

RT-MAE-8823

SCALING INEQUALITIES FOR ORIENTED PERCOLATION

by

Richard Durrett

and

Nelson I. Tanaka

Palavras Chaves: Scaling relations, oriented percolation
(Key words)

SCALING INEQUALITIES FOR ORIENTED PERCOLATION

Richard Durrett¹ (Cornell University)

Nelson I. Tanaka² (Cornell & Sao Paulo Universities)

Abstract

In this paper we look at seven critical exponents associated with two dimensional oriented percolation. Scaling theory implies that these quantities satisfy four equalities. We prove five related inequalities.

1- Partially supported by the National Science Foundation and the Army Research Office through the Mathematical Sciences Institute at Cornell University.

2- Partially supported by CAPES (Brazil).

1. Introduction

We begin by describing the model. Although it can be defined for any dimension, we will restrict ourselves to the two dimensional case. Let $\mathcal{L} = \{(m,n) \in \mathbb{Z}^2 : m+n \text{ is even, } n \geq 0\}$. From each $z \in \mathcal{L}$ there is an oriented arc to $z + (1,1)$ and to $z + (-1,1)$. Each arc, also called a bond, is independently open with probability p and closed with probability $1-p$. We think of an open bond as allowing us to go along it in the direction of orientation. With this in mind we define

$x \rightarrow y$ (y can be reached from x) if there is an open path from x to y , that is, there is a sequence $x = x_0, x_1, \dots, x_m = y$ of points in \mathcal{L} such that for each $k \leq m$ the arc from x_{k-1} to x_k is open.

$C_0 = \{\text{the cluster containing the origin } (0,0)\} = \{x : 0 \rightarrow x\}$.

$\Omega_\infty = \{ |C_0| = \infty \} = \text{"percolation occurs"}$.

Here $|A|$ denotes the cardinality of A .

The event Ω_∞ has zero probability when p is small and positive probability when p is close to 1. As the value of p increases, the system undergoes a "phase transition" at $p_c = \inf\{p : P_p(\Omega_\infty) > 0\}$ (see [2]). Here, we study the critical exponents associated with the phase transition. To define these quantities we start with β , the exponent associated with the percolation probability. Intuitively β measures the rate at which $P_p(\Omega_\infty)$ decreases to zero as p approaches p_c . We expect that

$$P_p(\Omega_\infty) \sim C (p - p_c)^\beta.$$

where \sim means

$$\lim_{p \downarrow p_c} \frac{P_p(\Omega_\infty)}{C(p-p_c)\beta} = 1.$$

But following common practice we use the weaker definition

$$P_p(\Omega_\infty) \approx (p-p_c)^\beta.$$

where \approx means

$$\lim_{p \downarrow p_c} \frac{\log P_p(\Omega_\infty)}{\beta \log(p-p_c)} = 1.$$

The second critical exponent γ concerns the mean cluster size $E_p|C_0|$.

$$E_p|C_0| \approx (p_c - p)^\gamma \text{ as } p \uparrow p_c.$$

To extend the definition to the supercritical case we restrict to the event that the cluster is finite and then define γ by

$$E_p\{|C_0|, |C_0| < \infty\} \approx (p-p_c)^{-\gamma} \text{ as } p \uparrow p_c.$$

The definitions above are analogous to the ones in the theory of ordinary (unoriented) percolation. The next quantity has no analogue in that theory. Let

$$\xi_n = \{x: \text{there is a } y \leq 0 \text{ so that } (y, 0) \rightarrow (x, n)\}.$$

In words, ξ_n is the state at time n starting from $\xi_0 = \{0, -2, -4, \dots\}$. Let

$$\bar{r}_n = \sup \xi_n.$$

It is known (see [2], pp. 1005-1006) that

$$\frac{r_n}{n} \rightarrow \alpha(p) \quad \text{almost surely as } n \rightarrow \infty$$

and that

$$p_c = \inf\{p : \alpha(p) > 0\}.$$

We define the critical exponent σ associated with the "edge speed" $\alpha(p)$ by

$$\alpha(p) \sim (p - p_c)^\sigma \quad \text{as } p \downarrow p_c.$$

The quantities we have defined so far concern the behavior of the system as p approaches the critical probability p_c . The next two concern the behavior at the critical value p_c . Let

$$\xi_n^0 = \{x : (0,0) \rightarrow (x,n)\}.$$

We define the critical exponent for the survival probability by

$$P_{cr}(\xi_n^0 = \emptyset) \sim n^{-1/\delta_r}$$

where the subscript cr indicates we are considering $p=p_c$. The r here is for radius (of the cluster) and is included to make our definition match the one for ordinary percolation (see [9]).

The second quantity at criticality is related to the mean cluster size as function of the time n :

$$E_{cr}|\xi_n^0| \sim n^\eta \quad 0 \leq \eta \leq 1.$$

While the definition of δ_r is analogous to the one for ordinary percolation, the definition of η is different from its counterpart:

$$P_{cr}(0 \rightarrow x) \sim |x|^{2-d-\eta} \quad \text{as } |x| \rightarrow \infty$$

where $|x| = \max(|x_1|, |x_2|)$ if $x = (x_1, x_2)$. To relate the two definitions observe that

$$\sum_{\substack{x: |x|=n}} P_{cr}(0 \rightarrow x) \sim n^{1-\eta'}$$

Hence our η is like $1-\eta'$.

