
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

Quantum linear Galois orders

Vyacheslav Futorny & João Schwarz

To cite this article: Vyacheslav Futorny & João Schwarz (2019): Quantum linear Galois orders,
Communications in Algebra, DOI: 10.1080/00927872.2019.1623236

To link to this article:  https://doi.org/10.1080/00927872.2019.1623236

Published online: 04 Jun 2019.

Submit your article to this journal 

Article views: 10

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lagb20
https://www.tandfonline.com/loi/lagb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2019.1623236
https://doi.org/10.1080/00927872.2019.1623236
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2019.1623236&domain=pdf&date_stamp=2019-06-04
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2019.1623236&domain=pdf&date_stamp=2019-06-04


Quantum linear Galois orders

Vyacheslav Futorny and Jo~ao Schwarz

Instituto de Matem�atica e Estat�ıstica, Universidade de S~ao Paulo, S~ao Paulo, SP, Brasil

ABSTRACT
We define a class of quantum linear Galois algebras which include the uni-
versal enveloping algebra UqðglnÞ; the quantum Heisenberg Lie algebra
and other quantum orthogonal Gelfand–Zetlin algebras of type A, the sub-
algebras of G-invariants of the quantum affine space, quantum torus for
G ¼ Gðm; p; nÞ; and of the quantum Weyl algebra for G ¼ Sn. We show
that all quantum linear Galois algebras satisfy the quantum Gelfand-Kirillov
conjecture. Moreover, it is shown that the subalgebras of invariants of the
quantum affine space and of quantum torus for the reflection groups and
of the quantum Weyl algebra for symmetric groups are, in fact, Galois
orders over an adequate commutative subalgebras and free as right (left)
modules over these subalgebras. In the rank 1 cases the results hold for an
arbitrary finite group of automorphisms when the field is C:
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1. Introduction

The purpose of this article is to quantize the results of [16], where subalgebras of invariants of
Weyl algebras were studied for irreducible reflection groups. It was shown that in many cases
these subalgebras have a structure of Galois orders over certain commutative domains. This fea-
ture indicates a hidden skew group algebra structure of all these algebras.

The theory of Galois rings and orders developed in [13, 14]. Classical examples includes finite W-
algebras of type A [17], in particular the universal enveloping algebra of gln, and generalized Weyl alge-
bras of rank 1 over integral domains with infinite order automorphisms [6]. The importance of the
Galois order structure is in their representation theory, where one can effectively study the Gelfand-
Tsetlin categories of modules with torsion for certain maximal commutative subalgebras [14, 22].

Our main objects of interest are the following quantum algebras: the quantum affine space
Oqðk2nÞ; the quantum torus Oqðk�2nÞ and the quantum Weyl algebra Aq

nðkÞ:
Our first result shows that the subring of invariants Oqðk2nÞG of the quantum affine space is a

Galois order over certain polynomial subalgebra when G ¼ G�n
m is a product of cyclic groups

(Proposition 5) or G ¼ Gðm; p; nÞ is one of nonexceptional reflection groups (Theorem 5):

Theorem 1. If G is a product of n copies of a cyclic group of fixed finite order or one of the irredu-
cible non exceptional reflection groups Gðm; p; nÞ, then the invariant subring Oqðk2nÞG of the quan-
tum affine space is a Galois order over a polynomial subalgebra C of Oqðk2nÞG. Moreover, Oqðk2nÞG
is free as a left (right) C-module.

Theorem 1 can be easily generalized to the case of the quantum torus (Theorem 6):

Theorem 2. For every G ¼ Gðm; p; nÞ the invariant subring Oqðk�2nÞG of the quantum torus is a
Galois order over C ¼ k½x61

1 ; :::; x61
n �G in ðkðx1; :::; xnÞ � ZnÞG. Moreover, Oqðk�2nÞG is free as a left

(right) C-module.
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We have the following generalization of Theorem 1 for quantum planes (Theorem 7) and the
first quantum Weyl algebra (Proposition 7) when k ¼ C :

Theorem 3. Let A 2 fOqðC2Þ;Aq
1ðCÞg. For every finite group G of automorphisms of A, the subr-

ing of invariants AG is a Galois order over a certain polynomial subalgebra C in one variable.
Moreover, AG is free as a left (right) C-module.

