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Abstract. Generalized Nash equilibrium problems (GNEPs) are a generalization of the classic
Nash equilibrium problems (NEPs), where each player’s strategy set depends on the choices of the
other players. In this work we study constraint qualifications (CQs) and optimality conditions tailored
for GNEPs, and we discuss their relations and implications for global convergence of algorithms.
We show the surprising fact that, in contrast to the case of nonlinear programming, in general
the Karush—Kuhn—Tucker (KKT) residual cannot be made arbitrarily small near a solution of a
GNEP. We then discuss some important practical consequences of this fact. We also prove that
this phenomenon is not present in an important class of GNEPs, including NEPs. Finally, under
an introduced weak CQ, we prove global convergence to a KKT point of an augmented Lagrangian
algorithm for GNEPs, and under the quasi-normality (QN) CQ for GNEPs, we prove boundedness
of the dual sequence.
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1. Introduction. In this paper we consider the generalized Nash equilibrium
problem (GNEP) where, given N players, each player v = 1,..., N aims at minimizing

(1) P(z7"): minfY(z",27") st. g"(z",27") <0

by controlling his/her own variables ¥ € R™, given the choices of the remaining
players denoted by x~V. Formally, we define n := ni + --- + ny, the total number
of variables, and m := my + -- - + my, the total number of constraints. Here, f" :
R™ — R denotes the objective function of player v, and g : R™ — R defines its
constraints. As usual in the context of GNEPs, for every player v = 1,..., N, we
often write (z¥,27Y) € R", instead of x € R™, where the vector ™" is defined by
=

The GNEP is called player convex if all functions f¥ and g¥ are continuous and
also convex as a function of z¥. The GNEP is called jointly convex if it is player
convex and if g' = --- = ¢g" is convex as a function of the entire vector x. In the case
when ¢g¥ depends only on z¥, the GNEP is reduced to the standard Nash equilibrium
problem (NEP).

We will say that a point z is feasible for the GNEP if g¥(z) < 0 for each player

v=1,...,N. A feasible point Z = (z!,...,Z") is a generalized Nash equilibrium, or
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simply a solution of the GNEP, if for each player v =1,..., N it holds that
@) < foz¥,27%) Vz¥:g%(z",z7") <0.

The concept of solution of a GNEP means that no player v can improve his/her
objective function by unilaterally changing his/her strategy z".

For simplicity of notation, we assume throughout the paper that the feasible sets
of the players are defined by inequalities only. We note that all results obtained
can be easily extended when equality constraints are incorporated for each player.
On the other hand, our approach does not require convexity of any kind—either
of the objective functions or of the players’ constraints. In contrast, most of the
literature on GNEPs deals only with the player convex or jointly convex cases; see
[16, 19, 20, 22, 36, 30] and references therein for more details.

For nonlinear programming problems, optimality conditions are conditions that
are satisfied by all local solutions of the problem. One of the main subjects in the
theory of nonlinear optimization is the characterization of optimality. This is often
done through conditions that use the derivatives of the objective function and of the
constraints of the problem. Among such conditions, arguably the most important are
the Karush-Kuhn—Tucker (KKT) conditions. The KKT conditions are extensively
used in the development of algorithms for solving optimization problems, and we say
that a point that satisfies them is a stationary point. In order to ensure that the KKT
conditions are necessary for optimality, a constraint qualification (CQ) is needed. A
CQ is an assumption made about the functions that define the constraints of the
problem that, when satisfied by a local minimizer, ensures that it is stationary. Among
the most common CQs in the literature are the linear independence (LICQ) [12],
Mangasarian—Fromovitz (MFCQ) [29], quasi-normality (QN) [25, 13], and constant
positive linear dependence (CPLD) [33, 10]. Other weak CQs associated with global
convergence of first-order algorithms have been introduced in recent years [26, 31, 4,
5, 6, 7]. One of these CQs, of particular interest in this paper, is the cone continuity
property (CCP), defined in [6].

In this work we study optimality conditions and CQs for GNEPs. Moreover,
we are interested in optimality conditions and CQs that can be associated with the
development of iterative algorithms for GNEPs. It turns out, however, that some re-
sults are different from those that are known for standard optimization problems. For
example, the QN extension for GNEPs presented here is not weaker than the CPLD
condition, as is the case in optimization [10]. We show that, even more surprising, the
approximate-KKT (AKKT) condition [3] is not an optimality condition for a general
GNEP.

Currently there is a considerable variety of methods for solving GNEPs. However,
most of them are focused on the case of player or jointly convex GNEPs. We refer the
interested reader to the survey papers [19, 22] and the references therein for a quite
complete overview of the existing approaches.

In this work, we are interested in penalty-type methods for GNEPs, with proved
global convergence. The first penalty method for GNEPs that we are aware of is due
to Fukushima [23]. Other variants were studied in [20, 21]: a full penalty is considered
in [20] and a partial penalty in [21].

Augmented Lagrangian methods for constrained optimization problems are known
to be an alternative for penalty-type methods. Taking this into account, it is natural to
apply an augmented Lagrangian-type approach in order to solve GNEPs. This idea
was already studied by Pang and Fukushima [32] for quasi-variational inequalities
(QVIs). An improved version of that method can be found in [27], also for QVIs.
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Under certain conditions, it is known that a GNEP can be reformulated as a QVI, so
in both papers the authors briefly discuss the application of the method for this class
of GNEPs.

Based on [27], Kanzow and Steck developed an augmented Lagrangian method
specifically for GNEPs in [28]. Independently, we also proposed an augmented La-
grangian method for GNEPs in [35], which we briefly present here. The main differ-
ences in our approaches are that we focus on optimality conditions and CQs that are
associated with the proposed method; in particular, our global convergence proof is
based on the CCP CQ, while the one in [28] is based on the (stronger) CPLD. It is well
known that CCP is much weaker than CPLD; for instance, a problem that does not
satisfy CCP can be made into a problem that does satisfy it by including appropriate
well-behaved redundant constraints, while CPLD does not have this property (see [5]).
We also present a convergence result based on the QN CQ, which extends [2] from
optimization to GNEPs but proves in addition that the dual sequence is bounded. A
main contribution of this paper is that AKKT is not an optimality condition for a
general GNEP. Since the augmented Lagrangian method proposed in [28] (and also
ours) generates AKKT sequences, this kind of method excludes the possibility of find-
ing some solutions of the GNEP. Also, due to the general nature of the definition of
AKKT, it is expected (as in the optimization case) that most algorithms would gen-
erate AKKT sequences, and hence the fact that AKKT is not an optimality condition
for GNEPs is a fundamental aspect of the problem that should be taken into account
when developing an algorithm. For a special class of GNEPs (including NEPs), we
prove that this inherent difficulty is not present, as we prove that AKKT is indeed an
optimality condition within this class.

This paper is organized as follows. In section 2, we review some CQs and the
AKKT concept for standard nonlinear programming. In sections 3 and 4, we define
and state a comprehensive study on several CQs for GNEPs. In section 3, we dis-
cuss concepts where the analysis considers the constraints of the players somewhat
independently, using the standard approach of fixing Z=¥ when looking at player v’s
problem. On the other hand, in section 4 we explore concepts where the connection
of the decisions of all the players in the constraints plays a fundamental role. The
latter have a much greater impact on the analysis of numerical algorithms.

Section 5 is the most important of this paper. In this section we formally extend
the concept of approximate-KKT for GNEPs (GNEP-AKKT). We give an example
where GNEP-AKKT does not hold even at a solution of a jointly convex GNEP. In-
spired by this, we discuss some practical issues related to limit points of methods that
generate GNEP-AKKT sequences. We prove that for important classes of GNEPs,
which include NEPs, the GNEP-AKKT is a necessary optimality condition. More-
over, we prove that the GNEP-CCP condition introduced in section 4 is the weakest
condition that ensures that GNEP-AKKT implies KKT for GNEPs.

