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Abstract 

In this paper we look a~ seven aitical exponents associated with two dimension~ 

aiented percolation. Scaling thecry implies that these quantities satisfy folJ' equalities. 

We prove five related in~qualitites. 
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.1. Introduction 

We begin by desaibing the model. Although it can be defined fer any dimension, 

we wiD restrict · ourselves to the two dimensional case. Let !£ • { (m.n) e z2: 

m+n is even, n ~ o J. From each~ z e !£ there is an criented arc to z + (1, 1) and to z . . . 

2 

+ (-1,1). Each arc, also called a bond, is independently open with probabil~y p and closed 

·-... with probability 1-p. We think of an open bond as allowing us to go along it in the direction 

of _ctientation. With this in mind we define 

X-+ y t y can be reachec! from x) if there is an open path from x toy, that is, there 

is a ~equence x • xo.x1 •..• ,Xm • y of points in !£> such thatfcr each k ~ m the arc from Xk-1 

to Xie is open. 

. Co• ( the cluster containing the origin (0,0) ) • { x: 0 ... x J. 
· 000 .. { ICol • 00 I • • percolation occurs·. 

Here IAI denotes the cardinality of A: 

. The event 000 has zero probability when p is small and positive probability when p 

· ·. is close to 1. As the value of p inaeases, the system undergoes a "phase 1ransition" at Pc• 
; inf! p: Pp( 0..,) > OJ (see [2)). Here, we study the aitical exponents ass_ociated with the 
I 
I 

· phase transition. To define these quantities we start with p, the exponent associated with 

the percolation probability. Intuitively p measures the rate at which Pp( Ooo) deaeases to 

zero as p approaches Pc- We expect that 

where - means 



,1 

/. ,. 

I I ' tim • Pp(Cloo> : I 

------• I. 
!>+Pc C(~c)P 

But f oDowing common practice we use the weaker definition 

.\ 

where ,,, means 

•1.: II 

tim _log_P_p(_O..J_ • I. 
. !>+Pc ~log(P-Pc) 

• 1 

' .,, t, j j: , . ' 
The second aitical exponent y concerns the mean cluster size Epl Co f. 

Epf Col ,,, ( Pc -p)"Y as p T Pc. 

To extend the definition to the supercritical case we restrict to the event that the duster is 

. ' fil~te and then define '( by 

~- Ep{I Co I , I Co I < 00 i • ( P"Pc , .,- as pl Pc. 

The definitions above are analogous to the ones in the theay of ordinary 

,~moriented ) percolation. The next quantity has no analogue in that thea-y. Let .,. 

· · ' ~ -• { x: there is a y s O so that (y ,0) .... (x,n)I. 

In WQ"ds, ~ is the state at time n starting from ij • { o,-2.-4, .•• l. Let 

. ,/ 

3 



·--.. 

It is known (see [2), pp. 1005--1006) that 

-
~➔ a(p) . almost uely as n ➔ oo 

and that 

Pc •Inf{ p: a(p) > 0 l, 

We define the aitical exponent a associated with the ·edge speed" a(p) by 

a(p) "' (P-Pc)O as pl Pc. 

· The quantities we have defined so far concern the behavier of th·e system as p 

approaches the aitical i:robability Pc . ,:t1e next two concern the behavicr at the aitical 

value P.c- Let 

~- f x: (0,0) .... (x,n) }. 

We define the aitical exponent for the Sll'Vival i:robability by 

where the subsaipt a indicates we are considering P.=Pc· The r here is fer radius . 

(of the cluster) and is included to make OU' definition match the one fer ordinary 

percolation (see (91). 

The second qu~tity at aiticality is related to ttle mean cluster size as function of 

the time n: 

.4 
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While the defini1ion 01 ~ Is analogous to the one 1ct ctdinary percolation, the definition 01'11 

· is different from tts counterpart: 

\ Pc:r ( O-+ x) "' lxl2-cki' as lxl -+00 

. \ 

where lxl • max( I x1I,I x2 I) if x·• (x1,X2}, To relate the two definitions observe that 

-l • t 
I Pcr(O-+ x) • n 1-IJ'. 

