





1. Introduction

We begin by describing the model. Although it can be defined for any dimension,
we will restrict ourselves to the two dimensional case. Let &£ ={(m.n) €22

m+niseven,n 2 0}. From each'z € £ thereis an oriented arctoz + (1,1) and to z
+ (-1,1). Each arc, also called a bond, is independently open with probability p and closed
~ with probability 1. V_Ie think of an open bond as allowing us to go along it in the direction

of orientation. With this in mind we define

X- y {y canbereachad from x ) if there is an open path from x to y, that is, there
is a sequence X = X(.X1.....Xn = y of points in £ such thatfor each k < m the arc from %-4
to x is open. A ) .

Co=( the cluster containing the origin (0,0) ) = { X: 0 x}. o
0., ={|Col = =} =" percolation occurs ", ’

Here JA] denotes the cardinality of A.

. The event 0., has zero probability when p is small and positive probability when p
", is close 10 §. As the value of p ina*easeé. the system undergoes a "phase transition” at pe=

: inf{ p: Pp( Q,,) > 0} (see [2]). Here, we study the critical exponents associated with the

t

: phase transition. To define these quantities we start with B, the exponent associated with
the percolation probability. Intuitively p measures the rate at which Pp( 0, ) decreases to

zero as p approaches pg. We expect that

Pp(0)~C (ppe)b.

. where ~ means



. i Pl
P Clp-pe)f

But following common practice we use the weaker definition

AN .
™ Pp(0 )= (ppe) b
where ~ means
im 1ogPp(0) "
Tow . Pioe Bloglp-pe)
A I H S Y t 1

The second critical exponent y concerns the mean cluster size Epl Col.

Epl Col »(pc-p)Y as p1 pe,

" To extend the definition to the supercritical case we restrict to the event that the duster is
' firte and then define ¥ by '

= EptICol.IC0l <o}~ (ppe)™ as pipe.

" The definitions above are analogous 1o the ones in the theory of ordinary
(unoriented ) percolation. The next quantity has no analogue in that thecry. Let

-~

" By ={x:thereisay < 0 sothat (y,0) = (xn)]. '

Inwords, &, is the state at time n starting from £ ={ 0,-2-4,... }. Let

in = sup En.



It is known (see [2), pp. 1005-1006) that

?‘14 alp) almostswely asn-—ro
and that

—

pe=inf{ p:a(p) > 0}.

3 We define the critiéal exponent © associated with the “edge speed” a(p) by

a(p) = (pvc)? . aspilpe.

" The quantities we have defined so far concern the behavior of the system as p

approaches the critical probability p,, . The next two concern the behavior at the critical
value p... Let

&0 = {x:(0.0) = (xn)}.

We define the critical exponent for the survival probability by
Pa (;2 D)~ n'"&r'

where the subsaript o indicates we are considering p=pe. The r here‘.is for radius’

(of the cluster) and is included to make our definition match the one for ordinary
percb!ation (see [9)).

The second quantity at criticality is related to the mean cluster size as function of
the time n: ‘

Egqlt| ~nn 0sns<t.
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While the definition of & is analogous to the one for ordinary percolation, the definition of 5
is different from its counterpart:

P (0-x)w X240 a5 |xjoe
. .

where [x] = max({ | x1],| x2] ) if x = (x1,x2). To relate the two definitions observe that

-~

Y Pe0-x) » -0,
xbd=n

Hence our 1 is like 1-1".
Last but not least we come to the correlation lengths. We use the definitions
introduced and explained in the companion paper [5). If we let 1A=inf{n: g:. ©} and

write 10 when A = {0} then the parallel correlation length Ly(p) can be defined in the
* subritical case by

[}

[Li(p) = m [(1in)log Py( 0> n)],
o N-e
The associated critical exponent vy is defined by
Latp)= (pcp) e, e
Let r: denote the rightmost site in Q‘I ie.
' m=sply (= 5 =0)

and let

RO= sup r.
n



The perpendicular carelation length Ly(p) for the subritical case is defined by

[Lyp) Y = im [ (-1in)log Pp{ RO > )]

2 )
and v, by '
' Lu(p) »( Pe-PY VL

For the supercritical case there are also two carrelation lengths. First, the parallel
one. Ly(p) is defined by

[Li(py ! = im [ (-1/n)log Pp(n <10 <o) -
n—e
and V' by

Li(p) = (p-pec ). .