Last but not least we come to the correlation lengths. We use the definitions introduced and explained in the companion paper [5]. If we let $\tau^A = \inf\{n : \xi_n^A = \emptyset\}$ and write τ^0 when $A = \{0\}$ then the parallel correlation length $L_t(p)$ can be defined in the subcritical case by

$$[L_t(p)]^{-1} = \lim_{n \rightarrow \infty} [-(1/n) \log P_p(\tau^0 > n)].$$

The associated critical exponent v_t is defined by

$$L_t(p) \sim (p_c - p)^{v_t}$$

Let r_n^0 denote the rightmost site in ξ_n^0 , i.e.,

$$r_n^0 = \sup \xi_n^0 \quad (= \dots \text{ if } \xi_n^0 = \emptyset)$$

and let

$$R^0 = \sup_n r_n^0$$

The perpendicular correlation length $L_1(p)$ for the subcritical case is defined by

$$[L_1(p)]^{-1} = \lim_{n \rightarrow \infty} [(-1/n) \log P_p(R^0 > n)]$$

and v_1 by

$$L_1(p) \sim (p_c - p)^{-v_1}.$$

For the supercritical case there are also two correlation lengths. First, the parallel one. $L_t(p)$ is defined by

$$[L_t(p)]^{-1} = \lim_{n \rightarrow \infty} [(-1/n) \log P_p(n < \tau^0 < \infty)]$$

and v_t by

$$L_t(p) \sim (p - p_c)^{-v_t}.$$

(The prime on v_t is to indicate that we are now looking at the limit as $p \downarrow p_c$.)

Extrapolating from the first three definitions the reader might expect the last one to be

$$[L_1(p)]^{-1} = \lim_{n \rightarrow \infty} [(-1/n) \log F_p(R^0 > n, \tau^0 < \infty)].$$

For the results we will prove below it is convenient to use

$$[L_1^*(p)]^{-1} = \lim_{n \rightarrow \infty} [(-1/n) \log P_p(\tau^{(-2n, 0)} < \infty)]$$

instead. This is supported by (1.9) in [5] which together with Lemma 3 in [4] gives us $L_1(p) \leq L_1^*(p) \leq 2L_1(p)$. The associated critical exponent v_1^* is defined by

$$L_1^*(p) \sim (p - p_c)^{-v_1^*}.$$

Having introduced the critical exponents we turn now to the results. Scaling theory predicts that

$$(1.1) \quad \gamma = v_t' + v_{\perp}' - 2\beta$$

$$(1.2) \quad \sigma = v_t' - v_{\perp}'$$

$$(1.3) \quad \beta = v_t' / \delta_t$$

$$(1.4) \quad \gamma = (\eta + 1) v_t.$$

The first three equalities can be found in [7], while the last one is in [1]. Those papers use the notation of Reggeon Field Theory so to get the results above one has to change variables:

$$\delta_t = 1/8 \quad v_t = v \quad v_{\perp} = (z/2) v \quad \alpha = v.$$

The main purpose of this work is to prove some inequalities related to (1.1)-(1.4). In Section 2 we show that

$$(1.5) \quad E_p |C_0| \leq 10 L_t(p) L_{\perp}(p) \quad \text{when } L_t(p), L_{\perp}(p) \geq 1$$

or in terms of critical exponents,

$$(1.6) \quad \gamma \leq v_t + v_{\perp}.$$

Comparing this with (1.1) shows -2β is missing from the right hand side.

In Section 3 we show that

$$(1.7) \quad L_1^*(p) \leq \alpha(p) L_r(p)$$

which implies

$$(1.8) \quad \sigma \leq v_r^* - v_1^*.$$

In Section 4 we will introduce yet another definition of the parallel correlation length in the supercritical case: $L_r^*(p)$ = the smallest length for which the renormalized bond construction of [3] works. This definition is analogous to the definition in terms of sponge crossings for ordinary percolation (see [9]). We would like to show that this definition is (up to constants) the same as $L_r(p)$ but all we can show is

$$(1.9) \quad L_r^*(p) \geq 2 \log 2 L_r(p).$$

In Section 5 we use this definition to prove that if $L = L_r^*(p)$

$$(1.10) \quad P_p(\Omega_\infty) \geq (1/2) P_p(\xi_L^0 = \emptyset).$$

The last inequality says that percolation is almost the same as surviving up to the correlation length. The proof of Lemma 4.1 in [11] also works in this case to show (1.10) when we take $L = 4d L_r(p) \log L_r(p)$. In fact the result in [11] is more general in the sense that it is true for any finite dimension d . In terms of critical exponents (1.10) says

$$(1.11) \quad \beta \leq v_r^* / \delta_r.$$

An extension of the proof of (1.10) gives

$$(1.12) \quad P_p(x \in \xi_{2L}^0) \asymp [P_p(\Omega_\infty)]^2 \quad \text{for } |x| \leq 1.5\alpha(p)L.$$

where \asymp means the ratio of these quantities is bounded above and away from 0 by constants independent of p , and again we have written L for $L^E(p)$. If we define η' by

$$E_p[\xi_{2L}^0] \asymp [L]^{\eta'} \asymp (p - p_c)^{v/\eta'}$$

(trusting here that quantities at the correlation length are, up to constants, the same as at p_c) then (1.12) leads to

$$(1.13) \quad v/\eta' \geq v_f' - \sigma - 2\beta.$$

The last result is one half of

$$(1.14) \quad v_f' \eta' = v_f' - \sigma - 2\beta$$

a relationship which follows from (1.1), (1.2) and (1.4).