)C~ 
•, I , . 

• I• 

Hence Oll' 11 is like 1-11·- . 

Last but not least we come to the correlation lengths. We use the definitions 
in1roduced and explained in the companion paper [5). If we let 1"-• inf{ n : ~- 0 J and 

~e iO when A • {01 then the paraffel carelation length L,(p) can be defined in the 

• su~tical ~se by 

( L,(p) tt • fim [ -(1/n) log Pp( 10 > n) J. 
n--

The associated critical exponent v, is defined by 

L,(p)• ( Pc-P)-Y•. 

Let r: denote th~ rigitmost site in ~. i.e •• 

and let 

./ 

O · 0 
rn•SUP~ 

RO D . • sup r11 • 

n 

<-- if~ •0) 



The perpendicular carelation length LJ.(P) fCf the suba'~ical case Is defined by 

and VJ. by 
. . ., 

l LJ.(P) t1 • lim l (•1/n) log Pp( RO > n)] 
n--

For the supercritical case there are also two correlation lengths. First, the parallel 

one. L,(p) is defined by 

and v,• by 

( L,(p) r1 • lim ( (·1/n) log Pp( n < 10 < oo) J 
n-.. 

( The prime on v, is to indicate that we en now looking at the 6mit as p ! Pc• ) 

6 · 

Ex1rapolating from the frst ttr-ee definitions the reader might expect the last. one to ; 

be 

( LJ.(p) t1 • lim [ (·1/n) tog Pp( Fi~> n, tU < .. ) ]. 
n--

i F« the results we will p-ove below it is convenient to use / / 

( L: (p) t 1 • lim [ (·1/n) log Pp( t (·2n,O) < oo)] 

"--

instead. This is support~d by (1.9) in [5] which togeti:ier with Lemma 3 in [4] gives us 

L.dP) ~ L~(p) ~ 2 L.i.(p). The associated critical exponent VJ.° is defined by 



........ 

4. I 
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. Having introduced the aitical exponents we t\n1 now to the results. Scaling theory 

sredicts that 

.\ (1.1) Y • V,' + VJ.° •213 
~ 

(1.2) O•V1'·VJ.1 

:-- ··t~ ; , ' 
[1.3) P•V,'/fJ, 

fl{ .. ' 
(1.4) Y•(f1+1)v,. 

The first three equalities can be found in (7). while the last one is in (1). Those papers use 

the notation of Reggeon Field Theory so to get the results above one has to change . 

variables: 

Y.1 • (z/2) V Q•V. 

f"'t ,! 

The ,nain P',ll)Os& of this wen is· to prove some inequalities related to (1.1 )-(1.4). In 

Section 2 we show that 

- i 
(1.5) Epl Co 1 ~ 10 l,(p)Li(p) when L,(p). lJ.(p) ~ 1 

« in terms of cri1ical exponents, 

~mparing this with (1.1) shows -213 is missing from the right hand side. 



In Section 3 we show that 

which implies 

:... (1.8) 

In Section 4 we will introduce yet another definition of the parallel carelation 

length in the superaitical case: ~(p) • the smalle~t length fer which the rena-malized 

bond construction of (3) waks. This_ definition is analogous to the definition in terms of 

sponge aossings fa ordinary percolation (see (9)). We would like to show that this 

definition is (up to constants) the same as L,(p) but all we can show is 

(1.9) 
' . . 

L
1
(p) :t 2 log2 l,(p). 

