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ABSTRACT

In the fuzzy dark matter (FDM) model, gravitationally collapsed objects always consist of a solitonic core located within a
virialized halo. Although various numerical simulations have confirmed that the collapsed structure can be described by a cored
Navarro—Frenk—White-like density profile, there is still disagreement about the relation between the core mass and the halo
mass. To fully understand this relation, we have assembled a large sample of cored haloes based on both idealized soliton
mergers and cosmological simulations with various box sizes. We find that there exists a sizeable dispersion in the core—halo
mass relation that increases with halo mass, indicating that the FDM model allows cores and haloes to coexist in diverse
configurations. We provide a new empirical equation for a core—halo mass relation with uncertainties that can encompass all
previously found relations in the dispersion, and emphasize that any observational constraints on the particle mass m using a
tight one-to-one core—halo mass relation should suffer from an additional uncertainty of the order of 50 per cent for halo masses
>107[8 x 10722 eV/(mc?)]*/> M. We suggest that tidal stripping may be one of the effects contributing to the scatter in the

relation.
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1 INTRODUCTION

The cold dark matter (CDM) model is one of the essential compo-
nents of the standard cosmological paradigm. In this model, dark
matter (DM) is described as a cold, pressureless, non-interacting
fluid that dominates the matter content of the Universe. The CDM
model is extremely successful in explaining the observed large-scale
structure of our Universe (Alam et al. 2017; Pillepich et al. 2018;
Aghanim et al. 2020). However, on small scales, the behaviour of
DM is still weakly constrained and its properties are less understood.
A prominent manifestation of this is a series of possible incompati-
bilities found between predictions from CDM-only simulations and
observations (Bullock & Boylan-Kolchin 2017).

The fuzzy dark matter (FDM) model is proposed to be a promising
alternative to CDM (for reviews, see e.g. Hui et al. 2017; Ferreira
2020; Niemeyer 2020; Hui 2021). In this model, DM is composed
of ultralight particles. With a particle mass as light as 10722 eV ¢ 72,
this candidate has a de Broglie wavelength of ~1 kpc, behaving as
a wave on astrophysical scales, while on large scales it behaves like
CDM, as required by observations. This wave behaviour on small
scales leads to a series of phenomenological consequences, like the
suppression of structure formation on those scales, and the formation
of a core in the interior of each galaxy halo, where the field is in its
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ground state (soliton). With these features, the FDM model not only
presents many predictions that can be tested using observations, but
depending on its mass, it might reconcile some of the small-scale
incompatibilities, like the cusp—core problem.

The dynamics of structure formation in the FDM model are
governed by the non-relativistic Schrodinger—Poisson (SP) system of
equations. Although the computational cost of solving the coupled
system in a cosmological box is known to be much more higher
than that for CDM simulations (May & Springel 2021), Schive,
Chiueh & Broadhurst (2014a) were able to perform cosmological
FDM simulation on an adaptive refined mesh to gain detailed
insights into the non-linear structure formation. Their self-gravitating
virialized FDM haloes are well resolved to confirm the existence
of a solitonic core at the centre of each halo, for which the density
structure is approximated by the so-called soliton profile with an outer
Navarro-Frenk—White (NFW)-like profile. In addition, simulations
have confirmed that FDM indeed mimics the non-linear power
spectrum of CDM on large scales, but suppresses structure on small
scales depending on the particle mass (Widrow & Kaiser 1993;
Schive et al. 2014a; Mocz et al. 2018).

Regardless of the different numerical approaches and initial set-up,
several independent simulations have been performed to confirm the
core—halo structure of an FDM halo, but there is still disagreement
on the relation between the core mass and the halo mass, expressed
as M. o< My (Schive et al. 2014b; Schwabe, Niemeyer & Engels
2016; Mocz et al. 2017; Nori & Baldi 2021). The relation depends
on the mechanism of interaction between the core and the NFW
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region, which is not well understood yet. It might also depend on
the formation and merger history of the haloes, as shown in Du
et al. (2017). Recent literature pointed out that the soliton is in a
perturbed ground state interacting with the NFW region, i.e. the
excited states, by means of wave interference (Li, Hui & Yavetz
2021). The resulting oscillation of the soliton further complicates the
analytical understanding of the relation.

The disagreement on the core—halo mass relation is of particular
observational importance because many previous constraints on the
particle mass of FDM are made by dynamic modelling of DM-
dominated galaxies, which relies on the soliton profile and core—halo
mass relation predicted by simulations. For instance, analyses of
dwarf spheroidal galaxies that have often found a particle mass of
mc? ~ 10722 eV or smaller (Chen, Schive & Chiueh 2017; Gonzilez-
Morales et al. 2017; Safarzadeh & Spergel 2020) are in tension with
measurements like the Lyman « forest measurement mc? > 1072 eV
(Rogers & Peiris 2021), which constrains the FDM mass by probing
a different prediction, the suppression of structures. For ultra-faint
dwarf (UFD) galaxies that have even smaller stellar-to-total mass ra-
tios, some studies predicted similar particle masses as found for dwarf
spheroidals (Calabrese & Spergel 2016), while others (Safarzadeh &
Spergel 2020) have found that the particle mass should be heavier,
with the strongest bound coming from Hayashi, Ferreira & Chan
(2021) with a particle mass as heavy as mc? = 1.1753 x 107 eV
from Segue I. Constraints from ultra-diffuse galaxies also suggest
an FDM mass of mc? ~ 10*? eV (Broadhurst et al. 2020). Except
for the Lyman « bounds, the constraints cited above depend on
the assumed core—halo mass relation. Although the origin of such
incompatibilities might also be due to the influence of baryons in
these systems, the core—halo relation is another important aspect,
and any change or uncertainty in this relation will influence the
bounds on the FDM mass cited above.