It was shown in [15] that AnðkÞSn is a Galois order over some polynomial algebra. We prove
the quantum analog of this result for Aq

nðkÞSn (Theorem 8).
In Section 5, we address the quantum Gelfand-Kirillov conjecture for various algebras. We

introduce a class of quantum linear Galois algebras and show that the quantum Gelfand-Kirillov
conjecture is valid in this class (Theorem 9). Quantum linear Galois algebras include the quantum
Orthogonal Gelfand-Zetlin algebras of type A (in particular, the universal enveloping algebra
UqðglnÞ and the quantum Heisenberg Lie algebra), Oqðk2nÞG and Oqðk�2nÞG for G ¼ Gðm; p; nÞ;
Aq
nðkÞSn : When n¼ 1 the group G in all cases can be arbitrary.
We also compute the skew fields of fractions for the quantum 2-sphere and for the quantum

group Oq2ðsoð3;CÞÞ: Finally, we show that the subalgebra of Gm-invariants of Uðsl2Þ for the cyclic
group Gm of order m is birationally equivalent to Uðsl2Þ in spite of the rigidity of the latter.

2. Preliminaries

All rings and fields in the article are assumed to be k-algebras over an algebraically closed field k
of characteristic 0.

For q 2 k, q 6¼ 0,1, we denote by kq½x; y� the quantum plane over k is defined as khx; yjyx ¼
qxyi: In this article we will always assume that q is not a root of unity. Let �q ¼ ðq1; :::; qnÞ 2 kn

be an n-tuple whose components are nonzero and nonroots of unity. The tensor product of
quantum planes kq1 ½x1; y1� � :::� kqn ½xn; yn� will be called quantum affine space and will be
denoted by O�qðk2nÞ: If q1 ¼ ::: ¼ qn ¼ q; we will use the notation Oqðk2nÞ:

Denote by Aq
1ðkÞ the first quantum Weyl algebra defined as khx; yjyx�qxy ¼ 1i and set

A�q
n kð Þ ¼ Aq1

1 kð Þ�k � � � �kA
qn
1 kð Þ

for any positive integer n. Again, if q1 ¼ ::: ¼ qn ¼ q then we simply denote it by Aq
nðkÞ:

The quantum affine space O�qðk2nÞ and the quantum Weyl algebra A�q
nðkÞ are birationally

equivalent, that is, they have isomorphic skew fields of fractions [9].

2.1 Galois orders

We recall the concepts of Galois rings and Galois orders from [13]. Let C be a commutative
domain and K the field of fractions of C. Let L be a finite Galois extension of K with the Galois
group G ¼ GalðL;KÞ;M � Autk L a monoid satisfying the following condition: if m;m0 2 M and
their restrictions to K coincide, then m ¼ m0: Consider the action of G on M by conjugation.

A finitely generated C-ring U in K :¼ ðL �MÞG is called a Galois ring over C if KU ¼ UK ¼
ðL �MÞG: A Galois ring over C is called a right (left) Galois order over C if for every right (left)
finite dimensional K-vector subspace W � K;W \ C is a finitely generated right (left) C-module.
If U is both left and right Galois order over C, then we say that U is a Galois order over C.

If x ¼ P
m2M xmm 2 L �M then set

supp x ¼ m 2 Mjxm 6¼ 0f g:
We have

Proposition 1. [13] Let C � U be a commutative domain and U � ðL �MÞG:

2 V. FUTORNY AND J. SCHWARZ



(i) If U is generated by u1; :::; uk as a C-ring and [k
i¼1supp ui generates M as a monoid, then

U is a Galois ring over C.
(ii) Let U be a Galois ring over C and S ¼ C n f0g. Then S is a left and right Ore set, and the

localization of U by S both on the left and on the right is isomorphic to ðL �MÞG:
We also recall the following characterization of Galois orders.

Proposition 2. [13] Let C be a commutative Noetherian domain with the field of fractions K. If U
is a Galois ring over C and U is a left (right) projective C-module, then U is a left (right) Galois
order over C.

