignition and injec-
tion faults, 16% injection-only faults, and 5% oil film thickness. The most commonly used
acquisition systems include sound, vibration, temperature, current, and oil sensors. More-
over, ref. [48] emphasizes the growing use of neural network architectures for diagnostic
and predictive maintenance, the relevance of the sampling rate, and the scarcity of public
datasets, which limits the reproducibility of studies.

Sound and vibration signals are widely employed to identify mechanical faults in ICEs,
as demonstrated in [24,32,54,91]. In [54], piezoelectric sensors and FFT/DFT were applied
for ignition fault analysis. Meanwhile, ref. [24] employed DWT with PNN to separate
noise and improve classification accuracy, highlighting the efficiency of the Meyer wavelet.
Study [91] proposed a system for ICEs in the shipping sector using SVM, achieving 100%
reliability, while [32] applied FFT with SVM in MATLAB, obtaining 97% accuracy.

Acoustic signals are also emphasized in [12,50,51,92], with different processing tech-
niques. In [12], decision trees analyzed acoustic spectra, while [92] employed sound sensors
to detect injection misfires in ICEs in the shipping sector. The work in [50] integrated low-
cost hardware and smartphone-based ANN analysis, achieving 99.58% accuracy. Similarly,
ref. [51], proposed a multitask CNN for detecting ignition faults using sound captured via
smartphone, achieving 87% accuracy.

The fusion of multisensory signals is addressed in [57], where CNNs were used to
integrate vibration and pressure data, improving diagnostics under variable operational
conditions. Hybrid models have also gained attention. The author of [33], proposed an
unsupervised model based on VAEs, testing several encoder-decoder architectures with
real unlabeled data and achieving over 99% accuracy. In [34,35], the model was expanded
to online fault diagnosis, independent of fault type, using multi-regime normalization and
achieving an accuracy above 97%.

In ref. [93], a supervised 1D-CNN was applied to monitor ICEs in the shipping
sector with data collected over 32 months, classifying seven operational states with up to
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100% accuracy. The authors of [26] employed both supervised and unsupervised models
(LSTM, One-Class SVM, XGBoost, WPE) on real data to predict bearing corrosion faults,
demonstrating that ensembles increase alert robustness. For ship propulsion systems (SPS),
ref. [28] tested DNN, LSTM, and GRU with simulated data, achieving an accuracy above
99% even under noise and load variations. Finally, ref. [27] proposed an online diagnostic
approach using Transfer CNN, integrating offline networks with an optimized online CNN
(LeNet-5) applied to public datasets. Inputs were vibration signals converted into images,
achieving accuracy above 99% in detecting various faults in bearings and pumps.

This systematic review demonstrated the potential of non-invasive Al-based methods,
particularly those combining vibration and acoustic analysis with DL architectures such
as CNNs and VAEs, for fault detection in ICEs. Most studies reported accuracies above
95%. However, a critical analysis of the literature revealed four major challenges that limit
the advancement and applicability of these techniques: (i) reproducibility issues, since 75%
of the studies analyzed (12/16) employ non-public datasets; (ii) lack of methodological
standardization, with no unified protocols for comparative evaluation; (iii) scarcity of
studies addressing diverse fault types under varying operational conditions; and (iv) lack
of joint evaluation of ML and DL models for comprehensive ICE fault classification.

Therefore, the present study represents an important step toward transforming theoret-
ical advances into robust and reproducible solutions for real-world predictive maintenance
problems, making the following contributions: (i) provision of a new structured, stan-
dardized, and labeled dataset; (ii) accuracy analysis of fault identification using various
ML and DL models; and (iii) proposal and evaluation of a hybrid model (BiGRUT) for
fault classification.

Taken together, the models and techniques reviewed in this section establish the the-
oretical foundation for the predictive maintenance approach proposed in this study. By
integrating established machine learning methods and advanced deep learning architec-
tures, such as CNNs, GRUs, and Transformers, this work aims to address complex ICE fault
patterns through non-invasive acoustic signal analysis. Moreover, these models will be
comparatively evaluated in Section 4, based on a newly constructed and publicly available
dataset. This contextual and methodological alignment ensures a robust framework for
benchmarking intelligent diagnostic systems in real-world ICE applications.

3. Materials and Methods

This section details the methodological framework adopted in this study, encompass-
ing dataset construction, experimental setup, signal preprocessing, model development,
and evaluation metrics. The goal is to ensure a transparent and reproducible process for
assessing the performance of ML and DL models in the detection of internal combustion
engine (ICE) faults using acoustic signals. Additionally, the architecture and motivation for
the proposed BiGRUT hybrid model, combining Gated Recurrent Units (GRU) and Trans-
former layers, are presented and justified in the context of non-invasive fault diagnosis.

3.1. Dataset and ICE Failures

The data used in this study were experimentally collected from tests on an internal
combustion engine (Otto cycle, four-stroke, spark ignition) carried out at the Engine
Laboratory of the Department of Mechanical Engineering, under controlled conditions to
ensure test reproducibility [94]. The engine was installed in a 2005 Ford Fiesta 1.6 vehicle,
as shown in Figure 4, which is part of the laboratory fleet at the Federal University of
Paraiba (UFPB).

The acquisition of acoustic signals was performed near the vehicle’s exhaust system,
with an electret microphone positioned approximately one meter away at a 45° angle
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relative to the gas outlet, in order to capture sound characteristics representative of en-
gine operation.

Figure 4. Vehicle used for data capturing. Source: Prepared by the author.

