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Abstract. Nonmonotone projected gradient techniques are considered for the minimization of
differentiable functions on closed convex sets. The classical projected gradient schemes are extended
to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi non-
monotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient
choice of steplength to accelerate the convergence process. In addition to the classical projected gra-
dient nonlinear path, the feasible spectral projected gradient is used as a search direction to avoid
additional trial projections during the one-dimensional search process. Convergence properties and
extensive numerical results are presented.
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1. Introduction. We consider the projected gradient method for the minimiza-
tion of differentiable functions on nonempty closed and convex sets. Over the last few
decades, there have been many different variations of the projected gradient method
that can be viewed as the constrained extensions of the optimal gradient method for
unconstrained minimization. They all have the common property of maintaining fea-
sibility of the iterates by frequently projecting trial steps on the feasible convex set.
This process is in general the most expensive part of any projected gradient method.
Moreover, even if projecting is inexpensive, as in the box-constrained case, the method
is considered to be very slow, as is its analogue, the optimal gradient method (also
known as steepest descent), for unconstrained optimization. On the positive side,
the projected gradient method is quite simple to implement and very effective for
large-scale problems.

This state of affairs motivates us to combine the projected gradient method with
two recently developed ingredients in optimization. First we extend the typical glob-
alization strategies associated with these methods to the nonmonotone line search
schemes developed by Grippo, Lampariello, and Lucidi [17] for Newton’s method.
Second, we propose to associate the spectral steplength, introduced by Barzilai and
Borwein [1] and analyzed by Raydan [26]. This choice of steplength requires little
computational work and greatly speeds up the convergence of gradient methods. In
fact, while the spectral gradient method appears to be a generalized steepest descent
method, it is clear from its derivation that it is related to the quasi-Newton family
of methods through an approximated secant equation. The fundamental difference is
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that it is a two-point method while the steepest descent method is not. The main
idea behind the spectral choice of steplength is that the steepest descent method is
very slow but it can be accelerated by taking, instead of the stepsize that comes from
the minimization of the function along the gradient of the current iteration, the one
that comes from the one-dimensional minimization at the previous step. See Glunt,
Hayden, and Raydan [15] for a relationship with the shifted power method to approx-
imate eigenvalues and eigenvectors and also for an interesting chemistry application.
See also Raydan [27] for a combination of the spectral choice of steplength with non-
monotone line search techniques to solve unconstrained minimization problems. A
successful application of this technique can be found in [5].

Therefore, it is natural and rather easy to transport the spectral gradient idea
with a nonmonotone line search to the projected gradient case in order to speed up
the convergence of the projected gradient method. In particular, in this work we
extend the practical version of Bertsekas [2] that enforces an Armijo-type condition
along the curvilinear projection path. This practical version is based on the original
version proposed by Goldstein [16] and Levitin and Polyak [19]. We also apply the
new ingredients to the feasible continuous projected path that will be properly defined
in section 2.

The convergence properties of the projected gradient method for different choices
of stepsize have been extensively studied. See, e.g., [2, 3, 7, 11, 16, 19, 22, 30]. For an
interesting review of the different convergence results that have been obtained under
different assumptions, see Calamai and Moré [7]. For a complete survey see Dunn [12].

In section 2 of this paper we define the spectral projected gradient algorithms and
prove global convergence results. In section 3 we present numerical experiments. This
set of experiments shows that, in fact, the spectral choice of the steplength repre-
sents considerable progress in relation to constant choices and that the nonmonotone
framework is useful. Some final remarks are presented in section 4. In particular, we
elaborate on the relationship between the spectral gradient method and the quasi-
Newton family of methods.

2. Nonmonotone gradient-projection algorithms. The nonmonotone spec-
tral gradient-projection algorithms introduced in this section apply to problems of the
form

minimize f(z) subject to z € Q,

where 2 is a closed convex set in R™. Throughout this paper we assume that f
is defined and has continuous partial derivatives on an open set that contains €.
Throughout this work || - || denotes the 2-norm of vectors and matrices, although in
some cases it can be replaced by an arbitrary norm.

Given z € R™ we define P(z) as the orthogonal projection on 2. We denote
g(z) = Vf(x). The algorithms start with zo €  and use an integer M > 1, a small
parameter o, > 0, a large parameter amax > min, a sufficient decrease parameter
v € (0,1), and safeguarding parameters 0 < o1 < o9 < 1. Initially, ag € [@min, ¥max)
is arbitrary. Given z; € Q and ag € [Omin, Qmax], Algorithms 2.1 and 2.2 describe
how to obtain x4 and a1 and when to terminate the process.

ALGORITHM 2.1.

Step 1. Detect whether the current point is stationary

If |P(zr — g(zx)) — x| = 0, stop, declaring that zj, is stationary.
Step 2. Backtracking
Step 2.1. Set A «— ay.
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Step 2.2. Set x4 = P(zr — A\g(xg)).
Step 2.3. If

(1) flz4) < max f@r—j) + v(zs — 1, 9(T8)),
0<j< min {k,M—1}

then define Ay = A\, xp41 = T4, Sk = Tht1 — Tk, Yk = 9(Tr+1) — g(xg), and go to
Step 3.
If (1) does not hold, define

(2) Anew € [0’1)\70'2)\],

set A\ «— Apew, and go to Step 2.2.
Step 3.
Compute by, = (sk, yk)-
If b <0, set agt1 = amax; €lse, compute ay, = (s, sk) and

1 = min {@max, Max {@min, ax/br}}.

The one-dimensional search procedure of Algorithm 2.1 (called SPG1 from now
on) takes into account points of the form P(zj — Ag(xy)) for A € (0, o], which, in
general, form a curvilinear path (piecewise linear if € is a polyhedral set). For this
reason, the scalar product (x4 — xx, g(zx)) in the nonmonotone Armijo condition (1)
must be computed for each trial point x;. Moreover, in the SPG1 formulation the
distance between two consecutive trial points could be very small or even null in the
vicinity of corner points of the set 2. In fact the distance between the projections of
two points on the feasible set can be small, even if the points are distant from each
other. Clearly, to evaluate the objective function on two close points represents a bad
use of available information. Of course, proximity of two consecutive trial points can
be computationally detected at the expense of O(n) operations or comparisons.