Remark. Let D be a commutative domain, finitely generated as a k-algebra, r 2 Autk D and A ¼
D½x; r� the skew polynomial Ore extension, where xd ¼ rðdÞx; for all d 2 D: Then D½x; r� ’
D �M; where

M ¼ rnjn ¼ 0; 1; :::f g ’ N:

The isomorphism is identity on D and sends x to the generator �1 of the monoid N and �1 acts on
D as r. Then for L¼K, the field of fractions of D, and for G ¼ feg we have that the algebra A is
a Galois ring (order) over D in K �M [21]. The localization of A by x is isomorphic to D � Z:

2.2 Invariant subalgebras

We will use the following two results on the subalgebras of invariants in the noncommutative setting.
The first is the result of Montgomery and Small which generalizes the Hilbert-Noether theorem.

Theorem 4. Let A be a commutative Noetherian ring, and R � A an overring such that A is cen-
tral and R is a finitely generated A-algebra. Let G be a finite group of A-algebra automorphisms of
R such that jGj�1 2 R. If R is left and right Noetherian then RG is a finitely generated A-algebra.

The following connects the projectivity of subalgebras of invariants with the projectivity of the
algebra itself as modules over respective commutative subalgebras.

Lemma 1. [16] Let U be an associative algebra and C � U a Noetherian commutative subalgebra.
Let H be a finite group of automorphisms of U such that HðCÞ � C. If U is projective right (left)
C-module and C is projective over CH, then UH is projective right (left) CH-module.

2.3 Generalized Weyl algebras

We will often use a realization of a given algebra as a generalized Weyl algebra [6]. Let D be a
ring, r ¼ ðr1; :::; rnÞ an n-tuple of commuting automorphisms of D, a ¼ ða1; :::; anÞ nonzero ele-
ments of the center of D and riðajÞ ¼ aj; j 6¼ i: The generalized Weyl algebra Dða; rÞ is generated
over D by Xi, Y i, i ¼ 1; :::; n subject to the relations:

Xid ¼ ri dð ÞXi; Yid ¼ r�1
i dð ÞYi; d 2 D; i ¼ 1; :::; n;

YiXi ¼ ai; XiYi ¼ ri aið Þ; i ¼ 1; :::; n ;
Yi;Xj½ � ¼ Yi;Yj½ � ¼ Xi;Xj½ � ¼ 0 ; i 6¼ j:

We will assume that D is a Noetherian domain which is finitely generated k-algebra. Fix a
basis e1; :::; en of the free abelian group Z

n: There is natural embedding of Dða; rÞ into the skew
group ring D � Zn; where the action on D is defined as follows: rei acts as rri ; for all i and r 2 Z:

Moreover, this embedding is an isomorphism if each ai is a unit in D, i ¼ 1; :::; n (cf. [16],
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Proposition 4). Both algebras algebras, Dða; rÞ and D � Zn; admit the skew fields of fractions.
Hence, following the discussion above we have

Proposition 3. The algebras Dða; rÞ and D � Zn have isomorphic skew fields of fractions.
Note that, if r1; :::; rn are linearly independent over Z; then Dða; rÞ is a Galois order over D

in the skew group ring ðFracDÞ � Zn (cf. [16], Theorem 5).

3. Invariants of quantum affine spaces

In this section we consider the invariants of quantum affine space Oqðk2nÞ: Fix any integerm> 1 and let
Gm � k be a cyclic group of orderm. Our first group G ¼ G�n

m is the product of n copies of Gm. Consider
the following natural action of G�n

m on Oqðk2nÞ : if g ¼ ðg1; :::; gnÞ 2 G then gðxiÞ ¼ gixi; gðyiÞ ¼ yi; i ¼
1; :::; n: This action was defined in [19], however we are using the defining relations as in [10].

