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ABSTRACT

We define a class of quantum linear Galois algebras which include the uni-
versal enveloping algebra Ug(gl,), the quantum Heisenberg Lie algebra
and other quantum orthogonal Gelfand-Zetlin algebras of type A, the sub-
algebras of G-invariants of the quantum affine space, quantum torus for
G = G(m,p,n), and of the quantum Weyl algebra for G = S,. We show
that all quantum linear Galois algebras satisfy the quantum Gelfand-Kirillov
conjecture. Moreover, it is shown that the subalgebras of invariants of the
quantum affine space and of quantum torus for the reflection groups and
of the quantum Weyl algebra for symmetric groups are, in fact, Galois
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modules over these subalgebras. In the rank 1 cases the results hold for an
arbitrary finite group of automorphisms when the field is C.

1. Introduction

The purpose of this article is to quantize the results of [16], where subalgebras of invariants of
Weyl algebras were studied for irreducible reflection groups. It was shown that in many cases
these subalgebras have a structure of Galois orders over certain commutative domains. This fea-
ture indicates a hidden skew group algebra structure of all these algebras.

The theory of Galois rings and orders developed in [13, 14]. Classical examples includes finite W-
algebras of type A [17], in particular the universal enveloping algebra of gl,,, and generalized Weyl alge-
bras of rank 1 over integral domains with infinite order automorphisms [6]. The importance of the
Galois order structure is in their representation theory, where one can effectively study the Gelfand-
Tsetlin categories of modules with torsion for certain maximal commutative subalgebras [14, 22].

Our main objects of interest are the following quantum algebras: the quantum affine space
O, (k*"), the quantum torus O,(k*>") and the quantum Weyl algebra Af (k).

Our first result shows that the subring of invariants Oq(kz")G of the quantum affine space is a
Galois order over certain polynomial subalgebra when G = G is a product of cyclic groups
(Proposition 5) or G = G(m, p,n) is one of nonexceptional reflection groups (Theorem 5):

Theorem 1. If G is a product of n copies of a cyclic group of fixed finite order or one of the irredu-
cible non exceptional reflection groups G(m, p,n), then the invariant subring Oq(kz")G of the quan-
tum affine space is a Galois order over a polynomial subalgebra I of Oq(kz”)c. Moreover, Oq(kz”)G
is free as a left (right) I'-module.

Theorem 1 can be easily generalized to the case of the quantum torus (Theorem 6):

Theorem 2. For every G = G(m,p,n) the invariant subring Oq(k*z’“)G of the quantum torus is a
Galois order over T' = k[x{"!, ..., x21|% in (k(x1,..., %) % Z")°. Moreover, Oy(k'*")® is free as a left
(right) I'-module.
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We have the following generalization of Theorem 1 for quantum planes (Theorem 7) and the
first quantum Weyl algebra (Proposition 7) when k = C :

Theorem 3. Let A € {O4(C?),AY(C)}. For every finite group G of automorphisms of A, the subr-
ing of invariants A is a Galois order over a certain polynomial subalgebra T in one variable.
Moreover, AC is free as a left (right) T-module.

It was shown in [15] that A, (k)% is a Galois order over some polynomial algebra. We prove
the quantum analog of this result for A%(k)* (Theorem 8).

In Section 5, we address the quantum Gelfand-Kirillov conjecture for various algebras. We
introduce a class of quantum linear Galois algebras and show that the quantum Gelfand-Kirillov
conjecture is valid in this class (Theorem 9). Quantum linear Galois algebras include the quantum
Orthogonal Gelfand-Zetlin algebras of type A (in particular, the universal enveloping algebra
U,(gly) and the quantum Heisenberg Lie algebra), Oq(kz”)c and Oq(k*Z”)G for G = G(m,p,n),
Ad(k)*. When n=1 the group G in all cases can be arbitrary.