The data acquisition system (Figure 5) consisted of the following: (i) kit develop-
ment board: responsible for interfacing and digitizing the signal; (ii) sensor module: a
high-sensitivity electret microphone, calibrated for engine-noise characteristic frequencies;
(iii) signal conditioning circuit: designed for amplification and basic filtering prior to digiti-
zation; (iv) USB interface for transferring raw data to a support laptop; and (v) acquisition
software, developed in C/C++ and Python (version 3.12.11), responsible for controlling
the sampling process and storing signals in WAVE format, with a 44.1 kHz sampling rate
and 16-bit resolution, ensuring fidelity to the audible range and to typical mechanical and
combustion fault frequencies [94]. In addition, during the tests, constant engine rotation
and steady-state operating conditions were maintained to reduce external interferences
and facilitate the identification of acoustic patterns [94].

X3 04 8 T — —
TRECEIT

Figure 5. Data acquisition system developed. Source: Prepared by the author.
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The faults were intentionally introduced into the engine following two main ap-
proaches: ignition faults: obtained by intentionally disconnecting spark plug wires, simu-
lating combustion failures in one or more cylinders; mechanical faults: simulated through
the controlled removal of alternator belt segments, generating slippage and material loss,
which alter the dynamic behavior and produce distinctive sound patterns.

For each condition (normal, single faults, and combined faults), multiple acquisition
cycles were performed. After data preprocessing, 12 fault subclasses were structured with
182 samples each, totaling 2184 samples, with each sample representing a 2 s time interval.

As shown in Figure 6, for simple belt faults there are three subclasses: slippage,
concentrated material loss, and material loss. The term P1 indicates a fault in cylinder 1,
and P1P4 indicates faults in two cylinders (P1 and P4). Finally, for combined faults, the
term “Slippage P1” indicates a simultaneous belt slippage fault and misfire in cylinder 1,
while “Slippage P1P4” indicates a combination of belt slippage with misfire faults in both
cylinder P1 and cylinder P4, and so on for all other cases.

Cf ypes of Failur@
|

!

I '

Normal Operation

Simple Faults — Combined Failures

Normal

|
v v —( Slip P1 )

Mechanical Misfire
— Slip P1P4 )
ST

( ConcentratedMatenal) Without PI
Loss P4

Material_Loss > —PC Material Loss P1 )
—>< Material Loss_P1P4 )

Figure 6. Failure type flow diagram.

Although the experiments used a Ford Fiesta 1.6 (Otto cycle) dataset, the acoustic-
signal-based diagnostic principles apply broadly to internal combustion engines (ICEs)
in automotive, marine, and industrial contexts, as mechanical, ignition, and combustion
failures share common thermodynamic and acoustic patterns.

The proposed deep-learning method can be adapted by adjusting the spectral range
or resampling for different operating regimes. Data collected under controlled conditions
with induced faults provide a robust reproducible basis for future studies, supporting
data standardization and open research [48]. Suggested adaptations include the following:
(i) acoustic scaling—adjust the sampling rate and STFT parameters for low-frequency
content; (ii) spectral remapping—redefine mel-frequency bands for large-scale engines;
(iif) order tracking—align acoustic frames with engine cycles to improve fault localization;
and (iv) multimodal fusion—combine acoustic and vibration data to enhance robustness

under maritime noise.
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Experiments with a Ford Fiesta 1.6 (Otto cycle) dataset demonstrate that acoustic-
signal-based diagnostics are broadly applicable to internal combustion engines (ICEs)
across automotive, marine, and industrial contexts, as common thermodynamic and acous-
tic patterns underlie mechanical, ignition, and combustion faults. The deep-learning
framework can be adapted by tuning the spectral parameters, remapping the frequency
bands, applying order tracking, and integrating vibration data. Retraining is required for
new operational contexts. Future work will extend the method to larger ICEs and marine
applications, supported by a dedicated open dataset to advance predictive maintenance.

3.2. Experimental Setup and Instrumentation

The tools and technologies employed comprised a cloud-based computational en-
vironment on Google Colaboratory, equipped with hardware infrastructure featuring
Graphics Processing Units (GPUs) compatible with the Compute Unified Device Architec-
ture (CUDA) standard, enabling the efficient training of ML and DL models. The main
libraries used for model development and evaluation were PyTorch (version 2.8.0+cul26),
Optuna (version 4.5.0), Librosa (version 0.11.0), SoundFile (version 0.13.1), and Scikit-learn
(version 1.6.1). For acoustic signal processing, the Librosa library was applied for reading
audio files (.wav) and extracting log-mel spectrograms.

The experimental methodology adopted in this study was structured into a five-step
pipeline (Figure 7), with the main characteristics described below.

Calculation and storage of Analysis of
Temporal signal => frequency > Linear frequencies > Applying logarithm to > Padding/ metrics: Acc, Precision, —»  simple and
representation =>mel scale compress dynamic range Truncation Recall, F1 and MCC. complex failures

T T

Development.
Pre-processin . Data . ¢ Evaluation Metrics
P & — Feature Extraction—> .. . — Training,and —» ] @
of Input Data Partitioning R Analysis
Evaluation
Adding Noise- . N Definition and Random Grid Search Multiple
Data St:s;faid 380')‘)}‘2675? % Implementation ML —»  Optimization: Fine- —¥ Runs: Three
Argumentation ) ST of DL Models tuning hyperparameters. runs

Figure 7. Phases of the pipeline developed.

3.2.1. Preprocessing of Input Data

This stage consisted of preprocessing the acoustic signals obtained from standardized
audio files (.wav) of equal duration. Using the data augmentation technique [95], new
audio samples with noise were added to the 12 fault subclasses of the dataset. Each subclass
contained 182 samples, each with a duration of 2 s, totaling 2184 samples used for the
evaluation of ML and DL models.

3.2.2. Feature Extraction with Log-Mel Spectrogram

In this step, for each 2 s audio file, a log-mel spectrogram was extracted as a representa-
tion of the acoustic features of the audio signals, with 64 frequency bands. The Short-Time
Fourier Transform (STFT) was performed with a 1024-point FFT window, which determines
the number of samples used to compute each frame, and a hop length of 256, representing
the number of samples between consecutive frames.