We have

Proposition 4. The invariant subspace Oqðk2nÞG
�n
m is isomorphic to Oqmðk2nÞ:

Proof. The isomorphism just sends xi to xmi and yi to yi, i ¼ 1; :::; n: w

Consider the free monoid N
n with generators �1; :::; �n and the skew monoid ring k½x1; :::; xn� �

N
n; where N

n acts as follows: �iðxiÞ ¼ qxi; �iðxjÞ ¼ xj; j 6¼ i; i; j ¼ 1; :::; n:

Proposition 5. Quantum affine space Oqðk2nÞ is isomorphic to k½x1; :::; xn� � Nn. In particular,
Oqðk2nÞ is a Galois ring over C ¼ k½x1; :::; xn� in kðx1; :::; xnÞ � Nn:

Proof. The isomorphism is given by: xi 7! xi; yi 7! �i; i ¼ 1; :::; n: The rest is clear. w

For m 	 1; n 	 1; pjm; p>0 denote by Aðm; p; nÞ the subgroup of G�n
m consisting of elements

ðh1; :::; hnÞ such that ðh1h2:::hnÞm=p ¼ id: The groups Gðm; p; nÞ ¼ Aðm; p; nÞ3Sn were introduced
by Shephard and Todd and describe all irreducible non-exceptional complex reflection groups.
Here Sn acts on Aðm; p; nÞ by permutations.

Let G ¼ Gðm; p; nÞ; and consider the following action of G on Oqðk2nÞ : h ¼ ðg; pÞ 2 G; g ¼
ðg1; :::; gnÞ 2 G�n

m ; p 2 Sn; with hðxiÞ ¼ gixpðiÞ; hðyiÞ ¼ ypðiÞ; i ¼ 1; :::; n: The group G also acts on
k½x1; :::; xn� � Nn : the action on xi is the same as above, and hð�iÞ ¼ �pðiÞ: Clearly, G acts on N

n

by conjugations, and the isomorphism in Proposition 5 is G-equivariant. Hence, Oqðk2nÞG and
ðk½x1; :::; xn� � NnÞG are canonically isomorphic. Hence, Oqðk2nÞG is a Galois order over C ¼
k½x1; :::; xn�G: Taking into account that C is a polynomial algebra and applying Proposition 2,
Lemma 1 and [5], Corollary 4.5, we have

Theorem 5. For every G ¼ Gðm; p; nÞ the invariant subring Oqðk2nÞG of the quantum affine space
is a Galois order over C ¼ k½x1; :::; xn�G. Moreover, Oqðk2nÞG is free as left (right) C-modules.

3.1 Invariants of quantum torus

One can extend Theorem 5 to quantum torus Oqðk�2nÞG; which is the localization of Oqðk2nÞG ’
k½x1; :::; xn� � NnÞG by x1; :::; xn; y1; :::; yn: Hence,

Oq k�2nð ÞG ’ k x61
1 ; :::; x61

n

� � � ZnÞG:
We also have by Proposition 4:

Oq k�2nð ÞG�n
m ’ Oqm k�2nð Þ:

Using the arguments before Theorem 5 we immediately obtain
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Theorem 6. For every G ¼ Gðm; p; nÞ the invariant subring Oqðk�2nÞG of the quantum torus is is a
Galois order over C ¼ k½x61

1 ; :::; x61
n �G in ðkðx1; :::; xnÞ � ZnÞG. Moreover, Oqðk�2nÞG is free as a left

(right) C-module.

3.2 Quantum complex plane

In this section we assume that k ¼ C:

Proposition 6. Consider any finite group G of automorphisms of the quantum plane Cq½x; y�. Then
the ring of invariants Cq½x; y�G is embedded into the Ore extension Cq½x; y�Gx ffi CðxmÞ½v; r�, where
rðxmÞ ¼ qnxm for some n;m>0 and v ¼ xkyl; l; k>0:

Proof. The action of G on the quantum plane Cq½x; y� extends naturally to its action on the local-
ization of Cq½x; y� by x. It was shown in [1] that every finite group G of automorphisms of the
quantum plane is a subgroup of the torus C�2; and thus has the form Gm � Gm0 for cyclic groups
of orders m and n respectively. Let g0 be a generator of Gm and g00 a generator of Gm0 : Then
ðg0k; g00lÞðxÞ ¼ akx; ðg0k; g00lÞðyÞ ¼ bly; where a is a primitive mth root of unity, and b is a primi-
tive m00th root of unity. The subring of G-invariants of the localized ring Cq½x; y�x is the Ore
extension CðxmÞ½v; r�; where rðxmÞ ¼ qnxm for some n and m by [10], 3.3.3. Multiplying v by xm

sufficiently many times, we can assume it to be in the claimed form. w

We have the following general result about the invariants of the quantum plane.

