
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 238 (2024) 224–231

1877-0509 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Conference Program Chairs
10.1016/j.procs.2024.06.019

10.1016/j.procs.2024.06.019 1877-0509

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Conference Program Chairs

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 15th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 23-25, 2024, Hasselt, Belgium

A Distributed Software Architecture for IoT: Container
Orchestration Impact and Evaluation

Gustavo M. Freirea,∗, Herminio Paucar Curasmaa, Julio Cezar Estrellaa

aInstitute of Mathematical and Computer Sciences (ICMC), Av. Trabalhador São Carlense, São Carlos, Brazil

Abstract

This paper proposes a Distributed Software Architecture (DSA) for Smart Building (SB) based on the Reactive Manifesto (RM)
principles. To follow the RM principles, we analyze the usage of different deployment approaches, particularly the impact of using
a container orchestrator on the application layer. After running performance tests on the different configurations, the container
orchestrator usage led to enhanced distributed processing, lowering the latency, increasing flexibility, enhancing security, and
providing cost-effectiveness and scalability. We introduce the implementation of a modern DSA, developed following state-of-
the-art cloud patterns and compliant with the RM for the SB context. Furthermore, we have ensured the reproducibility of this
implementation by making the initial tests and overall architecture code available in public repositories. The research follows the
Design Science Research (DSR) methodology for elaborating each phase until we get the artifact (DSA) and, with this, contribute
to the Knowledge Base. The architecture was properly tested, considering the performance as the principal test layer. This solution
is tailored for application in domains of the Internet of Things (IoT), focusing on the SB and a case study involving the Laboratory
of Distributed Systems and Concurrent Programming (LaSDPC) at São Paulo University. Moreover, its applicability extends to IoT
domains like smart home, smart campus, smart city, and health-related applications.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Distributed architecture; reactive manifesto; cloud computing; microservices; IoT

1. Introduction

The IoT is a disruptive technology that transforms buildings into SB. IoT is a growing area of research, as evidenced
by the increasing number of publications on the topic [17]. DSA is necessary for implementing modern IoT solutions
because it improves scalability, making adding more sensors and actuators easy without compromising performance.
It improves the reduction of latency and increases the process distribution capacity. A DSA helps reinforce security
because many nodes make it difficult for intruders to act [18]. This paper aims to propose and test the initial nodes of

∗ Corresponding author. Tel.: +55 22 98835-0003
E-mail address: gustavofreire@usp.br

1877-0509© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 15th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 23-25, 2024, Hasselt, Belgium

A Distributed Software Architecture for IoT: Container
Orchestration Impact and Evaluation

Gustavo M. Freirea,∗, Herminio Paucar Curasmaa, Julio Cezar Estrellaa

aInstitute of Mathematical and Computer Sciences (ICMC), Av. Trabalhador São Carlense, São Carlos, Brazil

Abstract

This paper proposes a Distributed Software Architecture (DSA) for Smart Building (SB) based on the Reactive Manifesto (RM)
principles. To follow the RM principles, we analyze the usage of different deployment approaches, particularly the impact of using
a container orchestrator on the application layer. After running performance tests on the different configurations, the container
orchestrator usage led to enhanced distributed processing, lowering the latency, increasing flexibility, enhancing security, and
providing cost-effectiveness and scalability. We introduce the implementation of a modern DSA, developed following state-of-
the-art cloud patterns and compliant with the RM for the SB context. Furthermore, we have ensured the reproducibility of this
implementation by making the initial tests and overall architecture code available in public repositories. The research follows the
Design Science Research (DSR) methodology for elaborating each phase until we get the artifact (DSA) and, with this, contribute
to the Knowledge Base. The architecture was properly tested, considering the performance as the principal test layer. This solution
is tailored for application in domains of the Internet of Things (IoT), focusing on the SB and a case study involving the Laboratory
of Distributed Systems and Concurrent Programming (LaSDPC) at São Paulo University. Moreover, its applicability extends to IoT
domains like smart home, smart campus, smart city, and health-related applications.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Distributed architecture; reactive manifesto; cloud computing; microservices; IoT

1. Introduction

The IoT is a disruptive technology that transforms buildings into SB. IoT is a growing area of research, as evidenced
by the increasing number of publications on the topic [17]. DSA is necessary for implementing modern IoT solutions
because it improves scalability, making adding more sensors and actuators easy without compromising performance.
It improves the reduction of latency and increases the process distribution capacity. A DSA helps reinforce security
because many nodes make it difficult for intruders to act [18]. This paper aims to propose and test the initial nodes of

∗ Corresponding author. Tel.: +55 22 98835-0003
E-mail address: gustavofreire@usp.br

1877-0509© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2024.06.019&domain=pdf

	 Gustavo M. Freire et al. / Procedia Computer Science 238 (2024) 224–231� 225

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 15th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 23-25, 2024, Hasselt, Belgium

A Distributed Software Architecture for IoT: Container
Orchestration Impact and Evaluation

Gustavo M. Freirea,∗, Herminio Paucar Curasmaa, Julio Cezar Estrellaa

aInstitute of Mathematical and Computer Sciences (ICMC), Av. Trabalhador São Carlense, São Carlos, Brazil

Abstract

This paper proposes a Distributed Software Architecture (DSA) for Smart Building (SB) based on the Reactive Manifesto (RM)
principles. To follow the RM principles, we analyze the usage of different deployment approaches, particularly the impact of using
a container orchestrator on the application layer. After running performance tests on the different configurations, the container
orchestrator usage led to enhanced distributed processing, lowering the latency, increasing flexibility, enhancing security, and
providing cost-effectiveness and scalability. We introduce the implementation of a modern DSA, developed following state-of-
the-art cloud patterns and compliant with the RM for the SB context. Furthermore, we have ensured the reproducibility of this
implementation by making the initial tests and overall architecture code available in public repositories. The research follows the
Design Science Research (DSR) methodology for elaborating each phase until we get the artifact (DSA) and, with this, contribute
to the Knowledge Base. The architecture was properly tested, considering the performance as the principal test layer. This solution
is tailored for application in domains of the Internet of Things (IoT), focusing on the SB and a case study involving the Laboratory
of Distributed Systems and Concurrent Programming (LaSDPC) at São Paulo University. Moreover, its applicability extends to IoT
domains like smart home, smart campus, smart city, and health-related applications.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Distributed architecture; reactive manifesto; cloud computing; microservices; IoT

1. Introduction

The IoT is a disruptive technology that transforms buildings into SB. IoT is a growing area of research, as evidenced
by the increasing number of publications on the topic [17]. DSA is necessary for implementing modern IoT solutions
because it improves scalability, making adding more sensors and actuators easy without compromising performance.
It improves the reduction of latency and increases the process distribution capacity. A DSA helps reinforce security
because many nodes make it difficult for intruders to act [18]. This paper aims to propose and test the initial nodes of