The minimum and maximum frequency ranges were fixed at 20 Hz and 8000 Hz,
respectively, preserving relevant spectro-temporal information of the acoustic signals. This
representation is widely applied in classification tasks, as it converts raw audio into a visual
representation that CNN, LSTM, GRU, BiGRUT, and Transformer models can process more
effectively. Padding or truncation was applied to ensure that all spectrograms had exactly
124-time frames, providing dimensional uniformity for batch processing.
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3.2.3. Data Partitioning

To ensure reproducibility, statistical robustness, and comparability across models, the
dataset was stratified into three subsets: 70% for training and validation (with 20% of this
portion reserved for validation) and 30% for testing. Stratified splitting by class guaranteed
proportional representation of the 12 fault types in each subset, which is essential to prevent
sampling bias, particularly in datasets with imbalanced classes [19].

Furthermore, the partitioning process was repeated three times for each model using
random seeds with values of 42, 345, and 678, allowing multiple stratified split instances.
This random-seed approach enabled the evaluation of model stability under different parti-
tioning. Importantly, all ML and DL models were trained and evaluated with the same datasets
in each run, ensuring identical experimental conditions and fair comparative validation.

3.2.4. Development, Training, and Evaluation

In this stage, the different ML (KNN, MLP, DT, GB, RF) and DL (LSTM, GRU, CNN,
BiGRUT, Transformer) models were selected and implemented to classify the 12 fault types
from ICE acoustic signals. Hyperparameter tuning for deep learning models (CNN, LSTM,
GRU, Transformer, BIGRUT) was performed using Random Grid Search implemented via
the Optuna framework [96]. Due to computational constraints, the search space was limited
to 10 combinations per model. While this approach is common in machine learning, such a
restriction may have contributed to the observed performance gap between the LSTM and
GRU architectures, despite their structural similarities.

For each ML and DL architecture evaluated, specific parameter ranges were defined,
including the hidden layer size, learning rate, number of epochs, batch size, and attention-
related parameters (for Transformers). Model configurations were assessed based on
validation set performance, ensuring generalization and mitigating the risk of overfitting.
The hyperparameter combination achieving the best validation performance was then used
to train each final model. The hyperparameters evaluated and applied in the ML and DL
models are presented in Table 1.

It is important to note that each predictive model was evaluated over three runs with
different random seeds, and the mean performance was used for assessment. Additionally,
the same random seeds were applied across all evaluated models, ensuring a homogeneous
data approach and enabling fair result comparisons.

Table 1. Selected hyperparameters in evaluated ML and DL models.

Machine Learning

Hyperparameters SvC RF GB DT k-NN ANN-MLP

Scaler I;(c)glll it Standard Scaler Robust Scaler - - Robust Scaler
C/N Estimators/Neighbors C=240 64 64 - 5 (64, 32)

. . log2 . _ B -
Kernel/Criterion linear (max._features) learning_rate = 0.001 entropy p=1 logistic
Max Depth - 10 8 None - -
Min Samples Split - 5 5 5 - -
Min Samples Leaf - 5 5 2 - -
Bootstrap /Subsample - False 0.9 - - -
Weights/Solver - - - - distance Ibfgs
Learning Rate/Alpha - - - - - alpha = 0.001
Max Iter - - - - - 1000
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Table 1. Cont.
Deep Learning
Hyperparameters CNN LSTM GRU Transformer BiGRUT
1
Layers (1-3) 3 (Conv2D) 1 1 (Transformer 1 (Transf)/1
(LSTM)
Blocks)
Units/Layer (32, 64, 128, 256) 32 128 128 128 128/128
Batch Size (64, 128) 128 128 128 128 128
Dropout (0.0, 0.1, 0.2, 0.3) 0.2 0.1 0.2 0.2 0.2
Epochs (20, 30) 30 30 30 30 30
Optimizer (Adam, SGD, RMSprop) AdamW AdamW AdamW AdamW AdamW
Sequence Length (2, 5) 2 2 2 2 2
Learning Rate (1 x 1074-5 x 1073) 0.001 0.0032 0.001 0.001 0.001
Activation Function (ReLU, tanh) ReLU Tanh Tanh ReLU ReLU + tanh
Convolutional Layers (1, 2, 3) 3 - - - -
Kernel (3 x 3,5 x 5) 3x3 - - - -
. Max + Adaptive

Pooling (Max, Average) Avg - _ _ _
Head Attention (2, 4) - - - 4 4
Dimension Feed-forward Layer (32, 64, 128, 256) - - - 128 128

Preparation for

Sequential Processing ¢ NG Multi-head

Audio > Reshape &
Input Transpose

I
v

Log—Mel
Spectrogram
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3.2.5. Evaluation Metrics Analysis

The trained architectures were evaluated on the test set with unseen data. Performance
metrics analyzed included accuracy, precision, recall, F1-score, and MCC. In addition, con-
fusion matrices were generated and used to provide insights into each model’s performance
across different fault classes.

3.3. Proposed BiGRUT Hybrid Model

Based on the preliminary analysis of the evaluated ML and DL models, a new hybrid
architecture was proposed, named BiGRUT, which combines Transformer attention mecha-
nisms with bidirectional GRUs, capable of capturing local temporal dependencies. This
design aims to complementarily exploit the advantages of each approach.

GRUs are efficient in capturing short- and medium-term sequences but may face
limitations in modeling very long dependencies due to gradient accumulation. On the
other hand, Transformers demonstrate strong capability in identifying long-range patterns
through self-attention mechanisms, but they tend to perform less effectively when data
lack a coherent and well-defined temporal structure.

