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Resumo 

Apresentamos, neste artigo, alguns exemplos de conceitos e construções importantes da 
Teoria dos Modelos. Inicialmente, exemplificamos e caracterizamos definições básicas como 
imersões e equivalência elementar. Estruturas curiosas são estudadas para ilustrar a definição 
de satisfação e responder negativamente a um problema de exponenciação devido a Tarski. 
Raciocínios fundamentais da teoria são explicitados no estudo de corpos reais fechados, ultra­ 
produtos, uniões de cadeias e jogos. Como conseqüência dos Teoremas de Lowenheim-Skol-m, 
apresentamos o Paradoxo ele Skolem e a Aritmética Não-Standard. Sugerimos, ainda, uma 
aplicação da teoria à caracterização da imersão de um buraco negro no espaço-tempo. 

Abstract 

ln this paper, we present some examples of important concepts anel constructions in Model 
Theory. To begin with, we state examples anel caracterizations of basic definitions like em­ 
beeldings and elementary equivalence. Curious structures are studieel in order to enlighten the 
definition of satisfaction and to answer negatively an exponentiation problem elue to Tarski. 
Fundamental reasonings in the theory are made explicit in the study of real closeel fielels, ultra­ 
products, unions of chains and games. As consequences of Lowenheim-Skolern Theorems, we 
present Skolem's Paradox and Non-Stanclard Arithmetic. Further, we suggest an application to 
the caracterization of the embeclding of a black hole in spacetime. 
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Primeiras noções 

A Teoria dos Modelos, em sua forma algébrica tradicional, estuda a generalização de conceitos 
como imersão, isomorfismo e satisfação de propriedades para estabelecer relações entre estruturas do 
cotidiano matemático e os axiomas que as descrevem, fazendo uso da Lógica ( clássica) de primeira 
ordem. 

O leitor encontrará no capítulo 3 de [Bell, Slomson] um desenvolvimento adequado do Cálculo de 
Predicados necessário para o estudo da Teoria dos Modelos e em seu capítulo 4 os conceitos básicos 
de que trataremos nesta seção. Esse texto contém uma teoria da prova formal, que não consta 
em [Chang, Keislerj, a referência clássica; ambos trazem demonstrações, distintas, dos teoremas da 
Completude e Compacidade. 

Exporemos alguns resultados de [Bell, Slomson] antepondo BS à sua numeração; seguimos sua 
notação, com exceção do símbolo rv para negação. 

O elemento central da Teoria dos Modelos é a estrutura relacional, conjunto ( domínio) não-vazio 
com relações: exemplos são conjuntos parcialmente ordenados, grupos, corpos, espaços vetoriais, 
planos geométricos e autómatos não-determinísticos. As estruturas relacionais, ou modelos, são 
interpretações ou realizações de linguagens1 de primeira ordem de predicados com igualdade. Uma 
tal linguagem L é univocamente determinada por seu tipoµ E INº, onde a é o cardinal dos predica­ 
dos {P1; / ç < a} de L, sendo µ(ç) o grau do predicado P1;. Como são consideradas apenas fórmulas 
finitas, o cardinal p = max{ a, f<o} do conjunto de símbolos de L é o mesmo que o do conjunto de 
fórmulas de L e é chamado cardinal da linguagem L. Uma L-estrntura, ou realização de L, é uma 
estrutura~= (A, {R1; Ç Aµ(1;) / ç < a}), A/= 0, para a qual L é apropriada. 

Freqüentemente, fazemos uso de constantes e operadores. Não são realmente necessários, po­ 
dendo ser substituídos por novos "axiomas" sem prejuízo para a teoria - mas alterando o cálculo 
de predicados pertinente2 e a linguagem adequada (não seu cardinal). 

Por exemplo, uma constante c pode ser eliminada adicionando-se um novo predicado unário C, 
incluindo-se na teoria a sentença 

:lx (C'(.r) !\ Vy (C(y) --e> y = x)) 

e substituindo-se sentenças a (e) por sentenças V:r ( C'( x) --e> a( x)). (Isso deve ser feito ind uti varnente, 
uma constante por vez.) 

Podemos substituir C(.r) por urna fórmula ,(.r) em todas essas sentenças, se conveniente. Assim, 
na Teoria dos Conjuntos, Vvr-v(v E :r) define a constante 0. 

Analogamente se tratam operadores: LUYl operador n-ário f pode ser substituído por um novo 
predicado F (n + 1)-ário, de modo que f(:r1, ... , fn) = Y e F(:c1, ... , :z:n, y) tenham a mesma 
interpretação. 

1 
Com número infinito enumerável de variáveis e (número finito de) conectivos lógicos usuais 

2
Quanto a, por exemplo, decidibiliclade, isto é, a existência de um algoritmo que determine se urna sentença cless

2
t 

linguagem é universalmente válida ou náo: conJorme [Bell, SJomson], pp. 72-3 

2 

82 



Geralmente, indicam-se as relações (e operadores e constantes) de urna estrutura Ql com índice 
superior - como Rl, correspondendo ao predicado Pf, - ou adota-se o modo de [Bell, Slornson] 
de seguir a ordem alfabética: à relação Rf, de Ql corresponde Sf, de 123. Também se abandonam 
os índices das relações e das variáveis, usando-se letras diversas. O domínio de uma estrutura 
(em letra gótica) é indicado pela letra romana correspondente ou, em alguns textos, pelo próprio 
símbolo entre barras verticais. 

Indicaremos o fecho 'iv1 ... 'vvn </>( v1, ... , vn) de uma fórrnula é por</>. (As variáveis livres de </>, 
aqui, são v1, ... , Vn; em geral, suporemos apenas que estão dentre v1, ... , Vn indicadas.) Adotaremos 
a precedência usual entre conectivos lógicos e omitiremos os parênteses correspondentes. 

Entre estruturas Ql, 2, de mesmo tipo µ, definem-se algumas relações que generalizam as da 
Matemática cotidiana. Inicialmente, Q( é subestrutura de 2' ou 123 é extensão de Ql, em símbolos 
Ql ç 123, se A Ç B e as relações de Ql são simplesmente as restrições das correspondentes de 2': 

Uma imersão h : QL --+ 2, é uma injeção h : A --+ B que preserva as relações das estruturas: 

(A igualdade também é preservada, pois h é injetora.) Temos, nesse caso, Ql '.:::::'. h[Ql] ç 2,, em 
que o sírnbolo c- refere-se a uma imersão sobrejetora, chamada isomorfismo. 

Considerando-se a linguagem L apropriada para o tipoµ, notamos que h preserva a validade3 
de fórmulas atômicas de L com parâmetros em A. Se preservar a validade de todas as fórmulas, é 
uma imersão elementar. 

Se Q( ç 123 e a identidade for (imersão) elementar, escreve-se Ql -< 2', pospondo-se o adjetivo 
"elementar" aos termos "subestrutura" e "extensão". 

Observamos que um isomorfismo é uma imersão elementar, o que pode ser verificado por indução 
na complexidade das fórmulas, e então uma imersão h é elementar se e somente se Ql '.:::::'. h[Ql] -< 2,, 
onde se entende o isomorfismo como aquele dado por h. 

Define-se que Ql é elementarmente equivalente a 2' e indica-se Ql = 123 quando, para toda sentença 
CT de L, 

Lema 1. Suponha Ql Ç 123: Q(-< 123 se e somente se para toda fórmula cp(v1, ... ,vn) de L e 
a1, ... , a., E A, 2( I= rp[a1, .•• , an) <=> 2' I= r/>[a1, ... , an]. Em geral, 2l = 2' se e somente se, para 
toda sentença CT ele L, Ql I= a <=> 123 I= a. 

Basta tomar as negações das fórmulas e observar a definição de satisfação de uma fórmula em 
uma estrutura. QED 

3Sobre satisfação e o símbolo I=, o leitor é remetido à nossa próxima seção, pág. 6 
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Finalmente, notamos que um isomorfismo, como toda imersão elementar, implica equivalência 
elementar. Recíprocas, contudo, não são válidas: ((Q , <)-< (IR,<) com < usuais (Exemplo 4), mas 
tais estruturas não são isomorfas, e 

Exemplo 2. Considerando-se IN com a ordem < usual, (IN*, <) Ç (IN, <) e (IN*, <) ~ (IN, <), 
embora a primeira não seja subestrutura elementar da segunda. 

De fato, a restrição de < a IN* é a ordem usual neste conjunto. Considere a fórmula </>(v) : 
""3u ('u < v), em que usamos a notação infixa e o mesmo símbolo da relação para o predicado. 
Temos que (IN*, <) /= </>[lj, já que l é o menor elemento de IN*, mas não (IN, <) /= </>[lj, pois O< 1. 
Vemos também que h : IN* -t IN, h(n) = n - l, é um isomorfismo de ordem. 

Pela definição de satisfação de uma fórmula, se Ql Ç 23 então toda fórmula aberta (isto é, sem 
quantificadores) com parâmetros em A válida em Ql permanece válida em 23. Que a identidade 
não seja imersão elementar deve ser conseqüência, portanto, dos quantificadores: de fato, todos os 
elementos de Ql terem uma dada propriedade não implica que tal propriedade se estenda a toda 23, 
ou, inversamente, que exista um elemento em 23 com uma dada propriedade não implica que haja 
um tal elemento em Ql. A situação é caracterizada pelo 

Lema 3 (BS 4.1.8). Se 1.2( Ç 23, então: Q(-< 23 se e somente se, dados quaisquer </>(v, v
1
, ... , vn) 

fórmula de L e a1, ... , an E A de modo que 23 != 3v <P( v) [a1, ... , anl, existe a E A tal que 23 != 
</>[a, a1, ... , an]. 

Suponha que Q(-< 23: pelo Lema 1, Q( != 3vcp(v)[a1, ... ,anl, donde existe a E A tal que 
QL I= </>[a, a1, ... , an] e assim 23 != </>[a, a1, ... , an]- 

Por indução na estrutura das fórmulas, provamos a recíproca. A caracterização do Lema 1 é 
satisfeita, evidentemente, por fórmulas abertas (QL Ç 23) e também por conjunções e negações de 
fórmulas para as quais seja válida tal condição. 

Suponha que valha para </>( v, v1, ... , vn). Se Ql 1= 3v </>( v) [ ª1, ... , an], então existe a E A C B 
tal que Q( != </>[a, a1, ... , an] =?" 23 /= </>[a, a1, ... , an] =?" 23 != :lv </>(v) [a1, ... , an]. Por outro 
lado, se 23 /= :lv,p(v)[a1, ... ,an), por hipótese existe a E A tal que 23 /= </>[a,a

1
, ... ,an) =;, Q[ /= 

</>[a,aJ,···,an) =;, Qlj=3v</>(v)fa1, ... ,an]· QED 

Exemplo 4 (BS 4.1.3). ((Q, <) -< (IR,<) com < usuais, mas tais estruturas não são isomorfas. 
Sejam </>( v, v1, ... , vn) fórmula da linguagem adequada e ª1, ... , a., E (Q, b E IR tais que (IR,<) 

I= </>[b, a1, ... , an]- Permutando os índices das variáveis se necessário, podemos assumir que a
1 
< 

... < ªn· Aplicaremos agora o último lema. 

Se b E (Q, não há o que provar. Suponha então que b é irracional, ak < b < ªk+L, l :( k :s; n - 1. 
(Os casos b < a1 e an < b são análogos.) Escolha, então, e E (Q, ak < e < ak+l, e considere 
h : IR-+ IR dado por 

se x :( ak ou ªk+ 1 :( x 
se ak < x :( b 
se b < .1: < ªk-1-1 
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Vemos que h é uma função crescente bijetora, ou seja, é um isomorfismo, que fixa cada a; e h(b) = 
e. Assim, h é uma imersão elementar de (IR,<) a (IR,<), donde (IR,<) p cp[h(b), h(a1), ... , h(an)l, 
isto é, (IR,<) p cp[c, a1, ... , anl, com e E (Q. Então, pelo lema, ((Q, <) -< (IR,<). 

Não existe isomorfismo entre essas estruturas pois uma é enumerável e a outra não. 