∗ Corresponding author. Tel.: +55 22 98835-0003
E-mail address: gustavofreire@usp.br

1877-0509© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 15th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 23-25, 2024, Hasselt, Belgium

A Distributed Software Architecture for IoT: Container
Orchestration Impact and Evaluation

Gustavo M. Freirea,∗, Herminio Paucar Curasmaa, Julio Cezar Estrellaa

aInstitute of Mathematical and Computer Sciences (ICMC), Av. Trabalhador São Carlense, São Carlos, Brazil

Abstract

This paper proposes a Distributed Software Architecture (DSA) for Smart Building (SB) based on the Reactive Manifesto (RM)
principles. To follow the RM principles, we analyze the usage of different deployment approaches, particularly the impact of using
a container orchestrator on the application layer. After running performance tests on the different configurations, the container
orchestrator usage led to enhanced distributed processing, lowering the latency, increasing flexibility, enhancing security, and
providing cost-effectiveness and scalability. We introduce the implementation of a modern DSA, developed following state-of-
the-art cloud patterns and compliant with the RM for the SB context. Furthermore, we have ensured the reproducibility of this
implementation by making the initial tests and overall architecture code available in public repositories. The research follows the
Design Science Research (DSR) methodology for elaborating each phase until we get the artifact (DSA) and, with this, contribute
to the Knowledge Base. The architecture was properly tested, considering the performance as the principal test layer. This solution
is tailored for application in domains of the Internet of Things (IoT), focusing on the SB and a case study involving the Laboratory
of Distributed Systems and Concurrent Programming (LaSDPC) at São Paulo University. Moreover, its applicability extends to IoT
domains like smart home, smart campus, smart city, and health-related applications.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Distributed architecture; reactive manifesto; cloud computing; microservices; IoT

1. Introduction

The IoT is a disruptive technology that transforms buildings into SB. IoT is a growing area of research, as evidenced
by the increasing number of publications on the topic [17]. DSA is necessary for implementing modern IoT solutions
because it improves scalability, making adding more sensors and actuators easy without compromising performance.
It improves the reduction of latency and increases the process distribution capacity. A DSA helps reinforce security
because many nodes make it difficult for intruders to act [18]. This paper aims to propose and test the initial nodes of

∗ Corresponding author. Tel.: +55 22 98835-0003
E-mail address: gustavofreire@usp.br

1877-0509© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

2 Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000

a DSA that follows the principles of RM1, cloud patterns, and cloud computing capable of supporting the complex
and scalable demands of a system for an SB that will be applied in the LaSDPC, and this project is part of a big
project that includes Multi-Agent System, Ontologies and Federated Learning (see2 for the complete project). The
main contributions of this paper are as follows.

• We introduce the implementation of a modern DSA, developed following state-of-the-art cloud patterns and
compliant with the RM for the SB context. Furthermore, we have ensured the reproducibility of this implemen-
tation by making the initial tests and overall architecture code available in public repositories 3 4 .
• This architecture should offer the flexibility to be implemented in public or private clouds with similar imple-

mentation costs, thus being agnostic to the target infrastructure, contributing to critical data protection (private
cloud deployments) and novelty approaches to IoT (edge computing deployments).
• High adaptability to specific and different use cases while maintaining low operational costs and delivering

exceptional performance is also desired.
• We aim to contribute with a system guided by the most recent best practices in distributed software engineering

for IoT applications.
• The performance of the proposed system is evaluated using K6, an open-source tool for concurrent load tests.

Thus, we raise the following research question Would it be possible to develop a DSA following the reactive
principles, being agnostic to different models of cloud computing and capable of being deployed on novelty edge
computing devices ?. To answer this question, we want to make a two-phase process. The first phase aims to simulate
scenarios using synthetic data and perform tests where public and private clouds will be used. The second phase aims
to deploy the system in the LaSDPC private cloud to use physical sensor data. It is then intended to propose a cloud-
based agnostic system that deals with different use cases through a base architectural model. This paper covers the
initial first-phase performance tests and analysis on a small-scale but representative portion of the architecture (the
client/read nodes).

2. Related Works

We searched the most relevant works in popular libraries (IEEExplorer, ACM DL, Web of Science, and Scopus).
Afterward, the selected articles (see Table 2) were critically analyzed, considering the comparison and evaluation
criteria (Table 1). These criteria were obtained from other studies[8, 16] that compare architectural characteristics,
highlighting the type of technologies, techniques, or paradigms. Unlike most works analyzed, our proposed architec-
ture and paper introduce use cases and benchmarking and provide the source code necessary for reproducibility. The
work also introduces, in a broader sense, the usage of Reactivity by managing the system with a container orchestrator.

3. Architecture proposal

This research aims to create a versatile SB architecture using cloud computing, emphasizing the application and
network layers in IoT systems (IEEE2413 standard and IoT-A [2]). The main contribution is a distributed architecture
based on reactive principles, adaptable to diverse data scenarios, cloud environments, and network topologies. It lever-
ages cloud-native patterns for elasticity, resilience, monitoring, and cost efficiency. By using a container orchestrator,
this architecture presents the capability of being deployed on edge devices, thus contributing to the state-of-art IoT
use cases.

Figure 1 displays the the proposed architecture; following, we describe each element and their responsibilities:

1 https://www.reactivemanifesto.org/
2 https://smart-lasdpc.github.io/about-project.html
3 https://github.com/Smart-LaSDPC/Distributed-Software-Architecture
4 https://github.com/Smart-LaSDPC/reactive-architecture-smart-building

226	 Gustavo M. Freire et al. / Procedia Computer Science 238 (2024) 224–231
Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000 3

Table 1. Criteria for analyzing related work
Id Criteria Considerations
C01 Architecture model Microservices, service-oriented architecture (SOA), monolithic, or other models were considered.
C02 Communication model Communication between services, whether asynchronous or synchronous, was considered.
C03 Deployment Model Private, public, community, or hybrid models were considered.
C04 Network layer Edge-of-the-network (EoT), fog-of-the-network (FoT), and cloud-of-the-network (CoT) layers were

considered.
C05 Deployment technology Technologies such as containers, serverless computing, orchestrators, and choreography were consid-

ered.
C06 Design patterns The use of software patterns, as well as patterns specific to the cloud, were considered.
C07 Observability The observability of the system, whether through metrics, logging, or tracing, was considered.
C08 Reactivity The principles outlined in the Reactive Manifesto in the design of services and system nodes] were

considered.
C09 Handling Error Error handling, such as reprocessing and feedback mechanisms, was considered.
C10 Use Cases the implementation of use cases was considered.
C11 Benchmarking Benchmarking and comparisons with other types of architectures and frameworks were considered.
C12 Reproducibility The references, data, and information necessary to reproduce the results presented were considered.

