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Belyi's theorem, 11], says that a complete non singular algebraic 

curve X defined over a field of zero characteristic can be defined over 

the algebraic closure Q of the rationals if, and only if, there exists a 

morphism ¢: X - P1 ramified over three points. 

Belyi 's original contribution was to show, when X is defined over 

Q, how to build a covering of P1 ramified over three points. For the 

converse he essentially invokes Weil 's criterion, [2), for descending 

the ground field. 

It is not easy to find a good reference for Weil's criterion; and in 

fact Weil's paper originated a field of research. The interested reader 

can read Giraud, (3], or the series of Grothendieck's papers in the 

Bour bald seminar, [ 4). 



The purpose of this paper is to give an elementary proof of the 

converse quoted above, not using Weil's criterion nor Grothendieck's 

theorems. Our point of view is that of Shimura's note, (5), where he 

proves that if a projective nonsingular complex variety V is rigid, 

then V is biregularly equivalent to a complex variety defined over Q. 

We recall that V is rigid if H 1 (V, 0) = 0, where 0 is the sheaf of 

holomorphic sections of the tangent bundle of V. 

We can now state the main result of this paper: 

Theorem 1 Let V be a projective nonsingular complex algebraic 

curve and <f>: V --- P1 a covering ramified only over points of Q U oo. 

Then there is a nonsingular projective curve yo defined over Q and 

a biholomorphism ¢,0 : v 0 ® c -=-+ V, where v 0 ® c denotes the 

extension of scalars to c. 

Although this result seems to belong to folklore, we believe that 

the elementary character of our proof justifies publication. 

Belyi's original argument and the above theorem can be put to­

gether to give a complete proof of 

Theorem 2 (Belyi) A complete nonsingular algebraic curve X de­

fined over c has a model over Q if and only if there exists a morphism 

<f>: X - P1 ramified over three points. 

Since the fundamental group of the sphere minus three points is 

isomorphic to S L2( z), theorem 2 has the important corollary: 

Theorem 3 Every compact Riemann surface X defined over Q ad­

mits a hyperbolic uniformization, i.e., there is a subgroup r of finite 
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index in SL2(z) such that X is biholomorphically equivalent to the 

compactification of r \ H, where H is the complex upper half plane. 

2 Proof of theorem 1 

Without loss of generality we shall suppose that the given cover­

ing ¢: V --+ P1 is the projection on the x-coordinate and that the 

function field of V is K = k0(x, y) , where 

n-1 
yn = L ai(x)yi (aj(x) E ko(x)) 

i=O 

and ko is a finitelly generated extension of Q. 

Let L be the algebraic closure of Q in K. So L/Q is a finite ex­

tension. We will construct a fibered variety E defined over L whose 

function field is isomorphic to K and whose generic fiber is V. For 
this we shall transform the transcendental coefficients of the defining 

equation for V into variables: let x 1 , x2, ... , x1:+i be a transcendence 

basis of Kover L, where we consider x1:+i = x. If 0 is a primitive ele­

ment of Kover L(x1, ... , xl:+i) then we can define E as the projective 

closure of 

E0 = Spec(L[X1, ... , X1:+1, Y)/(/)) 

where J = f(X1, ... ,Xl:+1, Y) is the irreducible polynomial of 8. 

As it is clear that to prove theorem 1 it is sufficient to consider 

the affine case, we make the extension of scalars to c and define 

by simply taking the projection in ((x1, ••• , x1;), x1:+ 1). 
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So E0 0 c is a fibered variety and to each x = (x1, ... ,XA:) E cA: we 

can consider the restriction <l>x of <I> to the fiber Ex 

It is also clear that if Xo E c1 is the point corresponding to the 

coefficients of the original curve V , then there is an isomorphism 

e: Ex0 --+ V such that 

cl 

V 

,/ </> 

is commutative. The function field of Ex0 and V are the same , 

<l>xo: ~xo --+ c has the same ramification points as those of V , and 

there is an open set U containing xo in cA: such that the fiber Ey, 

for y in U is nonsingular. 1 We shall prove that the family E 0 ® c is 

rigid near the fiber Exo• To see this, consider the polynomial 

n 

L a;(x)yi 
j=O 

in two variables that defines V and it's partial derivative with respect 

to y . Considering both polynomials as polynomials in the variable 

y and forming the discriminant of the first one, we see that this 

discriminant is a polynomial in x which vanishes if, and only if, x is 

a ramification point ( recall that we are considering the x-projection!) 