In section 6 we give a precise description of our augmented Lagrangian method
for GNEPs. Using the results of sections 3, 4, and 5, we present a refined convergence
analysis under GNEP-CCP, which is stronger than the corresponding result from [28]
under GNEP-CPLD. An independent global convergence result under the GNEP-QN
CQ is also presented, where we show, in addition, the boundedness of the dual vari-
ables, which is a new result even in the optimization case. Finally, conclusions and
remarks are stated in the last section.

Our notation is standard in optimization and game theory. We denote by R" the
n-dimensional real Euclidean space, where x; denotes the ith component of z € R"™.
We denote by R the set of vectors with nonnegative components and by a; :=
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max {0, a} the nonnegative part of a € R. We use (-, -) to denote the Euclidean inner
product, and ||-|| denotes the associated norm. For a real-valued function f(z,y)
involving variables z € R™ and y € R™?, the partial derivatives with respect to = and
y are denoted by V, f(z,y) € R" and V, f(z,y) € R"?, respectively.

We say that a finite set of vectors a;,7 = 1,...,m, is positively linearly dependent
if there are scalars \; > 0,i = 1,...,m, not all zero, such that > ", \;a; = 0;
otherwise, these vectors are called positively linearly independent.

2. Preliminaries. In this section we recall the definitions of several CQs for
optimization problems ensuring that a local minimizer satisfies the KKT conditions.
We also define the concept of an approximate-KKT (AKKT) point for standard non-
linear programming, which is fundamental for the development of stopping criteria
and for the global convergence and complexity analysis of many algorithms. The fact
that the limit points of an algorithm satisfy the AKKT condition implies that they
satisfy the KKT conditions under weak constraint qualifications. Let us begin by
considering a nonlinear optimization problem defined by a continuously differentiable
objective function f : R™ — R and, for simplicity of notation, consider only inequality
constraints, defined by continuously differentiable functions g; : R™ = R,i=1,...,m:

(2) min f(z) st gi(x) <0 Vi=1,...,m.

Let X C R™ denote the feasible set of problem (2). Some of the most important
conditions associated with the convergence analysis of many algorithms are the KKT
conditions, which we state below.

DEFINITION 2.1 (KKT). We say that T € X is a KKT (or stationary) point if
there exists A € R such that

V@) + Y AiVgi(z) =0,
i=1
and
min {\;, —g;(Z)} =0
foralli=1,...,m.

Unfortunately, it is not true that any local solution of problem (2) satisfies the
KKT conditions. In order to ensure that a solution satisfies these conditions, we
must assume a so-called constraint qualification (CQ). To present some of the most
important CQs in the literature, we will need the following concepts.

The (Bouligand) tangent cone of X at a feasible point € X is defined by

l‘k

Tx(Z) := {deR" 3 {e"} c X, {t} 10,28 = 7 and lim t;x :d}.

It is well known that when Z € X is a local minimizer of (2), the following
geometric necessary optimality condition holds:

(VF(z),d) >0 Vde Tx(z).

Given = € X, we define the set A(x) of the indices of active constraints, that
is, A(x) := {i € {l,...,m} : g;(x) = 0} . The corresponding linearized cone of X at
z € X is given by

Lx(z):={deR":Vg(z)"d<0,ic Az)}.
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Given T € X and x € R", we define

Kx(z,z)={deR":d= Y  M\Vg(x),Ai>0p,
i€ A(z)

the perturbed cone generated by the gradients of the active constraints at . When
Z is fixed and there is no chance of misunderstanding, we will use Kx(z) instead of
Kx (z,z) for simplicity of notation.

We recall that, given an arbitrary set C' C R"”, its polar cone is defined by

P(C) = {veR" (v,d) <0 VYdeC}.

Under the definition of the polar cone, the geometric optimality conditions at a local
minimizer Z € X read as —Vf(zZ) € P(Tx(z)). In order to arrive at the KKT
conditions, we note that Farkas’ lemma implies that the polar cone of Lx (Z) coincides
with the cone generated by the (nonperturbed) gradients of active constraints at Z,
namely, P(Lx(Z)) = Kx (&, ), and it is easy to see that the KKT conditions hold at
Z € X if and only if =V f(Z) € P(Lx(Z)). Hence, it is easy to see that any condition
that implies the equality of the polars of the linearized and the tangent cones is a
constraint qualification. We define a few of these as follows.

DEFINITION 2.2. Let T be a feasible point of the nonlinear problem (2). Then we

say that T satisfies the

(a) LICQ if the gradients of the active constraints Vg;(Z), i € A(Z), are linearly
independent;

(b) MFCQ if the gradients of the active constraints Vg;(Z), i € A(Z), are posi-
tively linearly independent;

(¢c) CPLD if for any subset I C A(Z) such that the gradient vectors Vg;(x), i € I,
are positively linearly dependent at x := Z, they remain (positively) linearly
dependent for all x in a neighborhood of T;

(d) QN if for any A € R such that

D AiVei(®) =0, Nigi(®) =0,
=1

K — % such that g;(z*) > 0 for all k whenever X\; >

there is no sequence x
0,2=1,...,m;

(e) CCP if the set-valued mapping (multifunction) Kx : R™ = R", given by x
Kx(z) := Kx (=, ), is outer semicontinuous at T, that is, limsup,_,; Kx(z) C

Kx(z), where

limsup Kx(x) := {w eR”: ¥ - z,Fw* — w, vk e KX(J:k)};
T—T

(f) Abadie constraint qualification (ACQ) if Tx (%) = Lx (&) holds;
(g) Guignard constraint qualification (GCQ) if P(Tx(Z)) = P(Lx(Z)) holds.

The following implications hold for conditions (a)—(g) [6]:
LICQ = MFCQ = CPLD = CCP = ACQ = GCQ.

Moreover, CPLD is strictly stronger than QN, and QN implies ACQ but is indepen-
dent of CCP.
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A useful tool associated with results relying on CPLD, which we also use in our
analysis, is the following Carathéodory-type result, whose proof is a simple adaptation
of [15, Lemma 3.1].

LEMMA 2.3. Assume that a given vector w € R™ has a representation of the form

m
w = E )\iai
i=1

with a; € R™ and A\; € R for all i = 1,...,m. Then, there exist an inder set I C
{1,...,m} and scalars \; € R (i € I) with \;\; > 0 for all i € I, such that

w = Z:\laz

i€l
and such that the vectors a; (i € I) are linearly independent.

It is possible to show that GCQ is the weakest possible CQ, in the sense that it
guarantees that a local minimum of problem (2) is also a stationary point, indepen-
dently of the objective function. This was originally proved in [24], as a consequence
of the fact that the polar cone of Tx (Z) coincides with the set of vectors of the form
-V f (Z), with f ranging over all continuously differentiable functions that assume a
local minimum constrained to X at Z. See also [34].

Without assuming a CQ, one can still rely on the KKT conditions to formulate
a necessary optimality condition, but one must consider the validity of the condition
not at the point Z itself but at arbitrarily small perturbations of Z. This gives rise to
so-called sequential optimality conditions for constrained optimization problems (2),
which are necessarily satisfied by local minimizers, independently of the fulfillment of
constraint qualifications. These conditions are used in practice to justify the stopping
criteria for several important methods, such as augmented Lagrangian methods. On
the other hand, the separate analysis of the sequential optimality condition generated
by the algorithm, together with the analysis of the minimal CQ needed for a point
satisfying the condition to be a KKT point, is a powerful tool for proving global
convergence of algorithms to a KKT point under a weak constraint qualification. In
our analysis, a major role will be played by the most popular of these conditions,
approximate-KKT (AKKT) [33, 3, 13].