Table 2. Related works evaluated in each criterion
Cri. Stud.1[10] Stud.2[7] Stud.3[4] Stud.4[3] Stud.5[14] Stud.6[6] Stud.7[15] Stud.8[13] Stud.9[11] Stud.10[5]
C01 MSA MSA MSA MSA, SOA MSA MSA, SOA MSA, SOA MSA MSA MSA
C02 ASYNC,

Event-
driven,
Pub/Sub

SYNC,
REST

SYNC,
REST,
RPC

X ASYNC,
SYNC

SYNC
Http/ Rest,
AMQP
ASYNC,
Event-
driven,
Pub/Sub

SYNC
Http/ Rest,
ASYNC
AMQP,
Message-
Oriented,
Pub/Sub

SYNC,
Http/ Rest

SYNC,
Http/ Rest

ASYNC,
Message-
passing

C03 X X X X X X X X X X
C04 IoT FoT IoT CoT, FoT,

EoT
CoT, FoT,
EoT

CoT, FoT,
EoT

FoT, EoT FoT, CoT EoT, FoT,
CoT

X

C05 X X Orches.,
Choreo.,
Contai.

X Orches.,
Service
Mesh,
Contai.

Orches.,
Choreo.,
Contai.

X Orches.,
Service
Mesh,
Contai.

X VMs,
OpenStack

C06 Yes No Yes No Yes Yes Yes No No Yes
C07 No No Yes No Yes Yes No Yes No Yes
C08 Yes No No Yes Yes Yes Yes No Yes Yes
C09 Yes No Yes No No Yes Yes No Yes No
C10 No Yes No Yes Yes No Yes No Yes Yes
C11 No Yes No No No No Yes No Yes Yes
C12 No No No No No No No No No Yes

• Messenger/Brokers: Store events generated by sensors and provide them to consumers using the pub-
lisher/subscriber model.
• Database: Efficiently store and manage data, accommodating structured or unstructured information with rela-

tional or non-relational characteristics.
• Cache: Store frequently requested data more efficiently, typically using hash mapping data structure.
• API Gateway: Manage access points for all services, overseeing both external and internal access, security,

and monitoring mechanisms.
• Ingestors: Consume data from broker topics, responsible for preprocessing, transforming, validating, and pro-

jecting data to other data stores.
• Circuit Breaker: Oversee the lifecycle of topics and the retry pattern, serving as a synchronization mechanism

for data streams and error handling.
• Heartbeat: Send events to topics to keep consumers (or consumer groups) active, preventing timeouts caused

by inactivity.
• Rest/GRPC API: Provide a REST and GRPC interface to various clients and between microservices.
• Websocket API: Offer an interface to diverse clients, enabling persistent and bidirectional connections, facili-

tating real-time data transmission.

Tools descriptions: For the selection of technologies, considerations encompassed the required licensing types,
community size and support, efficiency and scalability, the feasibility of employing distributed strategies, resource
concurrency, and synergy with reactive, microservices-oriented, and cloud-native systems.

	 Gustavo M. Freire et al. / Procedia Computer Science 238 (2024) 224–231� 227
Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000 3

Table 1. Criteria for analyzing related work
Id Criteria Considerations
C01 Architecture model Microservices, service-oriented architecture (SOA), monolithic, or other models were considered.
C02 Communication model Communication between services, whether asynchronous or synchronous, was considered.
C03 Deployment Model Private, public, community, or hybrid models were considered.
C04 Network layer Edge-of-the-network (EoT), fog-of-the-network (FoT), and cloud-of-the-network (CoT) layers were

considered.
C05 Deployment technology Technologies such as containers, serverless computing, orchestrators, and choreography were consid-

ered.
C06 Design patterns The use of software patterns, as well as patterns specific to the cloud, were considered.
C07 Observability The observability of the system, whether through metrics, logging, or tracing, was considered.
C08 Reactivity The principles outlined in the Reactive Manifesto in the design of services and system nodes] were

considered.
C09 Handling Error Error handling, such as reprocessing and feedback mechanisms, was considered.
C10 Use Cases the implementation of use cases was considered.
C11 Benchmarking Benchmarking and comparisons with other types of architectures and frameworks were considered.
C12 Reproducibility The references, data, and information necessary to reproduce the results presented were considered.

Table 2. Related works evaluated in each criterion
Cri. Stud.1[10] Stud.2[7] Stud.3[4] Stud.4[3] Stud.5[14] Stud.6[6] Stud.7[15] Stud.8[13] Stud.9[11] Stud.10[5]
C01 MSA MSA MSA MSA, SOA MSA MSA, SOA MSA, SOA MSA MSA MSA
C02 ASYNC,

Event-
driven,
Pub/Sub

SYNC,
REST

SYNC,
REST,
RPC

X ASYNC,
SYNC

SYNC
Http/ Rest,
AMQP
ASYNC,
Event-
driven,
Pub/Sub

SYNC
Http/ Rest,
ASYNC
AMQP,
Message-
Oriented,
Pub/Sub

SYNC,
Http/ Rest

SYNC,
Http/ Rest

ASYNC,
Message-
passing

C03 X X X X X X X X X X
C04 IoT FoT IoT CoT, FoT,

EoT
CoT, FoT,
EoT

CoT, FoT,
EoT

FoT, EoT FoT, CoT EoT, FoT,
CoT

X

C05 X X Orches.,
Choreo.,
Contai.

X Orches.,
Service
Mesh,
Contai.

Orches.,
Choreo.,
Contai.

X Orches.,
Service
Mesh,
Contai.

X VMs,
OpenStack

C06 Yes No Yes No Yes Yes Yes No No Yes
C07 No No Yes No Yes Yes No Yes No Yes
C08 Yes No No Yes Yes Yes Yes No Yes Yes
C09 Yes No Yes No No Yes Yes No Yes No
C10 No Yes No Yes Yes No Yes No Yes Yes
C11 No Yes No No No No Yes No Yes Yes
C12 No No No No No No No No No Yes

• Messenger/Brokers: Store events generated by sensors and provide them to consumers using the pub-
lisher/subscriber model.
• Database: Efficiently store and manage data, accommodating structured or unstructured information with rela-

tional or non-relational characteristics.
• Cache: Store frequently requested data more efficiently, typically using hash mapping data structure.
• API Gateway: Manage access points for all services, overseeing both external and internal access, security,

and monitoring mechanisms.
• Ingestors: Consume data from broker topics, responsible for preprocessing, transforming, validating, and pro-

jecting data to other data stores.
• Circuit Breaker: Oversee the lifecycle of topics and the retry pattern, serving as a synchronization mechanism

for data streams and error handling.
• Heartbeat: Send events to topics to keep consumers (or consumer groups) active, preventing timeouts caused

by inactivity.
• Rest/GRPC API: Provide a REST and GRPC interface to various clients and between microservices.
• Websocket API: Offer an interface to diverse clients, enabling persistent and bidirectional connections, facili-

tating real-time data transmission.