1 In facl we don't need to find a nonsingular equation for V in order to make things work. In a 

forthcoming papl"r w~ shall prove an analogous criterion for varieties of arbitrary dimension, only 

in terms of func-tion fields . 
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.. 
• We can write this discriminan as 

where (; are algebraic numbers and c0 is a complex nonzero constant. 

As this happens in the generic fiber, we have c0 = eo(x 1, ••. ,xt) and 

so there is an open set U' C U with x0 E U' such that c0(y) # 0 for 

y E U'. Then all the fibers corresponding to points in U' have the 

same ramification points as those of V and by Riemann's existence 

theorem all the fibers are biholomorphic. We can finish the proof of 

theorem 1 by taking a point y 0 in U' all of whose coordinates are 

algebraic numbers and define v 0 = Eyo. It is clear that v 0 is defined 

over L(y0) and is biholomorphic to V. 

3 Proof of Belyi 's theorem 

We now give Belyi's original argument for reducing the number of 

ramification points. Let X be the complex projective nonsingular 

curve defined over Q and tan arbitrary non constant rational function 

t: X - P1, ramified over r 1, ••• , rn, oo, with ri E Q. Let h1 E Q[X] be 

the anulator of the r/s. So h1(t) ramifies over oo,O,h1(t9i), where ,{Ji 

are the roots of h'1. Let h2 E Q[X] be the anulator of the values h1 ( iJi). 

Since Gal(Q) leaves the set h1(t9i) invariant, we have degree(h2) :5 
degree(hi) - 1 and if we continue this way, in at most degree(hi) 

steps we reach a linear polynomial h, E Q[X]. The composition 

</>' = h1(h1-1( ... (h1(t)) ... ) is a covering ramified only over points of 

Q U oo . By conveniently changing </>' by c1 </>' + c2 we can suppose 

that 0, 1 , and oo are among the ramification points. Let r E Q 
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another ramification point. We can suppose that O < r < 1, that is! 

r = m/m + n for positive integers m, n. We want a polynomial g(X) 

such that 
• 

g(oo)=oo, g(0):::;;0, g(l):::;;0, g(r)=l 

and 

g'(w) = 0 =} w E {O, 1,oo} 

If we try g( w) = c0w"' ( 1 - w )"2 and impose the above conditions, 

we obtain 
(m + n)m+n 

g(w) = - ---wm(1-wr 
1nmnn 

Then, changing ¢' by g( ¢') and applying induction we reduce the 

ramification points to 0, 1, oo. We can now prove Belyi's theorem: 

Theorem 4 A complete nonsingular algebraic curve X defined over 

c can be defined over Q if and only if there exists a morphism¢: X - P1 

ramified over three points. 

Proof: If X is defined over Q then the above argument applies. If 

¢ ramifies over three points, by composing with a linear fracional 

transformation we can suppose that the points are 0, 1, oo and then 

apply theorem 1. 

4 Belyi 's theorem and Galois representations 

To conclude, we give an interpretation of Belyi's theorem in terms of 

a certain representation of the absolute Galois group of Q. This i:epre- .. 

sentation is not well understood but the reader can see Grothendieck, 

(6], Deligne, (7], and Ibara, [8], [9]. 
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Let Mbe the maximal extension of ij(t) unramified outside 0, 1, oo. 

So M/Q(t) is also Galois and, identifying naturally GQ = Gal(ij/Q) 
with Gal ( Q( t) / Q( t)), then the following sequence is exact: 

1 -+ Gal(M/ij(t)) -+ Gal(M/Q(t)) -+ GQ-+ 1 

If we put H = Gal(M/ij(t)), G = Gal(M/Q(t)) then we have the 
sequence of natural maps: 

G-+ Int(G) ~ Aut(H) -+ Out(H) = Aut(H)/ Int(H) 

where Int(G) is the group of inner authomorphisms of G, Res is 
the restriction to H. Since the composition ~ of the above maps is 
trivial in H, we have a homomorphism 

<t>Q: Gal(Q/Q) -+ Out(Gal(M/ij(t))) 

Belyi's theorem is equivalent to the injectivity of </>Q. To see this 
we consider the fixed field I{ corresponding to the kernel of <PQ· 
By our earlier identification we can write Ker</>Q = G(</>Q)/H for a 
certain subgroup G(</>Q) of G. It is then clear that </>Q is injective if 
and only if G(</>Q) = H, (or equivalently, ]( = Q). Since G(</>Q) = 
Gal(M/ K(t)) , the natural homomorphism 