Theorem 7. For every finite group G of automorphisms of the quantum plane Cq½x; y� the subring
of invariants Cq½x; y�G is a Galois order over a certain polynomial subalgebra C. Moreover,
Cq½x; y�G is free as a left (right) C-module.

Proof. The subring of invariants Cq½x; y�G is embedded into CðxmÞ½v; r� ffi CðxmÞ � N by
Proposition 6, where the generator �1 of N acts as follows: �1ðxmÞ ¼ qnxm: Also, v ¼ xkyl is G-
invariant and it is mapped to �1 under the isomorphism above. We conclude that Cq½x; y�G is a
Galois order over C½xm� (cf. Remark 1). The rest follows from Proposition 2, Lemma 1 and [5],
Corollary 4.5. w

4. Invariants of quantum Weyl algebras

Consider now the first quantum Weyl algebra Aq
1ðkÞ; generated over k by x and y subject to the

relation yx�qxy ¼ 1: It can be realized as a generalized Weyl algebra Dða; rÞ with D ¼ k½h�;
a¼ h, rðhÞ ¼ q�1ðh�1Þ and generators X, Y. The isomorphism is given as follows:
yx 7! h; x 7!X; y 7!Y: Then Aq

1ðkÞ is a Galois order over D by [13], as q is not root of unity and
r has an infinite order. Moreover, the quantum Weyl algebra Aq

nðkÞ ’ Aq
1ðkÞ�n is a Galois order

over C ¼ k½h1; :::; hn� in kðh1; :::; hnÞ � Zn; where a basis �1; :::; �n of Z
n acts on C as expected:

�iðhiÞ ¼ q�1ðhi�1Þ; �iðhjÞ ¼ hj; i; j ¼ 1; :::; n: The embedding is given by:

yixi 7! hi; xi 7! �i; yi 7! h�1
i ��1

i ;

i ¼ 1; :::; n

Consider the subring of invariants Aq
nðkÞSn ; where Sn acts by simultaneous permutations of the

variables yi and xi, i ¼ 1; :::; n: Using the structure of the quantum Weyl algebra Aq
nðkÞ as a

Galois order over C ¼ k½h1; :::; hn� in kðh1; :::; hnÞ � Zn we obtain an embedding of Aq
nðkÞSn into

the ring ðkðh1; :::; hnÞ � ZnÞSn ; where Sn permutes h1; :::; hn and acts on N
n by conjugation: if p 2

Sn then pðriÞ ¼ rpðiÞ:
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Theorem 8. Aq
nðkÞSn is a Galois order over C ¼ k½h1; :::; hn�Sn . Moreover, Aq

nðkÞSn is free as a left
(right) C-module.

Proof. The algebra Aq
nðkÞSn is finitely generated by Theorem 4. Choose generators u1; :::; uk and

add to this list the elements x1 þ :::þ xn and y1 þ :::þ yn: The images of the latter two elements
in ðkðh1; :::; hnÞ � ZnÞ are �1 þ :::þ �n and h�1

1 ��1
1 þ :::þ h�1

n ��1
n respectively. Hence the support

of their image generates Z
n as a group, and the first statement follows from Proposition 1. The

second statement follows from Proposition 2, Lemma 1 and [5], Corollary 4.5. w

We have the following analog of Theorem 7 for the first quantum Weyl algebra when k ¼ C :

Proposition 7. Let G be any finite group of automorphisms of Aq
1ðCÞ. Then the invariant subring

Aq
1ðCÞG is a Galois order over C ¼ C½xm� in CðxmÞ � N. Moreover, Aq

1ðCÞG is free as a left
(right) C-module.