Outro resultado invoca a descrição de estruturas por um conjunto de constantes correspondendo 
~ ao próprio domínio: 
~ 

• 
~ 

Teorema 5. h: QI. ~ 2' é imersão elementar se e somente se (Qt, (a)aEA) = (2', (h(a))aEA)- 
(Qt, (a)aEA) e (2', (h(a))aEA) são estruturas de uma nova linguagem LA, obtida de L apropriada 

a Q( e 2, adicionado-se mais constantes, uma para cada elemento de A, e as interpretações de uma 
mesma constante são correspondentes, por exemplo a e h(a). Referimo-nos à equivalência elementar 
em LA. 

Para a implicação direta, suponha cr( c1, ... , cn) sentença de LA, onde c1, ... , c11 são as novas 
constantes que ocorrem em a . Note que, substituindo-se essas constantes por variáveis distintas 
que não ocorram em o , obtemos uma fórmula de L: podemos, permutando variáveis se necessário, 
supor que seja cr(v1, ... ,vn)- Se a; corresponde à constante e;, temos (Qt,(a)aEA) f= o =;, Q( f= 
cr[a1, ... , a11] =;> 2' f= cr[h(a1), ... , h(an)] =;> (2', (h(a))aEA) f= a . 

Reciprocamente, Q( f= cp[a1,--·,an] =;> (Qt,(a)aEA) /= rf>(c1, ... ,cn) =;, 

cp(c1, ... , c11) =;> 2' f= cp[h(a1), ... , h(an)]. 
(2', (h(a))aEA) f= 

QED 

Os teoremas BS 4.1.10, 11 e 12 prosseguem nessa direção e são freqüentemente lembrados em 
argumentos da teoria. 

Um objeto sintático da Teoria dos Modelos é a teoria, conjunto consistente de sentenças de uma 
linguagem. Por exemplo, dada uma família Ide estruturas relacionais de mesmo tipo, o conjunto 
Th(I) de sentenças válidas em todas as estruturas de I é uma teoria. Define-se também M(:E), a 
classe dos modelos da teoria :E. 

Dada uma teoria :E, definimos o conjunto :E* de todas as sentenças o conseqüências de I', por 
prova formal (:E 1- cr). Podemos enunciar, então, o importante Teorema da Completude deste modo: 

Teorema 6 (BS 7.1.1: Completude). :E*= Th(M(:E)). (Toda teoria tem modelo.) 

Na determinação de propriedades de modelos de I:, pressupomos suas particularidades e também 
dispomos de todos os métodos matemáticos, tanto de primeira corno de segunda ordem, e conceitos 
como convergência, fecho algébrico e cardinalidade. Uma vez que se prove, assim, que uma sentença 
CT da linguagem apropriada ( de primeira ordem) é válida nesses modelos ( ou seja, como veremos 
depois, as estruturas de 1\11 (I',) têm a propriedade de primeira ordem dada por CT), conclui-se que 
I', 1- <J: existe urna prova de primeira ordem de a a partir de I',, como o Lema 16 exemplifica. 

Uma teoria I', é completa se, para toda sentença o da linguagem de I',, I', 1- a ou I', 1- '""CT. 

Deixamos para o leitor demonstrar esta caracterização semântica, em oposição à definição sintática, 
das teorias completas: 

5 
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Fato 7. Uma teoria .E é completa se e somente se, dadas quaisquer Q(, 513 E M(.E), 21 == 513. 

Desse modo, pode-se estudar uma teoria completa .E simplesmente se estudando um modelo 
seu, o mais simples ou conhecido possível, Q( e concluindo-se que .E* == Th(Ql). A seção 9.1 de [Bell, 
Slomson] traz diversos exemplos de teorias completas ( a partir da pág. 179). 

Há outras situações em que o estudo de urna teoria é facilitado. Por exemplo, se :E for modelo­ 
completa, isto é, 2( Ç 513 :.::} 2(-< 513 para todas Ql, 513 E M(I:), então toda imersão entre modelos de 

.E é elementar e, portanto, preserva a validade de fórmulas. Vários exemplos são apresentados na 
seção 9.5 de [Bell, Slomson]. 

Algumas teorias têm modelos p,irno.s: 2( E M(.E) é modelo primo de .E se todo modelo ele .E 
tem subestrutura isomórfica a Ql. Novamente, o leitor pode mostrar o 

Fato 8. Uma teoria modelo-completa com modelo primo é completa. 

Uma elas conseqíiências elo Teorema ela Completude é a Compacidade: um conjunto de sen­ 
tenças tem modelo se e somente se é .finitamente satisfazível, isto é, se todos os seus subconjuntos 
finitos têm modelo. Já que a Compacidade pode ser usada em uma demonstração da Completude, 
apresentamos uma prova independente no Teorema 30. 

Observamos, finalmente, que um modelo para uma teoria faz parte, em geral, da Teoria elos 
Conjuntos. Por exemplo, com as interpretações usuais, IR2 é um modelo para a Geometria Euclide­ 
ana Plana supondo-se corretas as propriedades de IR sobre as quais se fundamentam as verificações 
dos axiomas geométricos: IR com essas propriedades é construído na Teoria elos Conjuntos, cuja 
consistência é indecidível. Entretanto, é relevante a consideração de estruturas cujos domínios não 
são conjuntos (mas são classes ou coleções de átomos), possivelmente concretas; embora não façam 
parte, formalmente, da Teoria dos Modelos. Veja Observação em [Bell, Slomson], pág. 65. 

Digressão: a definição de satisfação ~- Teoremas de Lowenheim~Skolem 

Não apresentamos, na primeira seçi"í.o, uma definição de satisfação ou validade de uma fórmula 

em uma estrutura de tipo adequado, porque se trata de um conceito bastante divulgado nos cursos 
básicos de Matemática, como Álgebra Linear ou Geometria Nã.o-Euclideana. -- verificar se urna 
dada estrutura é espaço vetorial ou se urna coleção de elementos rotulados pontos e retas com uma 
relação binária "pertence a" satisfaz os axiomas ele geometria de incidência plana. 

Aqui, explicitaremos a definição formal de satisfação de uma fórmula, devida a A. Tarski e cuja 
~ -~ 

idéia central é ~--.J /== "chove" ~ e(_\\\\\\\), ou seja, o valor de uma fórmula. é o mesmo de 

sua expressão metamatern,itica.·1 Observaremos, em um exemplo da Teoria dos Conjuntos, que a 
- 1

0 ponto de partida de [Tarskij, pág. 155, é exemplificado na página. s0guinte como " 'it is snowing' is a true 
seutence if and only if it is snowing". Frecisam cnta, corresponde às Defs. 22 e 2:l, pp, 19:l--5, em relaçã.o ,

1 
uni 

"universo" completo (no caso específico, o universo ele todas as classes), o que difere totalmente do conceito de 
va.lida.cle un iversal. Por outro lado, as Defs. 24 e 2.'í, pág. 200, tratam da. satisfaçâo cm 111n domínio. (Nossa 
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única diferença real é, efetivamente, a generalidade e passaremos então a resultados de Lõwenheírn 
e Skolem sobre cardinalidade de modelos. 

Fixada uma realização Q( da linguagem em consideração, associamos a cada variável vn um 
parâmetro a.; E A. Tal associação :r, chamada valoração, é considerada somente quanto a variáveis 
livres e indicada corno <P[ ai 1 , ••• , aik], se <P é uma fórmula com variáveis livres Vi

1 
, ••• , v;k, ou como 

índice no símbolo l=x. A valoração obtida de x substituindo-se an por a E A é indicada x C). 
Procedemos, então, por indução na formação de fórmulas:5 (Ao predicado k-ário P corresponde 

a relação k-ária R.) 

Q( l=x Vm = Vn <=>- am = an; 
Q( l=x P(vn1, ... , Vnk) <=>- (an1, ... ,ank) E R; 

Q( l=x ( <P /\ 'ip) <=>- Q( l=x <P e Q( l=x 7P ; 
- Q( l=x rvq'i <=>- não Q( l=x q) ; 
~ 

Q( l=x 3vn q) <=>- existe a E A tal que Q( l=x(:) q'i . 

Assim, dados Q(, a1, ... , an E A e uma fórmula <P( v1, ... , vn) da linguagem apropriada, dizemos 
que q'i é válida em Q( e Q( satisfaz ou realiza ou é modelo de q'i com tais parâmetros, se Q( l=x q'i 
para uma valoração x com tais parâmetros, e escrevemos simplesmente Q( I= q'i[a1, ... , an]- Se E é 
conjunto de sentenças, Q( I= E se, para toda O' E E, Q( I= O'. 

Como exemplo, consideraremos esta estrutura de [Zimbarg]: (IN, E), em que E ç iN2 e (a, b) E 
E <=>- b = 2ª1 + ... + 2ªm, O ( a1 < ... < ame a= a; para algum 1 ( i ( m. (Chamamos a atenção 
para as desigualdades estritas, que deixaremos implícitas a seguir. Assim, todas as somatórías 
nesta seção são consideradas sem repetição.) 

Veremos que tal estrutura verifica todos os axiomas usuais de Teoria dos Conjuntos, com exceção 
do Axioma da Infinidade. Ao enunciá-los, faremos uso das abreviações usuais. 

O Axioma de Existência é imediatamente verificado. Na forma :3x (:e= x), basta tornar para x 
qualquer elemento de IN f= 0; na forma 3:1:\f z rv(z E :r) (Axioma do Vazio), tomamos x = O. 

A validade do Axioma da Extensionalidade \fx\fy (x = y H Vz (z E x H z E y)) é imediata se 
lembrarmos as propriedades de representação binária dos naturais. 

Este é o Axioma do Par: VxVy3wYz (z E w H (z = x V z = y)). Se x f= y, tome w = 2x + 2Y; 
se :e= y, tome w = 2x. 

Axioma das Partes: Yx:3wYz (z E w H Yy (y E z --+ y E x )). Dado x = 2ª1 + ... + 2ªm, tome 
w = L 2ª, onde O' percorre sem repetição todos os I: 2ªi dados pelos arranjos de 1 ( í ( m sem 
repetição. 

Axioma da União: \fx3w\fz (z E w H 3y (y E :r /\ z E y)). Dado :z: = 2ª1 + ... + 2ªm, 
ai = 2ª•1 + ... + t'im;, tome w = L 2ª'1, sornatória (sem repetição) sobre todos 1 ( j ( m;, 
1 ( i ( m, 

representação pictórica coloca-se entre as duas possibiliclacles.) Finalmente, a pág. 221 conclui: "The rnethod of 
construction sketched there can be appliecl as a whole to other languages of the lil orcler." 

5Usarernos essa definição explicitamente na seção "Ultraprodutos e infinitésimos", pág. 17, na demonstração do 
Teorema de Los 
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O Axioma da Separação é, na verdade, um esquema (coleção) de axiomas. Se rp( v) é urna fórmula 
qualquer de uma variável livre da linguagem em consideração, devemos verificar Vx3yVt (t E y H 
t E x /\ rp(t)). Com z = 2ª1 + ... + 2ªm, ternos y = L 2ªi, onde a soma é feita sobre os i tais que 
(IN, E) /= rp[ai]. Analogamente, podem-se verificar formulações mais complexas desse axioma. 

Axioma da Regularidade: Vx (x j: 0 -+ 3y (y E x /\ x n y = 0)). Com x = 2ª1 + ... + 2ªm, 
tome y = a1 (de fato existe pois x j: O). Por definição, (y, :e) E E; suponha z E IN tal que 
(z, .,: ), (z, y) E E: então z = a; para algum i e, como (z, ai) E E, 22 ~ a1 ~ a; = z, absurdo. 

O Axioma da Infinidade usa também a abreviaçã.o x' : .1:U{ x} e escreve-se 3x (0 E x/\ vv (y E x -+ 
y' E .1:)). Suponha agora que b E IN satisfaça essa propriedade de x. Como (O, b) E E, existe de fato 
am o maior elemento de b com respeito à ordem usual em IN. Mas ( am, a:n) E E =;- a:n ;) 2ªm > am, 
donde (a~,, b) t/:. E, contra a hipótese (falsa) original. 

Os Axiomas da Escolha e da Substituição exigem mais abreviações, de modo que não escreve­ 
remos as sentenças correspondentes. 