These observations motivated us to define Algorithm 2.2. This algorithm is also
based on the spectral projected gradient direction P(xy — agg(zr)) — 2k, with oy as

the safeguarded “inverse Rayleigh quotient” {Sk=1:5k=1) (Observe that L s D
(Sk—1,Yk—1) (Sk—1:8Kk—1)

fact a Rayleigh quotient corresponding to the average Hessian matrix fol V2 f(rn_1+
tsi—1)dt.) However, in the case of rejection of the first trial point, the next ones
are computed along the same direction. As a consequence, (xy — xj,g(x))) must
be computed only at the first trial and the projection operation must be performed
only once per iteration. So, Algorithm 2.2, which will be called SPG2 in the rest of
the paper, coincides with SPG1 except at the backtracking step, whose description is
given below.

ALGORITHM 2.2.
Step 2 (Backtracking)
Step 2.1. Compute dy = P(xy — arg(zr)) — . Set A «— 1.
Step 2.2. Set zy = x, + Ady.
Step 2.3. If

(3) flzy) < max F(@r—5) + v\ dk, g(=x)),
0<j< min {k,M—1}

then define \y = A\, xp41 = x4, Sk = Tt1 — Tk, Yk = g(Tr+1) — g(xk), and go to
Step 3.
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If (3) does not hold, define Ay as in (2), set A «— Apew, and go to Step 2.2.

In both algorithms the computation of A, uses one-dimensional quadratic in-
terpolation and it is safeguarded taking A «— A/2 when the minimum of the one-
dimensional quadratic lies outside [0.1,0.9)]. Notice also that the line search condi-
tions (1) and (3) guarantee that the sequence {z} remains in Qp = {z € Q : f(x) <

f(zo)}-

It will be useful in our theoretical analysis to define the scaled projected gradient
gi(x) as

gi(z) = [P(z — tg(x)) — x]

forall z € Q,t > 0. If x is an iterate of SPG1 or SPG2 and t = oy, the scaled projected
gradient is the spectral projected gradient (SPG) that gives the name to our methods.
If t = 1, the scaled projected gradient is the continuous projected gradient whose oo-
norm ||g1(x)]|eo is used for the termination criterion of the algorithms. In fact, the
annihilation of g;(z) is equivalent to the satisfaction of first-order stationary condi-
tions. This property is stated in the following lemma, whose proof is a straightforward
consequence of the convexity of 2.
LEMMA 2.1. For all x € Q, t € (0, max],

(i) {9(x), g¢(2)) < =4 llge(@) 3 < — 52— llge(@)]3-
(ii) The vector gi(Z) vanishes if and only if T is a constrained stationary point.
Now, let us prove that both algorithms are well defined and have the property

that every accumulation point Z is a constrained stationary point, ¢.e., that

(9(Z),x —Z) >0 forall ze€.

The proof of our first theorem relies on Proposition 2.3.3 in Bertsekas [3], which
is related to the Armijo condition along the projection arc. This proposition was
originally shown in [14]. For completeness we include in the next lemma some technical
results from [3] that will be used in our proof.

LEMMA 2.2. (i) For all x € Q and z € R™, the function h : [0,00) — R given by

_ [P(z+s2) — 2|
S

is monotonically nonincreasing.
(ii) For all x € Q there exists s, > 0 such that for all t € [0, s;] it holds that

f(P(z —tg(x))) — f(x) < v(g(x), g:(x))-

Proof. See Lemma 2.3.1 and Theorem 2.3.3 (part (a)) in [3].

THEOREM 2.3. Algorithm SPG1 is well defined, and any accumulation point of
the sequence {xy} that it generates is a constrained stationary point.

Proof. From Lemma 2.2(ii), we have for all A € [0, min{s,, , &min }] that

PP, = Ag(e)) = | max | f(imy) < F(Plo = Aglan))) = £ (@)

forall s >0

< y(g(xr), gr (k).

Therefore, a stepsize satisfying (1) will be found after a finite number of trials,
and Algorithm SPG1 is well defined.

Let £ € Q be an accumulation point of {zx}, and relabel {z;} a subsequence
converging to . We consider two cases.
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Case 1. If inf A\, = 0, then there exists a subsequence {zx} i such that
lim A, = 0.
keK

In that case, from the way g is chosen in (1), there exists an index k sufficiently
large such that for all £ > k, k € K, there exists px, 0 < 01 < pr < 09, for which
Vi = Ai/pr > 0 fails to satisfy condition (1), i.e.,

f(P(zr — Yrg(xr))) > Ogﬁﬁflf@k—j) +v{g(zr), Plzr — Yrg(wr)) — o)

2 o) +v{g(ze), Plar — dglar)) — ox).

Therefore, it follows that

(4) F(P(zr = drg(an))) = f(zr) > V(g(h), gy (28))-

By the mean value theorem we obtain

(B)  f(P(xr —Yrg(zr))) — f(zr) = (9(xk), gy (Tr)) + (9(Ek) — 9(xk), gy, (1)),

where & lies along the line segment connecting xy and P(zp — ¥rg(zg)).
Combining (4) and (5) we obtain for all k¥ € K sufficiently large that

(6) (1 ={9(@k), gy (x)) > (9(xk) — 9(Ek), Gy, (T1))-

Using Lemmas 2.1 and 2.2, we have
1
(e

where «y, is the initial stepsize at iteration k. Combining (6) and (7) and using the
Schwartz inequality, we obtain for k € K sufficiently large

(1-7)

(7) {9(z1), gy, (1)) < lgusn ()3 < *aikl\gak(xk)llz 1 () |2,

9o (@) l12 19w (zr)ll2 < (9(Ek) = 9(2k), gy (x1))

< llg(€r) = g(zn)ll2 lgw (k) l2-

Using that ||gy, (zx)||2 # 0, we have

(1-7)
Qg

(8) 19a (@) ll2 < l9(&k) — g(@n)]l2-

Since ¢ — 0 and zp, — T as k — oo, k € K, then § — T as k — oo, k € K. Taking
a convenient subsequence K C K such that {a} is convergent to & € [Amin, ¥max]s
and taking limits in (8) as k — oo, k € K, we deduce that

195 (Z)[|2 < 0.