Finally, we have

$$(1.15) \quad \gamma \leq (\eta + 1) v_f.$$

If the reader remembers $\eta = 1 - \eta'$ then he will recognize this as Fisher's inequality (see [6]). If one defines the connectivity radius as the random variable R_f whose distribution is given by

$$P_p(R_f = n) = \frac{\sum_x P_p((0,0) \rightarrow (x,n))}{E_p[C_0]}$$

and defines exponents v_k by

$$\{E_p(R_p)^k\}^{1/k} \sim (p_c - p)^{-v_k}$$

then one can use ideas of [10] to show

$$\lim_{k \rightarrow \infty} v_k = v_l$$

and

$$\gamma \leq (n+1)v_l.$$

No new ideas are needed so the proof is omitted.

2. Scaling inequality for the subcritical process

In this section we will prove

$$(2.1) \text{ For } p < p_c \text{ and } L_1(p) \geq 1, \quad E_p |C_0| \leq 10 L_1(p) L_r(p).$$

This relationship is natural if we notice that $L_r(p)$ and $L_1(p)$ give the height and width of a typical cluster while $|C_0|$ gives its volume. To see where the missing 2β in the associated exponent inequality (1.6) should come from look at (1.12).

Proof: From the definitions of the correlation lengths we have that

$$P_p((0,0) \rightarrow (x,n)) \leq \min \{ \exp(-n/L_r(p)), \exp(-|x|/L_1(p)) \}.$$

Set $c = L_1(p)/L_r(p)$. Let $A = \{(x,n) : |x| \leq cn\}$ where $\exp(-n/L_r(p))$

$\leq \exp(-|x|/L_1(p))$ and $B = A^c \cap \{(x,n) : n \geq 0\}$ where the opposite inequality holds. Then

$$\begin{aligned} E_p|C_0| &= \sum_n \sum_x P_p((0,0) \rightarrow (x,n)) = \sum_A P_p((0,0) \rightarrow (x,n)) + \sum_B P_p((0,0) \rightarrow (x,n)) \\ &\leq \sum_n (2[cn]+1) \exp(-n/L_r(p)) + \sum_x [c^{-1}|x|] \exp(-|x|/L_1(p)) \end{aligned}$$

where $[a]$ is the largest integer $\leq a$. Using the trivial inequality

$$\sum_{k=1}^{\infty} ke^{-ak} \leq \int_0^{\infty} (x+1)e^{-ax} dx = a^{-2} + a^{-1}$$

we see that the expression above is

$$\leq 1 + 2c(\{L_r(p)\}^2 + L_r(p)) + L_r(p) + 2c^{-1}(\{L_1(p)\}^2 + L_1(p))$$

$$\leq 10 L_r(p) L_1(p) \quad \text{when } L_1(p), L_r(p) \geq 1. \quad \text{|||}$$

(2.2) Corollary: $\gamma \leq v_r + v_1$.

3. One scaling inequality for the edge speed

We begin with some definitions. Set

$$l_n^0 = \inf \xi_n^0 \quad \inf \emptyset = +\infty$$

$$r_n^0 = \sup \xi_n^0 \quad \sup \emptyset = -\infty$$

$$G_n = \{ \xi_n^0 \geq -(1+\delta) \alpha(p) n, \xi_n^0 \leq (1+\delta) \alpha(p) n \}$$

where $\delta > 0$. Let

$$\xi_n^{(A, m)} = \{ y: \text{for some } x \in A, (x, m) \rightarrow (y, n) \}$$

$$H_n = \{ \tau \{ (1+\delta) \alpha(p) n, (1+\delta) \alpha(p) n \} < \infty \}.$$

From the definitions above it should be clear that

$$\begin{aligned} P(n < \tau^0 < \infty) &\geq P(\xi_n^0 = \emptyset, G_n, \xi_m^{(\xi_n^0, n)} \text{ dies out}) \\ &\geq P(\xi_n^0 = \emptyset, G_n) P(H_n). \end{aligned}$$

In [2] it was shown that

$$P(G_n | \xi_n^0 = \emptyset) \rightarrow 1 \quad \text{as } n \rightarrow \infty,$$

so we have

$$P(\xi_n^0 = \emptyset, G_n) \rightarrow P(\Omega_\infty) > 0.$$

On the other hand

$$\frac{1}{n} \log P(H_n) \rightarrow -\alpha(p)(1+\delta) / L_1^s(p),$$

and since δ is arbitrary it follows that

$$-1/L_1^s(p) \geq -\alpha(p) / L_1^s(p),$$

or rearranging

$$(3.1) \quad L_1^s(p) \leq \alpha(p) L_1(p).$$

In terms of critical exponents, we have obtained

$$(3.2) \quad \sigma \leq v_1' - v_1'.$$

4. Renormalized Bond Construction

The first thing to do is to describe a construction due to Durrett and Griffeath [3]. We follow the version in [2]. Let G be the graph with vertices in $\mathcal{L}_0 = \{(m,n) : m+n \text{ is even, } n \geq 0\}$ and with oriented bonds connecting each $(m,n) \in \mathcal{L}_0$ to $(m+1,n+1)$ and to $(m-1,n+1)$.

Consider the "renormalized lattice" \mathcal{L}_0 to be mapped into the upper half plane $\mathbb{R} \times [0, \infty)$ by $\phi(m,n) = (aLm, Ln)$, where a is a special constant and L is a large number, both to be chosen below.

To each $z \in \mathcal{L}_0$, we associate a random variable $\eta(z)$ such that $\eta(z) = 1$ if a certain "good event" happens near $\phi(z)$ in our original percolation process and $\eta(z) = 0$ otherwise. This procedure generates a 1-dependent, oriented site percolation process with $\eta(z) = 1$ meaning that the site z is open and $\eta(z) = 0$ meaning that the site z is closed. We call this new process the rescaled process.