O Axioma da Substituição é também um esquema de axiomas. Suponha que rp(1t, v) é uma 
fórmula de modo que para todo a E IN existe um único b E IN tal que (IN, E) /= qi[a, bj. Dado 
x E IN, devemos mostrar que existe y E IN obtido substituindo-se cada elemento de .,: por sua 
"imagem" por q>: se.,:= 2ª1 + ... + 2ªm, tome y = L 26', onde b, E IN é tal que (IN, E)/= qi[a;, bi) 
e a soma é sem repetição sobre todos 1 ~ i ~ m. 

O Axioma da Escolha, em uma de suas formas, enuncia-se deste modo: para todo x j: 0 tal que 
Vy Ex (y j: 0), existe f: x -> LJ x tal que Vy Ex (f(y) E y). Lembrando que, em (IN, E), f deve 
ser um elemento de IN, dado x = 2ª 1 + ... + 2ªm, torne 

onde b; é o menor elemento de a;. ( Assurn imos a definição { {a;}, {a;, bi}} de par ordenado.) 
Concluímos que o Axioma da Infinidade não é conseqüência dos demais e que estes são consis­ 

tentes entre si. Exibindo-se também um modelo de todos os axiomas, concluiríamos que o Axioma 
da Infinitude é independente dos demais. 

É um bom momento para apresentarmos o Teorema. de Lówenheirn-Skolern, funda.mental em 
diversos argumentos da. Teoria. dos Modelos e que, em seu enuncia.do, requer apenas o conceito de 
satisfação: 

Teorema 9 (BS 4.3.5: Lôwenheim-Skolem ). Se ~ é uma teoria. com modelo infinito, I; 
tem modelos de todos os cardinais :) t{0, card I:. 

Frisamos que não se faz qualquer alusão à linguagem nem no enunciado do teorema nem no 
contexto em que for utilizado: a teoria I: define a linguagem L dos predicados que contém (que 
será sublinguagern de todas as linguagens que possam ter I: corno teoria). 

Esta é urna aplicac;ifo simples do teorema, enunciada para a Teoria dos Conjuntos ele Zermelo­ 
Fraenkel, ZF, mas válida para outras teorias semelhantes ou mais fracas: 
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Exemplo 10 (Paradoxo de Skolem). Se ZF for consistente, terá modelo enumerável, em 
que existem elementos não-enumeráveis. 

Pela Completude (Teorema 6), uma teoria consistente tem modelo. No caso de ZF, como 
0, {0}, { {0} }, ... são todos distintos, tal modelo é infinito. 

Observe que ZF é enumerável: como a linguagem apropriada tem um número finito de predi­ 
cados, suas fórmulas (finitas) são em quantidade enumerável; portanto, os axiomas (incluindo os 
de esquemas) são em quantidade enumerável. Assim, existe um modelo enumerável Q{ de ZF. 

Pelos axiomas usuais, Q{ contém (uma "cópia" de) IN e portanto P(IN), que é não-enumerável. 
Contudo, os conjuntos pertencentes a P(IN) são elementos de A enumerável. 

Não há nada paradoxal - mostra-se somente que o conceito "enumerável" não é absoluto ou 
independente da interpretação Qt. 

De fato, suponha que Q{ é um modelo transitivo standard de ZF, isto é, x E y E A =} x E A e 
sua relação de pertinência E é dada por (x, y) E E ç;, x E y. Seja a um ordinal não-enumerável 
com uma interpretação a'21 E A. Já que a'21 Ç A, a'l é enumerável: existe uma bijeção J : IN ~ a'l. 
Concluímos que J rf_ A, pois a'2t é não-enumerável em Qt. 

Entretanto, o conceito "ter n elementos", para cada n E IN, é absoluto (para modelos transitivos 
standard). Assim, embora cardinais infinitos possam colapsar em N:0, o mesmo não ocorre com 
cardinais finitos. 

O Teorema de Lõwenheim-Skolem que enunciamos é, na prática, apenas um corolário de dois 
outros, que carregam o mesmo nome, distinguidos pelos rótulos de "para cima" e "para baixo". 
Estes podem ser encontrados na seção 4.3 de [Bell, Slomson], juntamente com os dois teoremas que 
os provam e que nos provêem de extensões elementares para várias cardinalidades: considerando-se . 
estruturas de um mesmo tipo cuja linguagem tenha cardinal p, 

Teorema 11 (BS 4.3.1). Sejam Q{ estrutura infinita e C Ç A. Para todo cardinal (3 que 
satisfaça card C, p :( (3 :( card A, existe uma estrutura 123 de cardinal /3 tal que Qtlc ç 123 -< Qt.6 

Teorema 12 (BS 4.3.3). Urna estrutura infinita Q{ tem extensão elementar de qualquer cardi­ 
nal ;:: p, card A. 

Nesta seção, vimos um modelo para quase todos os axiomas da Teoria dos Conjuntos. Do 
mesmo modo, estudam-se modelos das teorias de espaços vetoriais, planos de incidência, corpos 
algebricamente fechados, etc. Em tais casos, contudo, as estruturas consideradas são elas próprias 
espaços, planos e corpos. É um caso vazio caracterizar estruturas que sejam conjuntos, pois todo 
domínio é, por definição, um conjunto: a linguagem adequada para tratar conjuntos não tem 
predicados (nem mesmo E), mas apenas o símbolo de igualdade; a teoria satisfeita por conjuntos 
não-vazios é vazia (não tem sentenças); isomorfismo caracteriza mesma cardinalidade. Finalmente, 
observamos que nem todas as propriedades que são formuladas em Teoria dos Conjuntos podem 

62[Jc :::: ( C, { R1; n c1•W I ç < a}), na notação de nossa primeira seção 
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ser formuladas nesta linguagem: veremos na próxima seção que, por exemplo, "ser finito" não é 
axiom atizá vel. 

Algumas sentenças e teorias importantes 

Para cada n ~ 2, a sentença 

3~n : 3v1 ... 3vn (\ rv(v, = Vj) 
l~i<j~n 

é satisfeita apenas por domínios com n ou mais elementos. Consideremos também a sentença 
3!n : 3~n /\ '°'"'3~n+1, satisfeita por domínios com exatamente n elementos. Para n = 1, escrevemos 
3!1: '°'"'3~2, já que todo domínio é, por definição, não-vazio (não é necessário definir 3~1). 

A importância dessas sentenças é que, para n ~ 1 finito fixado, à propriedade "ter n elementos" 
corresponde uma sentença ( em linguagem de primeira ordem) que é satisfeita por uma estrutura 
relacional se e somente se essa estrutura tem tal propriedade, dita então de primeira ordem. 

Esse conceito é o mesmo de propriedade finitamente a.Tiomatizável, ou caracterizada por um 
número finito de sentenças: basta considerar sua conjunção. 

Generalizando-se, a propriedade "ser infinito" é chamada de primeira ordem geral, porque há 
uma teoria cujos modelos são precisamente aqueles que têm domínios infinitos: oo = {:J~n I n ~ 2} _ 

A propriedade "ser finito", entretanto, não é de primeira ordem geral, isto é, não há teoria ( em 
particular, sentença) que a caracterize. Isso porque 

Teorema 13 (BS 5.3.4). Se urna teoria tem modelos finitos arbitrariamente grandes, então 
essa teoria tem um modelo infinito. 

Suponha que :E é uma teoria com modelos finitos arbitrariamente grandes: então o conjunto 
de sentenças :Eu oo é finitamente satisfazível. Pela Compacidade (Teorema 30), :Eu 00 tem um 
modelo, obrigatoriamente infinito. QED 

Quando aplicamos esse resultado a uma teoria :E que pretensamente significasse "ser finito", 
concluímos que :E admitiria um modelo infinito finito, um absurdo. Por negação de sentenças, 
temos também que "ser infinito" não é uma propriedade finitamente axiomatizável. 

Esse teorema é demonstrado de outro modo em [Chang, Keisler] (Corolário 2.1.5): adicionamos 
constantes cn, n E IN, à linguagem da teoria em questão e tomamos oo = {'"'-'(Cn = cm) 1 n, m, 
distintos em IN}. O modelo infinito para a teoria é a reduçiio (simplesmente desprezamos as novas 
constantes) daquele obtido pela Compacidade. 

Outros exemplos e contra-exemplos de propriedades de primeira ordem são dados na seção 5.3 
de [Bell, Slomsonj. 

No estudo de corpos, a linguagem apropriada tem duas constantes, O e 1, e dois operadores 
binários (Infixos), + e . - omitiremos parênteses correspondentes à precedência usual e também 
o símbolo da segunda operação, indicando-a pelo modo usual ele justaposição. A propriedade "ser 
corpo" é caracterizada pela teoria cujas sentenças são os fechos destas fórmulas: 
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x + y = y + x, xy = yx, x + (y + z) = (x + y) + z, x(yz) = (xy)z, lx = x, 
o+ x = o, x(y + z) = xy + xz, 3y (x + y = O), rv(x = O) -r 3y (xy = 1), rv(O = 1) . 

Os números naturais podem ser introduzidos na linguagem dos corpos pelo modo natural e 
comum: n abrevia (O+ ~; ... :!:JJ.7 Para cada p natural primo, a sentença CP : p = O é satisfeita 

n vezes 
por corpos somente de característica p. Os corpos de característica O são aqueles que satisfazem 

e; = { <e; \ p natural primo}. 
Podemos também introduzir a abreviatura z" : (l. ~)- Assim, a teoria ACP dos corpos 

n vezes 
algebricamente fechados é obtida adicionando-se aos axiomas de corpo as sentenças 

para n ;?: 2. Por exemplo, 

Teorema 14. ACP é modelo-completa. 
Urna prova, através do Teste de Robinson (BS 9.4.6), é dada no item j), seção 5 do Capítulo 9 

de [Bell, Slornson]. 

Corolário 15. As teorias dos corpos algebricamente fechados de característica especificada são 

completas. 
Basta observar que, para cada p primo, todo modelo de ACP U {Cp} contém o corpo 7L/p7L e 

todo modelo de ACP U C
0 
contém o corpo (Q, contendo então seus fechos algébricos, que são os 

modelos primos das teorias correspondentes. 
QED 

Observamos que ([ é um modelo de ACP U Co mais bem conhecido que (Q; portanto, em vários 

casos, é mais interessante escrever (ACP U Co)* = Th({). 
A linguagem apropriada para falarmos de ordens contém um predicado binário :(, que escreve- 

remos infixo. Uma ordem linear é caracterizada pelos fechos das fórmulas 

X:( X, X :( y /\ y :( X -t X= y, X:( y /\ '!J :( Z -t X :( z, X :( y V y :( X . 

Como usual, x < y abrevia (x :( y /\ rv(x = y)). 
Na linguagem de corpos ordenados, às sentenças vistas para corpos e ordens adicionam-se os 

fechos de 

X < '!) -~ X + Z < y-\- Z, Ü < X /\ Ü < '!J -t Ü < xy 

7 
Formalmente, O como a própria constirnte e o sucessor de n como ( n + l), por exemplo, 3 : ( ((O+ l) + 1) + 1). Tal 

rigor não é necessário devido à. associatividade do operador +. Poderíamos também definir precedência (interna) de 
operadores da esquerda para a direita, como em algumas linguagens ele programação. Considerações análogas elevem 

ser feitas para z", a seguir 
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para caracterizar-se os corpos ordenados, sendo que :S::, logo <, como relação não tem precedência 
sobre operadores. Essa teoria acrescida das sentenças Tn, n ímpar, e Vx (O < x -t 3y (x = y2)) 
constitui a teoria RCF dos corpos reais fechados. Por exemplo, com as interpretações usuais de 
ordem e operações, IR é modelo de RCF. 

As convenções mencionadas quanto a +, . e :S::, < a respeito de infixação, justaposição e pre­ 
cedência serão adotadas em todo o texto. 

Veremos, nas próximas seções, duas aplicações da Teoria dos Modelos que fazem uso do que já 
desenvolvemos. 

Princípio da transferência de Tarski 

Na linguagem L da teoria RCF, termos são polinôrnios e fórmulas atómicas são comparações 
:S:: ou = entre esses termos; podemos substituir os axiomas de modo que sejam comparações < ou 
=. (Na teoria ACF, observamos que se fazem somente comparações do tipo=.) 

Lema 16. RC F 1- ( (P1 = O)/\ ... /\ (Ps = O) H (I:I=i pf = O)), em que P1, ... , Ps são termos da 
linguagem em consideração. 