In the BiIGRUT model, illustrated in Figure 8, the 2 s input audio signal is converted
into a log-mel spectrogram in batches of 128 samples, where each sample is represented by
64 mel-cepstral coefficients across 126 audio time frames.

Self Positional Feed Extraction of the Regularization to Probabilities by
Encoding Forward Last Time Step ~ avoid Overfitting Class

GRUT Model (proposed)

Ll‘nea‘r > Transformer — Bidirectional > End State » Dropout —¥ Classification End
Projection GRU
v v
Expands to Model Reset Update Candidate State
: c —» —» —> —» Bidirectional
Dimension Gate Gate State Update \directiona

Figure 8. Proposed BiGRUT architecture and stages.
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Next, the spectrogram data undergo reshaping and matrix transposition operations
and are then fed into a linear projection layer that maps them into a higher-dimensional
space, combined with positional encoding to preserve the temporal order of frames.

The Transformer layer, employing a multi-head attention architecture, processes the
sequence to extract global contextual attention and capture long-range dependencies. The
Transformer output is subsequently processed by a bidirectional GRU layer, which refines
temporal patterns from the global representation, capturing both forward and backward
dependencies within the sequence.

The final state of the bidirectional GRU is extracted and passed through a dropout
layer to mitigate overfitting. The resulting features are then fed into a fully connected Feed
Forward layer, which performs the final classification, producing class probabilities.

Thus, the integration of both approaches aims to leverage their complementary
strengths: while the GRU organizes and condenses sequential information locally, the
Transformer expands the contextual representation, highlighting the most relevant infor-
mation within the audio signals.

In summary, the methodology described in this section provides a robust and re-
producible foundation for comparing predictive models under realistic conditions. From
the construction of a balanced labeled acoustic dataset to the integration of advanced
architectures such as BiGRUT, each component of the pipeline is aligned with the goal of
addressing complex ICE fault detection challenges. The evaluation of these models under
controlled experimental conditions is presented in Section 4, where performance metrics
and fault-specific analyses are discussed in depth.

4. Results and Discussion

This section presents the experimental results obtained through the application of
various machine learning (ML) and deep learning (DL) models to the task of fault detection
in internal combustion engines (ICE) using acoustic signals. The analysis is organized to
compare model performance based on standard classification metrics, such as accuracy,
precision, recall, F1-score, and MCC. Particular emphasis is given to the proposed BiGRUT
architecture, evaluating its effectiveness in complex fault scenarios. The results are pre-
sented in a structured manner: first addressing the general performance, then analyzing
the model behavior by fault type, and finally interpreting the architectural advantages that
explain the observed outcomes.

4.1. New Dataset for Benchmarking

One of the key contributions of this study is the release of a new public, labeled, and
structured dataset obtained under controlled experimental conditions. The dataset is com-
posed of 12 fault subclasses (Figure 6), including normal operating conditions, mechanical
faults, ignition faults, and combined faults, totaling 2184 samples. Each audio sample
has a duration of 2 s at 16 kHz, preprocessed for the extraction of log-mel spectrograms
with 64 filters and approximately 126 temporal frames. Figure 9 presents the temporal
representation of audio signals under different engine operating conditions.

Unlike existing studies, which generally rely on proprietary or simulated data, the
dataset provided in this study promotes transparency, reproducibility, and comparability
across different approaches, thereby addressing a critical gap in the scientific literature of
this field. As highlighted in the systematic review described in [48], no public, labeled,
and standardized database with the comprehensiveness of 12 distinct fault subclasses was
identified. Therefore, the dataset introduced here enables and fosters the development of
new research in this area.
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Figure 9. Temporal representation of audio signals under different engine operating conditions.

Moreover, the availability of a diversified and balanced real-world dataset allows for
rigorous benchmarking of machine learning and deep learning architectures. Compared
to datasets found in prior studies (often limited in scope, class variety, or accessibility)
this dataset offers an open foundation for evaluating predictive models under realistic
conditions. In the following subsections, the performance of the ML and DL models trained
on this dataset is systematically analyzed and discussed.

4.2. Classification Performance by Metrics

The fault classification accuracy in ICEs was evaluated using five ML models (KNN,
MLP, DT, GB, and RF) and five DL models (LSTM, GRU, Transformer, CNN, and the
proposed BiGRUT). Table 2 presents the performance of the ML models across three runs
(seeds), including the mean and standard deviation for all metrics. It was observed that the
ANN-MLP model achieved the best overall performance across all evaluated metrics, with
an average accuracy of 87.4%, proving to be a strong alternative for ICE fault detection.
Possibly, as a neural-based structure for more robust DL models, MLP is capable of better
capturing fault patterns in temporal data. As a shallow neural architecture, the MLP may
leverage its inherent ability to generalize over moderate-sized datasets, which supports its
relatively high performance.

The k-NN model also achieved competitive results, with a precision of 86.4% and a
recall of 85.5%. As a distance-based classifier, it may have benefited from the stratified
balancing of the dataset, making it a viable alternative with lower computational complexity
compared to DL models. On the other hand, RF achieved higher accuracy (82.5%) than
GB (74.3%), possibly due to GB’s sensitivity to noise or the need for more fine-tuned
hyperparameter optimization. The poorest performance was obtained by the DT model,
with an average accuracy of 52.9%.
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Table 2. Evaluation metrics for ML models.
Metrics
Model Seed Accuracy Precision Recall F1-Score MCC
1 0.515 0.522 0.515 0.516 0.472
2 0.521 0.527 0.521 0.521 0.478
Decision Tree 3 0.550 0.549 0.544 0.544 0.509
Mean 0.529 0.533 0.527 0.527 0.486
Standard Deviation 0.019 0.014 0.015 0.015 0.020
1 0.759 0.765 0.759 0.753 0.739
Cradient 2 0.735 0.747 0.735 0.734 0.712
Boostin 3 0.736 0.688 0.697 0.687 0.713
& Mean 0.743 0.733 0.730 0.725 0.721
Standard Deviation 0.014 0.040 0.031 0.034 0.015
1 0.866 0.871 0.866 0.867 0.854
2 0.851 0.858 0.850 0.849 0.838
k-NN 3 0.856 0.864 0.848 0.852 0.843
Mean 0.858 0.864 0.855 0.856 0.845
Standard Deviation 0.008 0.007 0.010 0.010 0.008
1 0.880 0.884 0.880 0.880 0.869
2 0.858 0.858 0.858 0.857 0.846
ANN-MLP 3 0.883 0.879 0.877 0.876 0.873
Mean 0.874 0.874 0.872 0.871 0.863
Standard Deviation 0.014 0.014 0.012 0.012 0.015
1 0.809 0.811 0.809 0.801 0.794
2 0.828 0.832 0.827 0.821 0.813
Random Forest 3 0.838 0.845 0.817 0.819 0.824
Mean 0.825 0.829 0.818 0.814 0.810
Standard Deviation 0.015 0.017 0.009 0.011 0.015