The choices of the constants and of the "good events" are made in a such a way that

(i) the random variables $\eta(z)$, $z \in \mathcal{L}_0$ are 1-dependent, i.e., if we let $\|(m,n)\|_{\mathcal{L}_0} = (|m|+|n|)/2$ and z_1, \dots, z_m are points with $\|z_i - z_j\|_{\mathcal{L}_0} > 1$ for $i \neq j$ then $\eta(z_1), \dots, \eta(z_m)$ are independent.

- (ii) if L is large then the probability that $\eta(x) = 1$ is close to 1.
- (iii) if percolation occurs in the η -process starting from the origin, then the same thing happens in the original process starting from some point near the origin.

To introduce the "good event" let A be the parallelogram with vertices

$$u_0 = (-.1\alpha L, 0)$$

$$v_0 = (.1\alpha L, 0)$$

$$u_1 = ((1-.05)\alpha L, (1+.05)L)$$

$$v_1 = ((1+.15)\alpha L, (1+.05)L).$$

We associate the sites in \mathcal{L} , with translations of A in the original percolation structure: If we let $v_{m,n} = ((\alpha-4\delta)m, n)$ for $(m,n) \in \mathcal{L}$, then we define the translations of A by

$$A_{m,n} = (v_{m,n} + (-4\delta\alpha, 0)).L + A$$

$$B_{m,n} = (v_{m,n} + (4\delta\alpha, 0)).L - A$$

where $x - A = \{x-y : y \in A\}$. For a picture see Figure 4.1 below.

The "good event" for the site (m,n) happens if there are open paths from top to bottom lying entirely in $A_{m,n}$ and in $B_{m,n}$. If we denote the good event by $SC(L)$ (for sponge crossing) then it is known (see [2], Section 9) that

(4.1) For $p > p_c$, $P_p(SC(L)) \rightarrow 1$ as $L \rightarrow \infty$.

Again by [2], now in Section 10,

(4.2) If $P_p(SC(L)) \geq 1 - 6^{-36}$ then the probability that the η -system percolates is greater than $1/2$.

Let $\varepsilon_0 = 6^{-36}$ and define

$$L_p^*(p) = \inf \{n : P_p(SC(n)) \geq 1 - \varepsilon_0\}.$$

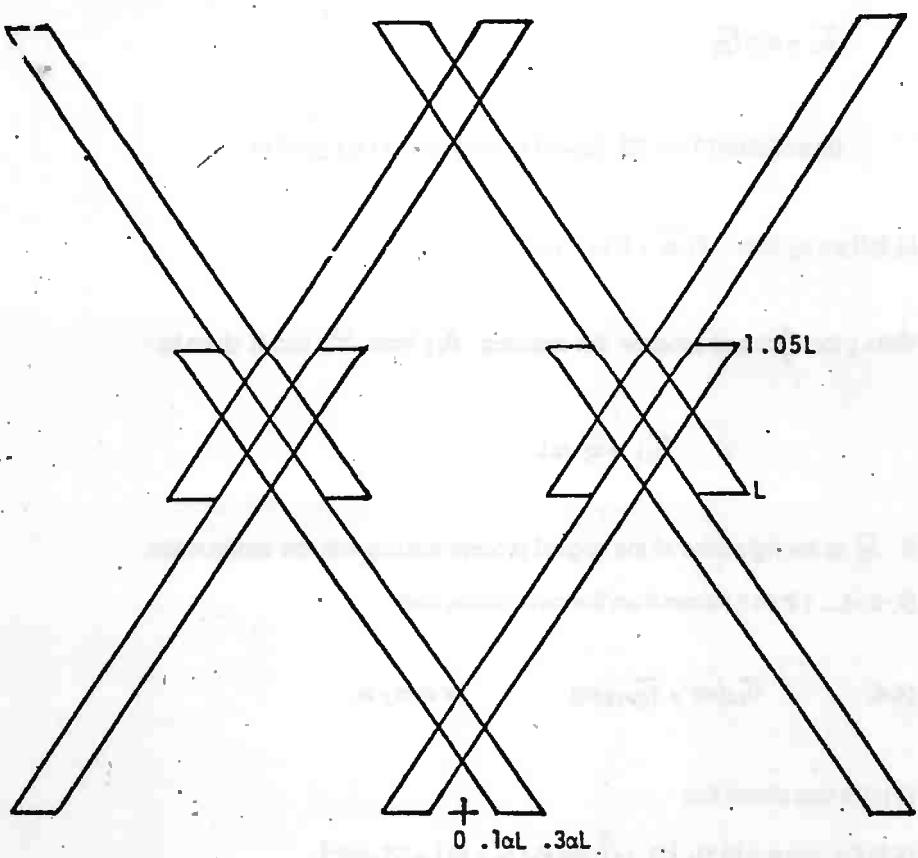


Figure 4.1.