In this work, we perform new FDM halo simulations, and use the
largest cosmological FDM simulations with full wave dynamics to
date (May & Springel 2021), to obtain a large sample of collapsed
objects. We revisit the core—halo mass relation, and find a scatter
that can encompass all previously found relations (i.e. Schive et al.
2014b; Mocz et al. 2017; Mina, Mota & Winther 2020; Nori & Baldi
2021).

The paper is organized as follows: Section 2 reviews the equa-
tions of motion of the FDM model in the form of the coupled SP
equations. Section 3 outlines the adopted numerical scheme and
initial set-up to perform the simulations. Section 4 presents the
measured density profiles, scaling relations, and their observational
consequences. Section 5 summarizes the results and suggests a ‘to-do
list’ for future high-resolution simulations.

2 THEORY

2.1 The fuzzy dark matter model

The FDM model proposes that DM is made of bosonic particles that
are ultralight, with a mass of mc? ~ 10722 to 10~'° eV when all or
most of the DM consists of FDM. Within this mass range, the de
Broglie wavelength of this particle, given by Ag, ~ 1/mv, is of the
order of kpc or slightly smaller. This means that inside galaxies, these
particles are going to behave as classical waves. This model only has
one free parameter, the particle mass m. For heavier particle masses,
the de Broglie wavelength (and thus the wave behaviour) would be
relegated to smaller and smaller scales, so that the particles would
eventually behave very closely to CDM (Widrow & Kaiser 1993;
Mocz et al. 2018; Garny, Konstandin & Rubira 2020).
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As we are interested in the dynamics of this model on small
scales, FDM can be described as a non-relativistic scalar field
that obeys the SP equations. This can be written, in comoving
coordinates, as

Y : "
lhg = _Zr’;uz vzl// + TQ)w’ (1)
V20 — 4nGm(y — (¥ 1)), @

where a = 1/(1 + z) is the cosmological scale factor and & is the
gravitational potential. Note that the SP equations follow a scaling
symmetry

{x 1, 0,m, ) = {ax, Bt, B2p, af *m, 'y} 3)

Therefore, this symmetry can be used to rescale the resulting structure
of a simulation to another particle mass.'

The complex scalar field can be written in polar coordinates as
follows:

v = \/ge”, )

where the amplitude and phase are related to the fluid comoving
density and velocity

h
p=mlyl’,  v=-—Vo. ®)
am

The above relation is called the Madelung transformation (Madelung
1927). This allows us to rewrite the system of equations (1) and (2)
for FDM in a hydrodynamical form:

p+3Hp+ 1V (pv) =0, (6)

VHHVEL Vv - Vet v (S, 7)

with the Hubble parameter H = a/a. These equations are the
Madelung equations.

The last term of equation (7), the modified Euler equation, is often
called ‘quantum pressure’,> which has an effect of counteracting
gravity. This term is not present in CDM and only appears in this type
of models. From the competition between these two components,
hydrostatic equilibrium is reached at a defined length-scale, the
Jeans wavelength, below which structures will not form. Therefore,
this model predicts a suppression of structure formation on small
scales.

2.2 Non-linear structure of the fuzzy dark matter model

A consequence of the finite Jeans length and corresponding suppres-
sion of small-scale structure formation can be seen in the suppression
of small-scale power in the power spectrum of these models, and
consequently the suppression of the formation of smaller haloes. The
effect of this suppression can also be seen inside haloes, where there
is a highly non-linear evolution. The interior of each halo forms a
core, where there is no further structure formation and the FDM field

!'Since we only want to rescale the mass, we will fix 8 = 1 and only change «
to perform the scaling. This « is unrelated to the slope of the core—halo mass
relation.

2This term is also called ‘quantum potential’ in parts of the literature since it
can be rewritten in terms of a stress tensor that has off-diagonal components,
hence unlike pressure. Some also claim that this term is similar to the Bohm
quantum potential (see Ferreira 2020, for details). Here, we use the historic
and most commonly used term: ‘quantum pressure’.
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is in its ground state. A gravitationally bound object thus consists of
two components in the FDM model: The inner part — where quantum
pressure dominates — is called the core, while in the outer part,
gravity dominates and structure formation can happen. The density
profile of the entire halo structure can be modelled by a cored NFW
profile
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2
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The core density is a numerical fit to the FDM simulations from
Schive et al. (2014b). The scale density py can be obtained from the
continuity condition for the density

T 2 - X 1% 2
1+ 0.091 (i) } [—‘} {1+ <—‘>] . (10)
rC rS rS

Thus, the cored NFW profile depends on three parameters r., r;, and
75, which denote the core, transition, and scale radius, respectively.
Previous simulations show that the core structure is well fitted by the
core profile with a maximum error of 2 per cent up to the transition
radius 7, > 3r. (Schive et al. 2014b). For the outer region r > r, the
profile follows the NFW profile.