DEFINITION 2.4 (AKKT). We say that T € X satisfies the AKKT condition (or
is an AKKT point) if there exist sequences {xk} Cc R7, {/\k} C RT, such that
limy o0 ¥ = 7,

Vf(z*) + i)\ngi(xk) =0,

i=1

lim
k—o0

and
. . k ) k _
khm min { A}, —g;(z*)} =0

foralli=1,...,m. In this case, {a:k} s called an AKKT sequence.

The following theorem proves that the AKKT condition is a true optimality con-
dition, independently of the validity of any constraint qualification.

THEOREM 2.5. Let T be a local solution of problem (2); then T is an AKKT point.
Proof. See [3, 15]. d
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Theorem 2.5 says that regardless of the fixed tolerance € > 0, it is always possible
to find a point sufficiently close to a local solution of problem (2) that satisfies approx-
imately the KKT conditions with tolerance €. This fact is the main reason why CQs
do not play a significant role in the development of practical algorithms; however,
this result justifies the stopping criterion of most algorithms based on approximately
satisfying the KKT conditions. Hence, it is reasonable that algorithms will aim at
finding AKKT points, regardless of the validity of the KKT conditions or not at a
solution. If one aims at finding KKT points, then local minimizers that do not satisfy
a CQ are ruled out completely from the analysis. Under this point of view, a CQ is
needed only in order to compare a global convergence result to an AKKT point with
a global convergence result to a KKT point under a constraint qualification. It turns
out that the connection is made with the CCP [6], the minimal CQ that ensures that
an AKKT point is a KKT point, independently of the objective function. See the
discussions in [7, 15].

Of course, under this generality, one must bear in mind that the sequence of ap-
proximate Lagrange multipliers, {\*}, can be unbounded, which introduces numerical
difficulties. However, our analysis of an augmented Lagrangian for GNEPs will show
that under an extension of QN to GNEPs, the sequence of Lagrange multipliers gen-
erated by the algorithm is necessarily bounded (as long as the limit point is feasible).
This is a new result also in the optimization framework, which in particular implies
boundedness of the dual sequence under CPLD. As we discuss later, the boundedness
result under CPLD does not extend in general for GNEPs.

In fact, we will show that the situation is dramatically different for GNEPs, in
the sense that there are problems where most algorithms are bound to disregard their
solutions, even in the jointly convex case. Namely, we will extend the concept of
AKKT for GNEPs, and we will show that, unlike in nonlinear programming, we do
not have that AKKT is an optimality condition in general. We will also discuss the
role that AKKT plays in the study of global convergence of an augmented Lagrangian-
type algorithm for GNEPs.

3. Partial constraint qualifications for GNEPs. Throughout this section
we extend the definitions of several CQs from optimization to GNEPs, considering
separately the feasible set of each player. This is the standard well-known approach for
defining optimality conditions for GNEPs. We start by defining a Guignard-type CQ
and proving that it is the minimal CQ to ensure a KKT-type condition at a solution
of a GNEP. From now on, we consider the GNEP defined by (1) and assume that the
objective functions f¥ : R® — R, as well as the constraint functions g* : R® — R,
are continuously differentiable for all v =1,...  N.

Given z7% € R*" ™" the feasible set for player v will be denoted by

Xv(va) = {:L,v c R™ ng(l’v,l’iv) < O} .
The feasible set for the GNEP will be given by
X ={zeR":¢"(x)<0, v=1,...,N}.

DEFINITION 3.1 (GNEP-KKT). We say that x € X is a GNEP-KKT point for
(1) when x¥ is a KKT point for problem PY(x~") for eachv =1,...,N; i.e., for each

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/19 to 129.237.35.237. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

38 L. F. BUENO, G. HAESER, AND F. N. ROJAS

v=1,...,N, there are vectors X" € R'"" such that

(3) Var f(2) + Y A Varg () = 0,
i=1

(4) min{\}, —g7(x)} =0 foreach i=1,...,m,.

A useful definition is the set AY(z) of indices of active constraints for player
v=1...,Nat z € X, that is, A¥(z) := {i € {1,...,my} : g¥(x) = 0}. With this
definition one may rewrite the GNEP-KKT condition as (3) with the sum ranging
over AY(z) forallv=1,...,N.

Since GNEPs are generalizations of optimization problems, it is straightforward
that the GNEP-KKT condition is not a first-order necessary optimality condition
without some constraint qualification. Formally, a CQ for a GNEP is a property that
when satisfied at a solution Z, ensures that the GNEP-KKT conditions hold at Z for
appropriate Lagrange multipliers AV € R" for each v = 1,...,N. In other words,
the property

GNEP-KKT or Not-CQ

is fulfilled at every solution of the GNEP (1).
Now we state the minimality of a Guignard-type condition with respect to guar-
anteeing the GNEP-KKT conditions.

THEOREM 3.2 (minimality of a Guignard-type CQ). Let T € X. The following
conditions are equivalent:
(i) The nonlinear programming problem of each player v =1,... N, with fixed
constraint set X (z77), satisfies GCQ at T°.
(ii) For any objective functions f¥;v =1,...,N, in the definition of GNEP (1)
such that T is a solution, the GNEP-KKT conditions hold.

Proof. Assume (i), and let f,;v =1,..., N, be objective functions in the defini-
tion of GNEP (1) such that Z is a solution. For each player v, Z¥ is a minimizer of
P¥(z~7). Since GCQ holds at zV for the constraints X ("), the KKT conditions
hold for PY(Z~"). Combining the KKT conditions for each player v yields GNEP-
KKT, hence (ii). Now suppose that (i) does not hold; that is, for some player v, GCQ
for P(z~") does not hold. From the minimality of GCQ in optimization, there is an
objective function f¥ assuming a minimizer at Z¥ constrained to X (z~%) that does
not conform to the KKT conditions. This contradicts (ii). |

From now on, we call the minimal condition ensuring GNEP-KKT given by The-
orem 3.2 “partial-Guignard.” More generally, it is a natural way to obtain a CQ for
GNEPs by assuming that at the solution, the constraints of each player conform to
a CQ for optimization. If “CQ” is a constraint qualification for optimization, we say
that “partial-CQ” is the corresponding constraint qualification for GNEPs obtained
in this fashion. That is, we have the following.

DEFINITION 3.3 (partial-CQ). Given a feasible point T € X for the GNEP (1)
and a constraint qualification “CQ7 for optimization, we say that T satisfies partial-
CQ for the GNEP if for all v = 1,...,N, TV satisfies “CQ” with respect to the
constraints © € XV (Z7Y).

Remark 3.4. It is easy to see that partial-CQ is a constraint qualification for
GNEPs. Namely, if a solution Z of the GNEP satisfies partial-CQ, then it satisfies
the GNEP-KKT conditions. We note that in order to guarantee that an equilibrium
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solution satisfies the GNEP-KKT conditions, it is not necessary for the CQ for each
player to be the same.

Let us now exemplify the concept of partial-CQ by considering the well-known
MFCQ, CPLD, and CCP conditions for optimization.

DEFINITION 3.5 (partial- MFCQ). We say that * € X satisfies partial-MFCQ
with respect to the GNEP (1) if for eachv=1,...,N,

{Vaogf (j)}ieA“(i’)

is positively linearly independent in R™ .

DEFINITION 3.6 (partial-CPLD). We say that T € X satisfies partial-CPLD with
respect to the GNEP (1) if for eachv =1,..., N, there is a neighborhood U? C R™ of
zV such that if I C A¥(Z) is such that {V v g} (%)}, v is positively linearly dependent;
then {Vyogy(x¥,27")},cp0 is positively linearly dependent for each x¥ € U".