Let

$$\overline{\xi}_m = \{x: (x, m) \in \mathcal{L}_o \text{ and there is an } y \leq 0 \text{ such that } (y, 0) \in \mathcal{L}_o \text{ and } (y, 0) \rightarrow (x, m)\}$$

where $(y, 0) \rightarrow (x, m)$ means there is an open path from $(y, 0)$ to (x, m) on the renormalized lattice. Finally, let

$$\overline{s}_m = \sup \overline{\xi}_m.$$

(2) in Section 11 of [2] applied to our process $\{\eta\}$ gives us

$$(4.3) \text{ If } p > p_c \text{ then } P(\overline{s}_k \leq 0) \leq (1/2)^{k-1}.$$

Write L for $L_\eta^c(p)$ and consider the mapping $\overline{R}_{c,k}$ from \mathcal{L}_o into \mathfrak{R} given by

$$\overline{R}_{c,k} = \overline{s}_k \cdot \alpha \cdot L.$$

If \overline{r}_n is the right edge of the original process starting with the configuration $\{0, -2, -4, \dots\}$ then it follows from the construction that

$$(4.4) \quad \overline{R}_{c,k}(\omega) \leq \overline{r}_{(k+1)L}(\omega) \quad \text{for every } \omega.$$

In [4] it was shown that

$$(4.5) \text{ For any } p \in [0, 1], \lim_{n \rightarrow \infty} \left\{ -\frac{1}{n} \log P_p(\overline{r}_n \leq 0) \right\} = [2L_\eta^c(p)]^{-1}.$$

With these results in hand we can get

(4.6) For $p > p_c$, $L_\varepsilon^e(p) \geq 2 \log 2 L_\varepsilon(p)$.

Proof: By using (4.3) and (4.4) it is not difficult to see that

$$P_p(\bar{r}_{(k+1)L} \leq 0) \leq P_p(\bar{R}_{kL} \leq 0) \leq P_p(\bar{s}_k \leq 0) \leq (1/2)^{k-1}.$$

so that

$$\frac{1}{(k+1)L} \log P_p(\bar{r}_{(k+1)L} \leq 0) \geq \frac{\log 2}{L} \frac{k-1}{k+1}.$$

By letting $k \uparrow \infty$ and recalling (4.5) we get that

$$\frac{[2L_\varepsilon(p)]^{-1}}{L_\varepsilon^e(p)} \geq \frac{\log 2}{L_\varepsilon(p)} \quad |||$$

5. Proofs of (1.7) and (1.10)

Throughout this section we will write L for $L_\varepsilon^e(p)$.

(5.1) If $p > p_c$ then

$$(1/2) P_p(\xi_L^0 = \emptyset) \leq P_p(\Omega_0) \leq P_p(\xi_L^0 = \emptyset).$$

Proof: The right hand inequality is obvious. To prove the other one we note two things:

First, that the event $W = \{ \text{the rescaled process percolates} \}$ has probability $\geq (1/2)$ by (4.2).

Second, in order to have a path from zero to infinity on the event W it suffices that the process starting with configuration $\{0\}$ survives until time L , since if ξ_L^0 survives until time L

then it crosses out at least one of the paths involved in the event $A_{00} \cap B_{00}$ (see Figure 5.1).

Using Harris-FKG inequality (see [8]) now gives

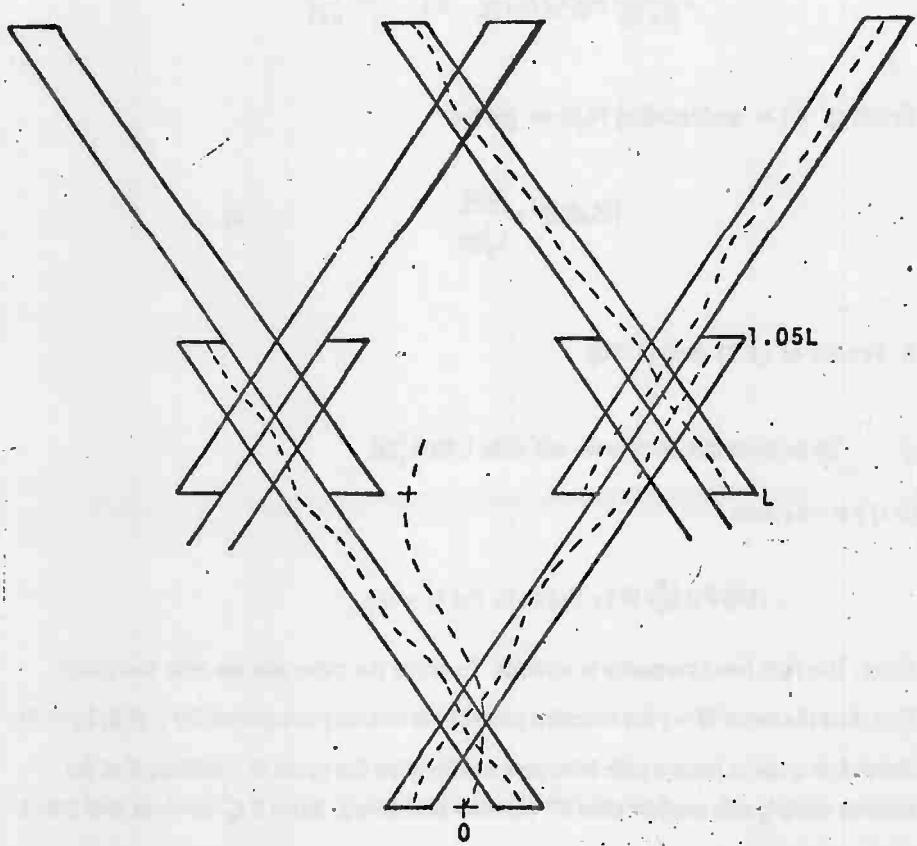


Figure 5.1.

$$P_p(\Omega_0) \geq P_p(\{\xi_L^0 = \emptyset\} \cap W) \geq P_p(\xi_L^0 = \emptyset)(1/2)$$

III

and the proof is complete.

(5.2) Corollary: $\beta \leq v_r/\delta_r$.