Tools descriptions: For the selection of technologies, considerations encompassed the required licensing types,
community size and support, efficiency and scalability, the feasibility of employing distributed strategies, resource
concurrency, and synergy with reactive, microservices-oriented, and cloud-native systems.

4 Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000

Fig. 1. Architecture with proposed technologies. The green dotted square highlights the nodes tested in this article.

Fig. 2. Test layer selected for the proposed architecture Fig. 3. Sequence diagram of the Orchestrator Experiment

4. Tests and Evaluations

Testing holds a pivotal role within the software development lifecycle. According to [9], we can separate tests
into five layers, as displayed in Figure 2. The Performance level was selected for this work. The performance test
plays an integral role in verifying the software’s capability to withstand anticipated loads across diverse scenarios,
thereby shedding light on scalability and system expansion potential. The subsequent sections outline the methodology
employed for conducting the testing assessments.

• Identification of the key performance indicators (KPIs): For this work, the metrics selected were Response
Time, Throughput, Network Traffic, and Error Rates as they are standard metrics used for performance evalua-
tion [1].
• Definition of the Load profiles: The Load profiles were based on two different statistical distributions, the

Uniform and Poisson. The load profiles also defined different request volumes, including 50, 500, 5000, and
50000 concurrent requests.
• Selection of loading testing tools: The open-source K6 tool, which was developed specifically for automated

performance and load testing of APIs and Microservices, was selected. K6 provides valuable metrics by default.
Among the non-functional metrics, the following stand out: quantity of data sent, quantity of data received,
number of blocked requests, duration of requests, number of failures, requests per second, and quantity of data
sent.
K6 provides statistical information for all of its metrics, such as average value, minimum, maximum, and two
sigmas of standard deviations. It also offers the possibility of custom load customization with different types of
statistical distributions. For tests on messaging and databases, custom scripts will also be used to generate the
aforementioned metrics.

228	 Gustavo M. Freire et al. / Procedia Computer Science 238 (2024) 224–231
Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000 5

• Test Tool Configuration and Execution: The tools were configured using Javascript scripts, The tests sched-
uler was configured using bash scripts and cronjobs services.
• Analyze of the test results: The results were analyzed and described through diagrams and tables.

Table 3. Comparison of percentages.
TID Experiment A Experiment B Experiment C

1 2 3 4 1 2 3 4 1 2 3 4
Concu. Clients 50 500 5000 50000 50 500 5000 50000 50 500 5000 50000
Dur.(fcst/curr) 30s/ 30s 30s/

34.6s
30s/ 60s 30s/ 60s 30s/

31.1s
30s/
34.7s

30s/ 60s 30s/ 60s 30s/
30.7s

30s/
33.3s

30s/ 60s 30s/ 60s

Requests Qty 1438 4178 7126 19549 1382 2077 6372 50563 1450 4993 9270 27068
Requests/sec 46.35/s 120.81/s 118.75/s 322.13/s 44.48/s 59.85/s 106.19/s 875.57/s 47.29/s 149.81/s 154.48/s 603.74/s
Recv data 263MB

8.5MB/s
764MB
22MB/s

1.3GB
22MB/s

980MB
16MB/s

253MB
8.1MB/s

380MB
11MB/s

423MB
7.1MB/s

381MB
6.3MB/s

265MB
8.7MB/s

913MB
27MB/s

1.7GB
28MB/s

1.7GB
28MB/s

%Faults 0% 0 % 0 % 72.59% 0% 0% 63.70% 96.04% 0% 0% 0% 74.43%
Requests Dur.
avg 61.19ms 2.85s 26.09s 7.59ms 104.34ms 6.87s 4.73s 450.16ms 49.16ms 2.15s 22.98s 7.73s
min 16.78ms 87.99ms 63.38ms 0s 50.46ms 264.9ms 0s 0s 17.42ms 75.82ms 158.34ms 0s
max 422.29ms 6.85s 57.55s 58.65s 816.79ms 15s 43.97s 59.38s 443.94ms 6.96s 59.02s 59.38s
Block Dur.
avg 14.56µs 2.04ms 51.4ms 315.79ms 601.9µs 49.2ms 37.66ms 31.74ms 20.72µs 2.19ms 58.39ms 205.42ms
min 1.21µs 1.02µs 1.17µs 0 795.µs 942ns 0s 0s 1.47µs 1.26µs 1.02µs 0s
max 538.94µs 74.89ms 349.97ms 58.34s 21.08ms 5.49µs 15.44s 20.25s 1.06ms 114.85ms 429.68ms 4.27s

5. Experiments

One of the prominent challenges encountered in the domains of distributed systems and IoT lies in comprehending
the implications on system scalability and efficiency, particularly given the growing volume and sources of data, often
heterogeneous, integrating with the system. Therefore, being able to observe how the system reacts to different data
inputs, with different frequencies and structures, is a crucial aspect of our research.

The aspect of the proposed architecture tested in this phase, the orchestrator, forms the basis for the hypothesis
of this research and is therefore essential for elucidating and validating previous choices. The container orchestra-
tor contributes to the system’s reactivity by providing resilience, elasticity, responsiveness, and also contributes to
greater scalability considering the same computational resources. The use of cloud computing was also evaluated,
with experiments executed both locally and on a public cloud.

All resources and code used have been shared in a public git repository with the aim of enabling result repro-
ducibility.

Planning: For our Orchestrator experiments, we set up a database with synthetic data based on real sensors,
a Gateway microservice, and a backend microservice responsible for communicating with the database. These
components are essential for our system’s scalability considerations [12], as they are commonly used in various
scenarios where data needs to pass through security, ingestion for processing, and storage.

Our experiment focuses on testing the system’s performance under different configurations by applying various
levels of workload. In all configurations, we use the same test flow, ensuring that requests are consistent and return
the same data (a query that retrieves 100 sensor data records). Figure 3 shows the sequence diagram of an experiment
using the orchestrator.

The activities that we follow for this reasearch are i) Data modeling, (ii) Environment setup, iii) Testing tools
profiles execution, iv) Individual analysis of the experiments, and v) Comparative analysis of the experiments.

Data Modeling: To conduct our experiments, we structured a data model based on attributes from real tem-
perature and air conditioning sensors. The data was modeled using a relational database (PostgreSQL) and the types
indicated to follow: The table includes critical attributes represented by temperature current (F), temperature desired
(F), humidity (F), pressure (F), air quality (F), voltage (F), current (F), power (F), is on (B), status (V), location (V),
and extracted at (T), denoting float, boolean, varchar, and timestamp data types, respectively. Moreover, the ’status’
field delineates specific operational modes such as ’actuating,’ ’ventilator,’ ’heater,’ ’cooling,’ and ’off’.