DEFINITION 3.7 (partial-CCP). We say that T € X satisfies partial-CCP with
respect to the GNEP (1) if for each v = 1,..., N, limsup,._,z0 Kxv(z-v)(z?) C
Kxv(z—v)(2"), where

KXv(j—'u)(fL'v) = wv S an : wv = Z )\;}Vzvgf(xv,{i_v), )\’U Z 0

K2
1€EAY(T)

Remark 3.8. It is clear from the definition of partial-CQ that if CQ1 is weaker
than CQ2, then partial-CQ1 is weaker than partial-CQ2.

In [32, 27] the partial- EMFCQ, which is an extension of partial- MFCQ to infea-
sible points, was used to prove the feasibility of limit points of a penalty-type method
for QVIs. The same result has been obtained for GNEPs in [28]. In the feasible case,
a weaker CQ can be employed, which we discuss in the next section.

It turns out that when dealing with CQs weaker than MFCQ, the partial-CQ
concept is not appropriate for proving global convergence results of algorithms to
stationary points. That is why we call it “partial.” In the next section we will
show another way to extend an optimization CQ to the context of GNEPs, which
will be adequate for proving global convergence results. The reason the partial-CQ
concept is too weak for this purpose is because a sequence {2} C R™ generated by
an algorithm, when converging to some z € R™, does so in such a way that, typically,
kv £ 7V forallv = 1,..., N, and hence it is not reasonable to fix Z~% when defining
the neighborhood used in Definitions 3.6 and 3.7 for player v. Instead, one should
consider jointly the full neighborhood in R", even when stating the conditions to be
satisfied for each player.

4. Joint constraint qualifications for GNEPs. Recently, many new CQs
for optimization have been defined in order to prove global convergence results to
KKT points under weaker assumptions; see [4, 5, 7, 6]. Our goal is to provide a
way of extending those CQs to GNEPs in such a way that global convergence of
algorithms to a GNEP-KKT point can be proved. These definitions will highlight the
joint structure of the GNEPs with respect to each player. Following the definition
of GNEP-CPLD from [28] (which independently made such an extension of CPLD),
given some constraint qualification “CQ” for optimization, we introduce a constraint
qualification for GNEP that we call “GNEP-CQ.”
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Given ¥ € X, the partial-CQ is a straightforward extension of the optimiza-
tion CQ, obtained by looking individually at each player’s problem with constraint
x € XV(Z7"). The concept is adequate for NEPs, but for GNEPs, we must take into
account how the feasible set of each player is perturbed at points nearby £~ in order
to obtain a meaningful definition. While the relations among all partial-CQ condi-
tions are inherited directly from the corresponding relations among the optimization
CQs, the relations among different GNEP-CQ conditions are not the same as the
relations among the corresponding CQs for optimization. The main difference in the
GNEP-CQs presented here, with respect to their partial-CQ counterparts, is that the
requirements for points close to the analyzed point should be considered, taking into
account simultaneous perturbations in the variables of all players.

For the case of the LICQ, MFCQ (and EMFCQ) conditions, the definitions of
partial-CQ and GNEP-CQ coincide, since there is no explicit use of neighborhoods
in the definition of these CQs. This is not the case for the CPLD, for example. We
next define the GNEP-CPLD concept, which was already independently considered
in [28].

DEFINITION 4.1 (GNEP-CPLD). We say that & € X satisfies GNEP-CPLD if
there exits a neighborhood U C R™ of T such that, for allv=1,...,N, if I" C A"(Z)
is such that {Vav g (T)},cp0 is positively linearly dependent, then {V gy (x)} is
positively linearly dependent for all x € U.

The difference between partial-CPLD and GNEP-CPLD is that in partial-CPLD,
one just has to consider z of the form = = (z¥,Z7") in the neighborhood of Z, for
each v, and in GNEP-CPLD, the positive linear dependency must occur for all z € R™
close to Z. For the case of CCP we have the following new definition.

DEFINITION 4.2 (GNEP-CCP). We say that T € X satisfies GNEP-CCP if, for
eachv=1,...,N, limsup,_,. K"(z) C K¥(Z), where

ielv

K'(z):=w’" e R"™ :w" = Z AiVavgi(z) A =0
i€ AV (Z)

In some sense, fixing the sums to be over the active constraints at Z, the definition
of GNEP-CCP asks for the multifunctions K yv(,-v)(z"), as a function of the whole
vector z € R™, to be outer semicontinuous at Z for each v =1,..., N. It is easy to see
that GNEP-CCP can be written as the outer semicontinuity of the single multifunction

N
(5) K(z):= [[ K* ().
v=1

Now we will prove that GNEP-CPLD and GNEP-CCP are in fact CQs; i.e., if one
of them is satisfied at a solution of the GNEP (1), then the GNEP-KKT conditions
hold. To do this, it is sufficient to show that GNEP-CPLD and GNEP-CCP imply,
respectively, partial-CPLD and partial-CCP, which are CQs for GNEPs as mentioned
in Remark 3.4. In fact, let us prove the more general result that GNEP-C(Q implies
partial-CQ for a very broad class of CQs that includes all of the ones that we have
presented.

THEOREM 4.3. Let CQ be a constraint qualification for optimization that is de-

fined in terms of making a requirement for all points in a neighborhood of a point T.
Then GNEP-CQ implies partial-CQ.
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Proof. In order for a point T € X to satisfy partial-CQ, for each player v =
1,..., N, there must be some restriction (defined by CQ) on how the constraint func-
tion g¥ : R™ — R™» should behave on neighboring points (z¥,z~") of Z. The corre-
sponding GNEP-CQ is simply an extension of this requirement for general neigh-
boring points x of Z. Hence GNEP-CQ is always stronger than its counterpart
partial-CQ. 0

In particular, GNEP-CQ is a constraint qualification for GNEP. In optimization,
it is correct to say that a property P such that AKKT + P implies KKT is a constraint
qualification. This is true because AKKT is an optimality condition in optimization.
For GNEPs, we will see that this does not hold. In [28], the authors consider GNEP-
CPLD as a CQ for GNEP, but they do not provide a proof. However, the fact
that GNEP-CPLD and GNEP-CCP are CQs for GNEPs is a direct consequence of
Theorem 4.3 and Remark 3.4.

Now we are going to prove that, indeed, GNEP-CCP is weaker than GNEP-
CPLD.

THEOREM 4.4. GNEP-CCP is weaker than GNEP-CPLD.

Proof. Suppose that GNEP-CPLD occurs at & € X, and let v € {1,..., N} be
fixed and arbitrary. Let w € limsup, ,; KV(z); then there are sequences
{z¥} and {w*} such that z* — 2z, w* — w, and w* € KV(z¥), that is,
wk = Yicav(@) AU gl (%) with AP > 0. By Carathéodory’s Lemma 2.3,
there is a set J¥ < AY(z) and scalars A¥Y > 0 with i € J* such that
wk = ZieJﬁ S\f’vvxugf(:ﬂk) and {ungf(xk)}iejﬁ is linearly independent. Since

Av(z) is finite, we can take a subsequence such that J*¥ = J,, and so

(6) wh = Z S\f’vvxug;—’(xk), S\i” >0,
i€y

with {Vzv g7 (:Uk)}Z e, linearly independent.

Now, suppose that the sequence {S\f’v}ie_h is unbounded. Without loss of gener-
ality, we can assume that ni%u — XY # 0. Dividing (6) by ||A*"|| and taking limit
in k, we have that 0 = Y, ; A/V,eg!(Z), and then {V,vg"(Z)},c,
linearly dependent. Since z¥ — Z, for k large enough, by using the definition of
GNEP-CPLD, we have that {V,vg" (Ik)}ier is positively linearly dependent. How-
ever, this is a contradiction to the way J, was chosen, and therefore we have that
{AFY . is bounded. So we can assume that {\""};c; is convergent to A? > 0
and, taking limit in (6), obtain that w =}, AV, g?(Z) € K°(Z), which means
that the GNEP-CCP condition holds. O

is positively

Since optimization problems are a special case of GNEPs, it is clear that GNEP-
CCP is strictly weaker than GNEP-CPLD [6]. The following example shows that the
implications in Theorem 4.3 are strict for CPLD and CCP.