Proof: We have that

$$P_p(\xi_L^0 = \emptyset) \geq P_{p_c}(\xi_L^0 = \emptyset) \approx (L)^{-1/\delta_r} \approx (p-p_c)v_r/\delta_r$$

and from the previous proposition it follows that

$$P_p(\xi_L^0 = \emptyset) \asymp P_p(\Omega_0) \approx (p-p_c)^\beta.$$

III

(5.3) For $p > p_c$ and $|x| \leq 1.5\alpha L$ there are constants c and $C \in (0, \infty)$ so that

$$c(P_p(\Omega_0))^2 \leq P_p(x \in \xi_{2L}^0) \leq C(P_p(\Omega_0))^2.$$

Proof: Note that if for convenience we choose \mathbf{t} to be even then

$$P_p(x \in \xi_L^0) = P_p(\xi_{L/2}^0 = \emptyset, \xi_{L/2}^{(L/2, U/2)}(x) = 1)$$

$$= P_p(\xi_{L/2}^0 = \emptyset) P_p(\xi_{L/2}^{(L/2, U/2)}(x) = 1 \mid \xi_{L/2}^0 = \emptyset) \leq P_p(\xi_{L/2}^0 = \emptyset) P_p(\xi_{L/2}^0(x) = 1).$$

Since the probability of a path from $Zx\{0\}$ to $(x, U/2)$ is the same as that of a path from $(x, 0)$ to $Zx\{1\}$ (see [2], Section 8),

$$P_p(\xi_{L/2}^Z(x) = 1) = P_p(\xi_{L/2}^{(x)} = \emptyset) = P_p(\xi_{L/2}^0 = \emptyset).$$

Combining the last two equations gives

$$P_p(x \in \xi_L^0) \leq \{P_p(\xi_{L/2}^0 = \emptyset)\}^2.$$

By choosing $t = 2L$ and recalling (5.1) one can get

$$P_p(x \in \xi_{2L}^0) \leq \{P_p(\Omega_0)/2\}^2.$$

This proves the right hand inequality. For the other half let

$F = \{ \text{The sites } (0,0), (1,1), (-1,1) \text{ are open in the rescaled process} \}$

$$G = \{ \xi_L^0 = \emptyset \}$$

$$H = \{ x \in \xi_{2L}^{(Z,L)} \}.$$

We claim that if $|x| \leq 1.5 \alpha L$ then on $F \cap G \cap H$, $x \in \xi_{2L}^0$. To see this look at Figure 5.2 and

notice that

- (i) when F occurs there are paths inside each one of the six parallelograms;
- (ii) when G occurs the origin is connected to at least one of the open paths in A_{000} and B_{000} ;
- (iii) when H occurs one can get from one of parallelograms to the point $(x, 2L)$.

Combining the observations above

$$P_p(x \in \xi_{2L}^0) \geq P_p(F \cap G \cap H) \geq P_p(F)P_p(G)P_p(H)$$

by the Harris-FKG inequality since all the three events are increasing. Since each rescaled site is closed with probability ε_0

