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1. INTRODUCTION

The purpose of this paper is to use the
methodology of Brillinger and Rosenblatt |2,
3] to investigate the properties of the finite
Fourier transform for the case ol homogeneous
random processes defined on locally compact
Abelian groups. In this methodology the key
role is played by the finite Fourier transform.
If (X(t), t = 0,+£1,+2,...} is a (weakly)
stationary random process, then for the values
X(0),...X(T—1) of the process, the f[inite
Fourier transform is defined by

1 1
dM0) = 2aT)" 2 Y X(e ™, (1.1)
t=0
-0 <A< +o0.
In particular, the asymptotic properties
of d™M(n) are fundamental to derive estimation
procedures for the spectrum of  X(t), deflined

by
) =@2m)~* ¥ Rirle™™, (1.2)

— o <h<o0, where R(t) is the covariance
function of the series supposed to “wear off™ as
|t| = 0.

In  what follows we
homogeneous random process  [X(t), teG|  on
a locally compact Abelian group G which is
sccond countable. We define the finite Fourier
transform and prove a central limit theorem

consider a
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for it. Some remarks concerning the estimation
of the spectrum are also made.

2. THE FOUNDATIONS

Let G be a locally compact Abelian
group (LCAG) with addition as operation,
and let m be the Haar measure of G. If
fe L,(G), the following invariance relation
is valid:

Jv('(xntu)dm(x) = [l"(x)dm(x), (2.1)
G JG
aeG.

Let us denote by G the dual group
of G, that is, the set of all continuous
characters of G, with composition defined
l})’ (Vi +72)X) = v,(X),(x), xeG, 7v,,eG.
G becomes a LCAG if it is endowed with
a proper topology. See Rudin (1963) for details.

I G is a LCAG, for any feL,(G),
the Fourier transform of s defined by
f‘(y) = [I"(xr/(x)dm(x), yeG. (2.2)

JG

A function ¢ defined on G s called
positive definite (p.d.) if and only if

n n

Y Y ccidx; — x;) > 0, (2.3)
f=1 j=i

for any x,,...x,€G and any complex numbers
CpyeeCy. Bochner’s theorem states that ¢

is p.d. if and only if there exists a non-
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negative measure peM(G) such that

P(x) = Jy(x)du(v), xeG. (24)

)

Here, M(G) is the set of all complex
measures on G which are regular and such
that  |p)(G)<oo, where |u| denotes the

total variation of .

We denote by B(G) the set of all linear,
finite combinations of continuous functions,
p.d., on G; the inversion theorem establishes

that, if feL,(G) NB(G) then feL,(G) and
f(x)sz(y)ry(x)dy, xeG, (2.5)

G
where the Haar measure dy on G s

appropriately normalized.

We shall denote by cum (Yl""’Yp) the
cumulant of order p of the p-dimensional
random variable (Y,....,Y,), with Y; real
or complex and E{|Y[P}<o, j=l..p.
In particular, CET,(,YL’Z‘L: Cov {Y,Y} =
= E{[Y,~E(Y)][Y,—E(Y)]}. See Brillinger
[2] for details on relevant properties of the
cumulants.

The p-variate complex random variable
X is said to have a multivariate complex
normal distribution Ni(wX) if [Re X,ImX]'

has a (2p-variate) multivariate normal
distribution with mean [Rep,Impu]  and
covariance matrix -

I/ ReX —-ImZX

2[ImX ReX i

for some p-vector p and some pxp matrix
2, Hermitian and non-negative definite. In
the case p=1, if X is N¢(uo?), then ReX
and ImX are independent random variables
N, (Repos?/2) and N, (Impoc?/2), respectively.
For further properties of the complex normal
distribution see Goodman [6].