Ezample 4.5 (partial-CPLD does not imply GNEP-CPLD, and partial-CCP
does not imply GNEP-CCP). Consider a GNEP with N = 2, n; = ny = my = 1,
mg = 0, and g'(z!,2?) = 2'2%. In this case,  := (1,0) € X, and it is obvious
that ! = 1 satisfies CPLD on the set X'(0) = R, so partial-CPLD holds at z.

Partial-CCP, being weaker than partial-CPLD, also holds.
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On the other hand, K'(z) = {0}, and let us prove that limsup,_,. K'(x) =
R. Given w € R, consider the sequences z* := (1,%) and w* == w = k. It is
straightforward that w* € K'(2*), so w € limsup,_,; K'(x), and thus GNEP-CCP
is not satisfied at . By Theorem 4.4, we also have that GNEP-CPLD does not hold
at T.

Finally, we present an extension of the QN CQ for GNEPs with the following new
definition.

DEFINITION 4.6 (GNEP-QN). We say that T € X satisfies GNEP-QN if for any
v=1,...,N, and any scalars \" € R satisfying

> NVl () =0, MNgi(z) =0,
=1

there is no sequence ¥ —Z such that gf(mk) >0 for all k whenever XY >0 for some i.

As a consequence of the results for optimization problems, we have that GNEP-
QN does not imply GNEP-CPLD [10], and it is independent of GNEP-CCP [6].
However, differently from the optimization case, the following example shows that
GNEP-CPLD does not imply GNEP-QN.

Ezample 4.7 (GNEP-CPLD does not imply GNEP-QN). Consider a GNEP with
two players where ny = ny =1, my = 2, mg = 0, gi(x) = 2!, and gi(x) = —2! + 2%
Since the gradients of gi(x) and gi(z) are constant for all x, we have that GNEP-
CPLD holds at every point of X. Let us show that GNEP-QN fails at £ = (0,0).
Consider M = M =1 > 0. Then MV,1g}(Z) + M V,195(Z) = 0; however, the
sequence ¥ = (1/k,2/k) converges to = and gi (z¥) = g (2*) = 1/k > 0.

Note that the failure occurs because of the presence of z2 in the constraints but
not in its gradients, which is particular to the situation of a GNEP. An even more
pathological example would be a two player game with n; = ne =my =1, mg =0,
and g1(x) = z2. Note, however, that GNEP-MFCQ (= partial-MFCQ) is strictly
stronger than GNEP-QN.

We are interested in global convergence results of algorithms to a KKT point
under a constraint qualification. In the augmented Lagrangian literature of optimiza-
tion, global convergence has been proved under CPLD in [1], with improvements in
[4, 5], and more recently, under CCP in [6]. The recent paper [2] shows global con-
vergence under QN. Since QN is independent of CCP, the results from [6, 2] give
different global convergence results, while also generalizing the original global conver-
gence proof under CPLD in [1]. In a similar fashion, we will prove global convergence
of an augmented Lagrangian method for GNEPs under GNEP-CCP (in Theorem 6.1)
and under GNEP-QN (in Theorem 6.2). While the first result is stronger than the
one under GNEP-CPLD from [28], the second is independent from [28] and also from
Theorem 6.1. This will be shown in section 6. In pursuit of this goal, in the next
section we extend the notion of an AKKT point for GNEPs, where we later prove
that all limit points of a sequence generated by an augmented Lagrangian method are
AKKT points. A similar extension has been made independently in [28]. Surprisingly,
we discovered that the proposed extension of AKKT is not an optimality condition
for a general GNEP. While this does not impact our results under a CQ, we further
discuss some interesting practical implications of this fact.

5. Approximate-KKT conditions for GNEPs. As we have discussed in
Theorem 2.5, AKKT is an optimality condition for optimization problems, without
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constraint qualifications. Also, most algorithms for nonlinear programming generate
sequences whose limit points satisfy AKKT [5]. Moreover, this optimality condition
is strong, in the sense that it implies the optimality condition “KKT or Not-CCP.” In
[28], the authors use a slight modification of what we call here GNEP-AKKT, with
a similar purpose for GNEPs, by showing that an augmented Lagrangian generates
sequences whose limit points satisfy GNEP-AKKT, and that it implies the optimal-
ity condition “GNEP-KKT or Not-GNEP-CPLD.” We will show that GNEP-AKKT
in fact implies the stronger optimality condition “GNEP-KKT or Not-GNEP-CCP,”
but that GNEP-AKKT itself is not an optimality condition. This result contrasts
with what is known for optimization. In this section we also discuss some impor-
tant practical implications of this fact, while also proving that the proposed concept
GNEP-AKKT is in fact an optimality condition for an important class of problems,
which includes NEPs.

DEFINITION 5.1 (GNEP-AKKT). We say that T € X satisfies GNEP-AKKT if
there exist sequences {xk} C R™ and {)\k’”} C R for eachv =1,...,N, such that
limy, o0 2F = 7,

1. v U kJ’U v =
(7) Jim [V £ ZA wgf ()| =0,
and

k,v vk _
(8) klglgo min {)\ —g; (x )} =0

foralli=1,...,my,,v=1,...,N.

The sequence {xk} used in the definition of GNEP-AKKT is called a GNEP-
AKKT sequence. This concept is the same as the one independently defined in [28],
with the difference that they do not require the nonnegativity of the Lagrange mul-
tipliers sequence {\**}. However, the equivalence between the concepts is straight-
forward, replacing a possibly negative A*** by max {\*,0} and using the continuity
of the gradients. Thus, for simplicity, we will assume that the sequence of Lagrange
multipliers is always nonnegative.

To define a useful stopping criterion for an algorithm that generates GNEP-AKKT
sequences, we need to define the e-inexact GNEP-KKT concept for an € > 0 given.

DEFINITION 5.2 (e-inexact GNEP-KKT point). Consider the GNEP defined by
(1), and let € > 0. We call (z,A) € R™ x R™ an e-inexact GNEP-KKT point if the
following inequalities hold for eachv=1,... N:

9)

(10) [min {\?, —gl(@*, 2~ )}|| <&, i=1,...,m.

Vo £ +ZA Vargy (z°,27")

Note that for ¢ = 0, an e-inexact GNEP-KKT point is a standard GNEP-KKT
point. Moreover, a point Z satisfies the GNEP-AKKT condition if and only if there
are sequences € > 0, zF € R”, ¢, — 0, 2¥ — Z such that z* is an ej-inexact
GNEP-KKT point.

The following example shows that even for a jointly convex GNEP, the condition
GNEP-AKKT is not an optimality condition.
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Ezample 5.3 (GNEP-AKKT is not an optimality condition). Consider the two
player GNEP, with n; = ng = 1 defined by the following problems, for v = 1, 2:
(z')? 1o, (@) <0.

5 —xx°+ 5

Player v: minz"” s.t.
aj’U

The solution set of this GNEP is {(z!,2?) € R* : 2! =2?}. Let Z be a solution
and suppose, by contradiction, that GNEP-AKKT occurs at . Therefore there are
sequences {xk} C R? with z* — z and {)\k} - Ri such that

’1 + )\k’l(xk’l — mk’z)‘ — 0 and |1 + A2k xk’1)| — 0.

Let 2% = b1 — 2%2; then 2F — 0, A®12F — —1, and A2z — 1. This clearly
contradicts the fact that A®*! and A2 are nonnegative, and therefore Z is not a
GNEP-AKKT point.