$$P_p(F) \geq 1 - 3\varepsilon_0.$$

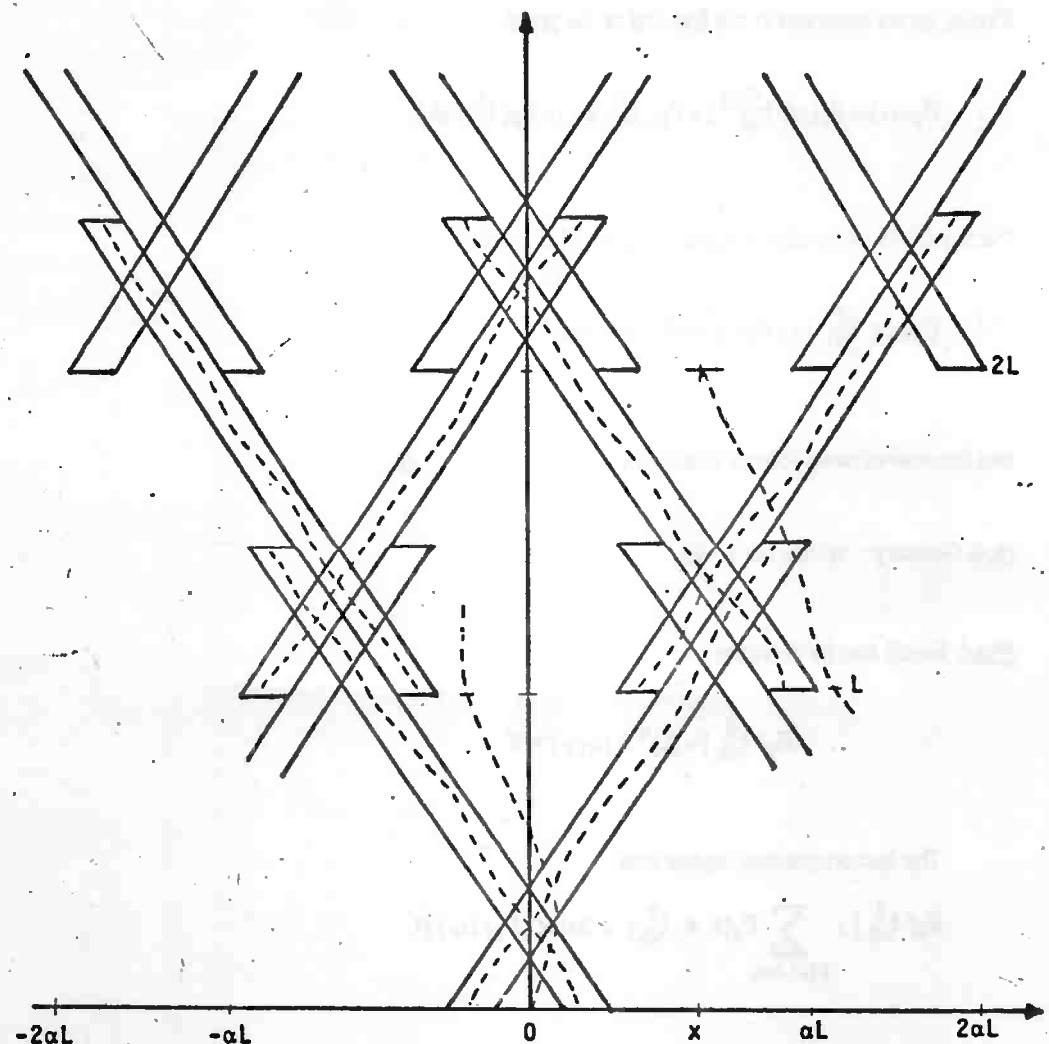


Figure 5.2.

By definition

$$P_p(G) = P_p(\xi_L^0 = \emptyset).$$

Finally, as we observed in the first half of the proof

$$P_p(H) = P_p(x \in \xi_{2L}^{(Z,L)}) = P_p(\xi_L^x = \emptyset) = P_p(\xi_L^0 = \emptyset).$$

Putting the last four observations together it follows that

$$P_p(x \in \xi_{2L}^0) \geq P_p(\xi_L^0 = \emptyset)^2(1-3\varepsilon_0).$$

and the desired result follows from (5.1). |||

(5.4) Corollary: $v_l \cdot \eta \geq v_l - \sigma - 2\beta.$

Proof: Recall that by definition

$$E_p|\xi_{2L}^0| \approx (L)^\eta \approx (p-p_c)^{-v_l \eta}.$$

The last proposition implies that

$$E_p|\xi_{2L}^0| \geq \sum_{|x| \leq 1.5aL} P_p(x \in \xi_{2L}^0) \geq 3\alpha L c \{P_p(\Omega_0)\}^2$$

which implies the result stated in the corollary. |||

6. Bibliography

1. Cardy, J.L. & Sugar, R.L., Directed Percolation and Reggeon Field Theory, *J. Phys. A* 13, L423-427, (1980).
2. Durrett, R., Oriented Percolation in Two Dimensions, *Ann. of Probab.* 12, 999-1040, (1984).
3. Durrett, R. & Griffeath, D., Supercritical Contact Processes on \mathbb{Z} , *Ann. of Probab.* 11, 1-15, (1983).
4. Durrett, R. & Schonmann, R.H., Contact Process on a Finite Set II, to appear in *Ann. of Probab.*, (1988).
5. Durrett, R.; Schonmann, R.H. & Tanaka, N.I., Correlation Lengths for Oriented Percolation, in preparation, (1988).
6. Fisher, M.E., Rigorous Inequalities for Critical Point Correlation Exponents, *Phys. Review* 180, 594-600, (1969).
7. Grassberger, P. & De La Torre, A., Reggeon Field Theory (Schlögl's First Model) on a Lattice: Monte Carlo Calculations of Critical Behavior, *Ann. of Phys.* 122, 373-396, (1979).
8. Harris, T., A Lower Bound for the Critical Probability in certain Percolation Processes, *Proc. Camb. Phil. Soc.* 56, 13-20, (1960).

9. Kesten, H., Scaling Relations for 2D-Percolation, *Commun. Math. Phys.* 109(1), 109-156, (1987).
10. Nguyen, B.G., Correlation Length and its Critical Exponents for Percolation Processes, *J. Stat. Phys.* 46, 517-523, (1987).
11. Tasaki, H., Hyperscaling Inequalities for Percolation, *Commun. Math. Phys.*, 113, 49-65, (1987).

RELATÓRIO TÉCNICO
DO
DEPARTAMENTO DE ESTATÍSTICA

TÍTULOS PUBLICADOS EM 1987

8701 - ACHCAR, J.A. & BOLFARINE, H.; Constant Hazard Against a Change-Point Alternative: A Bayesian Approach with Censored Data, São Paulo, IME-USP, 1987, 20p.

8702 - RODRIGUES, J.; Some Results on Restricted Bayes Least Squares Predictors for Finite Populations, São Paulo, IME-USP, 1987, 16p.

8703 - LETTE, J.G., BOLFARINE, H. & RODRIGUES, J.; Exact Expression for the Posterior Mode of a Finite Population Size: Capture-Recapture Sequential Sampling, São Paulo, IME-USP, 1987, 14p.

8704 - RODRIGUES, J., BOLFARINE, H. & LEITE, J.G.; A Bayesian Analysis in Closed Animal Populations from Capture Recapture Experiments with Trap Response, São Paulo, IME-USP, 1987, 21p.

8705 - PAULINO, C.D.M.; Analysis of Categorical Data with Full and Partial Classification: A Survey of the Conditional Maximum Likelihood and Weighted Least Squares Approaches, São Paulo, IME-USP, 1987, 52p.

8706 - CORDEIRO, G.M. & BOLFARINE, H.; Prediction in a Finite Population under a Generalized Linear Model, São Paulo, IME-USP, 1987, 21p.

8707 - RODRIGUES, J. & BOLFARINE, H.; Nonlinear Bayesian Least-Squares Theory and the Inverse Linear Regression, São Paulo, IME-USP, 1987, 15p.