G(</>Q) -+ Aut(H) 

has its image in Int(H). The kernel C of this map is the centralizer 
of Hin G(¢Q) . Since His a profinite proup free in two generators, 
it is well known that the center of H is trivial and so C n H = { 1} 
and H ~ Int(H). consequently 

7 



If M,p is the fixed field of C we have 
I 

/ 

and so M,p n Q = I{ and M = M,p • Q. So I( jQ is an algebraic Ga­

lois extension such that M has a model over K, that is, the map 

S -+ S • Q between subfields of M,p/ I( and subfields of M/q,(t) is an 

isomorphism of the lattices of the corresponding fields. Then every 

subfield of M/q,(t) of finite degree over Q(t) can be defined by an 

equation with coefficients in I{. But for every j E Q we consider 

an elliptic curve E with invariant j given by a minimal Weierstrass 

equation defined over Q(j) and apply Belyi's theorem to see the func­

tion field of E as a subfield of M/ij(t) of finite degree. So j E Kand 

consequently /{ = ij. 

References 

[l] G. V. Belyi, On Galois extensions of a maximal cyclotomic field, 

Math. USSR Izvestija vol. 14(1980) No. 2 

(2] A Weil, The field of definition of a variety, Amer. J. Math. 78 

( 1956) 509-524 

8 

• 



(3] J. Giraud, Methode de la descente, Bull. Soc. Math. France, 
Memoire 2, 1964 

[4) A. Grothendieck, Technique de descente et theoremes 
d'existence en geometrie algebrique I, II, Ill, IV, Sem. Bourb. 
1959/60 no.190, 195, 1960/61 no. 212, 221 

[5] G. Shimura, Algebraic varieties without deformation and the 
Chow variety, J. Math. Soc. Japan vol. 20, Nos. 1-2, 1968 

(6] A. Grothendieck, Esquisse d'un programme, Preprint, 1984 

[7] P. Deligne, Le groupe fondamental de la droite projective moins 
trois points, Galois Groups over Q, Springer Verlag, 1987 

(8) Y. !hara, Some problems on three point ramification and asso­
ciated large Galois representations, Advanced Studies in Pure 
Mathematics 12, 1978 

[9] Y. !hara, Profinite braid groups, Galois representations and 
complex multiplications, Ann. of Math, 123(1986), 43-106 

9 



92-02 

92-05 

92-01 

92-07 

92-08 

92-09 

92-10 

92-11 

92-12 

92-14 

92-15 

92-17 

92-18 

92-U 

92-20 

1 

TRABALHOS DO DBPllTAKDITO DB IIATBHiTICA 

T1TUL08 PUBLICADOS 

COELHO, s.P. The autoaorpbi■a group of a ■tructural 
matrix algebra. 33p. 

COELHO, s.P. 'POLCIRO NILIBS, c. Group ring• who■• 
tor■ion unit• fora a aubqroup. 7p. 

ARAOOHA, J. so■• re■ult■ for th• operator on 
generalised differential foraa. 9p. 

JBBPBRB, •• ' POLCilfO NILIEB, r.c. Group ring■ of 
■o■• p-group■• 17p. 

JBBPERS, •• , LEAL G. 'POLCIHO MILIBS, c. unit■ of 
Integral Group Ring• of Bo■• Netacyclic 
Group■• llp. 

COELHO, S.P.. Autoaorpbi•• Group■ 
Algebra• of Triangular Katrice■• 

SCRDCIOIAII, v., Abnoraal ■olution■ of 
Equation■, I. lip. 

of certain 
Ip. 
the IIVolution 

SCBUCBXUI, v., Abnoraal ■olution■ of the Evolution 
Equation■, II. 13p. 

COELHO, S.P., Autoaorpbi■a Group■ of Certain 
structural Matris Ring■• 23p. 

BAUTISTA, R. ' COELHO, r.o. on th• ■xi■tenc• of 
aodul•• which are n•itber preprojective nor 
preinjective■• 1Cp. 

MERKLIN, H.A., Equivalence aodulo preprojectiv•• 
for alg•bra■ which are a quotient of a 
hereditary. 11p. 

BARROS, L.o.x. d•, I■omorphi••• of Rational Loop 
Algabra■• 18p. 

BARROS, L.o.x. da, OD ·••i■i■ple Alternative Loop 
Algebra■• 21p. 

JIERKLl:11, B.A., Equival6ncia■ B■t6vai■ e Aplica96e■ 
17 p. 

LIHTZ , a.o., Tb• theory of -g•n•rator■ and ao■e 
question■ in analyaia. 21p. 

CARRARA ZAlfBTIC, V.L. Subaeraion■ Map■ of conatant 
Rank Subaer■ion■ with rold■ and I-•r■ion■• 
Ip. 