Therefore, g5(Z) = 0, and Z is a constrained stationary point.
Case 2. Assume that inf A, > p > 0. Let us suppose by way of contradiction that
Z is not a constrained stationary point. Therefore ||gx(Z)]] > 0 for all A € (0, dmax-
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By continuity and compactness, there exists § > 0 such that ||gx(Z)|| > 6 > 0 for all
A € [p, max]- Using the first part of the proof of the theorem in [17, p. 709], we obtain
a monotonically nonincreasing sequence { f(x;())}. Indeed, let I(k) be an integer such
that k — min{k, M — 1} < (k) < k and

flriwy) = max f(zr—j).
0<j< min {k,M—l}

From (1) it follows that, for & > M — 1 (see [17] for details),
f@iwy) < flmam-1) + ’Y(g(xz(k)—ﬂ,gmwm(fl(k)—1)>~

By continuity, for k > k sufficiently large, ||gx(Zx)|| > §/2. Hence, using Lemma 2.1,
we obtain

762
4amax '

.
f@iw) < f@aw-1)) — rllwumﬂ(xz(;@)A)l@ < f(xiamy-1))

When k — oo, clearly f(xyy)) — —oo, which is a contradiction. In fact, f is a
continuous function and so f(z) converges to f(Z). O

THEOREM 2.4. Algorithm SPG2 is well defined, and any accumulation point of
the sequence {xy} that it generates is a constrained stationary point.

Proof. If xj, is not a constrained stationary point, then by Lemma 2.1

190 (z2) 13 < 0,

(gla).di) = (g(as). g (2) < ——
amax

and the search direction is a descent direction. Hence, a stepsize satisfying (3) will be
found after a finite number of trials, and Algorithm SPG2 is well defined.

Let T € Q be an accumulation point of {zx}, and relabel {x;} a subsequence
converging to . We consider two cases.

Case 1. Assume that inf A\, = 0. Suppose, by contradiction, that Z is not station-
ary. By continuity and compactness, there exists § > 0 such that

 P(e - ag(@) -
<g(x)’ 1P —ag@) —a]

> < =6 forall « € [min, ¥max]-

This implies that

Pz, — ag(zr)) — xg
(9) <g(:1ck), < —=6/2 forall « € [min, Omax]
| P(zk — ag(zk)) — @l
and k large enough on the subsequence that converges to z.
Since inf A\, = 0, there exists a subsequence {z}x such that
lim A\, = 0.
keK
In that case, from the way ) is chosen in (3), there exists an index k sufficiently large

such that for all £ > l_f, k € K, there exists pg, 0 < 01 < pr < o9, for which Ag/pr > 0
fails to satisfy condition (3); i.e.,

A A A
! (xk + p:dk) > max f(@e) 77 g, di) = o) + 72 g(@n), di).
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Hence,

[l + %dk) — faw)
A/ Pk

By the mean value theorem, this relation can be written as

> v(g(xk), di)-

(10) <g(a?k + tkdk),dk> > 7<g(xk),dk) forallke K, k > ];:7

where ty, is a scalar in the interval [0, A /px] that goes to zero as k € K goes to infinity.
Taking a convenient subsequence such that dy/||dg| is convergent to d, and taking
limits in (10), we deduce that (1 —v){g(Z),d) > 0. (In fact, observe that {||dx|}x is
bounded and so tx||dk|| — 0.) Since (1 —~) > 0 and (g(xx),dr) < 0 for all k, then
(9(7),d) = 0.
By continuity and the definition of dj, this implies that for k large enough on that
subsequence we have that

P(ag — apg(zy)) — oy -
<g(mk), |P(xr — arg(xr)) — x| > e

which contradicts (9).

Case 2. Assume that inf A\, > p > 0. Let us suppose by way of contradiction that
Z is not a constrained stationary point. Therefore ||gx(Z)]| > 0 for all A € (0, amax]-
By continuity and compactness, there exists § > 0 such that ||gx(Z)|| > § > 0 for all

A € [p, amax]-
As in the proof of the second case of Theorem 2.3,

flmr)) =  max JACT=)
0<j< min {k,M-1}

is a monotonically nonincreasing sequence. From (3) it follows that, for & > M — 1,
F@iwy) < F@amw-1)) + YN -1(9(@1k)—1)s Gongy -1 (Tire)—1))-

By continuity, for k > k sufficiently large, ||ga, (¥%)|| > §/2. Hence, using Lemma
2.1, we obtain

v6%p
domax

1P
f@uwy) < f@am-1) — P ||gal(k)—1(xl(k)—1)||§ < f(mam)-1) —
max

When k — oo, clearly f(zyy)) — —oo, which is a contradiction. In fact, f is a
continuous function and so f(z) converges to f(Z). O

3. Numerical results. The algorithms SPG1 and SPG2 introduced in the pre-
vious section compute at least one projection on the feasible set {2 per iteration.
Therefore, these algorithms are especially interesting in the case in which this pro-
jection is easy to compute. An important situation in which the projection is trivial
is when €2 is an n-dimensional box, possibly with some infinite bounds. In fact, good
algorithms for box constrained minimization are the essential tool for the develop-
ment of efficient augmented Lagrangian methods for general nonlinear programming
(see [8, 10, 13]). With this in mind, we implemented the spectral projected gradient
algorithms for the case in which €2 is described by bounds on the variables. In order
to assess the reliability of SPG algorithms, we tested them against the well-known
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TABLE 1
Problem sets according to the CUTE classification.

[ Set # [ Objective type [ Problem interest ]

1 other academic
2 other modeling
3 other real application
4 sum of squares academic
5 sum of squares modeling
6 quadratic academic
7 quadratic modeling
8 quadratic real application

package LANCELOT [9] using all the bound constrained problems with more than 50
variables from the CUTE [10] collection. Only problem GRIDGENA was excluded
from our tables because it gives an “exception error” when evaluated at some point
by SPG algorithms. For all the problems with variable dimension, we used the largest
dimension that is admissible without modification of the internal variables of the
“double large” installation of CUTE.

Altogether, we solved 50 problems. The horizontal lines in Tables 2-5 divide
the CUTE problems into 8 classes according to objective function type (quadratic,
sum of squares, other) and problem interest (academic, modeling, real application).
All problems are bound constrained only, twice continuously differentiable, and with
more than 50 variables. The 8 sets, in the order in which they appear in the tables,
are described in Table 1.