6 Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000

These data were populated into the database through a SQL seed script, with parameters aligned with the real-world
range of the synthesized quantity.

We developed a data structure to map the database model and convert (serialize) it to JSON using the Go pro-
gramming language. Additionally, endpoints were exposed to insert and retrieve data through a Go-written REST API.

Environment Setup: Below (Figure 4), we present the infrastructure configuration and the resources utilized
on all performed experiments (A, B and C).

Experiment A: we implemented the load testing tool, the gateway microservice, and the backend microservice in
a locally configured environment, equivalent to a private cloud. The database was set up in a public cloud (AWS)
using the RDS service. The cloud-based database service was chosen for its advantageous features, including ease of
configuration, high availability, scalability, elasticity, security, and monitoring. Hence, the environment for the first
experiment can be considered a hybrid cloud setup.

Fig. 4. Resources and configurations for the experiments (a) A, (b) B and (c) C.

Experiment B: only the load testing tool was implemented in the local network, while the microservices and the
database were configured in the public cloud (AWS) using EC2 and RDS services. This environment, excluding the
load testing tool hosted locally, constitutes a native public cloud setting.

Experiment C: we implemented all microservices in a local networked environment, with the database residing in
the public cloud (AWS) using the RDS service. Unlike the first experiment, we employed a container orchestrator for
microservice management. The orchestrator was configured to utilize two nodes (two VMs) with three Pods, where
the Pods responsible for backend containers hosted two replicas each.

Testing Tools Profiles Execution: For test execution, we employed the K6 tool to run various profiles of con-
current request loads on the system, simulating diverse scenarios and demands. Both tests incorporated four distinct
load types: 50 concurrent requests for 30 seconds, 500 concurrent requests for 30 seconds, 5000 concurrent requests
for 30 seconds, and 50000 concurrent requests for 10 minutes.

Performance evaluation utilized response variables, including response time, request error rate, transactions per
second, and throughput.

Fig. 5. Sample of a Testing Tool Profile Metrics Outputs

	 Gustavo M. Freire et al. / Procedia Computer Science 238 (2024) 224–231� 229
Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000 5

• Test Tool Configuration and Execution: The tools were configured using Javascript scripts, The tests sched-
uler was configured using bash scripts and cronjobs services.
• Analyze of the test results: The results were analyzed and described through diagrams and tables.

Table 3. Comparison of percentages.
TID Experiment A Experiment B Experiment C

1 2 3 4 1 2 3 4 1 2 3 4
Concu. Clients 50 500 5000 50000 50 500 5000 50000 50 500 5000 50000
Dur.(fcst/curr) 30s/ 30s 30s/

34.6s
30s/ 60s 30s/ 60s 30s/

31.1s
30s/
34.7s

30s/ 60s 30s/ 60s 30s/
30.7s

30s/
33.3s

30s/ 60s 30s/ 60s

Requests Qty 1438 4178 7126 19549 1382 2077 6372 50563 1450 4993 9270 27068
Requests/sec 46.35/s 120.81/s 118.75/s 322.13/s 44.48/s 59.85/s 106.19/s 875.57/s 47.29/s 149.81/s 154.48/s 603.74/s
Recv data 263MB

8.5MB/s
764MB
22MB/s

1.3GB
22MB/s

980MB
16MB/s

253MB
8.1MB/s

380MB
11MB/s

423MB
7.1MB/s

381MB
6.3MB/s

265MB
8.7MB/s

913MB
27MB/s

1.7GB
28MB/s

1.7GB
28MB/s

%Faults 0% 0 % 0 % 72.59% 0% 0% 63.70% 96.04% 0% 0% 0% 74.43%
Requests Dur.
avg 61.19ms 2.85s 26.09s 7.59ms 104.34ms 6.87s 4.73s 450.16ms 49.16ms 2.15s 22.98s 7.73s
min 16.78ms 87.99ms 63.38ms 0s 50.46ms 264.9ms 0s 0s 17.42ms 75.82ms 158.34ms 0s
max 422.29ms 6.85s 57.55s 58.65s 816.79ms 15s 43.97s 59.38s 443.94ms 6.96s 59.02s 59.38s
Block Dur.
avg 14.56µs 2.04ms 51.4ms 315.79ms 601.9µs 49.2ms 37.66ms 31.74ms 20.72µs 2.19ms 58.39ms 205.42ms
min 1.21µs 1.02µs 1.17µs 0 795.µs 942ns 0s 0s 1.47µs 1.26µs 1.02µs 0s
max 538.94µs 74.89ms 349.97ms 58.34s 21.08ms 5.49µs 15.44s 20.25s 1.06ms 114.85ms 429.68ms 4.27s

5. Experiments

One of the prominent challenges encountered in the domains of distributed systems and IoT lies in comprehending
the implications on system scalability and efficiency, particularly given the growing volume and sources of data, often
heterogeneous, integrating with the system. Therefore, being able to observe how the system reacts to different data
inputs, with different frequencies and structures, is a crucial aspect of our research.

The aspect of the proposed architecture tested in this phase, the orchestrator, forms the basis for the hypothesis
of this research and is therefore essential for elucidating and validating previous choices. The container orchestra-
tor contributes to the system’s reactivity by providing resilience, elasticity, responsiveness, and also contributes to
greater scalability considering the same computational resources. The use of cloud computing was also evaluated,
with experiments executed both locally and on a public cloud.

All resources and code used have been shared in a public git repository with the aim of enabling result repro-
ducibility.

Planning: For our Orchestrator experiments, we set up a database with synthetic data based on real sensors,
a Gateway microservice, and a backend microservice responsible for communicating with the database. These
components are essential for our system’s scalability considerations [12], as they are commonly used in various
scenarios where data needs to pass through security, ingestion for processing, and storage.

Our experiment focuses on testing the system’s performance under different configurations by applying various
levels of workload. In all configurations, we use the same test flow, ensuring that requests are consistent and return
the same data (a query that retrieves 100 sensor data records). Figure 3 shows the sequence diagram of an experiment
using the orchestrator.

The activities that we follow for this reasearch are i) Data modeling, (ii) Environment setup, iii) Testing tools
profiles execution, iv) Individual analysis of the experiments, and v) Comparative analysis of the experiments.

Data Modeling: To conduct our experiments, we structured a data model based on attributes from real tem-
perature and air conditioning sensors. The data was modeled using a relational database (PostgreSQL) and the types
indicated to follow: The table includes critical attributes represented by temperature current (F), temperature desired
(F), humidity (F), pressure (F), air quality (F), voltage (F), current (F), power (F), is on (B), status (V), location (V),
and extracted at (T), denoting float, boolean, varchar, and timestamp data types, respectively. Moreover, the ’status’
field delineates specific operational modes such as ’actuating,’ ’ventilator,’ ’heater,’ ’cooling,’ and ’off’.