Proof. Again, by Alev and Dumas [2], every finite group G of automorphisms of Aq
1ðCÞ is of the

form Gm, where the generator of Gm acts by: x 7! ax; y 7! a�1y for some mth primitive root of
unity a. Localization of Aq

1ðCÞ by x is isomorphic to CðxÞ½z; r�; with z ¼ ðq�1Þxyþ 1 and rðxÞ ¼
qx: On the other hand, CðxÞ½z; r� is just the localization of Cq½x; z� by x. By Theorem 7 we obtain
an embedding of Aq

1ðCÞG into CðxmÞ½v; r� ffi kðxmÞ � N; where rðxmÞ ¼ qnxm: w

5. Quantum Gelfand-Kirillov conjecture

The quantum Gelfand-Kirillov conjecture (cf. [9, 12]) compares the skew field of fractions of a
given algebra with quantum Weyl fields, that is the skew field of fractions of the tensor product
of quantum Weyl algebras Aq1

1 ðkÞ�k � � � �kA
qn
1 ðkÞ (or, equivalently, of some quantum affine

space). An algebra A is said to satisfy the quantum Gelfand-Kirillov conjecture if FracðAÞ is iso-
morphic to a quantum Weyl field over a purely transcendental extension of k: We will say that
two domains D1 and D2 are birationally equivalent if FracðD1Þ ’ FracðD2Þ:

The quantum Gelfand-Kirillov conjecture is strongly connected with the q-difference Noether
problem for reflection groups introduced in [12]. This problem asks whether the invariant quan-
tum Weyl subfield ðFracAq

nðkÞÞW is isomorphic to some quantum Weyl field, where W is a reflec-
tion group. The positive solution of the q-difference Noether problem was obtained in [19] for
complex reflection groups. Using this fact, the validity of the quantum Gelfand-Kirillov conjecture
was shown for the quantum universal enveloping algebra UqðglnÞ [12] and for the quantum
Orthogonal Gelfand-Zetlin algebras of type A [19]. The latter class includes the simply connected
quantized form of gln, U�ðglnÞ and the quantized Heisenberg Lie algebra among the others.

5.1 Functions on the quantum 2-sphere

Denote by AðS2kÞ the algebra of functions on the quantum 2-sphere [8]. The algebra AðS2kÞ is the
quotient of ChX;Y;Hi by the relations

XH ¼ kHX;YH ¼ k�1HY;
k1=2YX ¼ � c�Hð Þ d þHð Þ; k�1=2XY ¼ � c�kHð Þ d þ kHð Þ:

It can be realized as a generalized Weyl algebra C½H�ða; rÞ; where
a ¼ �k�1=2XY c�Hð Þ d þHð ÞÞ

and rðHÞ ¼ kH: By Proposition 3, C½H�ða; rÞ is birationally equivalent to C½H� � Z; where Z is
generated by �1 and �1ðHÞ ¼ kH: Applying Proposition 5 we obtain that AðS2kÞ is birationally
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equivalent to the quantum plane with parameter k. Hence, AðS2kÞ satisfies the quantum Gelfand-
Kirillov conjecture, that is

Corollary 1. FracAðS2kÞ ffi Frac kk½x; y�:

5.2 The quantum group Oq2ðsoð3;CÞÞ
Let A ¼ Oq2ðsoð3;CÞÞ [7]. The algebra A can be realized as a generalized Weyl algebra
C½H;C�ðr; aÞ; where a ¼ C þH2=qð1þ q2ÞÞ and rðCÞ ¼ C; rðHÞ ¼ q2H: By Proposition 3, A is
birationally equivalent to C½C;H� � Z; where Z is generated by �1 acting as r on C½C;H�: Since C
is invariant by r, this ring is clearly birationaly equivalent to C½C� � ðC½H� � ZÞ: Applying
Proposition 5 we obtain that A satisfies the quantum Gelfand-Kirillov conjecture, that is

Corollary 2. Frac Oq2ðsoð3;CÞÞ ffi Frac ðCðCÞ � Cq2 ½x; y�Þ:

5.3 Quantum linear Galois algebras

In this section, we obtain a quantum version of the theory of linear Galois algebras developed in
[11]. The field k is assumed to be the field of complex numbers. Recall that U is a Galois algebra
over C if U is a Galois ring over C and k-algebra.

Let V be a finite dimensional complex vector space, S ¼ SðV�Þ ¼ C½x1; :::; xn�; and L ¼ Frac S:
Let G be a unitary reflection group which is a product of groups of type Gðm; p; nÞ: Consider the
tensor product of polynomial algebras S� C½w1; :::;wm�; with the trivial action of G on the
second component.