Example 5.3 shows that algorithms that provably generate sequences whose limit
points are GNEP-AKKT points, can never converge to any solution of this jointly
convex problem. In particular, either the iterand z* is not defined, with a subprob-
lem that cannot be solved, or the sequence {z*} generated is unbounded, without a
limit point. The possibility of converging to an infeasible point is ruled out by [28,
Theorem 18]. The situation is strikingly different from the augmented Lagrangian for
optimization, which can be defined with safeguarded boxes in such a way that a limit
point of {z¥} always exists and that, when feasible, is an AKKT point. Also, this
does not exclude any solution a priori such as in GNEPs.

On the other hand, the next example shows that algorithms that generate GNEP-
AKKT sequences can also be attracted by a point that does not satisfy a true opti-
mality condition (hence is not a solution). To formalize this we need the following
concept.

DEFINITION 5.4 (partial-AKKT). Let & € X be a feasible point of the GNEP (1).
We say that T satisfies the partial-AKKT condition if

z¥ satisfies AKKT for the optimization problem P%(z7") Vo =1,...,N.

By the definition of the GNEP and by Theorem 2.5, it is easy to see that
partiall AKKT is an optimality condition for GNEPs, without constraint qualifica-
tions. However, this condition is too strong for one to expect that an algorithm would
generate this type of sequence, as {z*¥} would be an AKKT-type sequence for each
v=1,..., N but only when paired with the true limit, namely, {(z*¥,7%)}. Exam-
ple 5.3 showed that partial-AKKT does not imply GNEP-AKKT. The next example
shows that our two AKKT concepts are in fact independent. For this example, GNEP-
AKKT holds, while partial-AKKT does not. Hence, given that partial-AKKT is an
optimality condition, an algorithm can generate a GNEP-AKKT sequence that will
necessarily fail to converge to a solution.

Ezample 5.5 (GNEP-AKKT does not imply partial-AKKT). Consider a GNEP
vy)2

with N=2,ny =ny=my; =1, my =0, fo(x) = (7”2) ;v = 1,2, and g'(z!,2?) =
rla?.

The unique solution of this GNEP is (0,0). Now, consider the point Z := (—1,0) €
X, and let {z*} C R? be any sequence such that =¥ — (—1,0) and {A\*'} C R,.
For k large enough we have 2%'! +\*10 — —1, and therefore partial- AKKT does not
occur in .
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To see that GNEP-AKKT holds, consider the sequences 2% = (=1, 1) and A\*! =
k; then it is clear that

’xk’l + )\k’lxk’Q‘ — 0 and ’xk’2| — 0.

After seeing some bad properties of GNEP-AKKT, a natural question is where
there are some classes of GNEPs for which GNEP-AKKT is an optimality condition.
The answer is affirmative for problems with somewhat separable constraints and for
variational equilibrium of a jointly convex GNEP.

THEOREM 5.6. Consider a GNEP where the constraints of each player have the
structure g¥(z) = g2 (a¥)g)*(x7?) + g7 % (x™Y) for each v = 1,...,N and i €
{1,...,my}. If T is a solution of this GNEP, then the GNEP-AKKT condition holds
at T.

Proof. Let us show that a partial-AKKT sequence is in fact a GNEP-AKKT
sequence. By the definition of a solution of a GNEP, we have that z" is the solution
of the following optimization problem:

PY(Z7") : min f(z",27") s.t. gf’ (z")g;” 2(z7Y) +9; Bz <0,i=1,...,m,.
g

By Theorem 2.5, there exist {z%v} C R™ and {\**} C R‘fyv(f)l such that z%v — zv
and

(11) v 1)va( kv ——v)+ Z )\kv UQ(f—v)vI“g;ul(xk,v) 0.
1€EAY(T)

Obviously, one could redefine, if necessary, )\f’” =0 if gf’Q (z7%) =0, and (11) would
still be valid.
Let 2% := (2F?)Y_, ) and define

. v,2 ,—v
. 0 if g («" ") = 0,
= Ak v q (I )

g 2( k,—v)

K otherwise.

Note that ¥ — Z and that for k large enough, Xf’y has the same sign of )\f’v.
Moreover, since

Vorg! (x) = g7 (a7 ") Vaugy " (2),
we have that B
NV gl (aF) = X gl 2 (@) Vg (o).

Therefore, by (11) and the triangular inequality,

Voo £(3") + D A Vagl (aF)|| < [ Vao f7(2") = Voo £ (2", 277

i€ A (%)
+ v$va(l‘k,v, = Z )\kv v2 )v gv, ( ) - O7
1€AY(Z)
and so T is a GNEP-AKKT point. ]
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This class of somewhat separable GNEPs contains important subclasses, such as
the linear GNEPs that were studied in [17] or even the NEPs.

Note that we cannot combine the sum with the product as
g (z) == g/ () g (277) 4 g% (x¥). For example, if N =2, ny = ng = my = my =
1, fHat) = 2!, f2(2?) = —22, g'(z) = 2la® + %, and ¢2(z) := 22 (xl)S + @,
then the origin is a solution of the GNEP, but the approximate multipliers \*! and
AF2 must have opposite signs, and hence GNEP-AKKT does not hold. Notice that
this gives another example, similar to Example 5.3, where GNEP-AKKT does not
hold at a solution.

Let us recall that jointly convex GNEPs constitute an important special class
of GNEPs that arises in some interesting applications and for which a much more
complete theory exists than for the arbitrary GNEP [22]. Consider the feasible set
X = {z € R": g(z) <0} defined by a convex function g : R — R™ and a jointly
convex GNEP associated with it. Related to this GNEP, the variational inequality
problem VI(X, F') is defined as

find € X suchthat (F(Z),z—-2)>0 V z€X,

where F(z) := (Vo f*(2)),.
The following theorem establishes the relation between the solutions of VI(X, F)
and of the jointly convex GNEP; the proof may be found in [18].

THEOREM 5.7. Let a jointly convex GNEP be given with C'-functions . Then,
every solution of the VI(X, F) is also a solution of the GNEP.

We remark that the reciprocal implication is not true in general. In Example
5.3, we have a jointly convex GNEP; however, there is no solution of the associated
VI(X,F). When a solution of the GNEP is also a solution of the associated VI (X, F),
we say that it is a variational equilibrium.

DEFINITION 5.8. Let a jointly convex GNEP be given with C'-functions f¥. We
call a solution of the GNEP that is also a solution of the corresponding VI(X, F) a
variational equilibrium.

The alternative name normalized equilibrium is also frequently used in the litera-
ture instead of variational equilibrium. Let us show that at a variational equilibrium
of a jointly convex GNEP, GNEP-AKKT holds.

THEOREM 5.9. Any wvariational equilibrium of a jointly convex GNEP is a
GNEP-AKKT point.

Proof. Since Z is a solution of VI(X, F), we have that Z is a solution of the
following nonlinear programming problem:

min (F(Z),z) st. ze€X.
By Theorem 2.5, there exist sequences ¥ — Z, {)\k} C le(f)‘ such that

(12) F(z)+ Y MVg(a*) =0,

i€A(%)
where A(Z) = {ie{l,...,m}:g;(z) =0} = A¥(Z) for all v = 1,...,N. By the
definition of F', we have that

Voo f'(Z)+ Y MVaugi(z®) — 0.
i€AY(T)
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Since Vo f¥(z¥) — V4o f9(Z), we conclude that

Voo f(2%) + Z MV o gi(@F) = 0

1€AY(T)
and therefore Z is a GNEP-AKKT point. O

Even though variational equilibria are, in general, a proper subset of the solution
set of a GNEP, an auxiliary GNEP where each objective function is multiplied by a
positive constant can be considered. In this case, the solution set is unchanged, but
the variational equilibria for the auxiliary problem, which are GNEP-AKKT points
for the auxiliary GNEP, are trivially also GNEP-AKKT points for the original GNEP.
In the case of the example in [18, section 5], even though only the point (4, 4) is a
variational equilibrium, while the whole set of solutions is the closed line segment
bounded by (3,3) and (1,0), we can show in this fashion that all solutions in the
relative interior of the line are GNEP-AKKT points.