{ The prime on- vp is to indicate that we are now looking at the limit asp { pc.)
Extrapolating from the first three definitions the reader might expect the last one o |
be

[Lyp) 1= im [ (-1im) log Fp( RV n, 10< )],
N—n

{ For the results we will prove below it is convenient touse =

[L3P) I = im [ (-1/n) log Pp( 162000 < 00) ]
e

instead, This is supported by (1.9) in [5] which together with Lemma 3 in [4] gives us
Lip) < Ll(p) < 2 Lu{p). The associated critical exponent v’ is defined by

Ly(p) = (p-pc)Ve.
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Having introduced the critical exponents we turn now 1o the results. Scaling thecry
pedicts that

(1.9) Y=w'+vy' -2

(1.2) G=v'-v,'

i’

(1.3 Bevilh

€

(1.4) Y=(n+1)v.
The first three equalities can be found in [7], while the last one is in [1). Those papers use
the notation of Reggeon Field Theory so to get the results above one has to change .
variables:

&=118 =~ =y vi=(Z2)v x=v.

The nain purpose of this work is to prove some inequalities related to (1.1)1.4). In
Section 2 we show that

=z

(5 ElCol<10LMILY)  when Lip). Lulp)x 1

or in terms of critical exponents,
(1.6) YsVa+V).

Comparing this with (1.1) shows -28 is missing from the right hand side.



In Section 3 we show that
(7 Ly(p) < a(p) Le(p)
which implies .
.. {1.8) . oV -vy'.

In Section 4 we will introduce yet another definition of the parallel correlation
length in the supercritical case: L:(p) = the smallest length for which the renormalized

bond construction of [3] works. This definition is analogous to the definition in terms of
sponge crossings for ordinary percolation (see [9]). We would like to show that this ‘
definition is (up to constants) the same as Ly(p) but_all we can showis -

(19 L) > 2log2 Ly(p)
In Section 5 we use this definition to prove that if L = L:(p)

(1.10) Pp( s, )2 (1/2) Py E=0).
]
The last inequality says that percolation is almost the same as surviving up to the -
corelation length. The proof of Lemma 4.1 in [11] alsb works in this case to show (1.10)
when we take L = 4d Ly(p)llogLa(p)]. In fact the result in [11] is more general in the sense
that it is true for any finite dimension d. In terms of cxi?ical exponents (1.10) says -

(1.11) st:l&.

An extension of the proof of (1.10) gives



(1.12) Pp(xe &3 ) X [Ppl0,) ]2 for x) < 1.5a(p) L.

where X means the ratio of these quantities is bounded above and away from 0 by
constants independent of p, and again we have written L for L:(p). If we define ' by

Epltoul» [LI' » (p-pe MM

- { ‘yusting here that quantities at the correlation length are, up to constants, the same as at
pe) then (1.12) leads to

"(1.13) w2 v -0 25.
The fast result is one half of
(114 IN=v-0-28

a relationship which follows from '(1.1), (1.2) and (1.4).

Finally, we have

(1.15) ys(n+)ve, 1

If the reader remembers 1= 1- 1)’ then he will recognize this as Fisher's inequality
'(see (6]). If one defines the connectivity radius as the random variable Ry whose
Wm is given by
2 Ppl(0.0)-(xn))
Pp(Ry=n) = X EpiCol
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and defines exponents w by
{Ep(Re)k & = (pe-p )Y

then one can use ideas of [10] to show
lim V%=Vt
ke
and )
Yyz(nehv, . y
No new ideas are needed so the proof is omitted. .
2. Scaling inequality for the subcritical process 5
' :In this section we will prove
(21) Forp<pcand Li(p) =1, Epl Col< 10 Lu(p) Li(p).

Thls relanonshlp is natural it we notice that Ly(p) and Ly(p) give the helght and width of a
typlcal cluster while | Co | gives its volume. To see where the missing 213 in the associated -
exponent inequality (1.6) should come from lock at (1.12).

Proof: From the definitions of the correlation lengths we have that

Pp( (0.0}~ (x.n}) < min { exp(- /L (p)), exp(- [XILo(PN }.