In Section ~ we use this definition to prove that if L • L;(p) 

The last inequality says that percolation is almost the same as surviving up to the , 

carelation length. The i:roof of Lemma 4.1 in (11) also works in thi~ case to show (1.10) 

Mien we take L • 4d L,(p)Jlogl1(p)J. In fact the result in (11) is more general in the sense 

that it is true for any finite dimension d. In terms of aitical exponents (1.10) says · 

M extension of the i:roof of (1.10) gives 

8 



(1.12) fer lxl ~ 1.5a(p) L 

where X means the ratio of these quantities is_ bounded above and away from O by 

constants independent of p, and again we have-written L for ~(p). If we define tl' by 

· ( j'Usting here that quantities at the correlation length are, up to constants, the same as at 

Pc) then (1.12) leads to 

Toe last result is one half of 

a relationship which follows fr~m · (1.1 ), (1 .2) and (1.4). 

Finally, we have 

(1.15) y ~ ( 'l +1) v,. 

If the reader remembers 'I• 1- 'l' then he wiQ recognize this as Fisher's inequality 

(see (6)). If one defines the connectivity radius as the random variable R, whose 
. . 

dstribution is given by 

I Pp((O,O)➔ (x.n)) 

· Pp( A,• n > • -=x-=-ep...,.,.IC,....,ol--

9 



and defines exponents Vk by 

theo one can use ideas of [10} to show 

fim\'k ■ V, 
t~ 

and 

y ~ (Tl + 1) v,. 

No new ideas are needed so the J:'(oof is omitted . 

. 2. Scaling inequality for the subaitical process 

. In this section we will J:"OVe 

(2.1) for p < Pc and L.1(P) ~ 1, Epl Co I~ 10 L.1(P) L,(p). 

10 

·,. 

· This relationship is natural if we notice that L,(p) and L.1(P) give the height and width of a ! . ,· . 
1 typical cluster ~ii, I Co I gives Its volume. To see where the missing 21} in the as~ated 

exponent inequality (1.6) should come from loolc at ·(1.12). 

f[QQf: From the definitions of the correlation lengths we have that 

Pp( (0.0) .... (x.n) ) ~ min ( exp(- n/L,(p)), exp(- Jxj/L.1(P)) }. 

Set c • . L.1.(P)IL,(p). Let A • { (x,n) :_ Jxl ~ en } where exp(- n/L,(p)) 



.. 
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. " exp(· lxVL1(P))' and B • AC n { (x,n) : n~o } where the opposite inequality holds. Then 

\ Epl Co I• I I Pp((0,0)-+(x,n)) • l;Pp((0,0)--+ (x.n)) + 2Pp((O,O) .... (x,n)) 
. \ n• A B . 

-s: l;(2[cn]+1)exp(-n/L,(p)) + I1'°1Ixl}exp(-lxVL.1.(p)) 
n X 

where [a] is the largest i~teger" a. Using the trivial inequality 

// .. .. 
2 lce-ek -s: Jcx+1)e-eledx • a·2 + a·1 
k-1 0 

we see that the expression above is 

when L.l(P), l,(p) :t 1. Ill 

(2.2) Caollary: y -s: v, + v.1,. 

3. One scaling inequality for the edge speed 

. · We begin with some definitions. Set 

inf0•-

sup0•-



~- ( I~ :t • (1 +S} o(p) n, r~ ~ (1 +S) a(p) n 1· 

_ · where 6 > 0. Let 

~ . 
~m>. , y: for some x e A. (x,m~ (y ,n) 1 

From tho definition:, ~ve it should be clear that 

::t P( ~ "'0, Gn) P( HnJ. 

In (2) it was shown that 

so we have 
P( ~ "'0, Gn) ➔ P( 0.) > ~. 

' i On the other hand 

and· since 6 is arbi1rary it follows that 

er rearranging 

(3.1) 

· .... ,,., 

12 '. 
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In, terms. of critical expooents, we have obtained 
• • ~ • l • 

(3.2) 0 s V1'· V.i.' • 

-4.Ren'armalized Bond Construction 

• ..._ .-~ · . The first thing to do is t~ desaibe a construction du~ to Durrett and Griffeath 13]. We 

k~ow the versio~ in 12]. Let G ,be the gaph with vertices in~". ((m.n): m+n is even, n :i: OJ 

and with oriented boods connecting each (m.n) e ~" to (m+1,n+1) and to (m-1.n+1) . . 

