





The purpose of this paper is to give an elementary proof of the
converse quoted above, not using Weil’s criterion nor Grothendieck’s
theorems. Qur point of view is that of Shimura’s note, [5], where he
proves that if a projective nonsingular complex variety V is rigid,
then V is biregularly equivalent to a complex variety defined over q.
We recall that V is rigid if H'(V,0) = 0, where © is the sheaf of
holomorphic sections of the tangent bundle of V.

We can now state the main result of this paper:

Theorem 1 Let V be a projective nonsingular complex algebraic
curve and ¢: V — P! a covering ramified only over points of QUoo.

Then there is a nonsingular projective curve VO defined over § and
a biholomorphism ¢t V0o c =+ V, where VO @ ¢ denotes the

extension of scalars to C.

Although this result seems to belong to folklore, we believe that
the elementary character of our proof justifies publication.
Belyi’s original argument and the above theorem can be put to-

gether to give a complete proof of

Theorem 2 (Belyi) A complete nonsingular algebraic curve X de-
fined over ¢ has a model over § if and only if there ezists a morphism

¢: X — p! ramified over three points.

Since the fundamental group of the sphere minus three points is
isomorphic to SLy(z), theorem 2 has the important corollary:

Theorem 3 Every compact Riemann surface X defined over § ad-

mits a hyperbolic uniformization, i.c.,there is a subgroup I' of finite
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index 1n SLy(z) such that X is biholomorphically equivalent to the
compactification of I' \ 0, where H is the complez upper half plane.

2 Proof of theorem 1

Without loss of generality we shall suppose that the given cover-
ing ¢: V — P! is the projection on the z-coordinate and that the
function field of V is K = ky(z,y) , where

n—1

y" = Y aj(z)y’  (a;(z) € ko(a))

j=0
and kg is a finitelly generated extension of q.
Let L be the algebraic closure of @ in K. So L/q is a finite ex-
tension. We will construct a fibered variety ¥ defined over L whose

function field is isomorphic to K and whose generic fiber is V. For
this we shall transform the transcendental coefficients of the defining
equation for V into variables: let z,, x5, ..., 744 be a transcendence
basis of K over L, where we consider z4,) = z. If § is a primitive ele-
ment of K over L(z,...,Z¢41) then we can define ¥ as the projective

closure of
* = Spec(L[Xy, ..., Xes1, Y]/(f))

where f = f(X),..., Xik41,Y) is the irreducible polynomial of 8.
As it is clear that to prove theorem 1 it is sufficient to consider
the affine case, we make the extension of scalars to ¢ and define

»:I°®c— ckxcl!
by simply taking the projection in ((z,..., Zt), Te41)-
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So £2 @ c is a fibered variety and to each x = (z,...,Z4) € ct we
can consider the restriction ¢y of ¢ to the fiber X4 :

Px: By — c!

It is also clear that if xq € c* is the point corresponding to the
coefficients of the original curve V , then there is an isomorphism
0: Ly, — V such that

Txy — \Y
Pxo N S
c!
is commutative. The function field of £,, and V are the same ,
$x,: ©x, — € has the same ramification points as those of V , and
there is an open set U containing Xg in c* such that the fiber Iy,
for y in U is nonsingular. ! We shall prove that the family £?®c is
rigid near the fiber £,,. To see this, consider the polynomial
n L
2 aj(z)y’
j=0
in two variables that defines V and it’s partial derivative with respect
to y . Considering both polynomials as polynomials in the variable
y and forming the discriminant of the first one, we see that this
discriminant is a polynomial in = which vanishes if, and only if, r is

a ramification point ( recall that we are considering the z-projection!)

!In fact we don’t need to find a nonsingular equation for V in order to make things work. In a
forthcoming paper we shall prove an analogous criterion for varieties of arbitrary dimension, only
in terms of function fields.



We can write this discriminant as

Az) = ¢ [I(z - ()™

where (; are algebraic numbers and ¢, is a complex nonzero constant.
As this happens in the generic fiber, we have ¢y = ¢y(zy, ..., 2¢) and
so there is an open set U' C U with xo € U’ such that cy(y) # 0 for
y € U'. Then all the fibers corresponding to points in U’ have the
same ramification points as those of V and by Riemann’s existence
theorem all the fibers are biholomorphic. We can finish the proof of
theorem 1 by taking a point y° in U’ all of whose coordinates are
algebraic numbers and define V® = To. It is clear that V0 is defined
over L(y?) and is biholomorphic to V.