) " Set c=L(PVLeip). Let A = {(x,n) :Ij<cn} where eip(- n/Ly(p))
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s exp(- [XWL1(p)) and B = AS N | (x.n) :n20} where the opposite inequality holds. Then

\\Epl Col=X 2 Pp((o-o)"'(x-n))'Epp((O.o)"("-n» +§Pp«o.0)-»(x.n» :
. e &

< Y (2fen}+1)exp(-nLy(p)) + SlcIxllexp{-IxiL 1(p))
n X

where [a] is the largest integer < a. Using the trivial inequality

7/

-’

Y ketk < J'(x+1)e'°xdx =a2+gl
* et °

w‘e see that t'he expression above is
142 {L:(p)}zfﬁ(p) )+ Lu(p) + 2 {L.L&P)}z“l-.x.(p))
< 1OLGLE  when Lip)Lep)at. i
(2.2) Corollary: y<sw+vy. ‘
3. One scaling inequality for the edge speed
We begin with some definitions. Set

Iy = inf &) inf @ = 4o

r:-suptz ' SUP J m e



Gn={ly>-(1+8)a(p) n. 1} < (1+8)a(p)n}

" where §> 0. Let

Ao {y: for some x € A, (xmio(y.n) |

Hym | 14800 148000 < =

From the definitions above it should be clear that

N -
P(n<tP<w)2P(§=0,Gn &~ desout)

2 P& =@, Gn) P( Ha),

In [2) it was shown that

| P(Gn|§°,a®)—o 1 as i,

~ sowe have
' - DY =0,Gn)— P(0) >3,

On the other hand
L1og P( Hn)— -a(p)1+80 Li(p)

and since & is arbitrary it follows that

“ULe(p) > -ap) Li(p).

or reamanging
(31) L1(P) < (P Lu(p)-

12
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In terri_\s of critical exponents, we have obtained
(32) 6s< V-V,
4.Renormalized Bond Construction

:‘ ' . The first thing to do is to describe a construction due to Durrett and Griffeath [3]. We

tulow the version in [2]. Let G be the graph with vertices in £, = {(m.n): m+n is even, n > 0}

- and with oriented bonds connecting each (mn) € fo to(m+1,n+1) and to (m-1,n+1).

Consider the “renormalized lattice™ £, to be mapped into the upper half plane R x [0,)
by ®(m.n) = (aLm,Ln), where a is a special constant and L isa large number, both to be
chosen below.
_ Toeachze £, we associate a random variable 1(z) such tﬁat N(z) =1 if a certain
“good event” h‘appens near ¢(z) in our original percolation process and n(z) = 0 other'wise.
. This'pr_'ocedure generates a 1-dependent, oriented site percolation process with n{z) = 1
meaning that the site z is open and 1\(z) =0 meaning that the site z is closed. We call this
new process the rescaled process. '
. Tho choices c. the constants and of the "good events" are made in a such a way
that

-

(i) the réndom variables 1(z), z€ £, are 1-dependent, i.e., if we let || (m.n) I =
(Im[+]n])f2 and zi,....3n &re points with I1z-gllg, > 1 for < then n(z1).....n(zm) are
independent.

(ii) it Lis large then the probability that n(x) =1 is close to 1.

(i) if percolation ocewrs in the n-process starting from the origin, then the same
thing happens in the ariginal process starting from some point near the origin.

-
3
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To introduce the "good event” let A be the parallelogram with vertices

ug={-.1aL.,0) ) vo=(.1aL,0)
ug = ((1-05)al,(1+.05)L) vy = ((1+.15)aL,{1+.05)L).
We associate the sites in £, with translations of A in the original percolation structure: If

we let v n = ((@-45)m,n) for (m,n) €5, then we define the translations of A by

Ann= (Vi * (-450,0).L + A
Bm,n=(vmn + (450,0)).L-A

where x-A={xy:ye A}.For apicture see Figure 4.1 below.

The "good event" for the site (m,n) happens if there are open paths from top to
bottom lying entirely in Ampn and in By . If we denote the good event by SC(L) (for spongé
crossing) then it is known (see [2], Section 9) that

(4.1)Forp>pe, Pp( SC(L))~ 1 as Lo,

Again by [2], now in Section 10,

. ' . /
(4.2) 1 Py{ SC(L) ) > 1- 6-36 then the probability that the n-system percolates is greater than
2. '
Let = 6-38 and define

Ly(p) =inf { n: Pp( SC(n) )  1-ea}.



e

0 .Jat .3abl

Fiéure 4.1.
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Let .
En = {x: (xm) € %, andthereis an y < O such that (y,0) € £, and

(Y-o) -"(x'm) '

Mae (v.0)~(x.m) means there is an open path from (y.0) 1o (x,m) on the renormalized

lattice. Finally, let
smo=supkn.
{2) in Section 11 of [2] applied to our process { 1} } gives-us
(4.3)p>pe then  P( §.s o )'s (U2t

Write L for L:(p) and consider the mapping Rk from £, into R given by

Bek =5 a.lL.