This model, imposing only continuity of the densities, does not
guarantee a smooth transition. To do so, an extra continuity condition
in the first derivative of the density must be imposed in addition
to equation (10) for the model to be both continuous and smooth.
However, the resulting transition radius for a smooth transition is
1. < 3r., as was shown analytically in Bernal et al. (2018), which
is in disagreement with previous results from simulations (Schive
et al. 2014b; Mocz et al. 2017). In this work, we will only apply the
continuity equation (10), and allow r; to vary.

In Schive et al. (2014b), a fitting function for the core—halo mass
relation was obtained:

M= (M)l/z - IBM' (11)
c = 4\/5 ;_(0) Mmin,() min,0»

where M. and M), are again the core and halo masses, respectively,
and Mino ~ 4.4 x 107 [mc? /(1072 eV)] —32 Mo, and the outer ex-
ponent o = 1/3 represents the (logarithmic) slope of the relation
M. oc M. In order to compare with Schive et al. (2014b), we follow
their definition of halo mass M}, = (47rr,? /3)¢(2) pmo, Where ry is the
halo’s virial radius, png is the background matter density, and ¢ ~
350 (180) for z =0 (>1).

Previous studies were able to confirm the empirical density profile
equations (8) and (9) using different simulations. However, they
disagree about the form of the core—halo mass relation, calling the
validity of equation (11) obtained by Schive et al. (2014b) into
question. Schwabe et al. (2016) performed idealized soliton merger
simulations and were unable to reproduce equation (11). Mocz et al.
(2017) used a larger halo sample with simulations of a similar set-
up and obtained a slope («) of 5/9, disagreeing with equation (11).
Mina et al. (2020) found the same slope of 5/9 using cosmological
simulations with a box size of 2.5Mpc #~!. Finally, Nori & Baldi
(2021) performed zoom-in simulations by including an external
quantum pressure term in an N-body code, and obtained a relation
with yet another value of the slope, &« = 0.6. Such disagreement

P _
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between different studies indicates that there is still a fundamental
lack of understanding of the core—halo structure in the FDM model,
and also generates uncertainty in any constraints on the FDM mass
that were obtained using equation (11) or similar relations. Therefore,
the main motivation of this work is to revisit and clarify the core—halo
mass relation. We will further discuss the existing discrepancies in
the literature and their possible origins together with our own results
in Section 4.2.

3 NUMERICAL METHOD

Previous core-halo relations are obtained from different types of
simulations. The most general way is to perform a cosmological
simulation, but these simulations are often restricted to end before
redshift z = 0 and the number of well-resolved cores is limited due
to computational difficulties. A cheaper approach is to perform non-
cosmological simulations of soliton mergers. This approach allows
more control of the resolution and the final halo mass, but is at risk of
simulating unrealistic haloes due to the idealized, non-cosmological
initial conditions. In this work, we analyse properties of haloes from
three different sets of simulations: (1) soliton merger simulations, (2)
cosmological simulations in a small box, and (3) a high-resolution
large-scale cosmological simulation. The first two sets of simulations
are performed in this work, and the last was performed by May &
Springel (2021). All of them used the same numerical scheme, but
different initial conditions.

3.1 Numerical scheme

The time-dependent SP given in equations (1) and (2) are discretized
on a uniform spatial grid and evolved from time-step n to the next
time-step using the pseudo-spectral method

1//n+1 ~ eKAtffl [eDAt]: [eKAtwn]:l , (]2)

where K = —im®/(2ha), D = —ihk*/(2ma?), and F denotes the
Fourier transform operator (see e.g. Woo & Chiueh 2009). This
scheme is second-order accurate in time and exponentially accurate
in space. Each full time integration is divided into three steps, which
is similar to the symplectic leapfrog, ‘kick-drift-kick’, integrator.
Before applying the ‘kick’ operator e/, the potential ® must be
updated by solving the Poisson equation shown in equation (2).
Since the numerical method is explicit, the choice of time-step
must follow a Courant-Friedrichs—Lewy (CFL)-like condition. In
this case, the phases of the exponential operators must be smaller

than 27:
L} (13)

At < min {iﬂszaz, 2ra
3t h m | Ppax|

where | P,y | is the maximum value of the potential. The scale factor

for the next time-step is approximated by anex & a + HaAt, which

is later used to calculate the time-steps for the ‘kick’ and ‘drift’

operators.

At early times, the CFL condition is determined by the ‘drift’
operator. As the gravitational potential becomes deeper at later
times, the ‘kick’ term begins to control the choice of time-step.
For example, ~90 per cent of the computational time is controlled
by the ‘drift’ term in our simulations. The scheme restricts this work
to simulations of less massive haloes, because the core radius—halo
mass relation r; oc M@ implies that a higher spatial resolution is
required to resolve the small core radius of a massive halo, leading
to smaller time-steps based on the CFL condition At oc Ax?.

MNRAS 511, 943-952 (2022)
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3.2 Initial set-up

3.2.1 Soliton merger simulations

The soliton merger simulations are performed with a particle mass
me* = 1072 eV, a box size L = 300kpc, and at z = 3 on a grid
with N* = 5123 cells. The simulations are started with six randomly
placed solitons with mergers mostly occurring at # ~ 0.1 ty, where
ty is the Hubble time. Since the simulations at z = 3 take 16 times
longer than those at z = 0 due to the dependence of time-step on
the scale factor as shown in equation (13), we stop the simulations
at 0.5ty. We have checked that haloes at r ~ 0.5y are relaxed,
since they meet the virialization criterion [2(K + Q)/W| ~ 1 (Hui
et al. 2017; Mocz et al. 2017) (where K, Q, and W are the kinetic,
quantum, and potential energies, respectively). However, we also
included unrelaxed haloes in between 0.1ty < < 0.5ty in our
results. Alternative initial settings were tested, such as increasing
the number of solitons with a larger range of masses, but the results
do not change the main conclusion of this work.