O fecho da fórmula em questão é válido em todos os corpos reais fechados: como observamos, 
RC F prova sintaticamente essa fórrn ula. ( A importância desse lema reside em que sim plificamos 
P1, ... , Ps a um único polinômio nulo.) QED 

Demonstraremos o princípio da transferência de Tarski: os corpos reais fechados são aqueles 
elementarmente equivalentes a IR (nessa linguagem), isto é, RCF* = Th(IR). (Adaptamos material 
de [Preste!], a cuja numeração referimos os resultados desta seção.) 

Primeiramente, estabelecemos urna importante caracterização topológica da Compacidade, para 
mostrarmos o Lema da Separação. Corno conjunção de sentenças é sentença e Vx (x = x) é urna 
sentença universalmente válida, a coleção {M(a) 1 a sentença da linguagem de tipo p} é base para 
urna topologia na classe ele todas as estruturas de tipo p. 

Lema 1 7. Se .E é um conjunto de sentenças, M (.E) é compacto na topologia gerada pelas classes 
l\lI(a), a sentença da linguagem ele .E. 

Suponha J( um conjunto de sentenças de modo que M(I:) Ç UrEK M(a). Então .Eu {,-·va / a E 
K} não tem modelo: pelo Teorema 30, .Eu { "'ª 1 a E Ko} não tem modelo para algum subconjunto 
finito Ko de J(. Assim, M(I:) Ç U:rEKo l\lI(a). QED 

Lema 18 (2.8: Separação). Sejam .E1, I:2 teorias e r um conjunto de sentenças, que definern 
urna linguagem comum. Assuma que para todos 0 E M(.E1) e 23 E M(Y:,2) exista I E r tal que 
0 F , e 23 I= ""í- Então existem 1;1 E r, l :S:: i :S:: rn e 1 :S:: _j :S:: n, rn, n E IN, de modo que para ,* : V7~1 /\;=1 rij ternos l\ll (I:1) Ç 1\11 (í*) e M (.E2) Ç M ( ,..__,,*). 

Fixe 2( E M (.Et) e escolha para cada 23 E M (.E2) urna sentença ,'23 E r separando 2( e 23 
como no enunciado. Então u23EM(I:2) M(rv,23) é urna cobertura por abertos ele l\ll(.E2) compacto: 
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existem í''Bi , ... , í''Bn E r de modo que 1\II (E2) Ç M ( "'í''131) U ... U M ( "'í''BJ. Seja ,<J a conjunção 
dessas sentenças: 2L E M(í'<J) e M(E2) Ç M("'í'<J). 

Novamente, U2tEM(I:i) M(í'21) é uma cobertura por abertos de 1\IJ(E1) compacto: podemos 
escrever M(I:1) Ç M(í'<JJ U ... U M(í'21rJ. Tomando 7* a disjunção de í'<Jjl ... , ,21=, obtemos a 
separação desejada. Note que 7* é a disjunção de conjunções de sentenças de r, como enunciado. 

QED 

[Prestel] adota esta notação: para r conjunto de sentenças da linguagem apropriada, 2( !: 23 
se, para toda I E r, 2L F í' => 23 F í'· 

Corolário 19 (2.9). Sejam E e r conjuntos de sentenças e assuma que existem 10,71 E r tais 
que í'o é falsa e 11 é válida em todo modelo de E. Se existe uma sentença a de modo que, para 
todos 2L, 23 modelos de E, 2L 2: 23 implica 2L ,:;... 23, então existem í'ij E r, 1 (: i (: m e 1 (: j (: n, 
m, n E IN, tais que (a H V~1 /\j=l 7;1) E Th(M(E)). 

Tome E1 = EU {a} e E2 = EU { "'ª }. Se E1 ou E2 é inconsistente, temos respectivamente 
(a H 70) E Th(M(E)) ou (a H í'1) E Th(M(E)). Se E1, E2 forem consistentes, podemos aplicar 
o lema anterior: se 2L E M(E1) e 23 E M(E2), então 2L, 23 E M(E) e 2L F a e 23 I= "'ª, donde 
não 2L 2: 23. Obtendo 7*, note que M(E U {a}) Ç 1\II(,*) e M(E U { "'ª}) Ç M( "'í'*) implicam 
(a-+ 7*) E Th(M(E)) e (r-va-+ "'í'*) E Th(M(E)). QED 

Agora, podemos provar o teorema proposto: 

Teorema 20 (3.2: Eliminação de quantificadores). Para toda </>( V1, ... , vn) fórmula de L, 
existe í' fórmula (da mesma linguagem) sem quantificadores e sem variáveis livres exceto v1, ... , vn 
tal que RCF f-Vv1 ... Vvn (</> H 7). 

O que de fato mostraremos é como eliminar um quantificador, sendo um passo da indução que 
tem como base as fórmulas abertas da linguagem. Assim, consideramos <p : 3v 7/;(v, v1, ... , vn), 1P 
sem quantificadores. 

Adicionamos a Las constantes c1, ... , cn, obtendo urna linguagem L'. Uma estrutura dessa lin­ 
guagem é da forma (2L, a1, ... , an), em que 2L é uma estrutura de L e a1, ... , an E A. Evidentemente, 
as sentenças de L são sentenças de L'. 

Seja I'( v1, , vn) o conjunto de todas as fórmulas sem quantificadores de L com variáveis 
livres entre v1, , vn: I'( c1, ... , cn) é um conjunto de sentenças de L'. Provaremos que, dados 
(2L, a1, ... , an), (23, b1, ... , bn) E M(RCF), temos 

)
r(c1, ... ,cn)( b) (Ql.,al,···,ªn _,,..., . 23,bl,···, n => ) 

cf,(c1 , ... ,cn) 
(2L,o.1,--·,ªn --,-.., (23,bt,···,bn). 

Feito isso, como f( c1, ... , cn.) é fechada sob conjunções e disjunções, o corolário acima afirma 
que existe í' E r( c1 , ... , cn) ( a sentença í' * de sua demonstração) tal que 

(Q(, Clt, ... , Cln) I= cp(c1, ... , cn) H 7(c1, ... , Cn) 
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para todo modelo (Q(, a1, ... , an) de RCF'. Como as constantes c1, ... , c., podem ser quaisquer 
(RCF é uma teoria de L), vem o que nos propusemos a mostrar (bastando recordar a Completude, 
Teorema 6): 

Então, suponha (Q(,a1, ... ,an),(23,b1,---,bn) E M(RCF) tais que (Ql,a1, ... ,an) I'(ci.:.:.:,-,cn) 
(23, b1, ... , bn)- Pelas sentenças atómicas de L', p(a;) = b; para 1 ~ i ~ n define um isomorfismo 
(que preserva ordem) p: R ~ S do subanel R de Q( gerado por a1, ... ,an ao subanel S' de 23 
gerado por b1, ... , bn. p pode ser estendido aos corpos de frações de Rede S, respectivamente, e, 
mais ainda, aos fechos reais E, F desses corpos. Desse modo, temos p : E ~ F isomorfismo entre 
subcorpos reais fechados de Q( e 23, p(a;) = b; para 1 ~ i ~ n. 

Assumindo agora que (Qt, a1, ... , an) 1= </>( c1, ... , cn), isto é, Q( I= </>[a1, ... , anl, basta mostrar 
que (23,b1,--·,bn) 1= cp(c1,--·,cn), isto é, 23 /= cp[b1, ... ,bn]- Lembramos que e/>: 3v7/J, 7/; aberta: 
assim, podemos assumir que 7/; está na forma disjuntiva normal 'I/J1 V ... V 7Pm, onde cada 7/;; é 
uma conjunção de fórmulas atômicas8 (as negações de fórmulas atômicas, nessa linguagem L, são 
equivalentes a disjunções de outras atómicas, usando-se as propriedades de ordem). Então, como 
3v 'ljJ equivale a 3v 7/;1 V ... V 3v ·1/Jm, podemos assumir ainda que e/> : 3v 7/;;, 7/;; conjunção de atómicas 
( omitiremos o índice i). 

Como observamos antes sobre L e a teoria RC F, vemos que 7/; é da forma ( O = p( v, v1, .•. , vn)) !\ 
ÂJ=l (O< q1(v, v1, ... , vn)), p, q_i polinômios. Com a interpretação dada às constantes c1, ... , cn, 
por hipótese existe a E A tal que p( a, a1, , an) = O e q1 ( a, ª1, ... , an) > O (1 ~ j ~ r). Resta 
mostrar que existe b E B tal que p(b, b1, , bn) = O e q1(b, b1, ... , bn) > O (1 ~ j ~ r). 

Note que, de fato, p, q1 são polinômios em v com coeficientes v1, ... , Vn e "naturais" (l+ ... -f-1). 
Se p não é o polinôrnio identicamente nulo, então a E E, já que E constitui-se dos reais algébricos 

sobre A e p tem coeficientes em E: tome b = p(a). 
Se pé o polinómio identicamente nulo (ou se não existe p, caso em que 7/J não tem subfórmula 

O = p), sejam ri < ... < r1 as raízes dos qj em Qt: r1, ... , ri E E; como a não é raiz desses 
polinômios, a < r1 ou r; < a < r;+1 (1 ~ i < t) ou r, < a. Torne b E F como p(r1) - 1 ou 
p(r; + r1+1)/2 ou p(r1) -1- l, correspondentemente. 

Assim, cada (fj tem o mesmo sinal em b, b1, ... , b., que em a, a1, ... , an, pois pé um isomorfismo. 

QED 

Corolário 21. RCF é modelo-completa. 

Dada cp, tome , resultado da eliminação de quantificadores. Suponha que Q( Ç 23 modelos de 
RCF' e que Q( I= c/>[a1, ... ,anJ- Então Q( 1= ~t[a1,···,an] e, como ré aberta, 23 I= ,[a1, ... ,a,,J 
Assim, 23 I= c/>[a1, ... , an]- QED 

8 A prova ela Proposição 1.4 ele [Menclelson], pág. 211, mostra que toda fórmula aberta é semanticilmentc cquivalciite 

a outra (também aberta) na forma disjuntiva normal 

94 



Corolário 22 (3.3). Q(, 2:, corpos reais fechados com ([ subcorpo ordenado comum: para toda 
fórmula cp(v1, ... , Vn) de L e quaisquer C1, · · ·, Cn E e, Q( F </J[c1, ·. ·, Cn] ç:;, \}) F </J[c1, ... , Cn]- 

Corolário 23 (3.1: Princípio da transferência). Q( é um corpo real fechado ç:;, Q( = IR. 
Todo corpo real fechado, por ser ordenado, tem característica O; portanto, podemos concluir 

que, como IR, contém (Q (por isomorfismo). Aplica-se, então, o corolário anterior a sentenças. 
Alternativamente, RC Fé modelo-completa e tem um modelo primo: o fecho real de (Q. Assim, 

RCF é completa e sabemos que IR I= RCF. QED 

Esta é uma conseqüência do que trabalhamos: 
Sejam R um corpo real fechado e n E IN: os subconjuntos semi-algébricos de R" são aqueles 

gerados por união finita, intersecção finita e complementação a partir de { a E R" I O ~ f (a)}, 
f E R[x1, ... , Xn]; os definíveis sobre R são {a E RnlR I= </>[a, b]}, b E R'" e </J(x1, ... , Xn, y1, ... , Ym) 
fórmula de L. Temos o 

Teorema 24 ( 4.1). Os conceitos de conjuntos semi-algébricos e definíveis coincidem. 
Pela eliminação de quantificadores, podemos assumir que q> é uma fórmula sem quantificadores, 

ou seja, uma combinação booleana de fórmulas atômicas que são comparações de polinômios re­ 
duzíveis (pelas relações de ordem) à forma O ~ p. Esses polinômios têm coeficientes em R: b E Rm 

e (1 + ... + 1) E R. 
Do mesmo modo, um conjunto semi-algébrico é definido por uma combinação booleana de 

comparações O~ p de polinômios com coeficientes em R. 

Corolário 25. Os semi-algébricos são fechados sob operações booleanas, fecho, interior e fron­ 
teira (na topologia de intervalo), projeções e imagens sob funções definíveis. 