Now let (Q,/,P) be a probability space
and consider the random function X=
= X(t,m):teG,meQ)}, with covariance function
R(t,s) = Cov [X(t,m),X(s,m)] assumed to be
continuous on G x G. It follows that X s
continuous in quadratic mean (q.m.).
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DEeFINITION: The random process X is weakly
homogeneous if and only if

a) E[X(1)] = ¢ = constant, for all teG;
b) X(l)eLz@,,c/.P), for all teG:
¢ E[X(t)X(s)] = B(t—s). (2.6)

Here, L,(Q,«/,P) is the Hilbert space
of all quadratic integrable random variables
on (Q.«/,P), with inner product (U,V)=
= E(UV).  Without loss of generality, we
shall assume that c¢=0, hence B(t—s) is
the covariance function R(t—s), and we have

R(t) = EX(t+1X(1)}, t1eG. (2.7

DeFNTION: " The random process X is strictly
homogeneous iff for any tt,...t, of G,
the random variables  (X(t,).....X(t,)) and
(X(t, +1),...X(t, +1) have the same distribution.

If X s strictly homogeneous, with
EX()[ < oo, we define the k-th order cumulant

Sfunction of X as

Glty,..ot) = cum {X(t,),...X(t)}, (2.8)
which is equal to ¢(t,+t...t, +t), for any
t,...t,t in G, We hall use frequently the
asymmetric notation

Gyt —1) = G gsrsnst 1,0).

The function R(1)

positive definite and by Bochner’s theorem

(see 2.4), there exists a measure  FeM(G)
such that

(2.9)

is easily seen to be

R(t) = Jy(r)F(dy). (2.10)
The measure F is uniquely determined
by R and it is called the spectral measure
of X.
A spectral representation of X is given

by

X(t) = jy(l) Z(dy), teG, 2.11)

is a random measure such that
E{|Z(A))*} =F(A), (2.12)
for every AeG. For details, see Jajte [7].

Now, assume that R(t) € L,(G), that is,

where  Z(A)

J]R(r)]dm(r) < 0. (2.13)

G
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Then, we define the spectrum of X by

f(y)—J-R(l)y(t)dm(l). veG.  (2.14)

G
By (2.13), f(y) is bounded in G and
continuous as a map from a part of L (G)

(corresponding to the class of homogeneous
random functions) in the set of all complex-
valued, bounded and continuous functions on
G, which vanish at infinity. Since  R(t)e
€L ,(G) NB(G), the inversion theorem (2.5)
is applicable and we have

1e@,

R(1) = j f(y)y(v)dy, (2.15)

the Haar measure of G,

appropriately normalized.

where dy s

If the condition,

J J |e(tyse - ldm(t,)...dm(t ) <0
¢ JG (2.16)

is satisfied we define the k-th order cumulant
spectrum of X by

B 1eiti— 1) =

= [ J Gyl Y4 ().
JG G

(G pdm(ty)..dm(t ),

Yoo Yo 1€C- (2.17)

3. THE FINITE FOURIER TRANSFORM

Suppose that G is a non compact LCAG
which is second countable. Let X = {X(t),
teG!  be a homogeneous, continuous in
quadratic mean, real-valued random  process
on G, with mean zero and covariance function

R(r). Consider a sequence of subsets —E
of G, such that:

@) E,c E,pp D= |.2,...,Ul|i” = G

n (3”

(i) E, is compact and  m(E)—+ o0,

where m(E) = v is

n = 12...,
the Haar measure of E

n’

DErINITION: The  finite  Fourier  transform of

X(1), teE, is defined to be

d‘"'(y):vn‘«éj X(ty(hdm(t), yeG (3.2)
By

It follows that d™(y) is a random variable
with mean zero. Our purpose is to derive
the asymptotic distribution of ~d™f(y). Let
us set

A(y) = J y(t)dm(t). (3.3)
En

It is easy to see that there exists a sub-
sequence (E, j such that

A("k'
W0, (3.4)
for alm(;‘st all veG.
See [1] for details. We shall write | f(t)dt

G

to denote Jf(t)dm(t). We assume that X
G
satisfies

AssUMPTION A The process X = {X(1), teG]|
is real-valued, strictly homogeneous, with finite
moments of all orders and satisfies (2.17) for
k = 2,35

We see that the cumulant spectra of all
orders exist for X satisfying Assumption A.
If X is Gaussian, (2.17) reduces to (2.13).