Complementarily, Table 3 presents the results of the three runs for the DL models. It
can be observed that BiIGRUT and Transformer achieved the highest accuracy among all
models, with mean accuracy values of 97.3% and 96.5%, respectively. This result suggests
that the attention mechanism of the Transformer, when combined with the GRU’s capability
to model long-term temporal dependencies, contributes significantly to the improvement
in classification performance, particularly for acoustically complex fault patterns.

In contrast, the LSTM model achieved substantially lower accuracy (68.6%) compared
to the other models. Given its functional and structural similarity to the GRU, this outcome
may indicate the need for more extensive hyperparameter tuning or a broader exploration of
parameter ranges beyond those tested in this study. One possible explanation is the limited
hyperparameter search space adopted in our tuning process (10 combinations), which may
have constrained the LSTM's performance. Expanding this search could potentially reduce
the observed gap, as LSTM architectures often require more fine-grained optimization to
reach optimal performance for a given dataset and feature representation. Alternatively, the
additional complexity of the LSTM—with its separate input, forget, and output gates—may
not provide advantages under the specific conditions of our dataset size and temporal
dependencies. In contrast, the GRU’s simpler gating mechanism appears to offer greater
efficiency and stability, mitigating overfitting and gradient vanishing issues, which may
account for its superior results.
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Table 3. Evaluation metrics for DL models.
Metrics
Model Seed Accuracy Precision Recall F1-Score MCC
1 0.950 0.953 0.950 0.949 0.945
2 0.933 0.940 0.933 0.934 0.927
CNN 3 0.924 0.934 0.924 0.922 0.918
Mean 0.935 0.942 0.935 0.935 0.930
Standard Deviation 0.013 0.010 0.013 0.014 0.014
1 0.648 0.675 0.648 0.645 0.618
2 0.691 0.698 0.690 0.676 0.666
LSTM 3 0.720 0.752 0.720 0.716 0.696
Mean 0.686 0.708 0.686 0.679 0.660
Standard Deviation 0.036 0.039 0.036 0.036 0.039
1 0.870 0.875 0.871 0.870 0.859
2 0.877 0.894 0.876 0.875 0.867
GRU 3 0.919 0.926 0.919 0.920 0.912
Mean 0.889 0.898 0.889 0.888 0.880
Standard Deviation 0.027 0.026 0.027 0.027 0.029
1 0.957 0.959 0.957 0.957 0.954
2 0.977 0.977 0.977 0.977 0.975
Transformer 3 0.960 0.963 0.960 0.961 0.957
Mean 0.965 0.966 0.965 0.965 0.962
Standard Deviation 0.011 0.010 0.011 0.011 0.012
1 0.980 0.980 0.980 0.980 0.978
. 2 0.960 0.961 0.960 0.960 0.957
FIE)RE;; d) 3 0.977 0.977 0.977 0.977 0.975
prop Mean 0.973 0.973 0.973 0.973 0.970
Standard Deviation 0.011 0.010 0.011 0.011 0.012

Among the models with intermediate performance, CNN is noteworthy, achieving
a precision of 94.2%. Although CNNs are primarily designed for image analysis—where
spatial localization of features is critical—their use in this study proved reasonably effective
for detecting localized patterns in spectrogram-based acoustic data.

When jointly evaluating ML and DL models, Figure 10a shows the mean accuracies
and standard deviations from the three experimental runs. The results visually demonstrate
that four out of the five DL models (CNN, GRU, BiGRUT, and Transformer) exhibit superior
performance compared to ML models. In Figure 10b, the distribution, variability, median,
and mean accuracies (%) of the ML and DL models are shown. Each point corresponds
to the accuracy obtained in one seed-based execution used for data splitting. ML models
displayed greater dispersion compared to DL models. The interquartile range (IQR), which
reflects the statistical spread of central values within a dataset, was larger for ML models
(IOR = 0.12) than for DL models (IQR = 0.08), indicating greater stability in the latter group.

Furthermore, the overall average accuracy of the DL models was superior, with
values of 0.89 compared to 0.86 for ML models. These findings demonstrate the stronger
classification capabilities of the evaluated DL architectures. The superior performance of
DL models over ML is likely attributed to their ability to extract complex features and
leverage long-term memory mechanisms. Moreover, the combination of architectures
with attention mechanisms (Transformers) and recurrent networks with temporal memory
(GRU) enables the development of hybrid models such as BiIGRUT, which significantly
enhanced the fault classification accuracy in ICEs.
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Figure 10. Accuracies and means for all the evaluated models.