In the following theorem we show that GNEP-CCP plays, with respect to GNEP-
AKKT, the same role as the partial-Guignard plays with respect to optimality. Namely,
partial-Guignard is the weakest CQ that guarantees that any solution satisfies GNEP-
KKT. In the same sense, GNEP-CCP is the weakest condition that guarantees that
GNEP-AKKT implies GNEP-KKT.

THEOREM 5.10. The GNEP-CCP condition is the weakest property under which
GNEP-AKKT implies GNEP-KKT, independently of the objective functions f° of
each playerv=1,... N.

Proof. Let & € X satisfy GNEP-CCP. Suppose that GNEP-AKKT occurs in Z;

then there are sequences {:ck} C R™ with ¥ — Z and {)\k*”} C lev(i)‘ such that
for each v = 1,..., N we have

Vo (@) + Y A Vaugl (2F)| = 0.
1€EAY(T)

Let whv = Dicar (@) /\f’vvzugf(xk) and wk = (wk”’)i\;l; then w* € K(2*) as de-
fined in (5). Since w*¥ — —V . f?(Z), we have that w* — —F(Z) 1= — (Vo fO(F ))v 1
and therefore —F(Z) € limsup,_,; K (z). By the GNEP-CCP condition, we have that
—F(z) € K(z), and so Z is a GNEP-KKT point.

Reciprocally, assume that T is such that GNEP-AKKT implies GNEP-KKT, in-
dependently of the objective functions of each player. Let w € limsup,_,; K(x), so
there are sequences r* — 7 and w* — w with w* € K(2*). Since w* € K(x*), there

exists for each v = 1,..., N sequences {)\k’”} - R‘fv(i)l such that
(13) wh? = Z )\f’vvzvgf(xk).
1€EAY(T)
Define for each player v = 1,..., N the objective function f¥(z) == — (z,w); then
Vo f¥(x) = —w? € R™. So by (13),
Vzv f’U Z )\k v Ugl ) = —wv + wk’v — 0
1€EAV(T)
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for each v = 1,..., N. Therefore Z satisfies GNEP-AKKT, and by the assumption,
Z is a GNEP-KKT point, which implies that w € K(Z), and therefore Z satisfies
GNEP-CCP. O

As a final remark, it is an immediate consequence of [6] that partial-CCP is the
weakest condition such that partial- AKKT implies GNEP-KKT.

6. Algorithm and convergence. In this section we first derive our augmented
Lagrangian algorithm for GNEPs, with lower-level constraints. After that, we present
its convergence analysis, which is done independently and with a weaker assumption
than in [28]. We discuss feasibility and optimality results under the GNEP-CCP
condition; moreover, we give an alternative global convergence result using the QN
condition for GNEPs (GNEP-QN) that includes boundedness of the Lagrange multi-
pliers approximation.

Augmented Lagrangian methods are useful when there exist efficient algorithms
for solving their subproblems. These subproblems may have what is called lower-level
constraints, which means that those constraints would not be penalized. If all the joint
constraints are penalized, then the subproblems are NEPs, for which the theory is
richer than for GNEPs. The method we present here was inspired by those in [27, 15].
In [27], the authors present an augmented Lagrangian method for the resolution of
QVIs, which generalizes the method presented in [32]. They analyze the boundedness
of the penalty parameter, and the global convergence analysis is done with a weaker
constraint qualification (GNEP-CPLD) than in [32], where GNEP-MFCQ was used.

Similarly to [28], we specialize the algorithm of [27] for GNEPs with upper- and
lower-level constraints. Our algorithm was developed independently but is essentially
the same as that presented in [28]; however, our convergence analysis is done with a
weaker assumption.

We consider the GNEP with upper- and lower-level constraints:

Qup(z7%): ming. fU(z¥,27Y)
(14) s.t. gl (zV,x7") <0 i=1,...,my,
hy(z%,27%) <0 j=1,...,1.

Analogously to the penalty methods for classical optimization problems, we pe-
nalize the upper-level constraints and maintain the lower-level constraints in the sub-
problems. In this work we use the classic Powell-Hestenes—Rockafellar augmented
Lagrangian. Given u” € R and p¥ > 0, the augmented Lagrangian function for
player v is given by

v Mo v 2
v v V(U . P V(U —V Us
(15) Ly, (x,u”) = f(z", @ )Jr? E maX{O,gi(x,x )+pv}
i=1

for all z such that h¥(z) < 0 and for each v = 1,...,N. We define the vectors
u = (u¥)_,, which combines the safeguarded estimates for the Lagrange multipliers
associated with the functions g*, and p := (p?)2_,, which encompasses the penalty
parameters.

Note that the functions L}, (x,u") are continuously differentiable with respect to

x, and the partial gradient with respect to xV is given by

Voo Lpo(2,u”) = Vo f(z",277) + Zmax {0,uf + p’gl (x",27") } Vaugl (a¥,277).
i=1
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The augmented Lagrangian functions define a new GNEP, which we call
GNEP(u, p), where the problem for player v is given by

mings L. (z,u"),

(16) v v —v .
Ri(zV,27%) <0 j=1,...,1.

The algorithm presented here aims at finding an e-inexact GNEP-KKT point for
(14), in the sense of Definition 5.2, through the calculation of j-inexact GNEP-KKT
points of a sequence of GNEPs given by GNEP(u*, p*). The following algorithm is a
direct extension of Algorithms 4.1 of [15] and 3.1 of [27] for GNEPs and is essentially
Algorithm 11 of [28].

Algorithm 1 AL-GNEP: augmented Lagrangian for GNEPs.
Step 0: Let u™** ¢ R, 0 <7 <1,v>1,and e > 0.
Choose (2%, X%, %) € R™ x R™ x R!, w® € [0,u™®], p° € Rf, a positive sequence
e — 07, and set k = 0.

Step 1: If (z%, \*, /) is an e-inexact GNEP-KKT point of the original GNEP (14):
STOP.

Step 2: Compute an ¢j;i-inexact GNEP-KKT point (zFt% p*+l) of
GNEP (u*, p*).

Step 3: Define A" := max {0, u"" 4 pFvg”(zF 1)} for all v =1,..., N.
Step 4: Foreachv=1,..., N, if

[[min {AR27, =g (25} < 7 [[min {A5, —g" (@) ]
k+1,v

set p = pFv else, set pFT1Y i= yphv.

Step 5: Choose uf*t1 € [0,u™*], set k — k + 1, and go to Step 1.

By construction, the sequence {uk} generated by Algorithm AL-GNEP is non-
negative and bounded. A natural choice at Step 5 is ©**! := min {)\’”‘1, um‘”}. We
could also consider different parameters vV, 7%, but for simplicity we will take the
same -y, T for each player.

In our convergence analysis we consider the asymptotic behavior of the sequences
generated by Algorithm AL-GNEP; for this we consider € = 0 as the stopping criterion
used in Step 2 of the algorithm. The following theorem presents the main global
convergence result. To present it, we define the game of infeasibility such as in [28]:

(17) ml}mHgi(n{;)H2 st hi(z%,277) <0, j=1,...,0.

THEOREM 6.1. Assume that the sequence {:z:k} is generated by algorithm AL-
GNEP and K C N is such that limyeg 2 = . Then T satisfies GNEP-AKKT for
the game of infeasibility (17). In addition, if T satisfies GNEP-CCP for the game of
infeasibility, then T is a GNEP-KKT point of the game of infeasibility.