3.2.2 Small-volume cosmological simulations

A series of cosmological simulations are performed using the same
resolution, particle mass, and box size. They all begin from z =
50 and stop at z = 0. The initial conditions are generated using
MUSIC (Hahn & Abel 2011) with the CDM transfer function from
Eisenstein & Hu (1998, 1999), and the following cosmological
parameters: 2, = 0.276, 2, = 0.724,h=0.677, and 63 = 0.8. Due
to the difficulty of simultaneously resolving the large-scale structure
and the inner non-linear evolution of haloes on a grid size of 5123,
we use initial conditions that correspond to ‘zoom-in’ regions with
L = 300kpc of alarger 1 Mpc box generated by MUSIC with different
random seeds.

3.2.3 Large-volume cosmological simulation

A large-volume high-resolution cosmological simulation was per-
formed by May & Springel (2021) with similar cosmological
parameters, but larger box size L = 10Mpc A" and grid size N> =
86403, and slightly lighter particle mass mc? = 10723 eV. With such
abox size and spatial resolution, this simulation contains a population
of haloes with diverse formation histories, including tidally stripped,
isolated, and merged haloes. Therefore, it provided us with a more
realistic measurement of the core—halo mass relation in an FDM
universe. Fig. 1 visually shows the time evolution of the density
distribution in different simulations. It is clear that, whether a halo
is formed through soliton mergers or gravitational collapse of large-
scale structure, there always exists a stable core structure enveloped
by interference fluctuations within its host halo, but we will see
later that different box sizes can lead to different types of core—halo
structure.

3.2.4 Initial power spectrum

As noted earlier, in this work (as well as May & Springel 2021),
we did not use the initial power spectrum of the FDM model, which
presents a suppression of power on small scales, because the inner
structure of haloes should be insensitive to the initial conditions
(Schive et al. 2014b). Although different merger histories may lead
to different core-halo structure, the extent of this impact is still to
be determined. We assume here that the increased amount of small-
scale structure, as well as the number of system interactions, will have
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Figure 1. Time evolution of core and halo. The top row shows an example
of a soliton merger simulation at z = 3 in a box of size 300 kpc with particle
mass mc®> = 10722 eV. The bottom row shows a selected halo formation
from the large-scale structure simulations by May & Springel (2021). A
stable core—halo structure can always be found at the end of all simulations.
For illustrative purposes, the first two columns show the projected density
(obtained by integrating density slices along the z-axis), but the last column
is a single slice (i.e. one grid cell in thickness) of the snapshot through the
z-coordinate of the halo centre.

negligible effects on the statistics of core-halo structure. Simulated
haloes with comparable size of the soliton are rare if a more realistic
power spectrum is applied, but should still exist and therefore be
included in the resulting core—halo mass relation.

3.3 Spatial resolution

Our soliton merger simulations have a smaller box size, but the
same number of grid cells (512%) as our cosmological simulations,
so the resolution Ax = 0.644kpc is better than previous studies
(Schwabe et al. 2016; Mocz et al. 2017). This allows us to resolve
smaller cores, but the haloes may experience stripping effects from
their own gravitational pull. On the other hand, although the large
simulation is performed in high resolution, the (rescaled) grid
resolution Ax = 1.547 kpc is still twice as large as that of the soliton
merger simulations. The importance of resolving the core with fine
enough grids is reflected in the core mass-radius relation. Fig. 2
shows that simulated haloes have cores following a tight relation:
5.5 x 10°

2M, = M. 14
“ (mc2/10-5 eV)2X(a'2r. Jkpe) - © (14

As the core becomes more massive, the core size decreases further.
When the core size is resolved by less than two grid cell lengths, the
relation becomes more dispersed and discretized.

4 RESULTS

4.1 Density profiles

The centres of the haloes from the simulations performed in this work
are found by the minimum gravitational potential, and those from the
cosmological simulation in May & Springel (2021) are determined by
selecting the densest cells of haloes found by a grid-based friends-
of-friends-like halo finder. We measured the spherically averaged
density profile and performed fitting to equation (8) to extract r,
1y, and r¢ for all haloes. As shown in Fig. 3, a flat cored structure
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Figure 2. Core mass—radius relation scaled to mc?> =8 x 10723 eV via
equation (3). The black line is a fitting relation (14) from Schive et al.
(2014a). The dashed lines show 2Ax as a reference of the resolution limit for
the simulations of this work and May & Springel (2021).
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Figure 3. Scaled density profile of haloes obtained from simulations of this
work and May & Springel (2021). The scaled core profile is shown as black
line. We highlight two haloes with pink and dark green and their best-fitting
cored NFW profile. They have similar core mass, but an order of magnitude
difference in the halo mass. Bottom sub-panel shows the percentage error
between data and core profile. The dashed line denotes an error of 2 per cent.

is identified towards the centre in all profiles. They are well fitted
by the core density profile equation (8) with a maximum error of
10 per cent up to the core radius r.. After the transition radius r, the
profiles follow the NFW profile. We also see that for some haloes, we
have a direct transition from the core to the NFW profile, while others
show a longer transition with an intermediate behaviour linking the
two regimes.

