



# ***Book of abstracts***

**International Conference on Strongly  
Correlated Electron Systems (SCES)**

which took place in Amsterdam,  
the Netherlands from  
24 – 29 July 2022



Anne Visser  
Conference chair

Alix McCollam  
Conference chair



UNIVERSITY OF AMSTERDAM

**Radboud University**





Poster # 143

**José Guimarães** // *Max Planck Institute for Chemical Physics of Solids, Germany*  
Ionic based gate control of quantum phase transitions on ZrS<sub>2</sub>

Poster # 144

**Mohamamdmehdi Torkzadeh** // *Sorbonne Université, Paris*  
Large-gap insulating phase induced by magnetic ordering in a two-dimensional material at low temperature

Poster # 145

**Carolina Burger** // *Technical University of Munich, Germany*  
High-mobility surface conduction in FeSi at low temperatures

Poster # 146

**Dorsa Fartab** // *Max Planck Institute for Chemical Physics of Solids, Dresden, Germany*  
Gate-tunable insulator-metal transition and weak antilocalization in two-dimensional tellurium

Poster # 147

**Maria Helena Carvalho da Costa** // *Universidade Estadual de Campinas, IFGW*  
Electron spin resonance on FeSi crystals

Poster # 148

**Remko Fermin** // *Universiteit Leiden*  
Universal size-dependent nonlinear charge transport in single crystals of the Mott insulator Ca<sub>2</sub>RuO<sub>4</sub>

Poster # 149

**Kazuki Yamamoto** // *Kyoto University, Japan*  
Universal properties of dissipative Tomonaga-Luttinger liquids: A case study of a non-Hermitian XXZ spin chain

Poster # 150

**Momoka Hayashida** // *Kyushu Institute of Technology, Japan*  
Current induced hysteresis phenomena in resistivity of spin-orbit coupled iridate Ca<sub>5</sub>Ir<sub>3</sub>O<sub>12</sub>

Poster # 151

**Yuri Pusep** // *University of Sao Paulo*  
Diffusion of photo-excited holes in viscous electron fluid

Poster # 152

**Anand Manaparambil** // *Adam Mickiewicz University in Poznan, Poland*  
Nonequilibrium Seebeck coefficient of a correlated molecular junction

Poster # 153

**Xuanbo Feng** // *University of Amsterdam, The Netherlands*  
Cascade of charge density wave transitions in selenium doped 1T-TaS<sub>2</sub> probed with optics

Poster # 154

**Shun Okumura** // *The University of Tokyo, Japan*  
Recombination of Weyl points in periodically driven Dirac semimetals

Poster # 155

**Jinhong Park** // *Institute for Theoretical Physics, University of Cologne, Germany*  
Thermal Hall response: violation of gravitational analogues

## Diffusion of photo-excited holes in viscous electron fluid

Yu. A. Pusep<sup>1</sup>, M. D. Teodoro<sup>2</sup>, V. Laurindo Jr.<sup>2</sup>, E. R. C. de Oliveira<sup>2</sup>, G. M. Gusev<sup>3</sup>,  
and A. K. Bakarov<sup>4</sup>

<sup>1</sup>*São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil*

<sup>2</sup>*Physics Department, São Carlos Federal University, São Carlos, São Paulo, Brazil*

<sup>3</sup>*Institute of Physics, University of São Paulo, São Paulo, SP, Brazil*

<sup>4</sup>*Institute of Semiconductor Physics, Novosibirsk, Russia*

We address our investigation to the diffusion processes which take place in the hydrodynamic regime in a high-mobility mesoscopic GaAs channel, where strongly correlated electrons reveal hydrodynamic behavior [1,2]. In particular, we report on a photocurrent study of diffusion of the photo-generated holes within a viscous electron fluid. Scanning PC microscopy was performed at the 3.7 K in a multi-terminal Hall bar structure with the 5  $\mu\text{m}$  width and 100  $\mu\text{m}$  length of the channel area, fabricated using a 14 nm thick GaAs/AlGaAs quantum well. The sheet electron density and the mobility measured at 1.4 K were  $9.1 \cdot 10^{11} \text{ cm}^{-2}$  and  $2.0 \cdot 10^6 \text{ cm}^2/\text{Vs}$ , respectively. It was shown that the observed diffusion is due to the photo-generated heavy and light holes. The effective viscosity of the electron-hole system was determined. The presented results differ from the hydrodynamic effects observed so far in viscous electron systems, since in the reported case the diffusion of holes occurs within a mixture consisting of the hydrodynamic electrons and the injected photo holes.

[1] D. Levin, G. M. Gusev, E. V. Levinson, Z. D. Kwon, and A. K. Bakarov, *Phys. Rev. B* 97, 245308 (2018).

[2] G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov, *Phys. Rev. B* 98, 161303(R), (2018).