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I. INTROOUCTION 

The purpose of this paper is to use the 
methodology of Brillinger and Rosenblau [2, 
3] to investigate the properties of the Iinite 
Fourier rransforrn for the case of homogeneous 
random processes defined on locally compact 
Abelian groups. In this methodology the key 
role is played by the finite Fourier transform. 
If [Xu), t = 6,±1,±2, ... } is a (weakly) 
stationary randorn process, then for the values 
X(O), ... ,X(T - 1) of the process, the Iinite 
Fourier transforrn is defined by 

T-1 

dn)(\) = (2nT)- ½ L X(t)e- ;1·1, 
I ~O 

-00<1c<+oo. 

r/J 

(I.I) 

In particular, the asymptotic properties 
of d<T)(\) are fundamental to derive estimation 
procedures for the spcctrum of X(t), defined 
by 

I{\)= (2n)-1 L R(,)e-;1·', (1.2) 

- o: <'A< co, wherc R(,) is the covariance 
[unction ol" the scrics supposed to "wcar oll" as 
1,1 - C/J. 

In what follows we consider a 
homogeneous randorn process (X(t), tEG} on 
a Iocally cornpact Abelian group G which is 
sccond countablc. We define the Iinitc Fourier 
transforrn and provc a ccntral limit thcorcm 

' l{ccci\cd M:1y 2X. i'J79: prcscntcd hy (11,\1,\1 
S,,~11 1.1 l l1i~11 :. 

for it. Some remarks concerning the estimation 
of the spectrum are also made. 

2. THE FOUNOATIONS 

Let G be a locally compact Abelian 
group (LCAG) with addition as operation, 
and let m be the Haar rneasure of G. If 
fE L1(G), the following invariance relation 
1s valid: 

Lf(x+a)dm(x) = 11{x)dm(x), (2.1) 

aEG. 

Let us denote by G the dual group 
of G, that is, the set of all continuous 
eharacters of G, with composition defined 
by (y1 +y2)(x) = y1(x)y2(x), xEG, yl'y2EG. 
G becornes a LCAG if it is endowed with 
a proper topology. See Rudin (1963) for dciails. 

If G is a LCAG, for any f E L1(G), 
the Fourier transforrn of f is defined by 

l{y) = 1/{x)y(x)drn(x), yEG. (2.2) 

A function cl) defined on G is called 
positioe deiinit e (p.d.) if and only if 

I I c;c;q){x; - x;J;:::,: o, (2.3J 
i I j I 

for any x1, ••• ,x11
EG and any complcx numbers 

c1 , ••• ,c11• Bochncr's theorcm slates that cp 
is p.d. if and only if there exists a non- 
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2 P. A. MORETTIN 

negative measure ~tEM(G) such that 

cp(x) = ty(x)d~t(y), xEG. (2.4) 

Here, M(G) is the set of all complex 
measures on G which are regular and such 
that l~tl(G) < oo, where l~tl denotes the 
total variation of ~L. 

We denote by i3(G) the set of all linear, 
finite combinations of continuous functions, 
p.d., on G; the inversion theorem establishes 
that, if fEL1(G) n B(G) then IEL1(G) and 

f(x) = 1f(y)y(x)dy, xEG, (2.5) 

where the Haar measure dy on G is 
appropriately normalized. 

We shall denote by cum (Yi, ... ,YP) the 
cumulant of order p of the p-dimensional 
random variable (Y 1, ••• ,Yp), with Y, real 
or complex and E{IYl} < oo, j = 1, ... ,p. 
In particular, cum (Yi,Y) = Cov {Y;,YJ = 
= E {[Yi-E(Y)][Yi-E(Y)]}. See Brillinger 
[2] for details on relevant properties of the 
cumulants. 