In summary, the results presented in this subsection highlight the superior perfor-
mance of deep learning models compared to traditional machine learning approaches
in the task of ICE fault classification using acoustic signals. Among them, the proposed
BiGRUT model consistently achieved the highest accuracy, demonstrating the benefits of
combining sequential modeling with attention mechanisms. These findings support the
growing applicability of DL-based systems for real-time predictive maintenance, especially
in complex noise-prone environments. In the next subsection, a more granular analysis is
conducted to evaluate how each model performs across specific fault subclasses, providing
further insight into their strengths and limitations.

4.3. Performance Analysis by Fault Type

Based on the finding that DL models outperform ML models, this section presents an
analysis of the fault detection performance by type of failure using the recall metric. As
mentioned, recall represents the proportion of positive classes correctly identified by the
model relative to the total number of actual positives. In other words, it reflects the model’s
ability to correctly detect all relevant positive classes in the dataset. The complete data used
in this analysis are shown in Table 4.

Table 4. Performance analysis by failure type of deep learning models.
Recall Faults Undetected o Average Error
Model Fault Class Fault Subclass Average Detected Faults Error (%) (%) Per Class
Slip_P1 0.782 142.294 39.706 21.817
Slip_P1_P4 0.988 179.792 2.208 1.213
. Concentrated_material_loss_P1 0.926 168.556 13.444 7.387
Combined ., entrated_material_loss P1_P4  0.988 179.755 2245 1233 6.09 £ [8.05]
Material_loss_P1 0.982 178.633 3.367 1.850
Material_loss_P1_P4 0.970 176.485 5.515 3.030
CNN Slip 0.878 159.820 22.180 12.187
Mechanical Concentrated_loss 0.785 142.943 39.057 21.460 12.43 + [8.91]
Material_loss 0.964 175.381 6.619 3.637
- Without_P1 0.988 179.792 2.208 1.213
Misfires Without_P1P4 0.982 178.633 3.367 1.850 1,53 +[0.45]
Normal Normal 0.994 180.896 1.104 0.607 0.607
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Table 4. Cont.

Recall Faults Undetected o Average Error
Model Fault Class Fault Subclass Average Detected Faults Error (%) (%) Per Class
Slip_P1 0.509 92.656 89.344 49.090
Slip_P1_P4 0.782 142.294 39.706 21.817
] Concentrated_material_loss_P1 0.317 57.645 124.355 68.327
Combined Concentrated_material_loss_P1_P4  0.585 106.543 75.457 41.460 38.09 + [18.98]
Material_loss_P1 0.827 150.544 31.456 17.283
LSTM Material_loss_P1_P4 0.695 126.399 55.601 30.550
Slip 0.659 119.865 62.135 34.140
Mechanical  Concentrated_loss 0.416 75.700 106.300 58.407 32.26 + [27.13]
Material_loss 0.958 174.283 7.717 4.240
- Without_P1 0.872 158.698 23.302 12.803
Misfires Without_P1P4 0.803 146.170 35.830 19.687 16.25 + [4.87]
Normal Normal 0.811 147.541 34.459 18.933 18.933
Slip_P1 0.794 144.496 37.504 20.607
Slip_P1_P4 0.909 165.456 16.544 9.090
i Concentrated_material_loss_P1 0.878 159.857 22.143 12.167
Combined  , entrated_material_loss_ P1_P4  0.749 136.263 45.737 25.130 14.33 £ [7.17]
Material_loss_P1 0.938 170.765 11.235 6.173
Material_loss_P1_P4 0.872 158.734 23.266 12.783
GRU Slip 0.799 145.412 36.588 20.103
Mechanical ~ Concentrated_loss 0.817 148.749 33.251 18.270 12.99 + [10.77]
Material_loss 0.994 180.896 1.104 0.607
. Without_P1 0.976 177.583 4417 2427
Misfires Without_P1P4 0.951 173.052 8.948 4917 3.67 £ [1.76]
Normal Normal 0.988 179.774 2.226 1.223 1.223
Slip_P1 0.903 164.352 17.648 9.697
Slip_P1_P4 0.988 179.792 2.208 1.213
. Concentrated_material_loss_P1 0.945 172.039 9.961 5.473
Combined Concentrated_material_loss_P1_P4 0.951 173.143 8.857 4.867 4.26 £ [3.15]
Material_loss_P1 0.981 178.627 3.373 1.853
Material_loss_P1_P4 0.975 177.523 4.477 2.460
Transformer Slip 0.933 169.764 12.236 6.723
Mechanical Concentrated_loss 0.927 168.684 13.316 7.317 4.68 + [4.06]
Material_loss 1.000 182.000 0.000 0.000
L Without_P1 1.000 182.000 0.000 0.000
Misfires Without_P1P4 0.975 177529 4471 2457 123 +[1.74]
Normal Normal 1.000 182.000 0.000 0.000 0
Slip_P1 0.926 168.605 13.395 7.360
Slip_P1_P4 0.994 180.896 1.104 0.607
. Concentrated_material_loss_P1 0.963 175.296 6.704 3.683
Combined .\ centrated_material_loss_P1_P4  0.951 173.112 8.888 4883 3.67 + [2.66]
Material_loss_P1 0.994 180.896 1.104 0.607
BiGRUT Material_loss_P1_P4 0.951 173.161 8.839 4.857
(proposed) Slip 0.927 168.684 13.316 7.317
Mechanical Concentrated_loss 0.994 180.896 1.104 0.607 2.64 + [4.06]
Material_loss 1.000 182.000 0.000 0.000
- Without_P1 0.994 180.878 1.122 0.617
Misfires Without_P1P4 0.982 178.694 3.306 1.817 122 £ [085]
Normal Normal 0.994 180.896 1.104 0.607 0.607

The analysis of detected and undetected classes and subclasses (Figure 11) highlights

relevant differences in performance between models and failure types. For the normal (no

fault) class processing 182.00 samples, Transformer achieved 0% error (no misclassifica-
tions), followed by BiGRUT and CNN with 0.6% (1104 misclassifications each), GRU with
1.22% (2226 errors), and LSTM with 18.9% incorrect classification (34,459 missed faults out
of 182,000 samples). This demonstrates the feasibility of applying DL models to identify

the presence or absence of ICE faults.
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Figure 11. Error distribution by fault class and model.