Cc,nsider the ·renormalized lattice· .!t'4 to be mapped into the upper half plane 9l x (0,00
) 

by «m:n) • (alm,ln), wh·ere · a is a special constant and Lis a large number, both to be 

chosen below. 

To each z e .!t'" we associate a random variable TJ(Z) such that TJ(Z) •1 if a certain 

"good evenr happens near ¢,(Z) in Olr ori;inal percolation process and TJ(Z) • o otherwise. 

, This procedlre generates a 1--dependent. oriented site percolation p-ocess with TJ(Z) • 1 

me.aning that the site z is open and T)(Z) • o meaning that the site z is dosed. We call this 

new p-ocess the rescaled p-ocess'. 

lt?, choices c.: the constants and of the "good events• are made in a such a way 

that 

I 
(i) the random variables 11(z), z e !:£" are 1-dependent, I.e .. if we let II (m.n) !I~ • 

(lml+lnlY2 and z1, ••.• ~ ere points with IIZi-Zjll~ > 1 f<X' i,.j then 11(z1), ... ,11(?m) ere 

independent 

(ii) if Lis large then the p-obability that T)(X) .. , is close to 1. 

(iii) if percolation OCCU'S in the lliX'OCess starting from the origin. then the same 

thing happens in the original jl'OCess starting from some point near the origin. 

( . .. 
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To introduce the •good evenr let A be the parallelogam with vertices 

uo • (·.1al,O) VO• (.1al,O) 

u 1 • ((1·.O5)al,(1 +.O5)L) VI• ((1+.15)QL,(1+.OS)L). 

We associate the sites in~ with translations of A in the criginal percolation structl.r'e: If 

- we .let Vrn,n • ((a-46)m,n) for (m,n) e~4 then we define the 1ranslations ~f A by 

Am,n • (Vm,n + (·4oo,0)).L + A 

Bm,n • (Vm,n + (4oo,0)).L-A 

where x -A• { x-y: ye A }. For a picture see Figtre 4.1 below. 

The •good event• for the site (m,n) happens if there are open paths from top to 

bottom lying entirely in Am,n and in Bm,n, If we denote the good _event by SC(L} (for sponge 

aossing) then it is known (see [2}, Section 9) that 

(4.1) For p > Pc, Pp{ SC(L))--+ 1 

Again by (2), now in Section 10, 

(4.2) If Pp( SC(L)) 21· 5·36then the probability that the JtSystem percolates is geater than 

1/2. 

let ro• 5-38 and define 



• 

Fi_gure 4. 1. 



Let 

~ - { x: (x.m) e !£,, and there is any .c: O such that (y,O) e !£,, and 

(y,O) ➔(x.m) I 

where (y,o,-..cx.m) means there Is an open path from (y,O) to (x,m) on the renctmalized 

lattice. Finally, let 

Sm •SUP~ -. 

(2)· in Section 11 of (2) applied to Oll' i:rocess ( 1l } gives us 

(4.3) If p > Pc then P( SI( s; 0) s; (1/2)':-I." 

Write L fer ~(p) and consider · the mapping ~ from !£., into 9l given by 

If rn is the right edge of the original process starting with the configuration 

{0.-2.-4, ... I then it follows from the conslrUction that 

(4.4) fer every fl>. 