Denote by F, the complement of E
relative to  G.

n

TuroreM 3.1, Let d™(y) be given by (3.2)

and assume that for all seG and n — w0,
J IR(t—s)|dt < kv, ', (3.5)
i.

is a positive constant. Then,
COV :d(n)(y ! )’ dln)(yz): -
= v A"y =y )fer) 00 1),

where kK
(3.6)

the error being uniform in vy, y,.

Proof: Since we have

E[X(t)] = 0,
Cov {d™(y,),d™(y,)} =

= L. [ [ “/I(tr/l(s)l{[X(l)X(s)]dlds:

EpvE,

=y 1 [ i ¥, (Uy,(s)R(t—s)dt ds,
JE, VE

n n
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since the modulus of this last integral is

<y ! R(t—s)|dt ds <
n J\ J‘ ‘ |
E JE

n n

<v ! J J|R(l)|dl ds < .
E,vG

Taking in account that y, [(t—s)+s] = y,(t—s)-
Y4(8) and v (u) = —y,(u), the covariance in
question becomes

1

»

=y U ;/’(I)R(l)dl}(v;_—yl)(S)ds +e,
.

JE

ylr(l —s)R(t—s)dt ](y2 —71)(s)ds =

.'"

n g

using the invariance relation (2.1), and where

"
leal < vy ! J
Jl‘:" i'n
:f J [R(t—s)|dtds < k.v, !
Eyd iy,

by (4.5).

Ti(t—s) R(t—s)(y, —7,)s)|ds =

The theorem follows noting that

J R(tyy,(0dt = fiy,)
g

= A"y, —7y).

and j (Y, =74 )s)ds =
.

n

REMARKS: (a) Condition (3.5), which is a
“mixing” condition implies lhalj R(t—s)dt=
=0, "), seG; Fn

(b) For vy, =7v,, the theorem gives the

variance of d™(y),

Var {d™(y)} = E{|d"Xy)
= fty)+0(v, "),

2
J

(3:7)

since  A™(0)=v,. This relation suggests that

an estimate for the spectrum f(y) is given by

2

|d™(y) . (3.8)

T ‘ f X(Uy{dde
|

n

The theorem 3.1 can be generalized for
cumulants of order k. Let - A,
Ex.xE = Ef°' and B, denote the
complement of A, in G ' (which is a
topological group when endowed with the
product topology).

denote
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THEOREM 3.2. Let X
A and f(y,...%-,)
Then, for k > 2,

satisfying Assumption
be defined by (2.17).

cum {d™(y,),....d"(y,)} =
= v LA A - 1)+
+ O(v k21, (3.9)

Proof. The proof follows along the same
lines as Theorem 3.1. and it will be sketched.

The cumulant in question is equal to

vn “-j J V() G ) dt) =
E E

n n

="nk'2-J (v, +... +7,)s)-
.

n

. [J [ Y(t=5)...7, 4(t=8)"
E oI

"Gty — Sy .0l - ¢ —S)dL ... AL 1“(15 =

=Yy k‘l' A(M(Yl +... +Yk)fk(‘\{l~"‘:Yk l)+ Rn*

where

an‘ <v, ¥/, Jl [J lck(l_s"'"‘lk = *S)"
W LB

n

Sdtdt 1}ds < Gy ke

a finite constant, by (3.13).

REMARK : If y,+...4+v, =0, then the
cumulant of the left handside of (3.9) is
approximately equal to v, ** " 'f(y .5 ),
which  suggests that  we can  estimate

EOrisoie—y)  using  d™(y)),...d"™(y,), with
k

Z'\{i:(), The following lemma is well-known
i=1

(see [2], Chapter 4).

Lemma 3.1 Let {Z"™,n>1} be a sequence
of px1 random vectors with complex
components. Assume that the cumulants of
the r.v. (7,‘;",[‘;",...,/,‘P'”.Z‘l;”) exists and converge
to the corresponding cumulants of a .y
(2,Z,,...2,7.), which is determined by its
moments. Then [Z™] converges in distribution
to Z=1(2,,..,2)
Then, we have the following
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TueoreM 3.3, Under the conditions of
Theorem 3.2., if y#0 d™(y) is asymptotically
N¢(0,f(y)) and if y=0, d™(y) is asymptotically
N, (0,{(0)). Moreover, there exists a subsequence
(E, ) such that {d"™(y,)} are asymptotically
independent.