6 Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000

These data were populated into the database through a SQL seed script, with parameters aligned with the real-world
range of the synthesized quantity.

We developed a data structure to map the database model and convert (serialize) it to JSON using the Go pro-
gramming language. Additionally, endpoints were exposed to insert and retrieve data through a Go-written REST API.

Environment Setup: Below (Figure 4), we present the infrastructure configuration and the resources utilized
on all performed experiments (A, B and C).

Experiment A: we implemented the load testing tool, the gateway microservice, and the backend microservice in
a locally configured environment, equivalent to a private cloud. The database was set up in a public cloud (AWS)
using the RDS service. The cloud-based database service was chosen for its advantageous features, including ease of
configuration, high availability, scalability, elasticity, security, and monitoring. Hence, the environment for the first
experiment can be considered a hybrid cloud setup.

Fig. 4. Resources and configurations for the experiments (a) A, (b) B and (c) C.

Experiment B: only the load testing tool was implemented in the local network, while the microservices and the
database were configured in the public cloud (AWS) using EC2 and RDS services. This environment, excluding the
load testing tool hosted locally, constitutes a native public cloud setting.

Experiment C: we implemented all microservices in a local networked environment, with the database residing in
the public cloud (AWS) using the RDS service. Unlike the first experiment, we employed a container orchestrator for
microservice management. The orchestrator was configured to utilize two nodes (two VMs) with three Pods, where
the Pods responsible for backend containers hosted two replicas each.

Testing Tools Profiles Execution: For test execution, we employed the K6 tool to run various profiles of con-
current request loads on the system, simulating diverse scenarios and demands. Both tests incorporated four distinct
load types: 50 concurrent requests for 30 seconds, 500 concurrent requests for 30 seconds, 5000 concurrent requests
for 30 seconds, and 50000 concurrent requests for 10 minutes.

Performance evaluation utilized response variables, including response time, request error rate, transactions per
second, and throughput.

Fig. 5. Sample of a Testing Tool Profile Metrics Outputs

230	 Gustavo M. Freire et al. / Procedia Computer Science 238 (2024) 224–231Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000 7

Individual analysis of the experiments: We describe the three experiments (A, B, and C) in Table 3.
Experiment A: presents the results generated during all iterations of the load test. Notably, the data received for

test 3 (5000 concurrent requests) amounts to 1.3GB, slightly exceeding that of test 2 (764MB). This can be attributed
to the higher number of requests processed over a longer duration in test 3 (7126 in 60s) compared to test 2 (4178
in 34.6s). Furthermore, it is noteworthy that test 4 (50000 concurrent requests) exhibits a substantial failure rate of
72.59%, indicating the concurrency threshold for this architecture with the available resources.

Experiment B: presents the results obtained from all iterations of the load test. Notably, there is a high failure rate
in test 3 (5000 concurrent requests) at 63.70% and in test 4 (50000 concurrent requests) at 96.04%. These results
indicate the concurrency threshold for this architecture with the provided resources. Additionally, it is important to
highlight that the low average duration times for these tests (3 and 4) signify system failure and are not indicative of
performance or throughput.

Experiment C: presents the results, with particular attention to the data received and the number of requests per
second. In test 3 (5000 concurrent requests), data received amounts to 1.7GB, with 154,486 requests per second. It is
worth mentioning the significant failure rate in test 4 (50000 concurrent requests) at 74.43%, marking the concurrency
limit for this configuration.

Comparative analysis of the experiments: Based on the results obtained in the previous section, we can
now proceed to compare the outcomes of the experiments. In Figure 6 presented below, these insights are graphically
represented.

Fig. 6. Comparative Analysis of Experiments

In the first graph (Data Received) and the third one (Data Received Rate), we can observe Experiment 3 holding a
distinct advantage over the other experiments in all tests. This highlights that the use of the orchestrator and replicas
has significantly enhanced data reception capacity and system throughput. This phenomenon can be attributed to the
use of replicas, where the orchestrator itself employs the Round Robin load balancing algorithm, reducing system
idleness during request blocking, thereby increasing parallelism and scalability. This improvement is particularly
evident in the fourth graph (Average Duration of Blocks), where this experiment delivers favorable figures, especially
in test 2 (500 concurrent iterations).

Furthermore, it is evident from the graphs that Experiment B yields the poorest results across all criteria. This can
be attributed to the system being hosted in a public cloud, resulting in latency overhead during data transfer between
the public cloud and the local environment. This latency issue is clearly illustrated in the second graph (Failure
Percentage), where Experiment B exhibits a significantly higher failure percentage, even at 5000 concurrent requests,
in contrast to the other experiments.

6. Conclusions and Future works

This paper presents our initial DSA proposal and performance test results. We proved experimentally that using a
container orchestrator positively impacts the reactiveness and scalability of the solution. We also concluded that using
a private cloud decreases the latency, especially compared to the hybrid configuration. The technology stack provided
cost-effectiveness and reproducibility by utilizing an open-source technology stack. With this preliminary version,
our contributions to the state-of-the-art include (i) the use of a distributed architecture for the IoT context following
the RM; (ii) the applications of cloud patterns such as API Gateway and container orchestration to implement an
architecture that can be deployed on different hosts, such as edge devices; (iii) the creation of a solution that will allow

8 Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000

its architecture to be applied to other IoT applications in different sectors (smart home, smart hospital, smart campus,
industry 4.0, and others);

In future works, we will extend the tests to cover the other nodes of the architecture. We will also integrate the
distributed architecture with its complementary components, such as Multi-Agent systems, Federated Learning, On-
tologies, and a context-aware approach. We aim to showcase the combined functionality in a real-world scenario,
precisely the LaSDPC, where we will rigorously test each principle of the RM. LaSDPC provides an ideal infrastruc-
ture for researching Distributed Systems due to its extensive array of devices, including sensors and actuators, and a
data center comprising five racks that support diverse research projects.

Acknowledgements

This work was developed using the computational infrastructure of the Distributed Computing Lab of ICMC-
USP—the University of São Paulo (http://infra.lasdpc.icmc.usp.br/) and also with resources from the Cen-
ter for Mathematical Sciences Applied to Industry (CeMEAI http://www.cemeai.icmc.usp.br/) funded by the
São Paulo Research Foundation FAPESP (Project Number 2013/07375-0) and also by Project Number 11/09524-7).

References

[1] Badawy, M., El-Aziz, A.A., Idress, A.M., Hefny, H., Hossam, S., 2016. A survey on exploring key performance indicators. Future Computing
and Informatics Journal 1, 47–52. doi:10.1016/j.fcij.2016.04.001.

[2] Bauer, M., Boussard, M., Bui, N., Carrez, F., (SIEMENS, C., (ALUBE, J., (SAP, C., Meissner, S., IML, A., Olivereau, A., (SAP, M., Joachim,
W., Stefa, J., Salinas, A., 2013. Internet of Things – Architecture IoT-A Deliverable D1.5 – Final architectural reference model for the IoT
v3.0. URL: https://www.iot-a.eu/public/front-page/.