The p-variate complex random variable 
~ is said to have a multioariate complex 
normal distribution N~(µ,I) if [Re X, Im X]' 
has a (2p-variate) -~ultivariate - norrnal 
distribution with mean [Re [:l, lm e]' and 
covanance matrix 

I [ReI 
2 Im ~ 

-lm~] 
ReI ' 

for some p-vector 1:1, and some p x p matrix 
~' Hermitian . and non-negative definite. In 
the case p = I, if X is N\ (~t,o-2), then ReX 
and JmX are independent randorn variables 
N1(Re~t,cr

2/2) and Ni(Im~t,o-2/2), respectively. 
For f urther properties of the complex normal 
distribution see Goodman [6]. 

Now let (Q,d,P) be a probability space 
and consider the random function X= 
= {X(t,O)):tEG,(J)EQ}, with covariance function 1 

R(t,s) = Cov (X(t,(J)),X(s,<.D)} assumed to be 
continuous on G x G. It follows that X is 
continuous in quadratic mean (q.m.). 

DEFINITION: The random process X is weakly 
homogeneous if and only if 

a) E[X(t)] = c = constant, for all tEG; 
b) X(t)ELz(Q,d,P), for all tEG; 
c) E[X(t)X(s)] = B(t- s). (2.6) 

Here, Lz(Q,d,P) is the Hilbert space 
of all quadratic integrable random variables 
on (Q,d,P), with inner product (U,V) = 
= E(UV). Without loss of generality, we 
shall assume that c= 0, hence B(t- s) is 
the covariance function R(t- s), and we have 

R(,) = E{X(t+,)X(t)}, t,,EG. (2.7) 

DEFINITION: 1"-rhe random process X is si ricliy 
homogeneous iff for any t.t., ,tk of G, 
the random variables (X(t 1 ), ,X(td) and 
(X(t 1 + t), ... ,X(tk + t)) have the same distribution. 

If X is strictly homogeneous, with 
EIX(tt < co, we define the k-th order cumulant 
[unction of X as 

~(t" ... ,tk) = curn {X(t1), ... ,X(lk)}, (2.8) 

which is equal to ~(t 1 + t, ... ,tk + t), for any 
ti, ... ,tk,t in G. We hal! use frequently the 
asymmetric notation 

~(l" ... ,~- 1) = ~(t" ... ,tk- i,O). (2.9) 
The function R(,) is easily seen to be 

positive definite and by Bochner's theorern 
(see 2.4), there exists a measure FEM(G) 
such that 

R(,) = 1 y(,)F(dy). (2.10) 

The measure F is uniquely determined 
by R and it is called the spectral measure 
of X. 

A spectral representation of X is given 
by 

X(t)= ty(t)Z(dyJ, tEG, (2.11) 

where Z(li) is a random measure such that 

E{ IZ(!i)I 2} = F(Li), (2.12) 
for every LiEG. For details, see Jajte [7]. 

Now, assurne that R(,) E L1(G), ihat is, 

11R(,)ldrn(,) < co. (2.13) 

A11 Arnd. brasil, ( 1r'11c .. I I ')HOI 52 I 11 
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Then, we define the spectrum of X by 

f('y) = I R(t)y(t)dm(t), yECi. (2.14) 

By (2.13), f(y) is bounded in G and 
continuous as a map from a part of L1(G) 
(corresponding to the class of homogeneous 
random Iunctions) in the set of all complex­ 
valued, bounded and continuous Iunctions on 
G, which vanish at infinity. Since R(,)E 
EL1(G) n B(G), the inversion theorem (2.5) 
is applicable and we have 

R(,) = l/(y)y(,)dy, ,EG, (2.15) 

where dy is the Haar measure of G, 
appropriately normalized. 

H the condition, 

l ··-l l~(ti,···,tk_ 1)ldm(tJ .. dm(tk_1)<w 
U G (2.16) 

1s satislied we deline the /.::-th order cumulant 
spect rum of X by 

l~(Yi,···,Yk-1) = 

= I···Ick(ti,-··,tk-l)yl(t1) ... 