3 Proof of Belyi’s theorem

We now give Belyi’s original argument for reducing the number of
ramification points. Let .X' be the complex projective nonsingular
curve defined over @ and t an arbitrary non constant rational function
t: X — p!, ramified over ry, ..., 7,00, with r; € § . Let k) € @[X] be
the anulator of the r;’s. So h,(t) ramifies over oo, 0, hy(¥;), where 9;
are the roots of h}. Let hy € @[X] be the anulator of the values h;(9;).
Since Gal(Q) leaves the set h)(¥;) invariant, we have degree(hs) <
degree(h;) — 1 and if we continue this way, in at most degree(h,)
steps we reach a linear polynomial h; € @[X]. The composition
¢' = hi(hi1(...(h1(2))...) is a covering ramified only over points of
QUoo . By conveniently changing ¢' by ¢;¢' + c2 we can suppose
that 0,1 , and oo are among the ramification points. Let r € Q
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another ramification point. We can suppose that 0 < r < 1, that is,
r = m/m+ n for positive integers m,n. We want a polynomial g(X)
such that

g(o0) =00, g(0)=0, g(1)=0, g(r)=1

and
g'(w)=0= we {0,1,00}

If we try g(w) = cow™(1 — w)™ and impose the above conditions,

we obtain (m 4+ n)™
m n
g(w) = —mm—n"—wm(l — lU)

Then, changing ¢' by g(¢') and applying induction we reduce the

n

ramification points to 0,1,c00. We can now prove Belyi’s theorem:

Theorem 4 A complete nonsingular algebraic curve X defined over
¢ can be defined over @ if and only if there exists a morphism ¢: X — p!

ramified over three points.

Proof: If X is defined over @ then the above argument applies. If
¢ ramifies over three points, by composing with a linear fracional
transformation we can suppose that the points are 0,1, 00 and then
apply theorem 1.

4 Belyi’s theorem and Galois representations

To conclude, we give an interpretation of Belyi’s theorem in terms of
a certain representation of the absolute Galois group of Q. 'This repre-
sentation is not well understood but the reader can see Grothendieck,
[6], Deligne, [7], and Ihara, [8], [9].
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Let M be the maximal extension of §(¢) unramified outside 0, 1, co.
So M/q(t) is also Galois and, identifying naturally Gq = Gal(§/Q)
with Gal(Q(t)/q(t)), then the following sequence is exact:

1 — Gal(M/&(t)) — Gal(M/q(t)) — Gq — 1

If we put H = Gal(M/3(t)), G = Gal(M/q(t)) then we have the
sequence of natural maps:

G — Int(G) £ Aut(H) — Out(H) = Aut(H)/Int(H)

where Int(G) is the group of inner authomorphisms of G, Res is
the restriction to H. Since the composition ® of the above maps is

trivial in H, we have a homomorphism
¢q: Gal(§/Q) — Out(Gal(M/4(t)))

Belyi’s theorem is equivalent to the injectivity of ¢q. To see this
we consider the fixed field i corresponding to the kernel of ¢q.
By our earlier identification we can write Ker¢q = G(¢g)/H for a
certain subgroup G(¢q) of G. It is then clear that @q is injective if
and only if G(¢q) = H, (or equivalently, I{ = §). Since G(¢q) =
Gal(M/K (t)) , the natural homomorphism

G(¢q) — Aut(H)

has its image in Int(H). The kernel C of this map is the centralizer
of H in G(¢q) . Since H is a profinite proup free in two generators,
it is well known that the center of H is trivial and so CNH = {1}
and H = Int(H). consequently

G(d)Q) “HxC
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If My is the fixed field of C' we have

/M¢ (t\)
a(t)
/ N t)/

N

and so My;N@ = K and M = My - Q. So K/qQis an algebraic Ga-
lois extension such that M has a model over K, that is, the map
S — S - @ between subfields of My/K and subfields of M/g(?) is an
isomorphism of the lattices of the corresponding fields. Then every
subfield of M/§(t) of finite degree over §(t) can be defined by an
equation with coefficients in L. But for every j € @ we consider
an elliptic curve E with invariant j given by a minimal Weierstrass
equation defined over Q(j) and apply Belyi’s theorem to see the func-
tion field of E as a subfield of M/g(t) of finite degree. So j € K and

consequently ' = Q.
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