In the numerical experiments we used the default options for LANCELOT, i.e.,
exact-second-derivatives-used,
bandsolver-preconditioned-cg-solver-used 5,
exact-cauchy-point-required,
infinity-norm-trust-region-used,

e gradient-tolerance 1.0D-05.

We are deeply concerned with the reproducibility of the numerical results pre-
sented in this paper. For this reason, all the used codes are available by e-mail request
to any of the authors, who are also available to discuss computational details.

All the experiments were run in a SPARCstation Sun Ultra 1, with an Ultra-
SPARC 64-bit processor, 167 MHz clock and 128 MBytes of RAM memory. SPG
codes are in Fortran77 and were compiled with the optimization compiler option -O4.

For the SPG methods we used v = 1074, qumin = 1073%, qunee = 1039, 01 =
0.1, o2 = 0.9, and ag = 1/||g1(z0)|/cc. After running a few problems with M €
{5,10,15}, we decided to use M = 10, as the tests did not show meaningful differences.
To decide when to stop the execution of the algorithms declaring convergence we
used the criterion ||g1(7x)|lc < 1075, We also stopped the execution of SPG when
50,000 iterations or 200,000 function evaluations were completed without achieving
convergence.

To complete the numerical insight into the behavior of SPG methods, we also ran
the projected gradient algorithm (PGA), which turns out to be identical to SPG1,
with the initial choice of steplength aj = 1. In this case we implemented both the
monotone version of PGA, which corresponds to M = 1, and the nonmonotone one
with M = 10. The convergence of the nonmonotone version is a particular case of our
Theorem 2.3. The performance of the nonmonotone version of PGA, which is more
efficient than the monotone version, is reported in Table 2.
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TABLE 2
Performance of nonmonotone (M = 10) projected gradient.

[ Problem [ n [ IT ] FE | GE [ Time | f(z) [ Tg1(@)loo |
BDEXP 5000 | 13065 13066 | 13066 459.99 3.464D—03 | 9.999D—-06
EXPLIN 120 | 30608 | 200001 | 30609 15.08 —7.238D+05 | 7.768D—05
EXPLIN2 120 | 19581 | 126328 | 19582 9.87 —7.245D405 | 8.192D—06
EXPQUAD 120 7899 | 200001 7900 22.06 —3.626D+06 | 3.875D—03
MCCORMCK | 10000 | 16080 47939 | 16081 2755.50 —9.133D+03 | 2.485D—-09
PROBPENL 500 888 10249 889 11.39 3.992D—-07 | 7.2656D—06
QRTQUAD 120 3464 38175 3465 3.76 —3.625D+06 | 5.303D—06
5368 100 2139 12532 2140 317.55 —7.085D+01 | 9.966D—06
HADAMALS 1024 1808 11468 1809 157.88 3.067D+04 | 9.611D—06
CHEBYQAD 50 5287 50893 5288 607.89 5.386D—03 | 9.918D—06
HS110 50 1 2 2 0.00 —9.990D+09 | 0.000D+-00
LINVERSE 1999 | 19563 | 200001 | 19564 1465.91 6.820D+02 | 9.202D—-02
NONSCOMP 10000 3737 25220 3738 559.04 7.632D—13 | 9.933D—-06
QR3DLS 610 | 17272 | 200001 | 17273 735.62 3.0561D—-01 | 3.638D—01
SCONI1LS 1002 | 40237 | 200001 | 40238 1512.18 6.572D+01 | 8.501D—-02
DECONVB 61 6536 35665 6537 10.00 2.713D—-03 | 1.814D—-06
BIGGSB1 1000 | 50001 | 104775 | 50002 190.46 1.896D—-02 | 1.362D—-03
BQPGABIM 50 2222 22640 2223 1.68 —3.790D—-05 | 9.972D—-06
BQPGASIM 50 1247 12394 1248 0.94 —5.520D—-05 | 9.334D—-06
BQPGAUSS 2003 | 13482 | 200001 | 13483 986.07 —1.294D—-01 | 1.037D+-00
CHENHARK 1000 | 50001 | 173351 | 50002 323.09 —2.000D+00 | 5.299D—04
CVXBQP1 10000 1 2 2 0.10 2.250D+06 | 0.000D+-00
HARKERP2 100 100 304 101 0.26 —5.000D—-01 | 0.000D+-00
JNLBRNG1 15625 | 13681 28689 | 13682 3332.51 —1.806D—01 | 5.686D—06

JNLBRNG2 15625 | 21444 | 107760 | 21445 8427.10 —4.150D4-00 | 9.624D—06
JNLBRNGA 15625 | 12298 27172 | 12299 2666.47 —2.685D—01 | 5.388D—06

JNLBRNGB 15625 | 32771 | 200001 | 32772 | 12672.71 —5.569D4-00 | 3.744D4-00
NCVXBQP1 10000 1 2 2 0.10 —1.986D+10 | 0.000D+-00
NCVXBQP2 10000 | 18012 | 200001 | 18013 4053.97 —1.334D+10 | 5.798D—-01

NCVXBQP3 10000 | 15705 | 200001 | 15706 3955.02 —6.559D+4-09 | 2.609D+-00
NOBNDTOR 14884 3649 7300 3650 718.13 —4.405D—-01 | 8.604D—06

OBSTCLAE 15625 5049 11402 5050 1119.07 1.901D+00 | 1.000D—05
OBSTCLAL 15625 2734 6838 2735 634.97 1.901D+00 | 9.986D—06
OBSTCLBL 15625 3669 9084 3670 846.45 7.296D4-00 | 9.995D—06
OBSTCLBM 15625 2941 7634 2942 694.42 7.296D4-00 | 9.983D—-06
OBSTCLBU 15625 3816 9403 3817 880.51 7.296D4-00 | 9.981D—-06
PENTDI 1000 | 50001 | 199995 | 50002 460.38 | —7.500D— 01 | 2.688D—05
TORSION1 14884 4540 9082 4541 890.47 —4.257TD—-01 | 6.673D—06
TORSION2 14884 8704 17294 8705 1703.87 —4.257D—-01 | 6.599D—06
TORSION3 14884 1941 4525 1942 406.85 —1.212D4-00 | 9.957D—06
TORSION4 14884 4273 9062 4274 862.93 —1.212D+-00 | 9.897D—-06
TORSIONS 14884 672 1651 673 144.80 —2.859D+4-00 | 9.813D—06