···Yk- 1(tk_ 1)dm(t1) ... dm(tk_ 1), 

y i,· .. ,yk - 1 ECi. (2.17) 

3. THE FINITE FOURIER TRANSFORM 

Suppose that G is a non compact LCAG 
which is second countable. Let X = {X(t), 
tEG} be a homogeneous, continuous in 
quadratic mean, real-valued random process 
on G, with mean zero and covariance function 
R(,). Consider a sequence of subsets E11 

of G, such that: 

(i) En c Ell I· i' n = 1,2, ... , U Ell = G . 
n= I ' (3.1) 

(ii) E
11 

is compact and m(E,J--. + CYJ, 
n = 1,2, ... , where m(E11) = v11 IS 
the Haar rneasure of E11• 

DEI'INITI0N: The [iuite Fouricr transjorm or 
X(t), LEE11 is defined to be 

d'"l(y) = v,;½ t
1

X(t)y(t)dm(t), yECi (3.2) 

It follows that d'11l(y) is a ranclom variable 
with mean zero. Our purpose is to derive 
the asymptotic distribution of d'"l(y). Let 
us set 

i1111l(y) = t
11

y(t)dm(t). (3.3) 

lt is easy to see that there exists a sub­ 
seq uence (E11k} such that 

i11nk)(y) 
~~~--. 0, (3.4) 

v 
llk ..... 

for almost all yEG. 

See [ I J for details. We shai! write j/t)dt 

to clenote If(t)clm(t). We assume that X 

satisfies 

ASSUMPTI0N A: The process x = {X(t), tEG} 
is real-valued, strictly homogeneous, with finite 
moments or all orders and saiisfies (2.17) for 
k = 2,3, .... 

We see that the cumulant spectra of all 
orders exist for X satisfying Assurnption A. 
If X is Gaussian, (2.17) reduces to (2.13). 

Denote by F
11 

the complement of E 
11 

relative to G. 

THEOREM 3. 1. Let d'11l(y) be given by (3.2) 
and assume that for all sEG and n -. CYJ, 

I
11

IR(t-s)ldt s k v,; 1, (3.5) 

where k 1s a positive constant. Then, 

Cov{d'0l(y1),d<0\y2)} = 
= 11i; 1 i1111\Y2 -y1)lh1)+0(v,; 1), 

(3.6) 

the error being uniforrn in y 1 .y 2• 

Proo]: Since E[X(t)] = 0, we have 

Cov { dlnl(y I ),dl"l(y z)} = 

= 11,~ 1 · fJ
11

ri(t)y 2(s)E[X(t)X(s)]dtds = 

= 11,~ 1 · J
11 

L,y 1 (l)y 2(s)R(t - s)dt ds, 
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since the modulus of this last integral is 

s; v,; I r_ r_ IR(t-s)ldt ds s; JE11 J l,11 
s; v,; 1 J l.lR(t)ldt ds < w. 

E11 G 

Taking in ac_~~unt that y1[(t-s)+s] = yi(t-s)· 
y1(s) and y1(u) = -yi(u), the covariance in 
question becomes 

v,;1 
• I [I y1(t-s)R(t-s)dtJ(y2-y1)(s)ds = JE11 t,, 

= 1'i; 1 t, [I y1 (t)R(t)dt}y 2 -y i)(s)ds +1o11 

using the invariance relation (2.1 ), and where 

lcnl s; v,; 1 L, 1nly1(t-s) R(t-s)(y2-yi)(s)lds = 

= r r IR(t - s)ldtds s; k. ,'i; I 
J1)111 

THEOREM 3.2. Let X 
A and l~(y 1'" .,yk _ 1) 
Then, for k > 2, 

cum { d(nl(y 1), ... ,d(n)(yk)} = 

satisfying Assumption 
be defined by (2.17). 

= v,;kll_ ~(11\Y1 + ... +yk)l~(Y1, .. -,yk- 1)+ 
+ Q(i\;k/2+ I). (3.9) 

Prooj. The proof follows along the same 
lines as Theorern 3.1. and it will be sketched. 

The cumulant in question is equal to 

v,;k12. 1 ... r ~~) ... yk(tk)~(ti, ... ,tk)dt1 ... dtk)= JE11 Jr11 

by (4.5). The theorern follows noting that 

REMARKS: (a) Condition (3.5), which is a 

"mixing" condition implies that i R(t- s)dt = 