In (41 it was shown that 

(4.5) Fcranyp e (0,1), lim {-¼log Pp(rn .c: O)} •[2L,(p)t1 . . 
n--

With these results in hand we can get 
I 

15 
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(4.6) Fa P.> Pc, L
1
(p) :a: 2 log2 L,(p). 

ftQQI: By using (4.3) and (4.4) ~ is not difficult to.see that 

\ 

: -- Pp( l'(k-t l)L s:: 0 )_ s:: ~p( ~ s:: 0)" Pt( Sk s:: 0)" (1/2)k·1. 

so that' 
1 - ~ k-1 

• (k+1)L logPp( r(k+1)L" 0) ~ L ·k+1 · 

By letting It T - and recal(jng (4.5) we get that 

5. Proofa of (1.7) and (1.10) 

~ Th'ougl:lout this section we will v.rne L f<J" ~(p). 

(<'.1) If p > Pc then 

0 0 
(1/2) Pp( f;i'.• 0 ) " Pp( 0.) s:: Pp( f;i'. ,. 0 ) • 

Ill . 

~: The right hand inequality is obvious. To p-ove the other one we note two thin!r3: 

16 

Frst, that the event W • { the rescaled process percolates J has probability ~ (1/2) by (4.2). 

Second, in a-der to have a path from zero to infinity on the event W it S1Jffices that the 

p-ocess starting with configuration {O} uvives until time L, since if ~o Sl.l'Vives until time L 

then k aosses out at least one of.the paths involved in the event Aoor.Boo (see Figll'e · 

5.1). Using Harris-FKG inequality (see (8j) now gives 



..__ 

Fig~re 5.1. 
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O 0 
Pp( 0.) :t Pp( I ~,. 0 ) n W) ::t Pp( ~ • 0) (1/2) 

and the i:roof is complete. Ill 

.. 

Em21: We have that 

and from the IJ'evious proposition it follows that 

Ill 

(5.3) For p > Pc and lxl fl!. 1.5al there are constants c and C e (0,-) so that 

c( ~p( 0.) )2 ti!. Pp( x E ~) ti!. C ( Pp( 0.) )2. 

Et'2Qf; N,te that if for convenience we choose 1 to be evt:!l then 

0 0 0 (~,1/2) 
Pp(XE ~ )•Pp( Q°fa• 0, t (X) • 1) 

. . 1 ,,. 

Since_ the probability of a path from Zx{O} to (x.V2) is the same as tha~ of a path from (x.O) ~o 

Zl{t} (see [21, Section 8), 



Z {x} 0 
Pp( ~2(x) • 1 ) • Pp( t:,ifa ;oo 0 ) • Pp( ~2 .. 0 ). 

Combining the last two equations gives 

By choosing t • 2L and recalling (5.1) one can get 

This proves the right hand inequality. Fa- the other half let 

F .. ( The sites (0,0), (1, 1 ), (·1, 1) are open in the rescaled process } 

G•gf ;o,0} 

H • I x~ ~~LL) }. 
. . 

We claim that if txl s: 1.5 a L then on FriGnH. x E tt To see this look at Figure 5.2 and 

notico that 

(~ wlien F c-::cl.l's there are paths inside each one of the six parallelog-ams; 

18 

· (il) when G occurs the aigin is connected to at least one of the open paths in Aoo and Boo; . 

(iii) when H occurs one can get from one of parallelog-ams to the point-(x,2L). 

Combining the observations above 
0 

Pp( x e t2L) :i: Pp( FnGnH) :i: Pp( F )Pp( G )Pp( H) 

by the Harris-FKG inequality since all the three events are inaeasing. Since each rescaled 

site is dosed with probability ro 

Pp( F) :i: 1·3ro. 



-ZaL -aL 0 al 

Figure s.z. 
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By definition 
0 

Pp( G ) • Pp( tL ,. 0 ). 

Finally, as we observed in the first haH of the proof 

Putting the last four observations together it follows that 

0 0 . 
Pp( x e ~2L ) :a. I Pp( ~L .. 0 > }2<1-3ro). 

and the desired result follows from (5.1 ). Ill 

(5.4) Ca-ollary: v1' T)' :a. v,•- o-2j3. 

frQQt: Recall that by definition 

The last proposition implies that 

which implies the result stated in the ccrollary. Ill 
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