We also compute the skew fields of fractions for the quantum 2-sphere and for the quantum
group O (s0(3,C)). Finally, we show that the subalgebra of G,,-invariants of U(sl,) for the cyclic
group G,, of order m is birationally equivalent to U(sl) in spite of the rigidity of the latter.

2. Preliminaries

All rings and fields in the article are assumed to be k-algebras over an algebraically closed field k
of characteristic 0.

For g € k, q#0,1, we denote by ky[x,y| the quantum plane over k is defined as k(x, y|yx =
gxy). In this article we will always assume that g is not a root of unity. Let ¢ = (q1, ..., qu) € k"
be an n-tuple whose components are nonzero and nonroots of unity. The tensor product of
quantum planes kg [x1,y1] ® ... ® kg, [xn, y»] will be called quantum affine space and will be
denoted by O (k*"). If g1 = ... = q, = q, we will use the notation O, (k*").

Denote by A?(k) the first quantum Weyl algebra defined as k(x, y|yx—qxy = 1) and set

Al(k) = AT (k)@ - - - @A™ (k)

for any positive integer n. Again, if q; = ... = g, = q then we simply denote it by A% (k).
The quantum affine space O;(k*") and the quantum Weyl algebra Af(k) are birationally
equivalent, that is, they have isomorphic skew fields of fractions [9].

2.1 Galois orders

We recall the concepts of Galois rings and Galois orders from [13]. Let I' be a commutative
domain and K the field of fractions of I'. Let L be a finite Galois extension of K with the Galois
group G = Gal(L,K), M C Aut; L a monoid satisfying the following condition: if m,m’ € Mt and
their restrictions to K coincide, then m = m’. Consider the action of G on It by conjugation.

A finitely generated I'-ring U in & := (L * M) is called a Galois ring over I' if KU = UK =
(L% M)°. A Galois ring over I is called a right (left) Galois order over T if for every right (left)
finite dimensional K-vector subspace W C &, WNT is a finitely generated right (left) I'-module.
If U is both left and right Galois order over I', then we say that U is a Galois order over I'.

If x =), con Xmm € L x N then set

supp x = {m € M|x,, # 0}.
We have

Proposition 1. [13] Let I' C U be a commutative domain and U C (L * wt)G.
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(i) If U is generated by u, ..., ux as a I'-ring and U
U is a Galois ring over I'.

(i)  Let U be a Galois ring over I and S =T\ {0}. Then S is a left and right Ore set, and the
localization of U by S both on the left and on the right is isomorphic to (L I)°.

We also recall the following characterization of Galois orders.

(supp u; generates M as a monoid, then

Proposition 2. [13] Let I' be a commutative Noetherian domain with the field of fractions K. If U
is a Galois ring over I' and U is a left (right) projective I'-module, then U is a left (right) Galois
order over I

Remark. Let D be a commutative domain, finitely generated as a k-algebra, ¢ € Auty D and A =
Dix; 0] the skew polynomial Ore extension, where xd = g(d)x, for all d € D. Then Dix; ] ~
D x M, where

M={d"ln=0,1,..} ~N.

The isomorphism is identity on D and sends x to the generator 1 of the monoid N and 1 acts on
D as g. Then for L=K, the field of fractions of D, and for G = {e} we have that the algebra A is
a Galois ring (order) over D in K * M [21]. The localization of A by x is isomorphic to D * Z.

2.2 Invariant subalgebras

We will use the following two results on the subalgebras of invariants in the noncommutative setting.
The first is the result of Montgomery and Small which generalizes the Hilbert-Noether theorem.

Theorem 4. Let A be a commutative Noetherian ring, and R D A an overring such that A is cen-
tral and R is a finitely generated A-algebra. Let G be a finite group of A-algebra automorphisms of
R such that |G|~ € R. If R is left and right Noetherian then RC is a finitely generated A-algebra.

The following connects the projectivity of subalgebras of invariants with the projectivity of the
algebra itself as modules over respective commutative subalgebras.