REMARKS: (a) For y=0 we obtain a central

limit theorem for \'“’/lj X(t)dt,  that is
.

@ n
meXMMaNmMM
Eq

(b) If X(t) is Gaussian, then d™(y) is a
complex normal random variable, hence it is
enough to prove that the asymptotic variance
if fty) or f(0), for y#0 or y=0, respectively.

(c) It would be desirable to prove the
asymptotic independence of the d‘"’(yi) for
the entire sequence |E {.  This is possible
for particular groups. It is easy to see that
E(d™(e)d™(B)] = JAA'"’(fx~u’)A‘"’(B ~o)dF (o),
G

and the behaviour of the integral depends on
the particular form of the kernel A™(y).

Proof of Theorem 3.3. By Lemma 3.1, it is
sufficient to prove that the cumulants, appro-
priately normalized, tend to the cumulants of
the asserted normal distribution. We have that
E{d™(y)} = 0 "and by Theorem 3.1.,
Cov 1d"™(y,)d™(y,)} =
= v, ' A =y )y ) 00k s

flyy for y,=7v,=v#0; the
asymptotic independence follows from (3.4).
By Theorem 3.2,

this tends fo

cum {d"(y,), ...,d(y)} =
=v, PAM Y+ AN 15 VR - 1)
Oy 2+Y)

which tends to zero, if k>2 since A™()y,
is bounded with respect to n. I y =0,
d™(0)=d"™(0), d™(0) is real and the

stated limit distribution follows. The theorem

hence

is proved, since it is easily seen that the above
argument holds for the conjugates of the involved
variables.

4. FURTHER COMMENTS

We conclude this work with some final
remarks.

a) Relation (3.7.) suggests a way to estimate
the spectrum  {{(y).
Let us define

I™(y) = '\’.nf/{ d("'(Y)\Z~ “{GG. (4.1)

I™(y) is called the periodogram of X(t), t€E.
It is easily seen from (3.7.) that

E{1™)} = fiy)+0(y, ),

I™(y) is an asymptotically unbiased
estimate for f(y). From Theorem 3.3. we see
immediately that 1™(y) is a random variable
with an asymptotic distribution ftyn2(2)/2,
if y#0, where y*2) is a random variable
with a chi-square distribution with two degrees
of freedom. Moreover, the asymptotic variance
of I™y) is f*y), which shows that the
periodogram is not consistent. For y=0, the

(42)

that is,

asymptotic distribution is  f(O)*(1) and the
asymptotic variance is 21%(0).
b) The case of the group G=R of reals

is considered by Brillinger [2] and Brillinger
and Rosenblatt [3]. In this case condition
(3.5.) is satisfied if we assume

j’ |t| |R(7)|dT < 0.

The case of the group G=D, the dyadic group
with operation addition modulo 2 component-
wise is considered by Morettin [8].

¢) The problem of computing the fast Fourier
transform on finite Abelian groups is considered
by,Cairns [4]. It is shown that the generalized
Fourier coefficients given by

N-1 o

k=0

(4.3)

can be computed with  N(r+s) complex
multiplications. Here, N is the order (number
of elements) of G and vy, are the characters
of G. For an arbitrary subgroup H of G,
of order s, let AGH) = {yeGy(t) =1,
VieH}. The conclusion stated depends on

An. Acad
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this annihilator of H in G, whichis a
subgroup of G: r is the order of G|H.

d) The development of section 3 may be
extended for multivariate processes X(t) =
= [Xl(l),...,Xp(l)]’, teG. In particular, the
asymptotic distribution for d™(y) will be a
multivariate complex normal with dimension
p.

e) Problems related to ergodicity are
considered by Blum and Eisenberg [1] and
Jajte [7]. Generalized homogeneous random
processes are discussed by Ponomarenko [9]
and for the questions of prediction and inter-
polation of homogeneous processes en groups
see Weron [12].
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6. SUMMARY

The purpose of this paper is to investigate the properties
of the finite Fourier transform for the case of homogencous
processes defined on locally compact Abelian groups. A
central limit theorem for this transform is proved and
some remarks concerning the estimation of the spectrum

are also made.
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