One interesting feature we observe is oscillations in these profiles
in their outer regions that can only be modelled on average by the
smooth NFW profile. A possible reason for the fluctuations is that
they are caused by the interference granules in the NFW region.

The diversity of core—halo structure in FDM 947
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Figure 4. Range of transition radius as a function of halo mass. The dashed
line shows the typical transition r; = 37 obtained from Schive et al. (2014b).

If this is true, it is possible that halo density profiles can be used
to measure this unique interference pattern present in models like
FDM. More tests are needed to confirm this hypothesis.

In previous simulations (Schive et al. 2014b; Mocz et al. 2017),
the transition radius was found to be r, > 3r., where the residual
error between the data and the core profile is less than 2 per cent for
r < r.. However, our measured r, purely from fitting to the cored
NFW profile equation (8), disagrees with these previous results. The
error at 3r, is greater than at least 10 per cent, as shown in the bottom
panel of Fig. 3, meaning that the actual r, should be located at a
radius smaller than 3r.. The range of values for the measured r,
in Fig. 4 shows that most haloes do have r, < 3r.. Other recent
work, such as Yavetz, Li & Hui (2021), also shows smaller transition
radii, e.g. r, & 2r.. As mentioned earlier, from theory, to guarantee a
continuous and smooth transition from the solitonic core to the NFW
profile, continuity of both the density and of its first derivative would
be necessary, which translates to the requirement r, < 3r., which
therefore agrees with our result. This implies that all the haloes in the
simulations presented here have a continuous and smooth transition
from the core to the NFW profile, with or without a transition period,
and thus do not suffer from the apparent inconsistency present in
previous simulations.

4.2 The core-halo mass relation

Fig. 5 shows the core—halo mass relation obtained from the soli-
ton merger and cosmological simulations. All data are scaled to
mec? = 8 x 1072 eV using equation (3) in order to enable a direct
comparison with the data and fitting relation from Schive et al.
(2014b). For reference, we also show the ‘core—halo’ mass relation
of a soliton-only profile, i.e. a pure core profile with r, — oo in
equation (8), represented by the solid black line. This curve indicates
the minimum halo mass for a certain core mass, and any haloes
located to the right of the soliton-only core—halo relation must have
the usual cored NFW structure. For haloes in the soliton merger
simulations with mass >10® M, the relation has a steeper slope than
o = 1/3, confirming the results from Mocz et al. (2017). However,
haloes from the large-scale cosmological simulation predict a core—
halo relation with a large enough dispersion that can cover a range
of data produced by both the soliton merger simulations and Schive
et al. (2014b). The range of the dispersion can span as large as
one order of magnitude in halo mass for M. ~ 5 x 10’ Mg. This
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Figure 5. Core—halo relation scaled tomc? = 8 x 10723 eV via equation (3).
Green dots are haloes simulated in this work with cores resolved by at least
3 Ax. Purple and faint purple dots are haloes from the large-box cosmological
simulation (May & Springel 2021) with cores resolved by at least 2Ax and
Ax, respectively. The pink shaded region is enclosed by the empirical fits to
the purple and green dots, with the maximum and minimum values of the
parameters in equation (11). The solid dotted line corresponds to the soliton-
only relation obtained from a pure core profile. The black and orange dashed
lines are fitting relations corresponding to the black and orange dots obtained
from Schive et al. (2014b) and Nori & Baldi (2021),? respectively.

dispersion, which fills in the space in between the soliton-only line
and the relation from Schive et al. (2014b), indicates the diversity of
the cored NFW structure in the FDM simulations. For example,
Fig. 3 highlights two profiles of haloes with similar core mass
M, ~ 5 x 10’ M, but different halo mass. The tight ‘one-to-one’
core-halo relations found by different groups, with different slopes,
therefore only describe a part, but not all populations of haloes in the
FDM model.

We suggest an empirical equation that has the following form:
M. = B + (My/y)*. The parameter § takes the limit of the relation
for small halo masses into account, although low-mass haloes are
rare in an FDM universe due to the suppression in the initial power
spectrum. « is the slope that can be compared to previous works.
After including the scaling symmetry in equation (3) and the redshift
dependence according to Schive et al. (2014b), we have

ne? -3
12—
@ He ﬂ(8><10*23e\/)

G mc? =iz
* <V§(0)y> <8x10—23ev> Mo (19

The best-fitting parameters for the haloes from the large-box cos-
mological simulation give § = 8.00f2:8% x 10° Mg, log,o(y /Mg) =
—5.73723%  and @ = 0.5157}39, which is shown as a pink shaded
region in Fig. 5.

The effect of the large dispersion is encompassed in the uncertainty
of the model parameters. This uncertainty is not the statistical
uncertainty of the fit, but an ‘overestimation’ of the uncertainty in the
parameters that can reflect the large dispersion of the data. Indeed,
the statistical uncertainty would be the incorrect quantity to consider
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in this case, since we do not assume that there is an underlying ‘true’
set of values for the parameters with statistical fluctuations, but rather
propose that different halo populations could systematically follow
different relations depending on their histories and properties (see
Section 4.2.1). To obtain a more appropriate description of the core—
halo diversity, we employed kernel density estimation, estimating
the probability distribution function of the core masses with respect
to the central value of the corresponding binned halo mass. Each
of these distributions reveals the dispersion of core masses for each
halo mass.* We then obtain the minimum and maximum curves
M.(M,) that fit all of these distributions, and extract the minimum
and maximum vales for the parameters b, y, and « from these curves.
The difference to the global fit is our uncertainty in the parameters.