Lemma 1. [16] Let U be an associative algebra and I' C U a Noetherian commutative subalgebra.
Let H be a finite group of automorphisms of U such that H(I') C I'. If U is projective right (left)
[-module and T is projective over T, then U™ is projective right (left) TH-module.

2.3 Generalized Weyl algebras

We will often use a realization of a given algebra as a generalized Weyl algebra [6]. Let D be a
ring, ¢ = (03, ...,0,) an n-tuple of commuting automorphisms of D, a = (ay, ..., a,) nonzero ele-
ments of the center of D and 0i(a;) = a;,j # i. The generalized Weyl algebra D(a, o) is generated
over Dby X;, Y, i=1,...,n subject to the relations:

Xid = 0/(d)X;; Yid=0;'(d)Y;, deD,i=1,..,n,
Y,'Xi = 4aj; X,‘Yi = ai(a,-), i= 17 oy
(¥ X)) = (Yo ¥)) = (X0 X] =0 i)

We will assume that D is a Noetherian domain which is finitely generated k-algebra. Fix a
basis ey, ..., e, of the free abelian group Z". There is natural embedding of D(a, o) into the skew
group ring D x Z", where the action on D is defined as follows: re; acts as o7, for all i and r € Z.
Moreover, this embedding is an isomorphism if each a; is a unit in D, i=1,...,n (cf. [16],
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Proposition 4). Both algebras algebras, D(a,0) and D Z", admit the skew fields of fractions.
Hence, following the discussion above we have

Proposition 3. The algebras D(a,a) and D x Z" have isomorphic skew fields of fractions.
Note that, if oy, ..., 0, are linearly independent over Z, then D(a, o) is a Galois order over D
in the skew group ring (FracD) * Z" (cf. [16], Theorem 5).

3. Invariants of quantum affine spaces

In this section we consider the invariants of quantum affine space O,(k*"). Fix any integer 7 > 1 and let
G C k be a cyclic group of order m. Our first group G = G, is the product of 1 copies of G,,. Consider
the following natural action of G, on Oy (k*") : if g = (g1, ...,gs) € G then g(x;) = gixi, g(yi) = yii =
1, ..., n. This action was defined in [19], however we are using the defining relations as in [10].

We have

Proposition 4. The invariant subspace Oq(kz”)Gb"in is isomorphic to Ogn(k*").
Proof. The isomorphism just sends x; to x/" and y; to y;, i =1,...,n. O

Consider the free monoid N with generators €y, ..., €, and the skew monoid ring k[xy, ..., x,] *
N", where N" acts as follows: €;(x;) = gxi, €i(xj) = xj,j # i,i,j = 1,...,n.

Proposition 5. Quantum affine space Oq(k*") is isomorphic to k[xi,...,x,) * N". In particular,
O,4(k*™) is a Galois ring over I' = k[xy, ..., x,] in k(xq, ..., x,) * N".

Proof. The isomorphism is given by: x;+— x;, y;+—= ¢€;,i = 1, ..., n. The rest is clear. O

For m > 1,n > 1, p|m,p>0 denote by A(m,p,n) the subgroup of G5" consisting of elements
(hy, ... hy) such that (hihy..h,)™"? = id. The groups G(m,p,n) = A(m,p,n)XS, were introduced
by Shephard and Todd and describe all irreducible non-exceptional complex reflection groups.
Here S, acts on A(m, p,n) by permutations.

Let G = G(m,p,n), and consider the following action of G on Oy4(k**): h= (g,n) € G,g =
(81, 8n) € G, meS,, with h(x;) = gy, (Vi) = V()i = 1,...,n. The group G also acts on
k[x1,...,x,] * N" : the action on x; is the same as above, and h(€;) = €,;). Clearly, G acts on N"
by conjugations, and the isomorphism in Proposition 5 is G-equivariant. Hence, Oq(kz”)G and
(k[x1, ..., x,] * N")¢ are canonically isomorphic. Hence, Oq(kzy’)G is a Galois order over I' =
k[xi, ..., x,]°. Taking into account that I' is a polynomial algebra and applying Proposition 2,
Lemma 1 and [5], Corollary 4.5, we have

Theorem 5. For every G = G(m, p,n) the invariant subring Oq(kZ”)G of the quantum affine space
is a Galois order over T = k|xy, ..., x,]°. Moreover, Oq(kzn)G is free as left (right) I'-modules.