[3] Óscar Belmonte-Fernández, Sansano-Sansano, E., Trilles, S., Caballer-Miedes, A., 2022. A reactive architectural proposal for fog/edge com-
puting in the internet of things paradigm with application in deep learning doi:10.1007/978-3-030-84459-2_9.

[4] Butzin, B., Golatowski, F., Timmermann, D., 2016. Microservices approach for the internet of things. 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA) doi:10.1109/ETFA37052.2016.

[5] Debski, A., Szczepanik, B., Malawski, M., Spahr, S., Muthig, D., 2018. A scalable, reactive architecture for cloud applications. IEEE Software
35, 62–71. doi:10.1109/MS.2017.265095722.

[6] Dobaj, J., Krisper, M., Iber, J., Kreiner, C., 2018. A microservice architecture for the industrial internet-of-things. EuroPLoP ’18: Proceedings
of the 23rd European Conference on Pattern Languages of Programs doi:10.1145/3282308.3282320.

[7] Khoso, F.H., Arain, A.A., Nizamani, S.Z., Lakhan, A., Soomro, M.A., Kanwar, K., 2021. A microservice-based system for industrial internet
of things in fog-cloud assisted network. Engineering, Technology and Applied Science Research (ETASR) doi:10.1002/spe.2729.

[8] Konersmann, M., Kaplan, A., Kühn, T., Heinrich, R., Koziolek, A., Reussner, R., Jürjens, J., al Doori, M., Boltz, N., Ehl, M., Fuchs, D., Groser,
K., Hahner, S., Keim, J., Lohr, M., Sağlam, T., Schulz, S., Töberg, J.P., 2022. Evaluation methods and replicability of software architecture
research objects, in: 2022 IEEE 19th International Conference on Software Architecture (ICSA), pp. 157–168. doi:10.1109/ICSA53651.
2022.00023.

[9] Medhat, N., Moussa, S., Badr, N., Tolba, M.F., 2019. Testing techniques in iot-based systems, in: 2019 Ninth International Conference on
Intelligent Computing and Information Systems (ICICIS), pp. 394–401. doi:10.1109/ICICIS46948.2019.9014711.

[10] Molina, J., M., Garcia, J., F., Jimenez, C., K., 2018. Archer: An Event-Driven Architecture for Cyber-Physical Systems. IEEE/ACM Interna-
tional Conference on Utility and Cloud Computin Companion , 335–340.

[11] Power, A., Kotonya, G., 2018. A microservices architecture for reactive and proactive fault tolerance in iot systems. 2018 IEEE 19th Interna-
tional Symposium on ”A World of Wireless, Mobile and Multimedia Networks (WoWMoM) doi:10.1109/WoWMoM.2018.8449789.

[12] Richards, M., 2015. Software Architecture Patterns. 3 ed., O’Reilly Media.
[13] Salah, T., Zemerly, M.J., Yeun, C.Y., Al-Qutayri, M., Al-Hammadi, Y., 2018. Iot applications: From mobile agents to microservices architecture

doi:10.1109/INNOVATIONS.2018.8605967.
[14] Sanctis, M.D., Muccini, H., Vaidhyanathan, K., 2020. Data-driven adaptation in microservice-based iot architectures. 2020 IEEE International

Conference on Software Architecture Companion (ICSA-C) doi:10.1109/ICSA-C50368.2020.00019.
[15] Santana, C., Andrade, L., Delicato, F.C., Prazeres, C., 2021. Increasing the availability of iot applications with reactive microservices. Service

Oriented Computing and Applications - Volume 15 - Issue 2 doi:10.1007/s11761-020-00308-8.
[16] Simmhan, Y., Ravindra, P., Chaturvedi, S., Hegde, M., Ballamajalu, R., 2018. Towards a data-driven iot software architecture for smart city

utilities. Software: Practice and Experience 48, 1390–1416. doi:10.1002/spe.2580.
[17] Suzuki, L.R., 2017. Smart Cities IoT: Enablers and Technology Road Map. Springer International Publishing, Cham. pp. 167–190. doi:10.

1007/978-3-319-61313-0_10.
[18] Tanenbaum, A., van Steen, M., 2017. Distributed Systems. CreateSpace Independent Publishing Platform.

	 Gustavo M. Freire et al. / Procedia Computer Science 238 (2024) 224–231� 231Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000 7

Individual analysis of the experiments: We describe the three experiments (A, B, and C) in Table 3.
Experiment A: presents the results generated during all iterations of the load test. Notably, the data received for

test 3 (5000 concurrent requests) amounts to 1.3GB, slightly exceeding that of test 2 (764MB). This can be attributed
to the higher number of requests processed over a longer duration in test 3 (7126 in 60s) compared to test 2 (4178
in 34.6s). Furthermore, it is noteworthy that test 4 (50000 concurrent requests) exhibits a substantial failure rate of
72.59%, indicating the concurrency threshold for this architecture with the available resources.

Experiment B: presents the results obtained from all iterations of the load test. Notably, there is a high failure rate
in test 3 (5000 concurrent requests) at 63.70% and in test 4 (50000 concurrent requests) at 96.04%. These results
indicate the concurrency threshold for this architecture with the provided resources. Additionally, it is important to
highlight that the low average duration times for these tests (3 and 4) signify system failure and are not indicative of
performance or throughput.

Experiment C: presents the results, with particular attention to the data received and the number of requests per
second. In test 3 (5000 concurrent requests), data received amounts to 1.7GB, with 154,486 requests per second. It is
worth mentioning the significant failure rate in test 4 (50000 concurrent requests) at 74.43%, marking the concurrency
limit for this configuration.

Comparative analysis of the experiments: Based on the results obtained in the previous section, we can
now proceed to compare the outcomes of the experiments. In Figure 6 presented below, these insights are graphically
represented.

Fig. 6. Comparative Analysis of Experiments

In the first graph (Data Received) and the third one (Data Received Rate), we can observe Experiment 3 holding a
distinct advantage over the other experiments in all tests. This highlights that the use of the orchestrator and replicas
has significantly enhanced data reception capacity and system throughput. This phenomenon can be attributed to the
use of replicas, where the orchestrator itself employs the Round Robin load balancing algorithm, reducing system
idleness during request blocking, thereby increasing parallelism and scalability. This improvement is particularly
evident in the fourth graph (Average Duration of Blocks), where this experiment delivers favorable figures, especially
in test 2 (500 concurrent iterations).

Furthermore, it is evident from the graphs that Experiment B yields the poorest results across all criteria. This can
be attributed to the system being hosted in a public cloud, resulting in latency overhead during data transfer between
the public cloud and the local environment. This latency issue is clearly illustrated in the second graph (Failure
Percentage), where Experiment B exhibits a significantly higher failure percentage, even at 5000 concurrent requests,
in contrast to the other experiments.