A quantum linear Galois algebra U is a Galois algebra over an appropriate C in
ðCðx1; :::; xn;w1; :::;wmÞ � ZnÞG or ðCðx1; :::; xn;w1; :::;wmÞ � NnÞG; where a basis �1; :::; �n of either
Z
n or Nn acts as follows: �iðxiÞ ¼ qxi; �iðxjÞ ¼ xj; j 6¼ i; i; j ¼ 1; :::; n:
Note that the quantum universal enveloping algebra UqðglnÞ and the quantum orthogonal

Gelfand-Zetlin algebras of type A are examples of quantum linear Galois algebras [12, 19]. The
results of the previous sections show that the following algebras are also quantum linear
Galois algebras:

� Oqðk2nÞG for G ¼ Gðm; p; nÞ;
� Aq

nðkÞSn ;
� Oqðk�2nÞG for G ¼ Gðm; p; nÞ:

The following theorem shows that the quantum Gelfand-Kirillov Conjecture holds for quan-
tum linear Galois algebras, which is the quantum analog of [11], Theorem 6.

Theorem 9. Let U be a quantum linear Galois algebra in

C x1; :::; xn;w1; :::;wmð Þ � Xn� �G
;

where X is either Z or N, with the G action as above. Then the quantum Gelfand-Kirillov conjec-
ture holds for U and there exist l ¼ ðl1; :::; lnÞ 2 Z

n such that

Frac U ffi Frac O�q k2nð Þ � C w1; :::;wn½ �
� �

;

where �q ¼ ðql1 ; :::; qlnÞ:
Proof. The proof follows from Proposition 1, (ii) and the positive solution of the q-difference
Noether problem for G [19]. w
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5.4 Skew field of fractions of Uðsl2Þ
Consider the standard basis e, f, h of sl2, where ½h; e� ¼ e; ½h; f � ¼ �f ; ½e; f � ¼ 2h: The universal
enveloping algebra Uðsl2Þ can be realized as a generalized Weyl algebra k½H;C�ðr; aÞ; where a ¼
C�HðH þ 1ÞÞ; with the isomorphism given by e 7!X; f 7!Y; h 7!H; hðhþ 1Þ þ fe 7!C:

Define an action of the cyclic group Gm of order m, m> 1 on Uðsl2Þ as follows. Denote by g a
generator of Gm. Then g fixes h and sends e 7! ne; f 7! n�1f ; where n is a fixed mth primitive root
of unity.

We have that k½H;C�ðr; aÞ (and hence Uðsl2Þ) is birationally equivalent to k½H;C� � Z; where
again Z acts by r. The action of Gm naturally extends to k½H;C� � Z; where the generator g acts
on Z by sending �y 7! nyy; y 2 Z: Therefore Uðsl2ÞGm embeds into ðk½H;C� � ZÞGm : Since C is fixed
by r and also by the action of Gm, we have

Frac k H;C½ � � Zð ÞGm ffi Frac k C½ � � k H½ � � Zð ÞGm

� �
:

On the other hand, k½H� � Z is isomorphic to the localization A1ðkÞx ¼ A1ðkÞxm ([13], section
7) of the first Weyl algebra. Hence,

Frac k H½ � � Zð ÞGm ffi Frac A1 kð Þxm
� �Gm ffi Frac A1 kð ÞGm

xm

� �
ffi Frac A1 kð ÞGm

� �
;

where the action of the generator g on A1ðkÞ is as follows: x 7! n�1x; @ 7! n@:
We conclude that Uðsl2ÞGm is birationally equivalent to k½C� � A1ðkÞGm : Taking into account

the result of [3], which implies that A1ðkÞGm ’ A1ðkÞ we finally have

Corollary 3. For any m> 1 and the action of Gm described above, we have

Frac U sl2ð ÞGm

� �
ffi Frac k C½ � � A1 kð Þ� �

ffi FracU sl2ð Þ:
The last isomorphism is just the classical Gelfand-Kirillov conjecture for sl2 [18].
Recall, that Uðsl2Þ is rigid by [4], that is there is no non trivial finite group G � Autk Uðsl2Þ

such that Uðsl2ÞG ffi Uðsl2Þ: By Corollary 3, in spite of the rigidity of Uðsl2Þ we have
FracðUðsl2ÞGmÞ ’ FracðUðsl2ÞÞ; giving an example to the question posed in [20].
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