BRITO, r.G.B. ' l:ARP, R.S. On th• Structure of 
certain Weinqarten Surface■ with Boun4ary a 
Circle. ep. 

COSTA, R. ' GUZZO JR.,H. Indaco■po■able baric 
algabra■ , II. lOp. 

Guzzo JR., B. A generalisation of Abr•b-• ■ ezample 
7p. 

JDRIAANS, o.s. Toraion Unit■ in Integral Group Ring■ 
of Metab•lian Group■• Ip. 



92-21 COSTA, a. Shape identiti•• in genetio algebraa. 12p. 
92-22 COS~A, a. , VBGA R.B. Shape identitie■ in genetio 

algebra■ II. 11p. 
92-23 l'ALBBL, B. A Bot• on conforaal Geo■etry. &p. 

93-01 COBLBO, P.O. A note on preinjective partial tilting 
aodul••• 7p. 

93-02 ASSBll,I. i COBLHO, P.O. Complete slices and 
boaological propertie■ of tilted algebra■• 

Up. 
93-03 ASSBII, I. i COBLHO, P.O. Glueing■ of tilted algebra■ 

20p. 

2 

93-04 COELHO, P.O. Poatprojective partitions and 
Au■lander-Reiten quiver■• 26p. 

93-05 KERD,BII, H.A. Web aodule■ and applications. 14p. 
t3-0& GUZZO JR.,B. Tb• Peirce decompo■ition for ■om• 

co-utativ• train algebra■ of rank n.12p. 
93-07 PDBSI, L.A. Kiniaal Polyno■ial Identitiea of Barie 

Algebra■• 11p. 
93-08 PU.BBL B., VDDDBBI J.A. i VELOSO J.K. Tb• 

Bquivalenc• Probl- in Bub-Ri-•nnian 
Geo■etry. Up. 

93-09 BARROS, L.G.z. i POLCIBO KILIBS, c. Modular Loop 
~19ebraa o~ R.A. Loopa. 15p. 

93-10 COBLHO.P.O., DRCOS B.B., MmLD H.A • . , BKOWROHBKI 
Module categori•• with Infinite Radical square 
lero are of Finite Type. 7p. 

93-11 COELHO B. P. i POLCIIIO KILIBB, C. Autoaorphi■a■ of 
Group Algebra■ of Dihedral Group■• ap. 

93-12 JURIAAHS. o.s. Tor■ion unit■ in integral group 
ring■• 11 p. 

93-13 l'BRRDO, K., GIAKBRDHO, A. • POLCINO KILI!:S, C. A 
Bot• on Derivation• of Group Ring■• tp. 

93-14 FERHABDBS, J.C. i FRAHCBI, B. bi■tence of tbe Green 
function for a class of degenerate parabolic 
equation■, 2tp. 

93-15 DCOJITRO DB iLoBBll - IKB-OBP/IKBCC - UHICAMP. 41p. 
93-11 FU.BBL, B. i VBLOBO, J.M. A Paralleliaa for 

conforaal Sub-Rie■annian Geo■etry, 20p. 
93-17 "TEORIA DOS AHBIS" - Bncontro ID.USP. - IMBCC­

UIIICAKP - Realisado DO IME-USP •• 18 4• 
junbo de 1993 - sop. 

93-18 ARAGOKA, J. so■• Propertie■ of Holoaorpbic 
Generalised Function■ on strictly 
Paeudoconvex DO■aina. ap. 

93-19 CORRBA 1., BBHTIBL I.R. i PBRBSI L.A. Kini■al 
Identiti•• of Bernatein Algebras. 14p. 



J 

13-20 JUllIAAJIIS s.o. 'l'or■ion Unit■ in Integral Group 
Ring■ II. 15p. 

13-21 l'ALBBL II. , GUSBVSKII II. Spherical CR-aanifold■ of 
diaen■ion 3. zap. 

13-22 llllTIM P.A. Algebraic ourv•• over Q and deforaation■ 
of ooaplez atruoture■• tp. 

ROTA& o■ tltuloa publioado■ doa Relat6rio■ Ticnicos do■ anoa 
de 1980 a 1991 •■tlo l 4i■po■i9lo no Departaaento de 
Kat-ltica do IKB-USP. Ci4ade Univer■itlria "Araando 
de Sall•• Oliveira" Rua do llatlo, 1010 - Butantl 
Caiza Po■tal - 20.570 (Ag. Ivuatai) 
CBPI 01498 - Bio Paulo - Bra■il 