3.1 Invariants of quantum torus

One can extend Theorem 5 to quantum torus Oq(k*z”)G, which is the localization of Oq(kz”)G o~
k1, ... %a] % N")C by x4, ... X, y1, ..., u. Hence,
Oq(k*Z”)G ~ k[ a0 ] + 2

We also have by Proposition 4:
*2ZN Gf’;n *Zn
Oq(k2 ) :qu(kz ).

Using the arguments before Theorem 5 we immediately obtain
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Theorem 6. For every G = G(m, p,n) the invariant subring Oq(k*z")G of the quantum torus is is a
Galois order over T = k[xi™!, ..., x )% in (k(x1,...,x,) % Z")°. Moreover, O(k**")® is free as a left
(right) T'-module.

3.2 Quantum complex plane
In this section we assume that k = C.

Proposition 6. Consider any finite group G of automorphisms of the quantum plane C,[x,y|. Then
the ring of invariants (Cq[x,y]c is embedded into the Ore extension Cq[x,y]f =~ C(x™)[v; a], where

a(x™) = q"x™ for some n,m>0 and v = x*y', I, k>0.

Proof. The action of G on the quantum plane C,[x,y] extends naturally to its action on the local-
ization of C,[x,y| by x. It was shown in [1] that every finite group G of automorphisms of the
quantum plane is a subgroup of the torus C*, and thus has the form G,, x G, for cyclic groups
of orders m and n respectively. Let ¢’ be a generator of G,, and g” a generator of G,,. Then
(g%, &' (x) = ofx, (g/,¢'")(y) = B'y, where o is a primitive mth root of unity, and f is a primi-
tive m”th root of unity. The subring of G-invariants of the localized ring C,[x,y|, is the Ore
extension C(x™)[v; 6], where o(x™) = q"x™ for some n and m by [10], 3.3.3. Multiplying v by x™
sufficiently many times, we can assume it to be in the claimed form. O

We have the following general result about the invariants of the quantum plane.

Theorem 7. For everycfinite group G of automorphisms of the quantum plane Cy[x, y] the subring
of invariants Cyx,y|” is a Galois order over a certain polynomial subalgebra T'. Moreover,
Cylx, | is free as a left (right) T-module.

Proof. The subring of invariants C,lx, 3¢ is embedded into C(x™)[v;6] = C(x™)*N by
Proposition 6, where the generator 1 of N acts as follows: 1(x") = g"x™. Also, v = xky/ is G-
invariant and it is mapped to 1 under the isomorphism above. We conclude that C,x, ¥ is a
Galois order over C[x™] (cf. Remark 1). The rest follows from Proposition 2, Lemma 1 and [5],

Corollary 4.5. O

4. Invariants of quantum Weyl algebras

Consider now the first quantum Weyl algebra A7(k), generated over k by x and y subject to the
relation yx—qxy = 1. It can be realized as a generalized Weyl algebra D(a,o) with D = k[h],
a=h, a(h)=q '(h—1) and generators X, Y. The isomorphism is given as follows:
yxh,x+— X,y Y. Then A(k) is a Galois order over D by [13], as g is not root of unity and
¢ has an infinite order. Moreover, the quantum Weyl algebra Af(k) ~ A%(k)*" is a Galois order
over I = k[hy, ..., h,) in k(hy,...,h,) x Z", where a basis €,...,e, of Z" acts on I' as expected:
€i(hi) = q ' (hi—1); €i(h;) = hj,i,j = 1,...,n. The embedding is given by:

-1 _—1
yixi= hi, xi—> €, yir b€,

i=1,..,n

Consider the subring of invariants A%(k)%, where S, acts by simultaneous permutations of the
variables y; and x;, i=1,....,n. Using the structure of the quantum Weyl algebra A}(k) as a
Galois order over I' = k[hi, ..., h,] in k(hy, ..., h,) * Z" we obtain an embedding of A%(k)> into
the ring (k(hy, ..., h,) * Z”)S", where S, permutes hy, ..., h, and acts on N” by conjugation: if © €
Su then nt(0;) = 04;).
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Theorem 8. Al(k)* is a Galois order over T = k[hy, ..., h,]*". Moreover, AL(k)®" is free as a left
(right) I'-module.

Proof. The algebra A%(k)®" is finitely generated by Theorem 4. Choose generators uj, ..., ux and
add to this list the elements x; + ... + x,, and y; + ... + y,. The images of the latter two elements
in (k(hi,....h,) *Z") are € + ...+ €, and h;'e;' + ...+ h e, ! respectively. Hence the support
of their image generates Z" as a group, and the first statement follows from Proposition 1. The

second statement follows from Proposition 2, Lemma 1 and [5], Corollary 4.5. O
We have the following analog of Theorem 7 for the first quantum Weyl algebra when k = C :

Proposition 7. Let G be any finite group of automorphisms of A1(C). Then the invariant subring
ANC)C is a Galois order over T =C[x™] in C(x™)*N. Moreover, AN(C)® is free as a left
(right) I'-module.

Proof. Again, by Alev and Dumas [2], every finite group G of automorphisms of AY(C) is of the
form G,,, where the generator of G,, acts by: x> ox,y+> o'y for some mth primitive root of
unity . Localization of AY(C) by x is isomorphic to C(x)|z, o], with z = (g—1)xy + 1 and o(x) =
gx. On the other hand, C(x)[z, g] is just the localization of C,[x, z] by x. By Theorem 7 we obtain
an embedding of A?(C)“ into C(x™)[v; 6] 2 k(x™) * N, where ¢(x™) = ¢"x™. O

5. Quantum Gelfand-Kirillov conjecture

The quantum Gelfand-Kirillov conjecture (cf. [9, 12]) compares the skew field of fractions of a
given algebra with quantum Weyl fields, that is the skew field of fractions of the tensor product
of quantum Weyl algebras A? (k)®y - - ®xA% (k) (or, equivalently, of some quantum affine
space). An algebra A is said to satisfy the quantum Gelfand-Kirillov conjecture if Frac(A) is iso-
morphic to a quantum Weyl field over a purely transcendental extension of k. We will say that
two domains D, and D, are birationally equivalent if Frac(D,) ~ Frac(D,).

The quantum Gelfand-Kirillov conjecture is strongly connected with the g-difference Noether
problem for reflection groups introduced in [12]. This problem asks whether the invariant quan-
tum Weyl subfield (FracAl(k))" is isomorphic to some quantum Weyl field, where W is a reflec-
tion group. The positive solution of the g-difference Noether problem was obtained in [19] for
complex reflection groups. Using this fact, the validity of the quantum Gelfand-Kirillov conjecture
was shown for the quantum universal enveloping algebra U,(gl,) [12] and for the quantum
Orthogonal Gelfand-Zetlin algebras of type A [19]. The latter class includes the simply connected
quantized form of gl,,, U(gl,) and the quantized Heisenberg Lie algebra among the others.

5.1 Functions on the quantum 2-sphere

Denote by A(S?) the algebra of functions on the quantum 2-sphere [8]. The algebra A(S?) is the
quotient of C(X,Y, H) by the relations

XH = AHX,YH = A 'HY,
A2yX = —(c—H)(d+ H), 27V?XY = —(c—2H)(d + AH).