Uma projeção é obtida sobre uma fórmula quantificando-se existencialmente uma das variáveis 
') livres; funções definíveis são aquelas determinadas por fórmulas da linguagem. 

O problema colegial de Tarski 

• J 

QED 

Para discutirmos exponenciação de números naturais, precisamos de uma linguagem L com 
uma constante 1 e as operações binárias infixas +, . e A, esta indicada pelo usual "elevamento" . 

Também adotaremos a precedência usual A, ., +. 
A teoria em consideração EX P contém os fechos destas fórmulas: 

i) x+y=y-\-x, xy=yx, x+(y+z)=(x+y)-1-z, 
x(yz) = (xy)z, x(y + z) = xy + .u, lx = x, x1 = x, 

ii) lx=l, 

iii) (xy)2'=xzyz, 
iv) xy+z = :r;Y:z;z, 
v) (xY)z = xY'- . 
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Evidentemente, o conjunto dos números naturais IN com as interpretações usuais de 1, +, . e A 
(indicaremos tal estrutura também como IN) é modelo de EX P, adotando-se o0 = 1. 

O problema colegial de Tarski simplesmente pergunta se IN I= f = g =} EX P 1- J = g para 
todos os termos J, g da linguagem L. 

Responderemos negativamente a essa questão, seguindo a construção de [Wilkie]. Consideremos 
os termos 

J0(.r, y): ((x + l)x + (x2 + x + l)r)y ((x3 + l)Y + (x4 + x2 + l)YY 
e 

go(x, y): ((x + l)Y + (x2 + x + l)Y)x ((x3 + 1y + (x4 + x2 + l)x·)y. 

Primeiro, mostramos que IN I= V.rVy (Jo(x, y) = g0(x, y)). De fato, f0(x, y) = ((x + l)x + (x2 + 
x + lY)Y ( ( (x + l)(x2 - x + l))y_f--( (x2 +x + l)(x2 - x -f-1) )YY = ((x + lY + (x2 +x + lY)Y ( ((x -f-I)Y + 
(x2 +x + l)Y)(x2 - x -1- l)YY = ((x + l)x + (x2 +x + 1)1-')Y ((x + 1)1' + (x2 +:r + l)YY (.r2 - x + l)xy = 
(x2-x+lY11 ((x+l)x+(x2+x+l)x)y ((x+l)y_f--(x2-l-x+l)11Y = ((x2-x+l)x((x+l)x+(x2+.T-l­ 
lY))11 ((x + l)Y + (x2 +x -1-l)YY = ((x3 + 1Y + (x4 + .T2 + lYF ((x + 1)1' + (x2 -1-.T + l)11Y = go(x, y). 

Observamos que, apresentado um modelo de EX P em que não valha fo = g0, conclui-se que não 
EX P 1- fo = g0. Construir tal modelo, entretanto, é extremamente complicado, sendo interessante 
considerar a teoria mais fraca EX p- obtida removendo-se de EX P a última sentença, isto é, 
ExP- = EXP- {(xY)Z = xvz}. 

O Lema 6.9 de [Wilkie] é coroação de um argumento sobre provas sintáticas e afirma que 

Lema 26. EX P 1- fo = go =} EX p- 1- fo = .9o- 

Agora, construímos um modelo 2L de EX p- em que seja satisfeita a sentença :3x:3y rv(J0(x, y) = 
g0(x, y)), equivalente à negação de fo = go. 

Como domínio, consideramos A = IN[z] o conjunto dos polinómios de coeficientes naturais na 
variável z. Interpretamos 1, + e . como o polinómio constante 1 e as operações usuais de soma e 
produto de polinómios. 

Resta interpretar apenas A, o que faremos por indução na complexidade do expoente: sem E IN, 
p(z)Am = p(z) ..... p(z). Em particular, p(z)AO = 1. 

'-._,..--' 
m vezes 

p(z)Az = zki, com k1 E IN o maior tal que (z2 - z + l)ki /p(z) na teoria usual de polinómios 
(existe, pois k1 = O =} (z2 - z + l)k1 = 1). 

p(z)Az2 = (z + 1)1'2, com k2 E IN o maior tal que zk2 /p(z) (novamente, existe). 
Sem> 2, definimos p(z)Azm = 1, e fazemos, de modo natural, 

n n 

p(z)A L aiz' = fI(p(z)Az')Aa; 
i==O t=O 

quando ao, ... , Cln E IN, ou seja, p(z)A(a0 + CltZ + ... + anz71
) = (p(z)Y'º(p(z)AzY'1 (7J(z)Az2)"" 

(p(z)/'ºzk1a1 (z + 1)k2a2_ 
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2{ é modelo de EX p-: verificar que 2t satisfaz os fechos das fórmulas do grupo i) é imediato 
pelas interpretações dessa estrutura. A fórmula ii) também é trivialmente verificada: as definições 
de exponenciação aplicadas à base 1 levam, respectivamente, a lAm = 1, lAz = zº = 1, 1Az2 
(z + 1)º = 1 e lAzm = 1 param > 2. 

Para o fecho da fórmula iii), observemos que, para a base produto de polinómios pq, k1 = 
k1p + k1q e k2 = k2p + k2q· Então (pq)A(ao + a1z + ... + anzn) = (pq)ªºzk1ª1 (z + 1)k2a2 = 
pªºqªºzk1pa1+k1qa1(z + 1l2pa2+k2qa2 = pªºzk1pª1(z + 1l2pª2qªºzk1qª1(z + 1)k2qa2 = pA(ao + aiz + 
... + anzn) qA(a0 + a1z + ... + anzn), usando-se apenas as regras usuais de polinómios. 

Do mesmo modo, vemos que quaisquer polinómios satisfazem a fórmula iv). Com a notação 
original, pA(ao + a1z + ... + anzn + bo + b1z + ... + brzr) = pªo+bozki(ai+bi)(z + 1l2(a2+b2) 
pªºzk1a1 (z + 1l2ª2pbo zk1b1 (z + 1)k2b2 = pA(ao + a1z + ... + anzn) pA(bo + b1z + ... + brzr). 

(Embora seja desnecessário, verifica-se que a fórmula v) não é válida em geral em Ql.) 
Voltando agora à notação "elevada", temos em 2!: f0[z, z2] = ((z + 1)2 + (z2 + z + 1)2)z2 ((z3 + 

l)z2 + (z4 + z2 + l)z2)z = (1 + l)z2 (1 + 1)2 = 2z22z = 1.1 = 1 e go[z, z2] = ((z + 1)22 + (z2 + z + 
1)22)2 ((z3 + 1)2 + (z4 + z2 + 1)2)z2 = (1 + 1)2(z + z)z2 = 2z(2z)22 = l(z + 1) = z + 1 /- 1. 

Então 2{ I= EX p- e Ql I= :3x:3y "'(!o= go), donde, pelo lema acima, não EX P f- fo = g0. 
[Wilkie] apresenta uma teoria mais forte que E.XP com resposta positiva para o problema de 

Tarski: no que se segue, sua notação original * foi substituída por '. 
Um polinómio p de n variáveis com coeficientes inteiros é dito positivo se p( a1, ... , an) > O 

para todos a1, ... , an E IN*. Sejam tp um novo operador n-ário e L' a linguagem obtida de L 
adicionando-se todos os tP, qualquer n E IN*. Assim, a interpretação natural de tP em IN* é p. 

Define-se EX P' adicionado-se a EX P os fechos em Th(IN*) de todas as fórmulas f = g em que 
J, g são termos de L' sem A. Então o Teorema 1.9 de [Wilkie] enuncia-se 

Teorema 27. Para todos os termos f, g da linguagem L, IN* I= f = g => EX P' f- f = g. 

Ultraprodutos e infinitésimos 

O principal tema de [Bell, Slomson] é a construção de estruturas por ultraprodutos. Assim, 

resumiremos aqui as seções 1, 2 e 4 de seu capítulo 5. 
Dado um conjunto índice J 1- 0, um ulirafiliro F sobre J é F Ç P(J) tal que i) X, Y E F => 

X n y E F; ii) X E F e X ç y ç J => y E F; iii) X E F <=> I - X r:/. F (X ç /). 
Fixamos agora um tipo µ, e estruturas Ql;, i E I, desse tipo. Sejam A = IlEI A; e "'F esta 

relação em A: 

f "'F g <=> {-i E II J(i) = g(i)} E F. 

Não é difícil mostrar que "'F é, de fato, uma relação ele equivalência em A. De um modo 
intuitivo, podemos pensar em F como o conjunto elos subconjuntos "grandes" ele J e em "'P como 
uma relação ele igualdade "quase sempre", ou ern "quase todas" as coordenadas. 
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Para simplificar a exposição, a partir ele agora assumiremos que o tipo fixado contém um único 

predicado P binário. Sejam R; Ç A;, i E I, as relações correspondentes: defina sobre A a relação 
R dada por 

(f,g) E R ç:;, {i E I / (f(i),g(i)) E Ri} E F. 

Novamente, mostra-se que rv F é uma relação ele congruência quanto a R, isto é, f rv F f', 
g rv F g' e (J, g) E R =>- U'' g') E R. 

Denote f / F a classe ele f E A quanto a rvp e fliEI A;/ F = A/F o conjunto dessas classes. 
Nesse domínio, portanto, a relação Rp dada por 

(J/F,g/F) E Rp ç:;, (J,g) E R 

está bem definida. 

O ultraproduto das estruturas dadas quanto ao par ultrafiltro I, Fé a estrutura (de tipoµ) 

11 Qt; / F = ( 11 A;/ F, Rp) . 
iEl iEI 

(Essa notação é reduzida a fIF Q(; em [Chang, Keisler], já que I = LJ F, apesar de ser ambígua, 
conforme sua pág. 215.) 

A noção de "quase sempre" se estende a todas as fórmulas: 

Teorema 28 (BS 5.2.1: Los). Para todos c/>(v1, ..• , vn) fórmula da linguagem adequada e 
li/ F, ... , fn/ F E fliEI A;/ F, 

11 Q{i / F F c/>[/i/ F, · · · Jn/ F] q { i E f / QL; /= c/>[!1 ( i), ... , ln ( i)]} E F . 
iEI 

Corno definimos a satisfação ele uma fórmula por indução em sua complexidade, a demonstração 
natural desse resultado é também por indução na formação de fórmulas. 

É mais conveniente, no argumento, indexar a valoração no símbolo /=. Sendo .1: = Un/F)nEIN 
seqüéncia arbitrária de elementos de fl;u A;/ F e 1:; = Un(i))nEIN a seqüéncia correspondente em 

A;, i E I, elevemos mostrar que fl,EI Q{,/ F /=1: e/> ç:;, { i E I / QL
1 

/=:r; e/>} E F. 

O caso das fórmulas atómicas vm = vn e P(vm, vn) é imediato a partir da definição das classes 
fm/ F, fn/ F e ela relação Rp. Por ilustração, eis a primeira situação: 

fLu Q(; / F l=i: v-: = Vn q fm/ F = J~/ F 
q l-. rvF Ín 
ç:> {i E 11 f~(i) = /~1(i)} E F 
q { i E / 1 Q(; l=1:, Vm = Vn} E F 
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Para fórmulas da forma 7/; /\ X, usamos as propriedades i) e ii) dos ultrafiltros, considerando que 
{i E I / Ql; /=x; 7/J /\ x} = { i E I / 2t; /=x; 7/J} n { i E I / Ql; /=x; X}. 

Para "'7/;, usamos a propriedade iii), em {'i E I / 2t; /=x; "'1j,} = I - {i E I / 2t; /=x; 7/;}.9 

Finalmente, consideramos a forma ::lvn 7/J. Denote D = { i E I / 2t; /=x; ::lvn 'ljJ}. 
Suponha que niEI m;/ F l=x ::lvn 7/J. Então existe a E A tal que niEI m;/ F l=xc7F) 'lp. Por 

hipótese de indução para x(a/nF), E= {i E I / 2t; l=x( n_) 'I/J} E F, já que poderíamos tornar urna 
' a(,) 

valoração em que o n-ésirno termo fosse a/ F. Mas E Ç D, donde DE F, o que devíamos mostrar. 
Suponha agora que D E F. Se i E D, então 2t; /=x; ::lvn 7/;, donde existe b; E A; tal que 

2t; l=x;(;) 'I/J. Pelo Axioma da Escolha, existe b E A tal que i E D =;, b(i) = b;, sendo b(i) um 
elernent~ qualquer de A; 1- 0 se i (/_ D. Então D Ç C = { i E I 1 2t; /= . ( n ) 7/;}, donde C E F. Pela 

x, b(i) 

hipótese de indução para x(b/F), niEJmi/ F l=x(b/F) 'lp, donde niEJmi/ F l=x ::lvn 'lp. QED 

Corolário 29 (BS 5.2.2). Se a é urna sentença da linguagem apropriada, TiiEJQ(i/F /= a q 
{ i E I / Ql; /= cr} E F. 