If ry is the righ-t edge of the original process starting with the conﬁgufaﬁon

P

{0.-2-4,... } then it follows from the construction that o
(4.4) Bek(@) = Frap(®@) for every w.

In [4] it was shown that

(4.5)For any p € 10,1}, fim {-%Iog Pplin < 0)} =[2L(p)!. .
noe

With these results in hand we can get



(46)Forp>pe, Li(p) 2 21092 Li(p).

Proof; By using (4.3) and (4.4) it is not difficult to see that

Pp(ike )L < 0) < Pp(Fek < 0) < Pl 5 < 0) = (112)¢".
so that’ '

ooy log2 k-1
T+l logPp(rs )L <0) 2 BE—EW

Byletting k T = andrecalling (4.5) we get that

2L > 2 S

Litp)

5. Proofs of (1.7) and (1.10)

v Throughout this section we will write L for L:(p).

{5.1)1fp>pe then

(112) Pp( &L= @ ) < Pp( Q) < Pp( & = B ).

Proof: The right ﬁand inequality is obvious. To prove the other one we note two things:

16

~ First, that the event W = { the rescaled process percolates | has probability » (1!2) by (4.2).

Second, in order to have a path from zero to infinity on the event W it suffices that the

process starting with configuration {0} survives until time L, since if !Qo survives until time L

then it crosses out at least one of the paths involved in the event Aggn Bog (see Figwre

~ 8.1). Using Hamris-FKG inequality (see [8]) now gives

e
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Pp( 0e) 2 Pp( 1§ B} AW ) 2 Pp( &) = @) (112)

and the proof is éomplete. : It

(52 Co}otxa-y: B < Vil by,

Proot: We have that

Pp(&l= @) 2 Per(t) = @) » (L ) Wou (ppol¥™s,

and from the previous proposition it follows that

Po(EL =2 ) X Py ) » (prpe)f i

(5.3)For p>peand x| < 1.5aL there are constants ¢ and C € (0,=) so that e

i

o Ppl D) )22 Pp(x €83 ) <C(Pp(0W))2.

Proot; Note that if for convenience we choose t tobe even then

= 0
Pp(xe ﬁo)'Pp( §32=9- i:gm

v2)
(x)=1)

c

0 {2ty 0 0 et :
-Pp( tuzsﬁ)Pp(gt (X)-” tuzsg)x PD(EUZ“G)PP(Q}Z(X)-‘)'

Since the probability of a path from Zx{0] to (x.U2) is the same as that of a path from (x.0) to
Zx{t} (see [2], Section 8),
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Pp(ﬁlz)z(x)-‘l)-Pp(g‘{f;:@)-Pp(gszaﬂ).

Combining the last two equations gives

Pyixe &) { Pyl = @))%

By choosing t = 2L and recalling (5.1) one can get

Pp(x et )< {Ppl ey

This proves the right hand inequality. For the other half let

F = { The sites (0.0), (1.1), (-1,1) are open in the rescaled process }
0
G={ =0}

H={xe t%Y).

We claim that if [x] < 1.5 a L then on FNGNH, x € 5;2,_. To see this look at Figure 5.2 and

nofice that

(i) when F cccurs there are paths inside each one of the six parallelograms;
(ii) when G occurs the origin is cornected to at least one of the open paths in Aggand Boo;

(ifiy when H occurs one can get from one of parallelograms to the point-(x,2L).

e

Combining the observations above
Pp(x€ &3y )2 PpFNGAH) 2 Pp(F Pp( G )Pp( H)

by the Harris-FKG inequality since all the three events are increasing. Since each rescaled

site is closed with probability €

Pp(F ) = 1-3c0.



..........



By definition
Py G)=Py(t) =),

Finally, as we observed in the first half of the pr_dof

* PyH)=Pyxe EY) =Py a2 )= Pyt < 0).

Putting the last four observations together it follows that

Ppixe £3 )= [Pyt = @) )2(1-3cy).

andthe desiredresult follows from (5.1). . i
(5.4) Corollary: vy’ 0 2 vy~ 0~-2f.
Proof: Recall that by definition

Bl 8L 7 (ppe ),
The [ast proposition implies that
Epl &3, 1 Z Ppix € &) = 3al.c{Pp(0) 2

P4 1.5

which implies the result statedin the corollary.

e
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