It can be realized as a generalized Weyl algebra C[H|(a, c), where
a=—2""?XY(c—H)(d + H))

and ¢(H) = AH. By Proposition 3, C[H|(a,0) is birationally equivalent to C[H] % Z, where Z is
generated by 1 and 1(H) = AH. Applying Proposition 5 we obtain that A(S3) is birationally
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equivalent to the quantum plane with parameter /. Hence, A(S?) satisfies the quantum Gelfand-
Kirillov conjecture, that is

Corollary 1. FracA(S3) = Frac k;[x, y].

5.2 The quantum group O (s0(3,C))

Let A= Op(so(3,C)) [7]. The algebra A can be realized as a generalized Weyl algebra
C[H, C|(s,a), where a = C+ H?/q(1 + ¢*)) and o(C) = C,a(H) = q*H. By Proposition 3, A is
birationally equivalent to C[C, H| x Z, where Z is generated by 1 acting as ¢ on C[C, H|. Since C
is invariant by o, this ring is clearly birationaly equivalent to C[C] ® (C[H]*Z). Applying
Proposition 5 we obtain that A satisfies the quantum Gelfand-Kirillov conjecture, that is

Corollary 2. Frac Op(so(3,C)) = Frac (C(C) ® Cplx,y]).

5.3 Quantum linear Galois algebras

In this section, we obtain a quantum version of the theory of linear Galois algebras developed in
[11]. The field k is assumed to be the field of complex numbers. Recall that U is a Galois algebra
over I' if U is a Galois ring over I" and k-algebra.

Let V be a finite dimensional complex vector space, S = S(V*) = Clxy, ..., x4], and L = Frac S.
Let G be a unitary reflection group which is a product of groups of type G(m, p,n). Consider the
tensor product of polynomial algebras S® Clwy, ..., wy], with the trivial action of G on the
second component.

A quantum linear Galois algebra U is a Galois algebra over an appropriate I' in
(C(x1y ey Xy Wy ooy Wiy ) % Z”)G Or (C(X1y vevy X3 Wiy ooy Wiy ) * N”)G, where a basis ¢, ..., €, of either
Z" or N" acts as follows: €;(x;) = qux;, €i(xj) = xj,j # i,i,j = 1,...,n.

Note that the quantum universal enveloping algebra Uj,(gl,) and the quantum orthogonal
Gelfand-Zetlin algebras of type A are examples of quantum linear Galois algebras [12, 19]. The
results of the previous sections show that the following algebras are also quantum linear
Galois algebras:

o 0,(k*")° for G = G(m,p,n);
o An(k)™;
o O,(k¥*")° for G = G(m,p,n).

The following theorem shows that the quantum Gelfand-Kirillov Conjecture holds for quan-
tum linear Galois algebras, which is the quantum analog of [11], Theorem 6.
Theorem 9. Let U be a quantum linear Galois algebra in
(C(%15 ey X0y Wiy oy Wiy ) X")G7

where X is either Z or N, with the G action as above. Then the quantum Gelfand-Kirillov conjec-
ture holds for U and there exist | = (I, ...,1,) € Z" such that

Frac U = Frac (Oq(kZ”) ® Ciwi, ..., wn]>7

where g = (q", ..., q").

Proof. The proof follows from Proposition 1, (ii) and the positive solution of the g-difference
Noether problem for G [19]. O
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5.4 Skew field of fractions of U(sl,)

Consider the standard basis e, f, h of sl,, where [h,e] =e,[h,f] = —f,[e,f] = 2h. The universal
enveloping algebra U(sl) can be realized as a generalized Weyl algebra k[H, C|(o, a), where a =
C—H(H + 1)), with the isomorphism given by e— X, f+— Y, h— H, h(h+ 1) + fer C.

Define an action of the cyclic group G,, of order m, m >1 on U(sl,) as follows. Denote by g a
generator of G,,. Then g fixes h and sends e Ce, f — ¢~'f, where ¢ is a fixed mth primitive root
of unity.