8708 - RODRIGUES, J. & BOLFARINE, H.; A Note on Bayesian Least-Squares Estimators of Time-Varying Regression Coefficients, São Paulo, IME-USP, 1987, 11p.

8709 - ACHCAR, J.A., BOLFARINE, H. & RODRIGUES, J.; Inverse Gaussian Distribution: A Bayesian Approach, São Paulo, IME-USP, 1987, 20p.

8710 - CORDEIRO, G.M. & PAULA, G.A.; Improved Likelihood Ratio Statistics for Exponential Family Nonlinear Models, São Paulo, IME-USP, 1987, 26p.

8711 - SINGER, J.M.; PERES, C.A. & HARLE, C.E.; On the Hardy - Weinberg Equilibrium in Generalized ABO Systems, São Paulo, IME-USP, 1987, 16p.

8712 - BOLFARINE, H. & RODRIGUES, J.; A Review and Some Extensions on Distribution Free Bayesian Approaches for Estimation and Prediction, São Paulo, IME-USP, 1987, 19p.

8713 - RODRIGUES, J.; BOLFARINE, H. & LEITE, J.G.; A Simple Nonparametric Bayes Solution to the Estimation of the Size of a Closed Animal Population, São Paulo, IME-USP, 1987, 11p.

8714 - BUENO, V.C.; Generalizing Importance of Components for Multistate Monotone Systems, São Paulo, IME-USP, 1987, 12p.

8801 - PEREIRA, C.A.B. & WECHSLER, S.; On the Concept of P-value, São Paulo, IME-USP, 1988, 22p.

8802 - ZACKS, S., PEREIRA, C.A.B. & LEITE, J.G.; Bayes Sequential Estimation of the Size of a Finite Population, São Paulo, IME-USP, 1988, 23p.

8803 - BOLFARINE, H.; Finite Population Prediction Under Dynamic Generalized Linear Models, São Paulo, IME-USP, 1988, 21p.

8804 - BOLFARINE, H.; Minimax Prediction in Finite Populations, São Paulo, IME-USP, 1988, 18p.

8805 - SINGER, J.M. & ANDRADE, D.F.; On the Choice of Appropriate Error Terms for Testing the General Linear Hypothesis in Profile Analysis, São Paulo, IME-USP, 1988, 23p.

8806 - DACHS, J.N.W. & PAULA, G.A.; Testing for Ordered Rate Ratios in Follow-up Studies with Incidence Density Data, São Paulo, IME-USP, 1988, 18p.

8807 - CORDEIRO, G.M. & PAULA, G.A.; Estimation, Significance Tests and Diagnostic Methods for the Non-Exponential Family Nonlinear Models, São Paulo, IME-USP, 1988, 29p.

8808 - RODRIGUES, J. & ELIAN, S.N.; The Coordinate - Free Estimation in Finite Population Sampling, São Paulo, IME-USP, 1988, 5p.

8809 - BUENO, V.C. & CUADRADO, R.Z.B.; On the Importance of Components for Continuous Structures, São Paulo, IME-USP, 1988, 14p.

8810 - ACHCAR, J.A., BOLFARINE, H & PERICCHI, L.R.; Some Applications of Bayesian Methods in Analysis of Life Data, São Paulo, IME-USP, 1988, 30p.

8811 - RODRIGUES, J.; A Bayesian Analysis of Capture-Recapture Experiments for a Closed Animal Population, São Paulo, IME-USP, 1988, 10p.

8812 - FERRARI, P.A.; Ergodicity for Spin Systems, São Paulo, IME-USP, 1988, 25p.

8813 - FERRARI, P.A. & MAURO, E.S.R.; A Method to Combine Pseudo-Random Number Generators Using Xor, São Paulo, IME-USP, 1988, 10p.

8814 - BOLFARINE, H. & RODRIGUES, J.; Finite Population Prediction Under a Linear Functional Superpopulation Model a Bayesian Perspective, São Paulo, IME-USP, 1988, 22p.

8815 - RODRIGUES, J. & BOLFARINE, H.; A Note on Asymptotically Unbiased Designs in Survey Sampling, São Paulo, IME-USP, 1988, 6p.

8816 - BUENO, V.C.; Bounds for the Availability in a Fixed Time Interval for Continuous Structures Functions, São Paulo, IME-USP, 1988, 22 p.

8817 - TOLOI, C.M.C. & MORETTIN, P.A.; Spectral Estimation for Time Series with Amplitude Modulated Observations: A Review, São Paulo, IME-USP, 1988, 16p.

8818 - CHAYES, J.T., CHAYES, L., GRIMMETT, G.R., KESTEN, H. & SCHONMANN, R.H.; The Correlation Length for the High Density Phase. of Bernoulli Percolation, São Paulo, IME-USP, 1988, 46p.

8819 - DURRETT, R., SCHONMANN, R.H. & TANAKA, N.I.; The Contact Process on a Finite Set, III: The Critical Case, São Paulo, IME-USP, 1988, 31p.

8820 - DURRET, R., SCHONMANN, R.H. & TANAKA, N.I.; Correlation Lengths for Oriented Percolation, São Paulo, IME-USP, 1988, 18p.

8821 - BRICMONT, J.; KESTEN, H.; LEBOWITZ, J.L. & SCHONMANN, R.H.; A Note on the Ising Model in High Dimensions, São Paulo, IME-USP, 1988, 21p.

8822 - KESTEN, H. & SCHONMANN, R.H.; Behavior in Large Dimensions of the Potts and Heisenberg Models, São Paulo, IME-USP, 1988,