Dado I 1- 0, diz-se que uma família F Ç P(I) tem a propriedade da intersecção finita se 
qualquer subconjunto seu finito tem intersecção não vazia. Em suas primeiras seções, o capítulo 
1 de [Bell, Slomson] ocupa-se de mostrar, por meio do Lema de Zorn, que toda família com tal 
propriedade pode ser estendida a um ultrafiltro sobre I. 

Podemos agora demonstrar o 

Teorema 30 (BS 5.4.1: Compacidade). Um conjunto I: de sentenças é satisfazível se e 
somente se é finitamente satisfazível. 

A implicação direta é imediata. Para a recíproca, tome I como o conjunto dos subconjuntos 
finitos de I:. Assim, todo A E Item modelo 2(6.· 

Considere ~ * = { ~' E I 1 ~ Ç ~'}. A coleção { ~ * E P (I) 1 ~ E I} pode ser estendida a um 
ultrafiltro F sobre I, pois tem a propriedade da intersecção finita: ~1 U ... U ~n E ~r n ... n L'.).~. 

Mostremos que TI6.EI2t6./F /= I:. Fixe o E I:: denote ~o= {cr} E/. Assim, se L'.).0 Ç L'.).1 E J 
então 2(6, /= o , donde ~Õ Ç {~' E 1 / 2(6.' 1= cr}. Já que ~Õ E F, {~' E 1 / 2(6.' /= cr} E F; pelo 
corolário acima, n6.El 2(6. / F /= cr. QED 

Quando todas as estruturas 2(, são uma mesma 2t, indicamos o ultraproduto por 2(1 / F, a 
ultrapotência de 2( quanto ao par 1, F. 

Defina, para a E A, a função constante a* E A1, a*('i) = a, e a itnersiio canónica d: A -'t A1 / F, 
d(a) = a* /F. 

9Este é o único ponto em que se usa a propriedade iii); o restante ela demonstração indica para quais fórmulas vale 
o enunciado em caso de um produto reduzido por um filtro. A Definição 6.3.l e as Proposições 6.3.2 e 3 de [Chang, 
Keisler] apr sentam uma caracterização completei 
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Lema 31 (BS 5.2.3). d: 2( -> 2(1 /Fé uma imersão elementar. 

PoisQl
1
/F /= çb[a;!F, ... ,a~/F) <=? {i E 1/2( /= çb[a7(i), ... ,a~(i)]} E F <=> {i E 1/2( f= 

çb[a1, ... , an]} E F <=? 2( /= çb[a1, ... , anl, já que 0 (/. F.10 Note que esta prova já demonstra que cl 
é injetora e preserva relações, isto é, que d é uma imersão. QED 

Corolário 32. Por isomorfismo, podemos considerar 2( -< Ql 1 / F. 

É fácil mostrar que, se um ultrafiltro contém Llffi conjunto finito, contém um conjunto unitário, 
donde se pode concluir que o ultraproduto construído será isomorfo a um dos fatores. 

Portanto, devemos procurar por ultrafiltros sem conjuntos finitos, ditos não-principais. Já que 
os subconjuntos co-finitos ( complementos de finitos) do conjunto índice formam uma família com 
a propriedade da intersecção finita, existe um ultrafiltro não-principal sobre todo conjunto infinito. 

Aqui, não desenvolveremos a classificação de ultrafiltros, disponível na seção 6.1 de [Bell, Slorn­ 
sonj, restringindo-nos a identificar a noção "quase sempre" como conseqüência de "exceto em um 
número finito de coordenadas". 

Por exemplo, tome IN corno conjunto índice e U ultrafiltro não-principal sobre IN. Vimos, 
nos últimos lema e corolário, que podemos considerar IR -< IR1N /u, identificando a E IR com 
a* /U = (a, a, .. -);u- Pela definição do ultraproduto, as relações são consideradas coordenada a 
coordenada: 1 = ( 1, 1, ... ) ;u é a unidade e 

(1,3,2, 19,-56,rr,2,2,2, .. );u = (2,2,2,27,-e4,5,2,2,2, .. )
1
u 

pois essas seqüências diferem apenas em um conjunto finito de coordenadas, que não pertence a U. 
Do mesmo modo, considerando-se+, ., < usuais em IR, temos que IR1N/ U é um corpo ordenado, 

mas não arquimediano: o módulo de (1, ½, ... , ¾, .. -);u é menor que 1/m para todo m E IN não­ 
nulo11, ou seja, (1, ½, ... , ¼, ... );u é um infinitésimo. 

Se x, y E IR
1
N / U, definimos que x ~ y se x - y é um infinitésimo. ~ é urna relação de 

equivalência e permite-nos dar outra caracterização do conceito de continuidade. 
Como observamos na primeira seção, a f : IR -t IR corresponde uma relação F ç; IR2 tal 

que f(x) = y <=? (.x,y) E F. Em IR1N/u, a relação correspondente Fi) origina outra função 
fu : IRIN / U -t IR1

N / U extensão da primeira. 

Teorema 33. f é contínua em x0 E IR se e somente se fu(.1:) ~ fu(.,;0) para todo .1: ;:::; 
1
-
0
, 

.-r: E 1R1N /u. 
Considere a fórmula c/>(E, 5) : \/x (/x - x0/ < 5 -> l.f(:c) - .f(xo) 1 < E), extraída da definição usual 

de continuidade. 12 
10
Pois 0 E F =>- f rf F, mas também 0 e T e f =>- I E F' 

11 
Tal m é ela forma (m, m, tn . .. ) ;u e n~o é-qualquer m E INJN / U Ç IRL'II / U 

12

.É, de fato, urna fórmula de lógica ele primeira ordem, apenas abreviada, com as varié'tveis li vres €, 5 e xo. esta 
última não será indicada. Ern IRL'll/u, a interpretação de fé fu 
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Fixe E > O real e suponha que f é contínua em xo E IR. Então existe o > O real tal que 
IR /= </>[E, o]; pelo fato da extensão ser elementar, IR1N / U /= </>[E, o]. Considere :e ~ x0: como x - xo 
é infinitesimal, seu módulo é menor que o real, donde /fu(x) - fu(xo)/ < E. Como E é qualquer 
real positivo, fu(x) ~ fu(xo). 

Por outro lado, suponha que fu(x) ~ fu(xo) para todo x ~ .To e fixe um infinitésimo positivo 
0 E IR1N /u. Então, para qualquer E> O real, IR1

N /u /= <P[E,0], donde IR1N /u /==lo> O <P[E](o). 
Logo, para todo E> O real, IR/= :38 > O </>[E](o), ou seja, fé contínua em x0. QED · 

Considerando-se O um infinitésimo, o conjunto de infinitésimos é um anel M1. Sendo Mo 0 
conjunto dos números finitos de IR1

N ju, M1 é um ideal em Mo e M0/M1 (anel quociente, ou 
também M0/~) é isomorfo a IR, corno indicam as pp. 56-7 de [Robinson]. 

O Cálculo Infinitesimal recebeu tratamento rigoroso em [Robinson], fazendo uso da Lógica 
de ordens mais altas, e a nova área, Análise Não-Standard, não só fornece demonstrações mais 
elegantes como também já decidiu problemas de diversas áreas. 

Uma apresentação sem recurso à Teoria dos Modelos e construções lógicas é feita em [Keisler], 
um curso básico de Cálculo (incluindo limites) baseado em infinitésimos. Assume, além dos axiomas 
usuais para IR, outros para um conjunto de "hiperreais" para os quais a ultra potência IR1N / U 
( apresentada apenas em seu Epílogo) é um modelo. 

Mais Teoria dos Modelos 

A Teoria dos Modelos caracteriza-se por sua generalidade e pela amplitude de suas ferramentas. 
Apresentamos nesta seção mais alguns exemplos. 

ARITMÉTICA NÃO-STANDARD 

[) Na Teoria dos Números, usam-se os operadores + e . usuais, a constante O e o operador unário 
~) s ( sucessor), Reescrevemos de [Mendelson], pág. 103, os axiomas da Teoria da Aritmética Formal, 

Teoria dos Números ou Aritmética de Peano: são os fechos de 

rv(O = s(x)), s(x) = s(y) -, x = y, x +O= x, x + s(y) = s(x + y), 
x.O = O, x.s(y) = (x.y) + x, </>(O) --t (\/v (</>(v) --t </>(s(v))) --t \/v </>(v)), 

em que </> é fórmula da linguagem em consideração.13 

Resumimos agora a discussão na seção 12.2 de [Bell, Slomson]. 
Pela Incompletude de Cõdel-Rosser (veja [Mendelson], pág. 145), a Aritmética Formal não é 

completa se for consistente; existiriam então dois modelos não elementarmente equivalentes da 
Aritmética Formal (pelo Teorema de Lôwenheirn-Skolem, podemos considerá-los enumeráveis). 

13Os axiomas (Sl) e (S2) elo sistema S ele [Menclelson) sâo, no Cálculo de Predicados com igualdade, substituídos 
pelo Exercício BS 3.3.5 e pelo axioma PCll de [Bell, Slornson]. (Adotamos S tendo em vista urna referência a uma 
prova da Incompletude ele Codel.] No Exemplo 1.4.11 ele [Chang, Keisler], a fórmula e/> pode ter parâmetros 
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O modelo standard da Aritmética Formal é IN com as interpretações usuais de+, . e s. O fato de 
/N ser modelo dessa teoria e, portanto, ela ser consistente, é uma hipótese explicitamente assumida; 
o último parágrafo de nossa primeira seção aplica-se nesse caso. 

As sentenças dessa linguagem válidas no modelo standard formam a Teoria da Aritmética Com­ 
pleta ou Teoria dos Números Completa Th(IN). 

Se Fé ultrafiltro não-principal sobre /N, IN1
N /F é modelo da Aritmética Completa, mas não 

isomorfo a /N, pois tem cardinalidade 2No (BS 6.1.10 e BS 6.3.13). 

Mostraremos ainda que Th(IN) não é nem mesmo "«o-categórica, isto é, não tem a propriedade 
de todos os seus modelos infinitos enumeráveis serem isomorfos. 

Consideramos a imersão canónica d : IN ~ IN1N / F e a fórmula x(x, y) : 3z ("-'(z = O)/\ (x + 
z = y)). IN F x[rn, nj <=:;, m < n, donde x induz em m E M(Th(IN)) uma ordem total dada 
por a < b <=? '2l p== x[a, bj. Considere m* = (O, 1, 2, 3, .. .);F: m* (/. d[INJ e, para todo n E IN, 

IN'N/ F p== x[d(n), m*J.14 Torne X= cl[INJ U {m*}: pelo Teorema 11, existem enumerável tal que 

(IN'N/ F) lx e::: m -<( /N
1
N / F e, assim, m F Th(IN). Como m* E A, m 't- /N: se h : m ~ IN é um 

isomorfismo, h(m*) é finito, mas cl(n) < m* para todo n E IN, donde m* é infinito. (Assim, a 
propriedade "ser número finito" não pode ser expressa nessa linguagem: se 7/;(x) representasse tal 
propriedade, IN F V.r i/J(x) =? 1/; E Th(IN), mas m /= "-''1/J[m*).) 

Note que d: IN ~ m é ainda imersão elementar: podemos considerar IN -«me< estendida a A. 
Todos os elementos de A- IN são finais, ou seja, são precedidos por todos os elementos de IN. De fato, 
note que IN F Vv (v = OVx(O, v)) e, para cada n E IN, IN /= <:Jv (x(~(O), v)/\x(v, ~ (O))); 

n vezes n+ 1 vezes logo, essas sentenças são válidas em m. Os elementos de A - IN são também chamados "infinitos" 
ou "não-standard". 