We have that k[H, C](0,a) (and hence U(sl,)) is birationally equivalent to k[H, C] * Z, where
again Z acts by g. The action of G,, naturally extends to k[H, C| x Z, where the generator g acts
on Z by sending y — &'y, y € Z. Therefore U(sl,)“" embeds into (k[H, C] * Z)°". Since C is fixed
by ¢ and also by the action of G,,, we have

Frac(k[H, C] * Z)%" = Frac (k[C] ® (k[H] * Z)G’”).

On the other hand, k[H| * Z is isomorphic to the localization A;(k), = A; (k). ([13], section
7) of the first Weyl algebra. Hence,

Frac(k[H] * 2)°" =~ Frac(Al(k)xm)Gm =~ Frac (Al(k)frﬁ‘) =~ Frac (Al(k)G'”),

where the action of the generator g on A; (k) is as follows: x — & 'x, 9 &0.
We conclude that U(sh,)%" is birationally equivalent to k[C] ® A;(k)®". Taking into account
the result of [3], which implies that A;(k)®" ~ A, (k) we finally have

Corollary 3. For any m > 1 and the action of G,, described above, we have
Frac(U(slz)G’”) o Frac(k[C] ® Al(k)) =~ FracU(sh).

The last isomorphism is just the classical Gelfand-Kirillov conjecture for sl, [18].

Recall, that U(sly) is rigid by [4], that is there is no non trivial finite group G C Auty U(sh)
such that U(sh)® = U(sl). By Corollary 3, in spite of the rigidity of U(sh) we have
Frac(U(sh)") ~ Frac(U(sh)), giving an example to the question posed in [20].

Funding

V.F. is supported in part by CNPq grant (200783/2018-1) and by Fapesp grant (2014/09310-5). J.S. is supported in
part by Fapesp grants (2014/25612-1) and (2016/14648-0).

ORCID

Vyacheslav Futorny ([s) http://orcid.org/0000-0002-4701-8879

References

[1]  Alev, J., Chamarie, M. (1992). Automorphismes et deerivations de quelques algeebres quantiques. Commun.
Algebra 20(6):1787-1802. DOI: 10.1080/00927879208824431.

[2]  Alev, J., Dumas, F. (1996). Rigidite des plongements des quotients primitifs minimaux de Uq(sl(2)) dans
lalgebre quantique de Weyl-Hayashi. Nagoya Math. J. 143:119-146. DOI: 10.1017/5002776300000595X.

[3]  Alev, J., Dumas, F. (2006). Operateurs differentiels invariants et probleme de Noether. In: J. Bernstein, V.
Hinich and A. Melnikov (eds), Studies in Lie Theory. Boston: Birkhauser.

[4]  Alev, ], Polo, P. (1995). A rigidity theorem for finite group actions on enveloping algebras of semisimple
lie algebras. Adv. Math. 111(2):208-226. DOI: 10.1006/aima.1995.1022.

[5]  Bass, H. (1963). Big projective modules are free. Illinois . Math. 7(1):24-31. DOI: 10.1215/ijm/1255637479.


https://doi.org/10.1080/00927879208824431
https://doi.org/10.1017/S002776300000595X
https://doi.org/10.1006/aima.1995.1022
https://doi.org/10.1215/ijm/1255637479

(11]
(12]
(13]
(14]
(15]

(16]
(17]

(18]
(19]
[20]
(21]

[22]

COMMUNICATIONS IN ALGEBRA® 9

Bavula, V. (1992). Generalized Weyl algebras and their representations. Algebra i Analiz 4:75-97. English
translation: St. Petersburg Math. J. 4 (1993) 71-92.

Bavula, V. (2017). Generalized Weyl algebras and Diskew polynomial rings. arXiv:1612.08941.

Bavula, V., Bekkert, V. (2000). Indecomposable representations of generalized Weyl algebras. Commun.
Algebra 28(11):5067-5100. DOI: 10.1080/00927870008827145.