TORSIONG6 14884 1569 3322 1570 316.06 —2.859D+00 | 9.908D—-06
TORSIONA 14884 4155 8312 4156 953.30 —4.184D—-01 | 8.980D—06
TORSIONB 14884 8274 16417 8275 1899.52 —4.184D—-01 | 8.829D—-06
TORSIONC 14884 1933 4563 1934 476.48 —1.204D+-00 | 9.976D—-06
TORSIOND 14884 4325 9218 4326 1013.10 —1.204D+00 | 9.854D—-06
TORSIONE 14884 688 1695 689 172.87 —2.851D+00 | 9.727D—-06
TORSIONF 14884 1493 3143 1494 349.72 —2.851D4-00 | 9.712D—06
ODNAMUR 11130 | 13222 | 200001 | 13223 5249.00 1.209D+04 | 5.192D+00

The complete performance of LANCELOT on this set of problems is reported in
Table 3. In Tables 4 and 5 we show the behavior of SPG1 and SPG2, respectively.

For LANCELOT, we report the number of outer iterations (or function evalua-
tions) (IT,-FE), gradient evaluations (GE), conjugate gradient (or inner) iterations
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TABLE 3

Performance of LANCELOT.

1205

[ Problem [ n [ITowFE [ GE [IT4#4-CG [ Time | f(z) [ Ngri(@)loe |
BDEXP 5000 10 11 26 3.19 1.964D—-03 | 6.167D—06
EXPLIN 120 13 14 50 0.08 | —7.238D+05 | 5.183D—09
EXPLIN2 120 11 12 24 0.07 | —7.245D+05 | 1.012D—-06
EXPQUAD 120 18 16 52 0.14 | —3.626D+06 | 1.437D—06
MCCORMCK | 10000 7 6 5 4.71 | —9.133D+03 | 5.861D—06
PROBPENL 500 1 2 0 0.17 3.992D—-07 | 3.424D-07
QRTQUAD 120 168 137 187 1.23 | —3.625D+06 | 3.568D—06
S368 100 7 7 11 2.19 | —1.337D+02 | 3.314D—-06
HADAMALS 1024 33 34 5654 157.60 7.444D4-02 | 7.201D—-06
CHEBYQAD 50 65 48 829 5.41 5.386D—03 | 7.844D—06
HS110 50 1 2 0 0.02 | —9.990D+09 | 0.000D+-00
LINVERSE 1999 35 30 2303 77.52 6.810D+02 | 8.407D—-06
NONSCOMP 10000 8 9 9 4.74 3.055D—14 | 9.749D—-09
QR3DLS 610 255 226 25036 434.02 3.818D—08 | 4.051D—-06
SCONI1LS 1002 1604 | 1372 1357 56.51 7.070D—-10 | 8.568D—06
DECONVB 61 17 16 233 0.40 1.236D—-08 | 2.147D—-06
BIGGSB1 1000 501 502 500 6.17 1.500D—-02 | 4.441D—-16
BQPGABIM 50 3 4 10 0.03 | —3.790D—-05 | 6.120D—06
BQPGASIM 50 3 4 9 0.03 | —5.520D—-05 | 5.733D—06
BQPGAUSS 2003 8 9 2345 42.60 | —3.626D—-01 | 4.651D—06
CHENHARK 1000 205 206 484 5.02 | —2.000D+00 | 6.455D—06
CVXBQP1 10000 1 2 1 3.69 2.250D+-06 | 0.000D+-00
HARKERP2 100 1 2 2 0.11 | —5.000D—-01 | 7.514D—13
JNLBRNG1 15625 24 25 1810 217.19 | —1.806D—01 | 4.050D—06
JNLBRNG2 15625 14 15 912 108.93 | —4.150D+00 | 9.133D—07
JNLBRNGA 15625 21 22 1327 155.93 | —2.685D—-01 | 1.191D—-06
JNLBRNGB 15625 10 11 329 42.58 | —6.281D+00 | 2.602D—06
NCVXBQP1 10000 1 2 0 3.27 | —1.986D+10 | 0.000D4-00
NCVXBQP2 10000 3 4 407 6.62 | —1.334D+10 | 5.821D—11
NCVXBQP3 10000 5 6 360 6.67 | —6.558D+09 | 2.915D—06
NOBNDTOR 14884 36 37 790 117.34 | —4.405D—01 | 2.758D—06
OBSTCLAE 15625 4 5 7409 | 1251.08 1.901D+00 | 1.415D—-06
OBSTCLAL 15625 24 25 480 58.05 1.901D+00 | 5.323D—06
OBSTCLBL 15625 18 19 2761 397.58 7.296D4-00 | 1.996D—06
OBSTCLBM 15625 5 6 1377 233.70 7.296D4-00 | 2.243D—-06
OBSTCLBU 15625 19 20 787 112.55 7.296D+4-00 | 1.529D—-06
PENTDI 1000 1 2 0 0.20 | —7.500D—-01 | 0.000D4-00
TORSION1 14884 37 38 793 96.88 | —4.257D—-01 | 1.237D-06
TORSION2 14884 9 10 4339 722.28 | —4.257D—-01 | 4.337D—-06
TORSION3 14884 19 20 241 27.36 | —1.212D+00 | 2.234D—-06
TORSION4 14884 15 16 5639 894.13 | —1.212D400 | 6.469D—-07
TORSIONbS 14884 9 10 72 10.48 | —2.859D+00 | 3.186D—06
TORSIONG6 14884 10 11 4895 579.62 | —2.859D4-00 | 8.124D—-07
TORSIONA 14884 37 38 795 103.70 | —4.184D—-01 | 9.590D—-07
TORSIONB 14884 10 11 4025 722.79 | —4.184D-01 | 1.329D—-06
TORSIONC 14884 19 20 241 29.77 | —1.205D+00 | 2.236D—06
TORSIOND 14884 9 10 9134 | 1369.14 | —1.205D400 | 5.184D—06
TORSIONE 14884 9 10 72 11.25 | —2.851D+00 | 3.201D—-06
TORSIONF 14884 10 11 5008 631.14 | —2.851D+00 | 8.796D—07
ODNAMUR 11130 11 12 26222 | 1416.03 9.237D+403 | 7.966D—06

(IT;,-CG), CPU time in seconds (Time), functional value at the final iterate (f(z)),
and oco-norm of the “continuous projected gradient” at the final iterate (||g1(x)||oo)-
For SPG methods, we report number of iterations (IT), function evaluations (FE), gra-
dient evaluations (GE), CPU time in seconds (Time), best function value found (f(x)),
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TABLE 4
Performance of SPGI.