6. Conclusions and Future works

This paper presents our initial DSA proposal and performance test results. We proved experimentally that using a
container orchestrator positively impacts the reactiveness and scalability of the solution. We also concluded that using
a private cloud decreases the latency, especially compared to the hybrid configuration. The technology stack provided
cost-effectiveness and reproducibility by utilizing an open-source technology stack. With this preliminary version,
our contributions to the state-of-the-art include (i) the use of a distributed architecture for the IoT context following
the RM; (ii) the applications of cloud patterns such as API Gateway and container orchestration to implement an
architecture that can be deployed on different hosts, such as edge devices; (iii) the creation of a solution that will allow

8 Gustavo Freire et al. / Procedia Computer Science 00 (2019) 000–000

its architecture to be applied to other IoT applications in different sectors (smart home, smart hospital, smart campus,
industry 4.0, and others);

In future works, we will extend the tests to cover the other nodes of the architecture. We will also integrate the
distributed architecture with its complementary components, such as Multi-Agent systems, Federated Learning, On-
tologies, and a context-aware approach. We aim to showcase the combined functionality in a real-world scenario,
precisely the LaSDPC, where we will rigorously test each principle of the RM. LaSDPC provides an ideal infrastruc-
ture for researching Distributed Systems due to its extensive array of devices, including sensors and actuators, and a
data center comprising five racks that support diverse research projects.

Acknowledgements

This work was developed using the computational infrastructure of the Distributed Computing Lab of ICMC-
USP—the University of São Paulo (http://infra.lasdpc.icmc.usp.br/) and also with resources from the Cen-
ter for Mathematical Sciences Applied to Industry (CeMEAI http://www.cemeai.icmc.usp.br/) funded by the
São Paulo Research Foundation FAPESP (Project Number 2013/07375-0) and also by Project Number 11/09524-7).

References

[1] Badawy, M., El-Aziz, A.A., Idress, A.M., Hefny, H., Hossam, S., 2016. A survey on exploring key performance indicators. Future Computing
and Informatics Journal 1, 47–52. doi:10.1016/j.fcij.2016.04.001.

[2] Bauer, M., Boussard, M., Bui, N., Carrez, F., (SIEMENS, C., (ALUBE, J., (SAP, C., Meissner, S., IML, A., Olivereau, A., (SAP, M., Joachim,
W., Stefa, J., Salinas, A., 2013. Internet of Things – Architecture IoT-A Deliverable D1.5 – Final architectural reference model for the IoT
v3.0. URL: https://www.iot-a.eu/public/front-page/.

[3] Óscar Belmonte-Fernández, Sansano-Sansano, E., Trilles, S., Caballer-Miedes, A., 2022. A reactive architectural proposal for fog/edge com-
puting in the internet of things paradigm with application in deep learning doi:10.1007/978-3-030-84459-2_9.

[4] Butzin, B., Golatowski, F., Timmermann, D., 2016. Microservices approach for the internet of things. 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA) doi:10.1109/ETFA37052.2016.

[5] Debski, A., Szczepanik, B., Malawski, M., Spahr, S., Muthig, D., 2018. A scalable, reactive architecture for cloud applications. IEEE Software
35, 62–71. doi:10.1109/MS.2017.265095722.

[6] Dobaj, J., Krisper, M., Iber, J., Kreiner, C., 2018. A microservice architecture for the industrial internet-of-things. EuroPLoP ’18: Proceedings
of the 23rd European Conference on Pattern Languages of Programs doi:10.1145/3282308.3282320.

[7] Khoso, F.H., Arain, A.A., Nizamani, S.Z., Lakhan, A., Soomro, M.A., Kanwar, K., 2021. A microservice-based system for industrial internet
of things in fog-cloud assisted network. Engineering, Technology and Applied Science Research (ETASR) doi:10.1002/spe.2729.

[8] Konersmann, M., Kaplan, A., Kühn, T., Heinrich, R., Koziolek, A., Reussner, R., Jürjens, J., al Doori, M., Boltz, N., Ehl, M., Fuchs, D., Groser,
K., Hahner, S., Keim, J., Lohr, M., Sağlam, T., Schulz, S., Töberg, J.P., 2022. Evaluation methods and replicability of software architecture
research objects, in: 2022 IEEE 19th International Conference on Software Architecture (ICSA), pp. 157–168. doi:10.1109/ICSA53651.
2022.00023.

[9] Medhat, N., Moussa, S., Badr, N., Tolba, M.F., 2019. Testing techniques in iot-based systems, in: 2019 Ninth International Conference on
Intelligent Computing and Information Systems (ICICIS), pp. 394–401. doi:10.1109/ICICIS46948.2019.9014711.

[10] Molina, J., M., Garcia, J., F., Jimenez, C., K., 2018. Archer: An Event-Driven Architecture for Cyber-Physical Systems. IEEE/ACM Interna-
tional Conference on Utility and Cloud Computin Companion , 335–340.

[11] Power, A., Kotonya, G., 2018. A microservices architecture for reactive and proactive fault tolerance in iot systems. 2018 IEEE 19th Interna-
tional Symposium on ”A World of Wireless, Mobile and Multimedia Networks (WoWMoM) doi:10.1109/WoWMoM.2018.8449789.

[12] Richards, M., 2015. Software Architecture Patterns. 3 ed., O’Reilly Media.
[13] Salah, T., Zemerly, M.J., Yeun, C.Y., Al-Qutayri, M., Al-Hammadi, Y., 2018. Iot applications: From mobile agents to microservices architecture

doi:10.1109/INNOVATIONS.2018.8605967.
[14] Sanctis, M.D., Muccini, H., Vaidhyanathan, K., 2020. Data-driven adaptation in microservice-based iot architectures. 2020 IEEE International

Conference on Software Architecture Companion (ICSA-C) doi:10.1109/ICSA-C50368.2020.00019.
[15] Santana, C., Andrade, L., Delicato, F.C., Prazeres, C., 2021. Increasing the availability of iot applications with reactive microservices. Service

Oriented Computing and Applications - Volume 15 - Issue 2 doi:10.1007/s11761-020-00308-8.
[16] Simmhan, Y., Ravindra, P., Chaturvedi, S., Hegde, M., Ballamajalu, R., 2018. Towards a data-driven iot software architecture for smart city

utilities. Software: Practice and Experience 48, 1390–1416. doi:10.1002/spe.2580.
[17] Suzuki, L.R., 2017. Smart Cities IoT: Enablers and Technology Road Map. Springer International Publishing, Cham. pp. 167–190. doi:10.

1007/978-3-319-61313-0_10.
[18] Tanenbaum, A., van Steen, M., 2017. Distributed Systems. CreateSpace Independent Publishing Platform.