Nori & Baldi (2021), Mocz et al. (2017), and Schive et al. (2014b)
determined slopes («) of 0.6, 0.556, and 0.333, respectively. Given
the large dispersion seen in our data, all of these slopes are compatible
when taking into account the uncertainty we assigned to the fitting
parameters. So when considering the fitting function we propose,
all of the other cases in the literature are covered as well. We
emphasize that our results show that a general halo population is
not well described by any single one-to-one core—halo mass relation.
Further investigation is required to determine which halo populations
follow which relations (if any), and under what conditions (cf.
Section 4.2.1).

This large spread and uncertainty in the fitting function can affect
the constraints on the FDM mass obtained from these relations. Here,
we provide a rough estimate of the error. For the same halo mass
M, = 10° Mg in Fig. 5, we can have the least massive core mass as
M. =3 x 107 Mg, and the most massive as M. = 10% M. Applying
these values to the core density in equation (8) gives a 50 per cent dif-
ference in particle mass m. Therefore, any observational constraints
made using the relation equation (11) should include an additional
uncertainty of the order of 50 per cent in the results, unless the halo
mass is smaller than 10°[8 x 1072* eV/(mc?)]¥* My. Therefore,
when obtaining the FDM mass using the core-halo relation, one
needs to take into account the dispersion of these values, shown in
the uncertainty in the fitting parameters, which will translate to a
higher uncertainty in the FDM mass.

We now scrutinize whether the scatter of the core-halo relation
has an influence on the FDM mass constraints through a dynamical
analysis for dwarf galaxies, as has been performed in the literature
when fitting the presence of a core in such galaxies. To this end,
we apply the spherical Jeans analysis to the kinematic data of
the Fornax dwarf spheroidal galaxy, which has the largest data set
among the Galactic dwarf satellites. We perform the Jeans analysis®
using two different core-halo relations, which are suggested by
Schive et al. (2014b) and this work, and then we map the posterior
probability distributions of the FDM mass through the Markov chain
Monte Carlo technique based on Bayesian statistics. Comparing
the posteriors, there is no clear difference in the shape of those
distributions, including that of FDM mass, but this is due to the fact
that there exists a degeneracy between halo mass and FDM mass.
Therefore, this degeneracy makes it hard to see the impact that the
core-halo relation has in the Jeans analysis.

Due to limited spatial resolution, we could only observe the
dispersion to increase with halo mass until M. ~ 6 x 10" Mg, It

4We can provide the distribution of core masses for each halo mass bin by
request for those interested.

SFor the dynamical analysis we adopt in this work, the interested reader may
find further details in Hayashi et al. (2021).
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would be important for potential future higher resolution simulations
to examine whether the dispersion keeps increasing along the soliton-
only relation or not. Again, the increasing dispersion is of importance
to observational studies since it will also lead to an increasing
uncertainty in the core—halo relation.

4.2.1 The origin of the dispersion

Different core—halo structures have been found in different simula-
tions:

(i) As mentioned earlier, Schive et al. (2014b) and Mocz et al.
(2017) find different results for the slope « (1/3 versus 5/9), even for
similar simulation set-ups (soliton mergers).

(ii) Mina et al. (2020) claim to confirm a slope («) of 5/9, as found
in the soliton merger simulations of Mocz et al. (2017), but using
a cosmological simulation, contradicting the result of o« = 1/3 from
Schive et al. (2014b). However, the number of haloes in their sample
is very small.

(iii) Schwabe et al. (2016) performed soliton merger simulations
similar to Schive et al. (2014b) (and later Mocz et al. 2017)° and
could not reproduce the previously found value of the slope « or
indeed any universal relation.

(iv) Nori & Baldi (2021) studied the dynamics of eight simulated
haloes and concluded with a similar comment: Schive et al. (2014b)
and Mocz et al. (2017) only captured a partial representation of the
core—halo relation in a realistic cosmological sample.

(v) Yavetz et al. (2021) used the Schwarzschild method to con-
struct self-consistent FDM haloes and found that a stable core-halo
structure can exist even when the adopted core—halo mass relation
deviates from Schive et al. (2014b).

These examples illustrate that the diversity of the possible core—
halo slopes found in different works seems to originate from the
type of simulations performed, which results in haloes and cores that
have different properties. The diversity of core-halo structure found
in these simulations is exhibited in our work, where we can clearly
see the difference between the core—halo mass relation from haloes
formed in soliton merger simulations (green points in Fig. 5) and in
cosmological simulations (pink points in Fig. 5).

We can think of a few possible explanations for this diversity
of haloes: merger history (Du et al. 2017; Yavetz et al. 2021),
tidal stripping effects, and the relaxation state of the halo (Nori &
Baldi 2021). Formation and merger history is an explanation that
seems very plausible to be a relevant factor. Larger cosmological
simulations, like the one from May & Springel (2021), present haloes
that could have very different merger histories, and a large dispersion
is expected. This is different from the soliton merger simulations,
where we do not expect a complicated merger history. We leave for
future work to try to identify the different merger histories and try to
clarify how this relates to the different incarnations of the core—halo
mass relation.