[ Problem [ n [ IT | FE | GE [ Time | f(z) [ Tor(@)loo |
BDEXP 5000 12 13 13 0.45 2.744D—-03 | 7.896D—06
EXPLIN 120 66 75 67 0.01 | —=7.238D+05 | 3.100D—06
EXPLIN2 120 48 54 49 0.01 | —7.245D+05 | 9.746D—-07
EXPQUAD 120 92 107 93 0.03 | —3.626D+06 | 4.521D—-06
MCCORMCK | 10000 16 17 17 1.78 | —9.133D403 | 4.812D—06
PROBPENL 500 2 7 3 0.01 3.992D-07 | 1.721D—-07
QRTQUAD 120 1693 5242 1694 0.74 | —3.625D+06 | 5.125D—06
S368 100 8 14 9 0.67 | —1.200D4+02 | 1.566D—07
HADAMALS 1024 33 42 34 1.49 3.107D+04 | 4.828D—-08
CHEBYQAD 50 970 1545 971 35.52 5.386D—03 | 9.993D—-06
HS110 50 1 2 2 0.00 | —9.990D+09 | 0.000D+00
LINVERSE 1999 1707 2958 1708 45.42 6.810D+02 | 9.880D—06
NONSCOMP 10000 43 44 44 2.28 3.419D—10 | 7.191D—-06
QR3DLS 610 | 50001 | 106513 | 50002 884.18 2.118D—-04 | 9.835D—03
SCONI1LS 1002 | 50001 75083 | 50002 882.43 1.329D401 | 7.188D—-03
DECONVB 61 1786 2585 1787 1.68 4.440D—-08 | 9.237D—-06
BIGGSB1 1000 6820 11186 6821 23.15 1.621D—-02 | 9.909D—-06
BQPGABIM 50 30 39 31 0.01 | —3.790D—-05 | 8.855D—06
BQPGASIM 50 32 39 33 0.01 | —5.520D—-05 | 9.100D—06
BQPGAUSS 2003 | 50001 86373 | 50002 930.52 | —3.623D—-01 | 1.930D—02
CHENHARK 1000 3563 6113 3564 14.89 | —2.000D+-00 | 9.993D—-06
CVXBQP1 10000 1 2 2 0.10 2.250D4-06 | 0.000D+-00
HARKERP2 100 33 46 34 0.06 | —5.000D—-01 | 0.000D+-00

JNLBRNG1 15625 1335 1897 1336 283.55 | —1.806D—01 | 9.624D—06
JNLBRNG2 15625 1356 2121 1357 296.46 | —4.150D4-00 | 9.738D—06

JNLBRNGA 15625 629 933 630 116.77 | —2.685D—01 | 9.809D—06
JNLBRNGB 15625 8531 13977 8532 | 1635.15 | —6.281D4-00 | 9.903D—06
NCVXBQP1 10000 1 2 2 0.10 | —1.986D+10 | 0.000D+-00
NCVXBQP2 10000 60 83 61 3.47 | —1.334D+10 | 8.219D—-06
NCVXBQP3 10000 112 118 113 5.31 | —6.558D+09 | 6.019D—-06
NOBNDTOR 14884 568 817 569 99.62 | —4.405D—-01 | 9.390D—06
OBSTCLAE 15625 749 1028 750 136.98 1.901D+4-00 | 7.714D—06
OBSTCLAL 15625 290 411 291 53.56 1.901D+00 | 7.261D—-06
OBSTCLBL 15625 354 500 355 65.52 7.296D4-00 | 9.024D—06
OBSTCLBM 15625 249 343 250 45.74 7.296D+00 | 9.139D—-06
OBSTCLBU 15625 325 468 326 60.44 7.296D4-00 | 7.329D—06
PENTDI 1000 12 14 13 0.07 | —7.500D—-01 | 8.523D—07
TORSION1 14884 574 832 575 101.00 | —4.257D—-01 | 9.525D—06
TORSION2 14884 586 862 587 102.79 | —4.257D—-01 | 9.712D—-06
TORSION3 14884 231 350 232 41.47 | —1.212D4-00 | 9.593D—-06
TORSION4 14884 190 259 191 32.66 | —1.212D+00 | 8.681D—06
TORSION5 14884 83 101 84 13.84 | —2.859D4-00 | 9.169D—06
TORSIONG6 14884 82 97 83 13.58 | —2.859D+00 | 7.987D—06
TORSIONA 14884 722 1057 723 147.94 | —4.184D—-01 | 8.590D—06
TORSIONB 14884 527 765 528 107.52 | —4.184D—-01 | 9.475D—06
TORSIONC 14884 190 270 191 38.50 | —1.204D+00 | 9.543D—06
TORSIOND 14884 241 340 242 48.43 | —1.204D4-00 | 9.575D—06
TORSIONE 14884 57 76 58 11.42 | —2.851D+400 | 8.700D—06
TORSIONF 14884 67 85 68 14.16 | —2.851D4-00 | 9.352D—06

ODNAMUR 11130 | 50001 82984 | 50002 | 4187.58 9.250D+03 | 9.690D—02

and oo-norm of the continuous projected gradient at the final iterate (||g1()]co)-
The numerical results of 10 problems deserve special comments:
(1) BDEXP (n = 5,000): LANCELOT obtained f(z) = 1.964 x 1072 in 3.19
seconds, whereas SPG1 and SPG2 got f(x) = 2.744 x 102 in 0.45 seconds.
Since the gradient norm is computed in LANCELOT only after each outer
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TABLE 5
Performance of SPG2.