= O(v- 1) SEG · Fn 

11 ' ' 

(b) For y1 = y2, the theorem gives the 
variance of d·nl(y), 

Var {d(nl(y)} = E{id"'\y)l2} = 

= lh)+O(v,; 1), 
(3.7) 

since ~(nl(O) = vn. This relation suggests that 
an estimate for the spectrum f(y) is given by 

The theorern 3.1 can be generalized for 
cumulants of order k. Let · An denote 
E11x ... xEn = E~- i and Bn denote the 
cornplement or An ll1 Gk - I (which is a 
topological group when endowed with the 
product topology). 

-k/2 f ( ) =vn · _ Y1+ ... +yk(s)· 
1_·,n 

· [1 ... J. yi(t-s) ... yk_1(t-s) · 
En I.n 

-~(t1 -s, ... ,tk-i -s)dt1 ... dtk_1}s = 

-k/2 ~In)( )I' ( - =Vn · Yt+ ... +yk kY1,···,Yk-i)+R11, 
where 

dt dt J~ C -k/2+1 
. I · " k - I Ci S s; · \In , 

a finite constant, by (3.13). 

REMARK: If y 1 + ... +yk = 0, then the 
curnulant of the left handside of (3.9) is 

. I I -kP+11·( approx1matey equa to ''i, - kY1, .. ·,Yk-1), 
which suggests that we can estimate 
l~(Yi,· .. ,Yk-1) using d(n)(y1), ... ,d(n)(yk), with 

k 

LY; =0. The following lemma is well-known 
i= I 

(see [2], Chapter 4). 

LEMMA 3.1. Let { ~rnJ, n~ I} be a sequence 
of p x I random vectors with complex 
eomponents. Assume that the cumulants of 
ti (z(n) z-(n) z(n) z-(n)) . t d 1er.v. "t, "I, ... , "p, "" ex1s san converge 
to the corresponding cumulants of a r.v. 
(Zi,Zi, ... ,Z",2), which is dctermincd by its 
moments. Then [Z(11l) converges in distribution 
to f'. = (Zi, ... ,Z1,). 

Then, we have the following 

.,111. ,/('{I(/. h10.,1I. (_ //;I/I',, ( llJXO) 52 ( 1) 
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THEOREM 3.3. Under the conditions of 
Theorem 3.2., if y # 0 d1"l(y) is asymptotica\ly 
N~ (O,t{y)) and if y = 0, d111l(y) is asymptotically 
N 

1 
(O,f(O)). Moreover, there exists a subsequence 

{ E,iJ such that { d<11k\y)} are asymptotical ly 
independent. 

REMARKS: (a) For y=O we obtain a central 

Ii mit theorem for I\;½ t X(t)dt, that is 

v,;½. fc X(t)dt ~ N,(O,f(O)). n 
En 

(b) If X(t) is Gaussian, then d("l(y) 1s a 
complex normal randorn variable, hence it is 
enough to prove that the asymptotic variance 
if f(y) or f(O), for y,tO or ry=O, respectively. 

(c) It would be desirable to prove the 
asymptotic independence of the d("\y) for 
the entire sequence ( E,J This is possible 
for particular groups. lt is easy to see that 

E: d("\cx)dh'\~)] = 1. i11"l(cx-cx'}L1'"\~ -cx')dF(cx'): 
G 

and the behaviour of the integral depends on 
the particular form of the kernel i1(11l(y). 

Proof of Theorem 3.3. By Lernma 3.1., it 1s 
sufficient to prove that the cumulants, appro­ 
priately normalized, tend to the cumulants of 
the asserted normal distribution. We have that 
E{d("l(y)} = 0 · and by Theorem 3.1., 

Cov idh'\y1),d(n)(y2)] = 
= v,;' ·i1111l(y2-Y1)l'(y,)+O(v,;1); 

this tends Io f{y) for y1 = y2 = y,tO; the 
asymptotic independence follows from (3.4). 
By Theorem 3.2., 

CUl11 l d(nl(y I), ... , d(n)(yk)} = 
= v,;k/l l'.1(11\y 1 + · ·. +ydl~(y 1,· · -,Yk - 1) + 

+ O( v,;k/2 , 1 ), 