Another possible factor that can also contribute to the dispersion
found is stripping. Here, we will attempt to provide an argument to
support tidal stripping as one element responsible for the dispersion,
based on the set-ups of various simulations. By comparing the
box sizes and the resulting slopes « between the small-volume
cosmological simulations of this work with Mocz et al. (2017) and
Schive et al. (2014b), which are 335, 1765, and >2000 kpc (box

6 Although Schwabe et al. (2016) made use of ‘sponge’ boundary conditions
instead of periodic boundary conditions.
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sizes) after rescaling via equation (3), and ~0.9, 0.556, and 0.333
(slopes), respectively, we find that smaller simulation box sizes are
correlated with a steeper slope in the core—halo relation. This can be
explained by the stripping effect on the halo by its own gravity due to
the periodic boundary conditions: The self-stripping effect becomes
more effective at removing mass from the NFW region as the box
size decreases. This skews the core-halo structure towards smaller
halo masses, steepening the core—halo relation. A more rigorous test
to prove the above argument requires simulations with increased
spatial resolution and box sizes up to at least 2 Mpc, which current
numerical schemes are unable to feasibly achieve.

The self-stripping effect is a numerical artefact, but there is
no doubt that a stable core-halo structure can exist within such
environments. In more realistic cosmological simulations, dwarf
satellites also experience a similar effect from their host haloes
in the form of tidal stripping. Therefore, we suggest that stripping
effects by tidal forces are one of the contributing factors causing the
dispersion obtained from the large-box simulation in May & Springel
(2021). One subtlety is that the tidal effect is an interaction between
host haloes and sub-haloes with at least two orders of magnitude
difference in mass, but the halo finder used in May & Springel (2021)
does not identify sub-haloes. However, it is known that sub-haloes in
CDM simulations can temporarily move outside of the virial radius
of the host halo after the first pericentric passage (van den Bosch
2017). We assume that ejected sub-haloes should also exist in an
FDM cosmology, and therefore identified by the halo finder. An in-
depth analysis of the tidal effect on the core-halo relation, or FDM
sub-haloes in general, would require building merger trees, which is
still not yet studied in any FDM cosmological simulations. We leave
this investigation to future work.

4.3 Other relations

4.3.1 Inner dark matter slope—halo mass relation

Observational constraints obtained through Jeans analysis require
adopting the cored NFW density profile and core—halo mass relation.
The scatter in the core—halo mass relation plays a part in the analysis
simply as an uncertainty in the relation. To study the observational
consequences of the diversity, we suggest showing the inner slope—
halo mass relation and core radius—halo mass relation for our FDM
haloes, which can be compared to previous observational results.

We define the inner slope as the logarithmic gradient DM density
Alog p/Alog r at an inner radius of 1.5 per cent of the halo’s virial
radius r: Fipner = 0.015r,. The definition is frequently used to study
the impact of feedback physics on the inner DM structure (Tollet
et al. 2016). As shown in Fig. 6, the inner slope of FDM haloes
is expected to be cored (i.e. 0) for less massive haloes with mass
<10° Mg. In contrast, haloes in CDM simulations with baryonic
feedback physics show a cuspy inner slope ~—1.5 within this mass
range, due to the inefficient core formation process by feedback
(Tollet et al. 2016). It is therefore important to observe the inner slope
of UFD galaxies, which can help to distinguish between feedback-
induced and quantum pressure-induced cores. As the relation moves
to more massive FDM haloes, the inner radius begins to shift outside
of the cored region because of the inverse proportionality between
core radius and halo mass. As a result, the inner slope steepens. Note
that the steepening occurs at different halo mass ranges for different
sets of FDM halo samples, because haloes in simulations of smaller
box size tend to be stripped, so the steepening occurs earlier.

The inferred observational relation from the stellar kinematics of
eight dwarf galaxies (Hayashi et al. 2020) and rotation curves of
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Figure 6. Inner DM slope as a function of halo mass. The inner slope is
defined as the logarithmic gradient density at 0.015r,. Green and purple
dots represent haloes from simulations of this work and May & Springel
(2021), where halo mass is rescaled to me? = 8 x 1072 eV and z = 0 via
equation (3). Open triangles are the observed relation from dwarf galaxies
based on Jeans analysis (Hayashi, Chiba & Ishiyama 2020), whereas open
circles are predicted from the rotation curves of dwarf galaxies (Oh et al.
2015). The blue band is a fitting function with an uncertainty of £0.1 predicted
by NIHAO, a CDM simulation with baryonic feedback physics (Tollet et al.
2016). The grey band shows the prediction by CDM-only simulations.

26 dwarf galaxies (Oh et al. 2015) shows a large scatter of inner
slope for a certain halo mass, which is a result of diverse DM density
profiles. If we consider an extrapolation of the inner slope—halo mass
relation (dashed lines in Fig. 6), including both small and large box
size simulations, the FDM model with mc? &~ 8 x 1072* eV may be
able to explain the scatter presented by the observations.

We caution that the definitions of halo mass and inner slope vary
across the literature.” Moreover, populating the region in between
the extrapolated relations would require sub-halo data, which we did
not investigate in this work. We therefore emphasize that the particle
mass mc> ~ 8 x 10723 eV only represents a loose constraint, and
the main motivation of Fig. 6 is to demonstrate the possibility of
explaining the observed diversity of inner slopes by stripped, or more
realistically, tidally stripped sub-haloes, which is closely related to
the diversity of the core-halo structure.