UNIÕES DE CADEIAS 

Ao lado dos Teoremas de U:iwenheirn-Skolem e dos ultraprodutos, outros métodos para a cons­ 
trução de estruturas relacionais com propriedades específicas foram desenvolvidos; a união de cadeia 
elementar é um dos mais utilizados em argumentação por indução transfinita. 

Urna seqüência de estruturas me= (Ae, {RcfJ / fJ < o:}), ( < ç, de mesmo tipo ri, E /No: é urna 
cadeia se me C::: m'7 para quaisquer ( :( r; < ç. Sua união é a estrutura (de tipoµ) 

U me = ( U Ac, { U RUJ I fJ < ª}) · 
(<ç (<ç (<ç 

Urna interessante propriedade das uniões de cadeias é dada pelo Lema 3.1.8 de [Chang, Keisler]: 

Lema 34. A união da cadeia é a única estrutura com domínio Ue<( Ae da qual cada elemento 
da cadeia é subestrutura. 

Desta vez, suporemos que µ, contém um único predicado P unário. Comparemos a união 
<Ue<1; Ac, u(<I; Rc) e a estrutura (Ue<( Ac, S). Para que esta seja extensão ele cada estrutura ela 

1
·
1
corn z = (o, ... ,o' l., 2,3, . -);pi- o, temos z +d(n) = m· ~ 

n + l Vl:l.CS 
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cadeia, devemos ter S n Ac = Rc, donde LJ(<ç Rc = S: se a E S, então a E Ac para algum ( < ç e, 
portanto, a E Rc = S n Ac, sendo a recíproca imediata. (Vemos que 2tc Ç Uuç 2tc-) QED 

Exemplo 35. UnEIN GF(p2n) é um corpo infinito de característica p. 
A seção 8.5 de [Dean] trata dos corpos finitos, ou de Galois, de característica p prima e de pm 

elementos, denotados GF(pm), mostrando que GF(pm) Ç GF(p71
) ç> m I n. Então, m ~ n ç> 

GF(p2m) Ç GF(p2'} 
Assim, GF(p2n), n E IN, formam uma cadeia enumerável cuja união é extensão de cada desses 

corpos e, portanto, é um corpo de característica p infinito enumerável. 
Em comparação, o Teorema 13 afirma não-construtivamente a existência de um corpo infinito 

de característica p.15 

A cadeia 2tc, ( < ç, é elementar se, para todos ( ~ TJ < E,, 2tc -< 2lw (A cadeia desse exemplo 
não é elementar, pois GF(pm) I= :Wm .) O teorema em questão é: 

Teorema 36 (BS 4.2.1). A união de uma cadeia elementar é extensão elementar de todo 
elemento da cadeia. 

Seja 2( a união da cadeia elementar 2tc, ( < ç. Dados uma fórmula </>( v1, , vn) da lingua- 
gem adequada e parâmetros a1, ... , a.; E Ac, devemos mostrar que 2t I= 4>[a1, , a71] ç> 2tc I= 
q'>[al,···,an]- 

Procedendo por indução na complexidade de 4>, vemos novamente que os casos de negação e 
conjunção são imediatos. Para as fórmulas atómicas, lembramos que 2t é extensão de 2tc. 

Resta-nos considerar o caso em que 4> é da forma :3v 7/J( v, v1, ... , vn). 2t 1= 4>[a1, ... , an) implica 
existir a E A tal que 2t I= 1/>[a, a1, ..• , an]- Mas, por se tratar de uma cadeia, a E A'l para algum 
( ~ 17 < ç, donde (por hipótese de indução) 2('7 I= 1/J[a,a1, ... ,an] => 2('7 I= 3v1jJ(v)[a1, •.• ,an] => 
2tc I= :3v 7/J(v)[a1, ... , anl, já que 2tc -< 2lw 

A recíproca é mais fácil: se 2tc I= </>[a1, ... , anl, então existe a E Ac de modo que 2tc I= 
1p[a, a1, ... , an]; por hipótese, 2t I= 7/J[a, a1, ... , an] => 2t I= 4>[a1, ... , an) (pois a E A união). 

QED 

) 

JOGOS 

Exemplificaremos uma conexão entre as teorias dos Modelos e dos Jogos com um teorema de 
[Ehrenfeucht]: em suas palavras, "a new formulation of the condi tion gi ven by Fraíssé". Adaptamos, 
na argumentação, a exposição de [Ebbinghaus, Flum], pp. 18-9. Aplicaremos tal resultado em um 
jogo não muito artificial. 

Em um jogo em que dois jogadores se revezam, ao primeiro jogador geralmente cabe iniciativa 
e, ao segundo, ações defensivas. Assim, convém rotular o primeiro jogador como V e o segundo 
como 3. Veremos que essa convenção adapta-se ao conceito de "estratégia" para o segundo jogador. 

' ) 
15 A existência cio ultrafiltro usado na Compaciclade (Teorema 30) depende elo Axioma ela Escolha 

) 23 

') 

) 103 



Assuma agora que L é urna linguagem com número finito de predicados e constantes, mas sem 

operadores, de modo que é finito o número de fórmulas atômicas de L em cada combinação de 
variáveis. Suponha Ql, 23 realizações de L. 

O número de quantificadores aninhados q de uma fórmula atómica é O e, em geral, q[cp /\ 1P) = 
rnax{ q[cp], q[1P]}, q[rvcp) = q[cp), q[3v cp) = q[cp) + 1. 

Definimos o jogo Gn(Ql, 23) de n ~ l jogadas, em que cada uma consiste em V escolher Q( ou 23 
e.,; em seu domínio, e 3 escolher y no outro domínio, pondo-o em correspondência com .T. (O jogo 
é de informação perfeita, isto é, cada jogador conhece as escolhas efetuadas anteriormente por seu 
adversário e por si mesmo.) Quando o jogo acaba, temos n pares (a1, b1), •.. , (an, bn), ai E A e 
b,- E B: V pode escolher elementos em ambas as estruturas, por exemplo a

1
, b

2
, a

3 
etc. Diz-se que 

3 vence se a correspondência a, N b,-, l :S; i :S; n, é um isomorfismo de Q(l{a
1
, ... ,an} a 23l{b

1
, ... ,bn}·16 

Caso contrário, V vence ~ não há empates. 

Uma estratégia de 3 para vencerGn(Ql, 23), segundo [EhrenfeuchtJ, são funções g,-: (A x B)i-1 x 
(({Ql} x A) U ({23} x B)) ~ A U B, l :S; i :S; n, de modo que g; descreve a resposta de 3 em seu 
i-ésimo lance, culminando com sua vitória. (Cada g; é extensão das g1, j < i.) O argumento de 
cada g; divide-se em três partes: as jogadas já efetuadas (a1, b1), ... , (ai-1, b;_i) formam um vetor 
de (A x B)i-I; a estrutura Q( ou 23 escolhida por V em seu z-ésimo lance; o elemento x do domínio 
correspondente, também indicado por V. O valor de g; é, então, a resposta adequada de :3. (Para 
tanto, gi(f,, Ql, x) E B e g;(f,, 23, x) E A.) Intuitivamente, são as funções da iranformada de Skolem 
de V.1:1::lv1 ... \l.,;n::IYn ":3 vence respondendo Yl a X1 e ... e Yn a x ;": 

Podemos caracterizar 2( quanto a jogos nas fórmulas dadas por este lema: 

Lema 37. Estas conjunções e disjunções são finitas e, portanto, estas fórmulas estão bem 
definidas: para k ~ 1 e ª1, ... , ak E A, 

<Po;a1, ••. ,ak(v1, ... , vk): /\{<fl(v1, ... , vk) 1 <Pé atómica ou negação ele atómica e Q( I= <fl[a1, ... , ak]} 
e, para k ~ O e a1, ... , ak E A, 

c/>n;a1, ..• ,a.k(v1,--·,vk): /\ 3vk+J cf>n-1;a1, ..• ,ak,a(v1, ... ,vk,Vk+t)/\ 
aEA 

(\ Vvk+l V <Pn-l;a1,--,ª1"a(v1,---,Vk,Vk+1) · 
aEA 

As fórmulas </>o estão bem definidas, pois o número de fórmulas atômicas em v
1
, ... , vk é finito 

e não-nulo, já que k ~ l (se k = O e L não tem constantes, esse número é nulo). 

Por indução em n, para cada k o conjunto { cf>n;a.1, ·,ªk I a1, ... , ªk E A} é finito. De fato, para 
n = O e k ~ l, como o número de fórmulas atôrnicas em v1, ... , vk é finito, também o é o número 
de combinações possíveis de atómicas válidas em Q( com parâmetros a1, ... , ªk· Se n > O e k: ): o, 
supondo-se {<Pn-l;a1, .. ,aq1} finito, vemos que {<Pn;cq, ,ak} é finito. QED 

16

Note que, nesse caso, para todo predicado P0 ele L e quaisquer 1,;.; l.:1, ... , k,,(o) ,;.; n, '2l l= P
0
[ak,, ... , º",,(")] <=> 

'23 /= P:x[bk,, ... , bk,,(o) ]; condições análogas escre vern-se para const.antes e a relação ele igualdade Esta é a CMactc­ 
rização usada por [Ehrenfeucht] 
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Para demonstrar o próx.imo teorema, observamos que cada <Pn tem n quantificadores aninhados· 
' Ql J= Pn;a1, ••. ,ak[a1,···,ªk]; 23 J= <Po;a1, •.• ,ak[bi,--·,bk] {:} a; r-+ b;, 1 ~ i ~ k, é um isomorfismo de 

Qll{a1,---,ªd a 231{&i, ... ,bk}· 

Teorema 38 (Ehrenfeucht). Equivalem, para cada n ~ 1 e k ~ O: 
i) :3 tem uma estratégia para vencer Gn ( (Ql, a1, ... , ak), (23, b1, ... , bk)); 

ii) 23 J= Pn;a1 ,···,ªk [b1, · · ·, bk]; 
iii) Se rp( v1, ... , vk) tem até n quantificadores aninhados, então Ql J= rp[a1, ... , ak] {:} 23 I= 

<f>[b1, ... , bk]- 
Pelo que observamos, iii) ::::} ii). Por indução em n, mostramos que i) ::::} iii). Esse é 0 

Teorema 5 de [Ehrenfeucht] e independe do número de predicados e constantes de L. Como usual, 
é de importância apenas 4> da forma :3v 1j;(v1, ... , vk, v), mas então 'lj; tem até n - 1 quantificadores 
aninhados. Para n = 1, Ql I= r/>[a1, ... , ak] ==} existe a E A de modo que Ql I= 'lj;[a1, ... , ak, a]; pela 
estratégia de 3 para G1, existe b E B tal que as relações correspondentes são válidas em 23: 'lj; é 
aberta v> 23 I= 1j;[b1,--·,bk,b]::::} 23 I= <f>[b1,--·,bk]; do mesmo modo, com :3 escolhendo a E A, 
obtém-se a implicação inversa. 

Para n > 1, assuma que Ql I= </>[a1, ... , ak]: seja ªk+1 E A tal que Ql I= 1j;[a1, ... , ak, ªk+il­ 
Já que :3 tem uma estratégia para vencer Gn((Ql, a1, ... , ak), (23, b1, ... , bk)), ex.iste bk+l E B de 
modo que :3 tem uma para Gn-1 ( (Ql, a1, ... , ak, ªk+I), (23, b1, ... , bk, bk+1)): basta, antes das n - 1 
jogadas, supor que V escolheu ªk+1 e, pela estratégia para Gn, escolher bk+1; então jogar este Gn-l 
reduz-se a jogar aquele G71• Por hipótese de indução, 23 1= 1j;[b1, ... , bk, bk+il porque 'lj; tem até 
n - 1 quantificadores aninhados; então 23 I= r/>[b1, ... , bk]- 

Também por indução em n, i) {:} ii). (Teorema 8 de [Ehrenfeucht].) Se n = 1, 3 tem uma 
estratégia para vencer G1(('-2l,a1, ... , ak),(23,bi,--·,bk)) {:} \:/a E A :3b E Bar-+ b é um isomor­ 
fismo e \;/b E B 3a E A ar-+ b é um isomorfismo {:} 23 I= ÂaEA :3vk+I <Po;a1, ... ,ak,a[b1, ... , bk](vk+i) 
e 23 I= \:/vk+1 VaEA1io;a1, ••. ,ak,a[b1,--·,bk](vk+1) (de modo que as relações entre a e as constantes 
a1, ... , ªk são as mesmas correspondentes entre b e b1, ... , bk) {::;> 231ii;a1 ,···,ªk [b1, ... , bk]. 