1207

[ Problem n IT [ FE [ GE | Time | f(z) [ Tor(@)oo |
BDEXP 5000 12 13 13 0.45 2.744D—-03 | 7.896D—06
EXPLIN 120 54 57 55 0.01 —7.238D+05 | 4.482D—06
EXPLIN2 120 56 59 57 0.01 —7.245D4-05 | 5.633D—06
EXPQUAD 120 92 110 93 0.03 —3.626D+06 | 7.644D—06
MCCORMCK | 10000 16 17 17 1.78 —9.133D+03 | 4.812D—06
PROBPENL 500 2 6 3 0.01 3.992D—-07 | 1.022D—-07
QRTQUAD 120 598 1025 599 0.19 —3.624D+06 | 8.049D—06
S368 100 16 19 17 1.15 —1.403D+02 | 1.963D—08
HADAMALS 1024 30 42 31 1.27 3.107D+04 | 2.249D—-07
CHEBYQAD 50 1240 2015 1241 45.73 5.386D—03 | 8.643D—-06
HS110 50 1 2 2 0.00 —9.990D+09 | 0.000D+-00
LINVERSE 1999 1022 1853 1023 26.75 6.810D+02 | 8.206D—06
NONSCOMP 10000 43 44 44 2.22 3.419D—10 | 7.191D—-06
QR3DLS 610 | 50001 | 107915 | 50002 869.25 2.312D—-04 | 1.599D—-02
SCONI1LS 1002 | 50001 76011 | 50002 835.10 1.416D+01 | 1.410D—-02
DECONVB 61 1670 2560 1671 1.38 4.826D—08 | 9.652D—06
BIGGSB1 1000 7571 12496 7572 24.41 1.626D—-02 | 9.999D—06
BQPGABIM 50 24 37 25 0.01 —3.790D—-05 | 8.640D—06
BQPGASIM 50 33 46 34 0.01 —5.520D—-05 | 8.799D—06
BQPGAUSS 2003 | 50001 87102 | 50002 902.26 —3.624D—-01 | 2.488D—-03
CHENHARK 1000 2464 4162 2465 9.60 —2.000D+4-00 | 9.341D—-06
CVXBQP1 10000 1 2 2 0.10 2.250D+4-06 | 2.776D—-17
HARKERP2 100 33 46 34 0.06 —5.000D—-01 | 1.110D-16
JNLBRNG1 15625 1664 2524 1665 349.19 —1.806D—01 | 6.2656D—06
JNLBRNG2 15625 1443 2320 1444 309.22 —4.150D4-00 | 9.665D—06
JNLBRNGA 15625 981 1530 982 180.92 —2.685D—01 | 6.687D—06
JNLBRNGB 15625 | 17014 28077 | 17015 | 3180.14 —6.281D4-00 | 1.000D—05
NCVXBQP1 10000 1 2 2 0.10 —1.986D+10 | 2.776D—17
NCVXBQP2 10000 84 93 85 4.00 —1.334D+10 | 2.956D—06
NCVXBQP3 10000 111 117 112 5.13 —6.558D+4-09 | 2.941D—-06
NOBNDTOR 14884 566 834 567 98.52 | —4.405D— 01 | 8.913D—-06
OBSTCLAE 15625 639 936 640 116.86 1.901D+00 | 9.343D—06
OBSTCLAL 15625 176 243 177 31.69 1.901D+00 | 6.203D—06
OBSTCLBL 15625 321 460 322 58.49 7.296D4-00 | 3.731D—06
OBSTCLBM 15625 143 192 144 25.63 7.296D4-00 | 8.294D—06
OBSTCLBU 15625 311 449 312 56.72 7.296D4-00 | 9.703D—06
PENTDI 1000 1 3 2 0.01 —7.500D—-01 | 0.000D+00
TORSION1 14884 685 1023 686 119.38 —4.257D—-01 | 9.404D—-06
TORSION2 14884 728 1117 729 127.62 —4.257D—-01 | 9.616D—06
TORSION3 14884 183 264 184 31.72 —1.212D4-00 | 6.684D—06
TORSION4 14884 226 325 227 38.99 —1.212D+4-00 | 9.398D—-06
TORSIONS5 14884 73 105 74 12.68 —2.859D4-00 | 8.751D—-06
TORSIONG6 14884 63 75 64 10.39 —2.859D+00 | 9.321D—-06
TORSIONA 14884 496 756 497 100.13 —4.184D—-01 | 6.442D—-06
TORSIONB 14884 584 866 585 116.70 —4.184D—-01 | 7.917D—-06
TORSIONC 14884 247 350 248 48.81 —1.204D4-00 | 9.683D—06
TORSIOND 14884 226 317 227 44.62 —1.204D+4-00 | 9.467D—-06
TORSIONE 14884 65 89 66 12.90 —2.851D+00 | 9.459D—-06
TORSIONF 14884 68 84 69 13.07 —2.851D4-00 | 9.302D—06
ODNAMUR 11130 | 50001 80356 | 50002 | 3927.97 9.262D+03 | 4.213D-01

iteration, which involves considerable computer effort, LANCELOT usually
stops at points where this norm is considerably smaller than the tolerance
1075. On the other hand, SPG methods, which test the projected gradient
more frequently, stop when ||g1(x)]|oo is slightly smaller than that tolerance.
In a small number of cases this affects the quality of the solution, reflected in
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the objective function value.

(2) S368 (n =100): LANCELOT, SPG1, and SPG2 arrived at different solutions,
the best of which was the one obtained by SPG2. SPG1 was the winner in
terms of computer time.

(3) HADAMALS (n = 1,024): LANCELOT obtained f(z) = 74.44 in 157.6
seconds. SPG1 and SPG2 obtained stationary points with f(z) = 31,070 in
less than 2 seconds.

(4) NONSCOMP (n = 10,000): As in BDEXP, the SPG methods found a solu-
tion slightly worse than the one found by LANCELOT but used less computer
time.

(5) QR3DLS (n = 610): LANCELOT found a better solution (f(z) ~ 4 x 1078
against f(x) ~ 2.3 x 107*) and used less computer time than the SPG meth-
ods.

(6) SCONILS (n = 1,002): LANCELOT found the solution whereas the SPG
methods did not converge after 50,000 iterations.