Brown, K. A., Goodearl, K. R. (2002). Lectures on Algebraic Quantum Groups, Advance Course in Math.
CRM Barcelona, vol 2. Basel: Birkhauser Verlag.

Dumas, F. (2006). An Introduction to Non Commutative Polynomial Invariants. Lecture Notes,
Homological methods and representations of noncommutative algebras, Mar del Plata, Argentina, March
6-16.

Eshmatov, F., Futorny, V., Ovsienko, S., Schwarz, J. (2017). Noncommutative Noether’s problem for unitary
reflection groups. Proc. Amer. Math. Soc. 145(12):5043-5052. DOI: 10.1090/proc/13646.

Futorny, V., Hartwig, J. T. (2014). Solution of a g-difference Noether problem and the quantum Gelfand-
Kirillov conjecture for gln. Math. Z. 276(1-2):1-37. DOI: 10.1007/s00209-013-1184-3.

Futorny, V., Ovsienko, S. (2010). Galois orders in skew monoid rings. J. Algebra 324(4):598-630. DOI:
10.1016/j.jalgebra.2010.05.006.

Futorny, V., Ovsienko, S. (2014). Fibers of characters in Gelfand-Tsetlin categories. Trans. Amer. Math.
Soc. 366(8):4173-4208. DOI: 10.1090/50002-9947-2014-05938-2.

Futorny, V., Schwarz, J. (2017). Galois orders of symmetric differential operators. Algebra Discrete Math.
23:35-46.

Futorny, V., Schwarz, J. (2018). Algebras of invariant differential operators. arXiv:1804.05029.

Futorny, V., Molev, A., Ovsienko, S. (2010). The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules
for finite W-algebras. Adv. Math. 223(3):773-796. DOI: 10.1016/j.aim.2009.08.018.

Gelfand, I. M., Kirillov, A. A. (1966). Sur les corps liés aux algebres envoloppantes des algebres de lie. Publ.
Math. PIHES 31(1):5-19.

Hartwig, J. T. (2017). The g-difference noether problem for complex reflection groups and quantum OGZ
algebras. Commun. Algebra 45(3):1166-1176. DOI: 10.1080/00927872.2016.1172631.

Kirkman, E., Kuzmanovich, J., Zhang, J. (2008). Rigidity of graded regular algebras. Trans. Amer. Math.
Soc. 360(12):6331-6369. DOI: 10.1090/50002-9947-08-04571-6.

Montgomery, S., Small, L. W. (1981). Fixed rings of noetherian rings. Bull. Lond. Math. Soc. 13(1):33-38.
DOI: 10.1112/blms/13.1.33.

Ovsienko, S. (2002). Finiteness statements for Gelfand-Tsetlin modules, Proceedings of Third International
Algebraic Conference in Ukraine (Ukrainian), Natsional. Akad. Nauk Ukrainy, Inst. Mat., Kiev, 323-338.


https://doi.org/10.1080/00927870008827145
https://doi.org/10.1090/proc/13646
https://doi.org/10.1007/s00209-013-1184-3
https://doi.org/10.1016/j.jalgebra.2010.05.006
https://doi.org/10.1090/S0002-9947-2014-05938-2
https://doi.org/10.1016/j.aim.2009.08.018
https://doi.org/10.1080/00927872.2016.1172631
https://doi.org/10.1090/S0002-9947-08-04571-6
https://doi.org/10.1112/blms/13.1.33

	Abstract
	Introduction
	Preliminaries
	Galois orders
	Invariant subalgebras
	Generalized Weyl algebras

	Invariants of quantum affine spaces
	Invariants of quantum torus
	Quantum complex plane

	Invariants of quantum Weyl algebras
	Quantum Gelfand-Kirillov conjecture
	Functions on the quantum 2-sphere
	The quantum group Oq2(so(3,C))
	Quantum linear Galois algebras
	Skew field of fractions of U(sl2)

	References