which tends to zero, if k > 2 since l'.1'1'1(-)!1111 
is bounded with rcspcct Lo n. If y = 0, 
c1<11l(O) = d111l(O), hence d<"l(O) is rca I and the 

statcd limit distribution follows. The theorem 
is proved, since it is easily seen that the abovc 
argument holds for the conjugates olthe involved 
variablcs. 

4. FURTHER COMMENTS 

We conclude this work with some final 
remarks. 

a) Relation (3.7.) suggests a way to estimate 
the spectrum f(y). 

Let us define 

r(n)(y) = ~11d(nl(y)l2, yEG. (4. I) 

r<nl(y) is called the periodoqram of X(t), tEE11• 

It is easily seen from (3.7 .) that 

E{I(11l(y)} = f(y)+O(v,; 1), (4.2) 

that is, I("l(y) is an asymptotically unbiased 
estimate for f(y). From Theorem 3.3. we see 
immediately that i<"l(y) is a random variable 
with an asymptotic distribution f(y)x2(2)/2, 
if y ,t 0, where x 2(2) is a randorn variable 
with a chi-square distribution with two degrees 
of lreedom. Moreover, the asymptotic variance 
of I("l(y) is f2(y), which shows that the 
periodogram is not consistent. For y = 0, the 
asymptotic distribution is f(O)x2(1) and the 
asyrnptotic variance is 2f2(0). 

b) The case of the group G = IR; of reals 
is considered by Brillinger [2] and Brillinger 
and Rosenblatt [3]. In this case condition 
(3.5.) is satisfied if we assume 

The case of the group G = D, the dyadic group 
with operation addition modulo 2 component­ 
wise is considered by Morettin [8]. 

c) The problem of computing the Iast Fourier 
transforrn on Iinite Abelian groups is considered 
by ,Cairns [ 4]. It is shown that the generalized 
Fourier coefficients given by 

N-I 

ZU) = L X(tk)yNk) 
k=O 

(4.3) 

can be computed with N(r+s) complex 
multiplications. Here, N is the order (number 
of elements) of G and y are the characters J 
of G. For an arbitrary subgroup H of G, 
of order s, let A(G,H) = [yEG :y(t) = I, 
VtEl:-1}. The conclusion stated depends on 

An .,i('(li/. hu1,1I l 1i'11c .. ( ll/XOI 52 I I I 



6 P A. MORETTIN 

this annihilator of 
subgroup of G; r 

H 111 G, which is a 
is the order of GIH. 

d) The development of section 3 may be 
extended for multivariate processes ~(t) = 
= [X1 (t), ... ,X/t)J', tEG. In particular, the 
asymptotic distribution for dr"l(y) will be a 
multivariate complex normal with dimension 
p. 

e) Problems related to ergodicity are 
considered by Blum and Eisenberg [1] and 
Jajte [7]. Generalized homogeneous random 
processes are discussed by Ponomarenko [9] 
and for the questions of prediction and inter­ 
polation of homogeneous processes on groups 
see Weron [12]. 
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6. SUMMARY 

The purpose of this paper is to investigate the properties 

of the finite Fourier transform for the case of homogeneous 

processes defined on locally cornpact Abelian groups. A 

central lirnit theorern for this irunsform is proved and 

sorne rernarks concerning the estimation of the spectrurn 

are also made. 
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