(7) DECONVB (n = 61): LANCELOT found the (slightly) best solution and
used less computer time than the SPG methods.

(8) BIGGSBL1 (n = 1,000): LANCELOT found f(z) = 0.015 in 6.17 seconds,
whereas the SPG methods got f(z) ~ 0.016 in ~ 24 seconds.

(9) BQPGAUSS (n = 2,003): LANCELOT beat SPG methods in this problem,
in terms of both computer time and quality of solution.

(10) ODNAMUR (n = 11,130): LANCELOT obtained a better solution than the
SPG methods for this problem and used less computer time.

Four of the problems considered above (QR3DLS, SCON1LS, BQPGAUSS, and
ODNAMUR) can be considered failures of both SPG methods, since convergence to
a stationary point was not attained after 50,000 iterations. In the four cases, the
final point seems to be in the local attraction basin of a local minimizer, but local
convergence is very slow. In fact, in the first three problems, the final projected
gradient norm is ~ 1072, and in ODNAMUR the difference between f(z) and its
optimal value is &~ 0.1 %. Slow convergence of SPG methods when the Hessian at the
local minimizer is very ill conditioned is expected, and preconditioning schemes tend
to alleviate this inconvenient. See [21].

In the remaining 40 problems, LANCELOT, SPG1, and SPG2 found the same
solutions. In terms of computer time, SPG1 was faster than LANCELOT in 29 prob-
lems (72.5%) and SPG2 outperformed LANCELOT also in 29 problems. There are
no meaningful differences between the performances of SPG1 and SPG2.

Excluding problems where the difference in CPU time was less than 10%, SPG1
beat LANCELOT 28-9 and SPG2 beat LANCELOT 28-11.

Excluding, from the 40 problems above, the ones in which the 3 algorithms con-
verged in less than 1 second, we are left with 31 problems. Considering this set, SPG1
beat LANCELOT 20-11 (or 19-9 if we exclude, again, differences smaller than 10%)
and SPG2 beat LANCELOT 20-11 (or 19-11).

As we mentioned above, we also implemented the projected gradient algorithm
PGA, using the same framework as SPG in terms of interpolation schemes, both
with monotone and nonmonotone strategies. The performance of both alternatives is
very poor, in comparison to the algorithms SPG1 and SPG2 and other box-constraint
minimizers. The performance of the nonmonotone version is given in Table 2. This
confirms that the spectral choice of the steplength is the essential feature that puts
efficiency in the projected gradient methodology.
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4. Final remarks. It is customary to interpret the first trial step of a minimiza-
tion algorithm as the minimizer of a quadratic model g(x) on the feasible region or
an approximation to it. It is always imposed that the first-order information at the
current point should coincide with the first order information of the quadratic model.
So, the quadratic approximation at xx41 should be

1
q(x) = (& = Trp1, Bera (@ = 241)) + {g(@r41), & = Thtr) + f(2r41)
and

Vq(x) = Bri1(z — Tp41) + 9(Tht1)-

Secant methods are motivated by the interpolation condition V f(zx) = Vq(zi). Let
us impose here the weaker condition

(11) Dskq(xk) = Dskf(xk)v

where Dyp(x) denotes the directional derivative of ¢ along the direction d (so Dyp(z) =
(V(z),d)). A short calculation shows that condition (11) is equivalent to

(12) (Sky Beg15k) = (S, Yn)-
Clearly, the spectral choice

(k> Yr)

(13) Bk+1 = <5k75k:>

(where T is the identity matrix) satisfies (12). Now, suppose that z is orthogonal to
sk and that = belongs to L, the line determined by x) and xy11. Computing the
directional derivative of ¢ along z at any point = € L, and using (13), we obtain

D.q(x) = (Br+1(® — Tpt1) + 9(@k41), 2) = (9(@k41), 2) = D2 f(Tp41)-
Moreover, the properties (12) and
(14) D.q(x) =D, f(xzp41) forall ze€ Ly and z L s

imply that si is an eigenvector of By with eigenvalue (sk,yr)/{(sk, si). Clearly, (13)
is the most simple choice that satisfies this property. Another remarkable property of
(13) is that the resulting algorithms turn out to be invariant under change of scale of
both f and the independent variables.

In contrast to the property (14), satisfied by the spectral choice of By 1, models
generated by the secant choice have the property that the directional derivatives of
the model coincide with the directional derivatives of the objective function at zy.
Property (14) says that the model was chosen in such a way that the first order in-
formation with respect to orthogonal directions to s; is the same as the first order
information of the true objective function at xyx41 for all the points on the line Ly.
This means that first order information at the current point is privileged in the con-
struction of the quadratic model, in relation to second order information that comes
from the previous iteration. Perhaps this is one of the reasons underlying the unex-
pected efficiency of spectral gradient algorithms in relation to some rather arbitrary
secant methods. Needless to say, the special form of By trivializes the problem of
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minimizing the model on the feasible set when this is simple enough, a fact that is
fully exploited in SPG1 and SPG2.

Boxes are not the only type of sets on which it is trivial to project. The norm-
constrained regularization problem [18, 23, 24, 32|, defined by

(15) minimize f(z) subject to zT Az <7,

where A is symmetric positive definite, can be reduced to ball constrained minimiza-
tion by a change of variables and, in this case, projections can be trivially computed.
A particular case of (15) is the classical trust-region subproblem, where f is quadratic.
Recently (see [20, 25]) procedures for escaping from nonglobal stationary points of this
problem have been found, and so it becomes increasingly important to obtain fast al-
gorithms for finding critical points, especially in the large-scale case. (See [28, 29, 31].)

Perhaps the most important characteristic of SPG algorithms is that they are
extremely simple to code, to the point that anyone can write her or his own code using
any scientific language in a couple of hours. (Fortran, C, and Matlab codes written
by the authors are available by request.) Moreover, their extremely low memory
requirements make them very attractive for large-scale problems. It is quite surprising
that such a simple tool can be competitive with rather elaborate algorithms that use
extensively tested subroutines and numerical procedures. The authors would like to
encourage readers to write their own codes and to verify for themselves the nice
properties of these algorithms in practical situations. Papers [6] and [4] illustrate the
use of SPG methods in applications.
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