For misfires, analyzing 364 samples distributed across two subclasses, BiIGRUT, Trans-
former, and CNN performed the best with errors below 2% (less than eight incorrect
classifications each), while LSTM recorded an average error of 16.2% (59 undetected faults)
in this category. This difference represents a reduction of approximately 51 critical unde-
tected faults when comparing the best model versus LSTM.

The results indicate that fault detection in single cylinders is more effective than
in multiple cylinders, as error rates nearly doubled in the latter case. In single-cylinder
faults (182 samples), the top three models maintained error rates below 1.5% (less than
three errors), while in two-cylinder faults, the rates rose to 2-3% (three—five incorrect
classifications). This suggests that DL models are better able to capture the acoustic patterns
of single-cylinder failures, while in two-cylinder failures, overlapping temporal patterns
must be recognized, increasing the complexity of detection. Therefore, more effort should
be directed toward the treatment of combined failures.

For mechanical faults, processing 546 samples covering three subclasses (182 samples
each), BIGRUT and Transformer achieved the lowest error rates (2% and 4%, respectively,
corresponding to 11 and 22 incorrect classifications). CNN and GRU, however, misclassified
more than 12% of the samples (more than 65 errors each). Again, LSTM performed the
worst with 32.26% error (176 undetected failures). This difference means that BIGRUT
correctly detected 165 more failures than LSTM.

Considering that mechanical faults cover three different subclasses, it is observed that
all the models exhibited higher error rates when the faults were grouped by similar origin.
This is because belt-related faults can evolve from slippage to concentrated material loss.
These subclasses often coexist or follow each other. However, among the models, BIGRUT
achieved a maximum error rate of only 7.3% in mechanical failures (13 out of 182 samples),
standing out as a promising alternative that, through the combination of self-attention and
temporal memory mechanisms, can still be further optimized.

Similar to mechanical faults, combined faults also caused increased errors in BiGRUT,
GRU, and LSTM. In contrast, Transformer maintained stable performance, while CNN
showed reduced error compared to its performance on mechanical faults. Collectively,
these results demonstrate that DL models tend to accumulate more errors when faults are
combined or share the same mechanical origin. However, it is important to highlight that
BiGRUT maintained a maximum error rate below 7.3% across all fault categories.

As illustrated in Figure 12, the most challenging cases for DL models were combined
faults (e.g., Slippage P1) and mechanical faults due to concentrated material loss. Figure 12
clearly demonstrates that approximately 80% of undetected faults originated from only five
subclasses (three combined and two mechanical), with the Slip_P1, Concentrated_loss, and
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Concentrated_material_loss_P1 classes alone accounting for about 50% of all undetected
subclasses. These faults are complex to detect for all the evaluated algorithms due to
their specific acoustic characteristics: combined faults exhibit spectral overlap from mul-
tiple simultaneous degradation mechanisms, while mechanical faults with concentrated
material loss generate intermittent and non-stationary acoustic signatures that challenge
conventional temporal pattern recognition.

100
80
60

40

Cumulative Percentage (%)

20

Total Undetected Faults (for DL Models)

& < .
é-@ ‘&b’ B Combined
< .
oo"z 8 = Mechanical
© < = Misfires
<
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Figure 12. Pareto analysis—undetected failures by type.

The superior performance of the BIGRUT and Transformer architectures in handling
these complex types of faults can be attributed to their advanced temporal modeling
capabilities. BIGRUT combines bidirectional attention mechanisms with recurrent units,
allowing it to capture both long-term temporal dependencies and complex local patterns
characteristic of combined faults. Meanwhile, Transformer’s self-attention mechanisms
excel at identifying nonlinear correlations between different spectral components that
characterize mechanical failures with concentrated material loss.

As quantitatively demonstrated in Figure 13, the proposed BiGRUT and Transformer
proved to be the most effective approaches, achieving average correct detection rates of
97.3% and 96.5%, respectively, on the 182 fault samples per class—significantly outperform-
ing CNN (93.5%), GRU (81.7%), and LSTM (68.6%).

Figure 14 provides a comparative summary of the average recall values for each
evaluated Deep Learning model, visually reinforcing the quantitative analysis previously
discussed. As observed, BIGRUT and Transformer lead with recall rates exceeding 96%,
reflecting their superior ability to detect a broad spectrum of fault types with minimal
error. CNN, while performing well overall, shows slightly lower effectiveness in complex
failure modes, followed by GRU with a moderate drop in performance. LSTM, on the other
hand, falls significantly behind, highlighting its limitations in modeling the non-linear
and overlapping acoustic patterns present in ICE fault signals. This visual consolidation
further validates the choice of hybrid and attention-based architectures as more suitable for
real-world acoustic diagnostics in predictive maintenance systems.
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Figure 13. Total number of faults detected by model.

Several studies have reported classification accuracies equal to or exceeding those
obtained in this work. For instance, the authors of [50] employed a CNN architecture with
acoustic data collected via smartphone, achieving up to 99.6% accuracy. However, direct
comparison must be interpreted with caution due to key methodological differences: (i) the
authors of [50] used a private dataset acquired under controlled conditions, whereas our
dataset was collected in real operational environments; (ii) their classification task involved
fewer fault categories, while our study addressed 12 subclasses, including combined
and mechanical faults with overlapping spectral features; and (iii) our dataset is publicly
available, enabling reproducibility and independent benchmarking, which is not the case
for [50]. In summary, these findings highlight the need for greater focus on mechanical
and combined faults. Furthermore, the adoption of more robust or additional filtering
methods during the audio preprocessing stage, as well as the exploration of new hybrid
classification approaches, may contribute to reducing errors in these fault categories.