4.3.2 Core radius—halo mass relation

As suggested by Burkert (2020), the FDM model may fail to explain
the observed trend of the core radius—halo mass relation measured
from dwarf galaxies. We follow Mina et al. (2020) and present
the core radius—halo mass relation measured from our FDM halo
samples. As shown in Fig. 7, the scatter is still observed, but
the decreasing trend, which is a fundamental property of quantum
pressure-induced cores, is in disagreement with the positive scaling
predicted by low-surface brightness (LSB) galaxies (Salucci et al.
2007; Di Paolo, Salucci & Erkurt 2019).

7 As another detail, the halo masses of the purple and green points in Fig. 6
are extracted at z = 3 and rescaled to z = 0 with the factor [¢(z = 3)/¢(z =
0)]"2, which corresponds to a mass (My,) of 350 pmo (47u,/3), whereas all
other data in Fig. 6 used My = 200 ppo (47v/3). Changing the definition
would simply shift the data horizontally in Fig. 6.
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Figure 7. Core radius versus halo mass. Green and purple points are
properties of haloes from simulations of this work and May & Springel
(2021). The black line shows the relation predicted by a soliton-only density
profile. The dashed line is an empirical function predicted by LSB galaxies
(Salucci et al. 2007). Black crosses are from Di Paolo et al. (2019).

The disagreement is expected because the negative scaling, where
less massive galaxies are cored, allows the FDM model to solve
the core—cusp problem, but the relation from LSB galaxies has the
opposite behaviour, where massive galaxies have larger cores. In
addition, LSB galaxies are predicted in CDM simulations to have
experienced tidal heating and supernova feedback (Martin et al.
2019). Therefore, the relation between core radius and halo mass
poses a challenge to the FDM model, but more importantly, it
motivates future FDM simulations to include baryonic physics to
verify whether LSB-like galaxies can be formed or not.

5 CONCLUSION

Solitonic cores are found to be formed in simulations of the FDM
model as a consequence of gravity and the uncertainty principle,
but there is still no consensus on a single universal scaling relation
that describes the relationship between a halo’s mass and that of its
core, or that one even exists. In this work, we performed new soliton
merger simulations and used data from a large-scale cosmological
FDM simulation. All simulations are evolved by solving the SP
equations through the pseudo-spectral method, which can capture
wave phenomena completely. Here is a summary of our findings.

‘We found an agreement between the measured density profiles and
a cored NFW profile, but the transition radii of most of haloes are
located at <3r.. This is in disagreement with previous simulations
(Schive et al. 2014b; Mocz et al. 2017), but more consistent with the
analytical requirement where the transition between the inner core
and the outer NFW profile must be continuous and smooth.

The resulting core—halo mass relation, obtained from both soliton
merger and cosmological simulations, shows an increasing disper-
sion with halo mass. The spread extends all the way from the limit of
a pure soliton profile to that of Schive et al. (2014b), signifying
the diversity in core-halo structure. We suggest that, for small
cosmological simulations, ‘artificial’ stripping effects due to periodic
boundary conditions could partially be responsible for the variety of
slopes in the relation predicted by different simulations. However,
‘natural’ tidal stripping effects of various severity also exist in larger
simulations, which therefore exhibit a greater spread in the relation.
Further, the exact impact of variations between individual haloes on
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the relation, such as merger history or relaxation state, remains to be
uncovered.

We provided a new empirical equation that considers the non-
linearity in the low-mass end, but we emphasize that any core—halo
relation must suffer from an uncertainty produced by the diversity
demonstrated in this work. Therefore, observational analyses that
adopted a core-halo relation must take into account this uncertainty
in the fitting parameters, including the particle mass of the FDM
model.

Due to the limited spatial resolution imposed by the time-step
criteria, our samples still do not represent the full population of
core-halo structure. To obtain this, simulations using a more flexible
numerical scheme, such as adaptive mesh refinement (Schive et al.
2014a; Mina et al. 2020), and sub-halo catalogues from merger
trees would be needed. Such future work would provide verification
of whether the dispersion keeps growing beyond halo masses of
10°[8 x 1072 eV/(mc?)]*/* Mg or whether the tidally stripped sub-
haloes can explain the observed diversity in the inner slope—halo
mass relation. We also plan in the future to understand the merger
history of the haloes we have in the cosmological simulation, using
the same techniques as for CDM, in order to try to understand how
haloes with different merger histories influence the core—halo mass
relation.

Lastly, including baryonic physics will further complicate the
core—halo structure because the core can now be induced not only by
quantum pressure, but also by stellar feedback physics, not to mention
the question of how these processes would interact. However, only
baryonic physics have a chance of matching the core radius—halo
mass relation of LSB galaxies with FDM.
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APPENDIX A: CODE COMPARISON

Since there is no analytical solution to the general time-dependent SP
equations, we can only ensure reliability of the code in the general
case (beyond toy examples and limiting cases) through comparison
with other groups. Thus, we compared the DM density fluctuations
at z = 0 with May & Springel (2021) in a test simulation. Our codes
are independently developed, but adopted the same pseudo-spectral
splitting method in second order.

We ran a cosmological FDM simulation separately with identical
initial conditions generated by MUSIC with box size L = 10 Mpc h~',
particle mass mc? = 2.5 x 107>*eV, and number of grid cells N* =
10243. The cosmological simulations are evolved until z = 0, and
the density fluctuations are measured as the power spectrum shown
in Fig. Al.
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Figure A1l. Comparison of the power spectrum at z = 0 between the code used in this work and that of May & Springel (2021) for a cosmological test
simulation.
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