In the case when the limit point T is feasible, it satisfies the GNEP-AKKT con-
dition for GNEP (14), and if it also fulfills the GNEP-CCP constraint qualification
for (14), then the limit point T is a GNEP-KKT point of the GNEP (14).
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Proof. We omit the proof of the theorem because it is a direct adaptation of
Theorem 6.2 of [15]. The fact that GNEP-AKKT sequences are generated is also
given by Lemma 13 and Theorem 18 of [28]. The results under GNEP-CCP are a
consequence of Theorem 5.10. 0

We also point out that in [28] two results guaranteeing feasibility of the limit
points of {z*} are presented, one of them relying on convexity of the problem and the
other relying on EMFCQ, an extension of MFCQ for infeasible points.

To finish our contributions, we next prove the convergence of Algorithm AL-
GNEP under the GNEP-QN constraint qualification when the limit point is feasible.
This result is not directly associated with the concept of GNEP-AKKT, as GNEP-
CCP is the minimal condition ensuring that a GNEP-AKKT point is a GNEP-KKT
point, but GNEP-CCP is independent of GNEP-QN. This property seems to be inher-
ent to the augmented Lagrangian method because its iterates are usually infeasible.
A similar result in the optimization context has appeared recently in [2]. Under
GNEP-QN and the feasibility of the limit point, we also prove that the dual sequence
{A\*}, associated with the penalized constraints, is bounded. This result is new and
surprising, even in the optimization case (N = 1). A consequence of the result for
optimization is that, since CPLD implies QN [10], the dual sequence generated by
the augmented Lagrangian [1] under CPLD also generates bounded dual sequences
when the limit point is feasible. Since GNEP-CPLD does not imply GNEP-QN, this
result does not hold for GNEPs under GNEP-CPLD. Note that the result holds, in
particular, when the lower-level constraints are empty, namely, when all constraints
of problem (14) are penalized. In this sense, there is no loss of information in passing
from the external penalty method to the augmented Lagrangian method in terms of
conditions ensuring boundedness of the Lagrange multiplier estimate.

To prove our global convergence result under GNEP-QN, we need an algorithmic
assumption on the Lagrange multipliers sequence {u*}, which are associated with
the lower-level constraints and are computed at Step 2. We will assume that {u*} is
a bounded sequence, which can be ensured, for instance, if there are no lower-level
constraints. Also, this assumption is reasonable given that the lower-level constraints
should be easy to handle, as one needs to approximately solve an equilibrium problem
subject to the lower-level constraints at each iteration. We also point out that this
assumption was also present in the general lower-level augmented Lagrangian from
[11]. See also [14].

THEOREM 6.2. Assume that the sequence {xk} is generated by algorithm AL-
GNEP and K C N is such that limyex 2% = T and T is feasible. Moreover, assume
that there exists fi > 0 such that |pu*|| < i for allk € K. Then, if T fulfills the GNEP-
QN condition with respect to (14), we have that the dual sequence {\F} is bounded on
K, and its limit points are Lagrange multipliers associated with . In particular, X is
a GNEP-KKT point for problem (14).

Proof. By Step 2 of the algorithm and by Definition 5.2, we have for each v =
., N that

(18)

Vo [ +ZA’” g (@ +Zu’”vzvh“ 9 <o
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where AP = max {O, w4 pk_l’”gf(xk)}. Let

m, 5 L 5
om0 85 () 35 (e’
i=1 i=1
and let us assume, in order to obtain a contradiction, that there is a subsequence
K, C K such that 6%V — 400 for k € K;. Since H (6,%, g‘:—::, gf—i) H =1 for every k,
there exists Ko C K7 such that

< 1 )\kﬂ) Mk,v

lim W’ 5k,1;’ 6k,v> = (ﬁv?j\v”av) 7& 0’

keKs>

with ¥ = 0 and pf = 0 for every j =1,...,1,, while A >0forall j=1,.... 1, with
AV 0.
Dividing the expression (18) by §** and taking limits on Ky, we get

My

(19) D AVagl(z) =0.
i=1

Moreover, since the GNEP-AKKT condition yields AF" — 0 if g¥(z) < 0, (19) gives
a nontrivial positive linear combination of the gradients of the active constraints
g’(z) <0 at 7.

If \Y > 0, then there exists a > 0 and kg such that

max{0, u; " + Pt g ()}
(;k:,v

>a Vk>ky, ke Ko.

Since {u*~1v} is bounded and z is feasible, we must have that p*~1vg¥(z*) goes to
infinity, and so g} (zF) > 0 for k € K large enough. However, this contradicts the
GNEP-QN condition. 0

We note that an extension of the above result also holds when equality constraints
are present.

7. Conclusions. The major contribution of this work is to show that the GNEP-
AKKT condition is not an optimality condition for GNEPs. This observation has im-
portant practical implications because it shows that methods that generate sequences
of this type may be neglecting solutions even in jointly convex problems. In addition,
we show that the GNEP-AKKT concept is independent of the partial- AKKT concept
(which is an optimality condition), and therefore even points that do not satisfy a
true optimality condition (hence not a solution) can be found by algorithms generat-
ing GNEP-AKKT sequences. Since it is natural to construct methods that generate
GNEP-AKKT sequences (and some of them have recently been published), we believe
it is important to draw attention to this fact.

For specific classes of GNEPs, we have proved that GNEP-AKKT is an optimality
condition, and for these cases, it is more reasonable to use methods that generate
GNEP-AKKT sequences. In this paper we formalize and establish relations among
several CQs for GNEPs. In particular, we have defined the GNEP-CCP condition
and proved that it is the weakest condition that ensures that a GNEP-AKKT point
satisfies the GNEP-KKT condition. Therefore, we obtain a more refined convergence
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result than the one presented in [28] for an augmented Lagrangian-type method for
GNEPs. In addition, we have also shown a convergence result using the GNEP-QN
condition, which we surprisingly proved to be independent of the GNEP-CPLD, in
contrast with what is known in optimization. Boundedness of the dual sequence was
also proved in this case.

Another important point about the fact that GNEP-AKKT is not an optimality
condition is that it may not be appropriate to use as an algorithm’s stopping criterion
the fact that the KKT conditions are satisfied within certain precision. This is due
to the fact that it is not the case that solutions of a GNEP are approximated by
perturbed GNEP-KKT points. An important research topic would be to define a true
sequential optimality condition for GNEPs and to adapt the augmented Lagrangian
algorithm in such a way that the new type of sequences is always generated. Even
in the algorithm presented here, we asked in Step 1 that the approximate solution of
the subproblem satisfy its KKT conditions with precision ;. This raises questions on
conditions for the algorithm to be well defined and which constraints should be chosen
to be used at the upper and lower levels. We believe that ensuring that the subproblem
has an approximate solution is closely related to the fact that the original problem
has an approximate solution, and this is an interesting point for future research.

A curious fact is that stopping criteria not based on KKT conditions would have
implications even in traditional methods for standard nonlinear optimization. In [9, 8]
the authors show that Newton’s method can generate sequences that are not AKKT
sequences. The authors present this fact with a pessimistic tone, emphasizing that the
method may not recognize a solution of an optimization problem. Since Newton-type
methods are also widely used for equilibrium problems and variational inequalities,
we might assume that this would also be a deficiency of these methods. However, if a
good alternate stopping criterion is developed, this feature can become a virtue, since
the method would not have the drawback of avoiding non-AKKT solutions.

Finally, it is worth mentioning that global convergence results relying on a CQ are
mathematically correct, by establishing conditions on the limit points of the sequence
generated by the algorithm, but they are incomplete. With simple examples in mind
where the algorithm may fail, there is greater concern about sufficient conditions to
ensure that this type of algorithm does indeed generate a sequence and that this
sequence has limit points. A study on the computational behavior of this type of
method when applied to problems whose solutions are not GNEP-AKKT points would
be very welcome and certainly is within our future research perspectives.
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