Transformer

Deep Learning Model

0 Zb 4I0 60 80 100
Recall (%)

Figure 14. Average recall (%) for fault detection across deep learning models.

In summary, these findings highlight the need for greater focus on mechanical and
combined faults. Furthermore, the adoption of more robust or additional filtering methods
during the audio preprocessing stage, as well as the exploration of new hybrid classification
approaches, may contribute to reducing errors in these fault categories.

Overall, the results confirm the strong potential of deep learning models for non-
invasive ICE fault detection, with BIGRUT demonstrating superior performance in nearly
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all evaluated scenarios. Its ability to combine long-range attention and sequential memory
allowed for robust classification of both simple and complex fault patterns, especially in
acoustically overlapping conditions. These outcomes validate the importance of hybrid
architectures in handling real-world signal variability. Furthermore, the public and labeled
dataset introduced in this study played a crucial role in enabling rigorous benchmarking
and reproducibility. The findings reinforce the feasibility of scalable acoustic-based predic-
tive maintenance systems and set the foundation for the concluding insights presented in
Section 5.

This performance also reinforces the importance of selecting architectures that not
only achieve high recall but also offer interpretability for real-world deployment. Under-
standing why certain models succeed or fail in specific fault subclasses can guide future
improvements in signal preprocessing, feature extraction, and the design of advanced
hybrid models.

5. Conclusions

This study successfully fulfilled its objective by proposing a novel approach and
evaluating various Machine Learning (ML) and Deep Learning (DL) architectures for fault
detection in internal combustion engines (ICEs) through acoustic signal analysis. The
experiments demonstrated the superiority of DL models over traditional ML methods, par-
ticularly in more complex scenarios involving mechanical or combined faults. Among the
evaluated models, the proposed hybrid architecture, BIGRUT, consistently outperformed
others across multiple metrics, establishing itself as a promising solution for real-time
non-invasive predictive maintenance.

The main contributions of this work are threefold. Methodologically, it introduces a
publicly available, structured, and labeled dataset comprising 2184 samples across 12 ICE
fault subclasses. Collected under controlled conditions and manually labeled, this dataset
enables reproducibility and supports future advancements in the field. Experimentally, the
study conducted a comprehensive comparative evaluation of ML and DL models using
robust metrics—including accuracy, precision, recall, F1-score, and MCC—advancing the
state of the art in acoustic-based fault classification. Practically, the findings validate the
feasibility of low-cost, non-invasive, and efficient diagnostic systems for ICEs, with direct
implications for reducing operational failures, maintenance expenses, and environmen-
tal impacts.

Despite its strengths, the study has some limitations. Experiments were conducted
on a single automotive engine type with a fixed cylinder configuration, which limits the
generalizability of the results. Future research should focus on validating BiGRUT in marine
engines under dynamic operating conditions, exploring ensemble methods that integrate
spectral and temporal features, and implementing the model in embedded platforms to
assess performance in real-time inference scenarios.

Additionally, we intend to conduct a more in-depth investigation into the performance
differences observed between the LSTM and GRU architectures.

When empirically compared to other study, the proposed BIGRUT model achieved
an average accuracy of 97.3% across 12 fault subclasses, whereas study [50] addresses a
smaller number of faults (three to five, depending on the scenario). Therefore, compared to
prior works reporting higher accuracies under more controlled conditions and with fewer
fault classes, our results demonstrate that BiGRUT delivers competitive performance in a
more complex, realistic, and reproducible setting, reinforcing its value both as a predictive
model and as a foundation for future research. This further highlights that BiIGRUT can
maintain high performance even in challenging classification scenarios, while contributing
to the field through the provision of an open structured dataset for future investigations.
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Although the experiments were conducted using an internal combustion engine (Ford
Fiesta 1.6—Otto cycle), the diagnostic principles based on acoustic signals have broad
applicability to ICEs in general, regardless of their application context (automotive, marine,
or industrial). This is because mechanical, ignition, and combustion faults share common
thermodynamic foundations and acoustic signatures. The adopted approach—based on
deep learning and acoustic analysis—can be adapted to different operating conditions with
minimal adjustments, such as spectral range calibration or resampling. Moreover, the use
of real data obtained under controlled and fault-induced conditions provides a robust and
reproducible foundation for future research. This reinforces the value of open datasets and
encourages standardization in fault diagnosis systems. The work reported here is part of
an ongoing research effort whose future phases will expand to larger ICEs with diverse
operational characteristics, enabling the construction of broader diagnostic frameworks
applicable across critical industries.

In summary, this research contributes to the advancement of predictive models based
on artificial intelligence for fault diagnosis and predictive maintenance using sound waves.
The results demonstrate the technical feasibility of applying the non-invasive method
(sound waves) for fault detection. It is also noteworthy that the dataset and data preprocess-
ing codes have been made available to the scientific community to enable further studies
and ensure the reproducibility of the research (Open Source).

As a continuation of this research, we intend to advance the development of predictive
models based on artificial intelligence, using acoustic and sound waves, and to explore how
they can contribute to improving the performance of strategies for this application. Another
avenue to be studied is the development of sensors and devices dedicated to acquiring
signals for processing and analysis. One of the research areas to be further explored
is the integration of energy harvesting-based systems, which would not only perform
diagnostics but also promote improved energy efficiency and, consequently, reduce CO,
emissions [97-106]. This interdisciplinary approach aims at the technical and industrial
development of the proposed solution for applicability and scalability, combining diagnosis
and fault detection in ICEs with energy optimization, topics that are highly relevant for
industrial applications and the large-scale transportation sector.
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Appendix A

Table A1. Demonstration of the developed confusion matrix.
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