Se n > 1, notamos que :3 tem uma estratégia para vencer Gn((Ql, a1, ... , ak), (23, b1, ... , bk)) se 
e somente se, como vimos, 

'ia E A 3b E E e \:/b E E 3a E A ele tem uma para Gn-1 ((Ql, a1, ... , ak, a), (23, b1, ... , bk, b)) 

{::;> \:/a E A 3b E B 23 I= Pn-l;cq , ... ,ak,a[b1, ... , bk, b] e 'ib E B :la E A 23 J= Pn-l;a1 ,···,ªk,a[b1, ... , bk, b] 
{:} 23 J= ÂaEA:3VÇJn-l;a1, •. ,°k,ct[b1,--·,bk](v) e 23 J= 'ivVaEA<Pn-l;a1, •. ,ak,a[b1, ... ,bk](v) {:} 23 I= 

c/>n;cq , ... ,ak [b1, ... , bk] · QED 

Corolário 39. :3 tem, para cada n ~ 1, uma estratégia para vencer Gn(Q(, 23) se e somente se 
Q( = 23. 

Com k = O em i) {:} iíi). (Teorema 10 de [Ehrenfeucht].) 

J 
) 

) 
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Exemplo 40. 'v sempre pode vencer em G3((Z, <), (~, <)). 
De fato, basta que jogue a1 = O, a2 = l e, sendo b1, b2 as respostas de 3, jogue então b3 = º1 !º2, 

para a qual 3 não terá uma resposta a3. Isso corresponde ao fato de que (Z, <) c/'. (~, <). (Note 
que 3 sempre pode vencer em G2.) 

Vemos também, com esse exemplo, que o teorema não continua válido se fixarmos que V escolhe 
apenas em Q( e 3 em 23. 

Como aplicação, descrevemos o jogo "21", disputado em um percurso de 21 casas.17 Dois 
jogadores posicionam seus marcadores na casa 1 e, alternadamente, cada um pode avançar seu 
marcador uma, duas ou três casas à frente do marcador de seu adversário. Ganha aquele que 
chegar à casa 21. 

(1) 2 3 4 II] 6 7 8 @] 10 
11 

3 tem uma única estratégia vencedora: independentemente de como joga seu oponente, ele deve 
ocupar sucessivamente as casas 5, 9, 13, 17 e 21. (Se errar, V passa a ter uma estratégia vencedora.) 
Notamos também que esse jogo não tem um número fixo de jogadas e que não há empates. 

De modo a trabalhar com os conceitos definidos, observamos que, se 3 não chegar à casa 21 em 
exatamente cinco jogadas, ele cometeu algum erro, que dá a vitória a V (se este não errar). Assim, 
podemos redefinir o jogo de modo que 3 ganha se e somente se chega à casa 21 na 5-ª jogada; de 
outro modo, V ganha. 

Agora, o jogo "21" corresponde ao jogo Gs(QL, 23), em que A = B = {l, 2, 3} (os elementos dos 
domínios corresponderão ao número de casas avançadas) e Q( = (A, 1, 2, 3), 23 = (B, 3, 2, 1), com 
constantes c1, c2, c3. (Note que h : QL ~ 23, h (a) = 4 - a, é um isomorfismo, donde Q( = 23.) De 
fato, 3 vence G5 q [QL /= e, = a1 q 23 F Ci = b1) para 1 :s; i :s; 3 e 1 ~ j ~ 5 {:} 

@ 20 19 1s cm 16 15 14 ~ 12 

{ 

ª.J = l q b.i = 3 } 
a1 = 2 {:} bj = 2 para 1 ~ j :s; 5 ªi = 3 <;=> bj = l 

q [bJ = 4 - aj/ para 1 ~ _j ~ 5 ==>- 1 + L}=1 (a.i + b1) = 21 ==>- 3 vence o jogo "21" e vemos que a 
estratégia é, quando V avançar x casas, 3 avança 4 - x casas. Por outro lado, 3 vence o jogo "21" 
(nesta forma) ==>- 1 + L}=1 ( a1 + bj) = 21 ==>- I:;}=1 ( a1 + bj) = 20. Mas podemos supor que 3 não 
erra (caso contrário, V pode ganhar), donde [bJ = 4 - a.7] para 1 ~ _j :s; 5. (Nessas implicações, 
usamos repetidamente a definição dos domínios e das interpretações das constantes em Ql, 23.) 
ALGUNS TEOREMAS 

A Teoria dos Modelos tomou forma e emancipou-se do corpo de conhecimentos da Lógica 
moderna pelos esforços de Alfred Tarski nas décadas de 40 e 50. Muito cio desenvolvimento da 

17
Este jogo foi extraído cio l<it Cabriela. O Computador que "Aprerule", da Série Jogos e Descobertas ela Fu

17
cJaçiio 

Brasileira para o Desenvolvimento elo Ensino ele Ciências - FUNBEC (criar;.'io de Isaac Epstein) 
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teoria deveu-se a problemas por ele colocados, corno uma caracterização algébrica da equivalência 
elementar. Uma resposta a este, em particular, foi apresentada por Keisler em 1961: duas estruturas 
são elernentarmente equivalentes se e somente se têm ultrapotências isomórficas. O Teorema da 
Ultrapotência de Keisler é demonstrado, assumindo-se a Hipótese Generalizada do Contínuo, na 
seção 7.2 de [Bell, Slomson]; na seção 8.1, são apresentados os "lemas básicos" de Frayne e Scott, 
sobre imersões elementares. O Lema de Frayne tem como conseqüência 

Fato 41 (BS 8.1.2). Quaisquer duas estruturas finitas elementarmente equivalentes são iso­ 
morfas. 

Atualmente, tem grande desenvolvimento a Teoria dos Modelos na forma geométrica, que se 
dedica a estudar a definibilidade de subconjuntos de estruturas. São importantes, nessa área, os 
conceitos de saturação e estabilidade. A saturação é uma característica de estruturas homôgeneas 
e universais sobre a qual se encontram definições no Capítulo 11 de [Bell, Slomson]. Assim como 
a estabilidade, a saturação emergiu como subproduto da demonstração original do Teorema de 
Morley (1962), cujo enunciado passamos a descrever. 

Uma teoria é categórica no cardinal a se todos os seus modelos de cardinalidade a são isomorfos. 
(Os Teoremas de Lõwenheim-Skolem tornam inviável a categoricidade usual de estruturas infinitas, 
em primeira ordem.) Michael Morley respondeu afirmativamente a uma questão colocada por Los: 
uma teoria enumerável categórica em um cardinal não-enumerável é categórica em todo cardinal 

~ não-enumerável. 
~) Um exercício envolvendo categoricidade é o 

Fato 42 (BS 9.1.9: Teste de Vaught). Uma teoria enumerável, sem modelos finitos, cate- 
D górica em um cardinal infinito é completa. 

~ 
Corolário 43. A teoria oo = {:3:;::n I n ): 2} é completa. 

Concluímos esta seção estabelecendo o importante conceito de diagrama, devido a A. Robinson. 
Dada urna L-estrutura 2t, seja (a)aEA urna enumeração sem repetições de seu domínio. Adicione 
novas constantes a L, uma para cada a E A, obtendo a linguagem LA. O diagrama de 2( é 0 
conjunto D(2t) das sentenças atómicas e negações de atómicas de LA satisfeitas por (2t, (a)aEA)­ 
(Trata-se de uma "descrição" de 2t.) Note que 2( é irnersível em 23 se e somente se, com alguma 
interpretação para as novas constantes, 23 satisfaz D(2t). Temos, então, esta explicação para 0 
termo "modelo-completude": 

Fato 44 (BS 9.2.1). Uma teoria I: é modelo-completa se e somente se, para cada 2( modelo 
ele I:, a teoria I; U D(2() é completa em L;1. 
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Buracos negros 

Nesta seção, discutiremos a imersão de um buraco negro no espaço-tempo. Referências ele 

páginas são feitas a [Misner, Thorne, Wheeler]; também [O'Neill] contém o necessário a nosso 
desenvolvimento. 

Na Mecânica de Newton, define-se assim velocidade de escape de uma distância. r da atração de 

um corpo de massa M: é a velocidade v necessária para se chegar ao infinito ( energia potencial nula) 
com velocidade zero ( energia cinética nula). Pela conservação da energia mecânica, mf - G ~: m = 
O =;, v

2 = 2G!VI/r ou, como será melhor escrever, r = 2Glvl/v2. Qualquer corpo com velocidade 
estritamente menor que v = J2GAf/r pode inclusive afastar-se, mas voltará em órbita fechada, o 

que não ocorre com uma velocidade maior ou igual. .Já que a luz tem a maior velocidade possível 
(esta não é uma afirmação newtoniana}, nada escapa de uma distância a A1 menor quer·= 2Glvl/c2. 
É usual, em Física, escrever-se G = e= l: nesse caso, r = 2},,1. 

Um buraco negro é formado por uma estrela de massa A1 que se tenha contraído a um raio 
menor que r = 21\ll. Considerando que ele um buraco negro nada escapa, pergunta-se se podemos 
considerá-lo uma subestrutura elo Universo, pois de um subcorpo ou subespaço não conhecemos, 
ou "escapamos" para, um corpo ou espaço maior. Naturalmente, coloca-se também o problema ele 
caracterizar tal inclusão. 

Na Relatividade, temos ds2 = dx2 + dy2 + d:::2 - dt2. Em um referencial esférico centrado 
em uma. estrela de raio R, com r e t medidos por um observador muitQ distante, obtemos ds2 = 
dr

2 + r2(d02 + sin2 0 clcp2) - dt2. Os efeitos causados pela gravidade são a dilatação (ou contração) 
de tempo e distância, ou seja, estes são multiplicados por e<l>, eJ\ > O, onde <l>, A são funções de r 
apenas: cls

2 = -e2<f> dt2 + e2J\ dr-2 + r·2(d02 + sin2 0 dcp2). A figura abaixo, adaptada da pág. 614, 
apresenta qualitativamente esses efeitos, com dt = O, 0 = 7r /2. 

Assumimos, agora, estarmos fora da estrela (r > R): seja !VI a massa-energia total da estrela 

dada pela terceira lei de Kepler para planetas distantes (massa-energia em repouso + energia 
interna + energia potencial gravitacional). Das páginas 602 a 607, temos A = -111(1 - 2;w )/2 e 
<Ji = ln(l- l1f!-·)/2. 

Então a Geometi-u: de Schwo:rz.sch:ild é dada por 
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1 
ds2 = -(1 - 2~~1) dt2 + 2M dr2 + r2(d02 + sin2 0 de/?) . 

1-~ 
r 

Uma nota de cuidado: essa geometria é exterior à estrela; em seu interior, A e <[> sujeitam-se 
a fatores como pressão estelar e massa da estrela compreendida na esfera interior a r. Assim, 
as estrelas brilhantes não têm singularidades em seu centro, por exemplo. Veja discussão nas 

pp. 600-6. 
A singularidade r = 2M é o chamado raio de Schwarzschild. Veremos que esse raio corresponde 

ao horizonte de eventos relativístico e sua coincidência com o newtoniano vem do fato de r ser 
medido por um observador muito distante, que não sofre os efeitos relativísticos da estrela. 

Temos 9tt = -(1 - 2~) e 9rr = 1/(1 - 2~)- Parar > 2M, s« < O e 9rr > O; parar < 2M, 
os sinais são trocados. Este fenômeno tem a seguinte interpretação: t e r trocam entre si as 
características de coordenadas de tempo e espaço. Assim, tal qual a passagem do tempo é inexorável 
ts« < O) em r > 2M, r sempre diminui até r = O em r < 2M pois 9rr < O, ou seja, nada escapa da 
atração de M (em contraste com a teoria newtoniana). Notamos que a própria geometria também 
colapsa em r = O. Contudo, r = 2M é uma singularidade do sistema de coordenadas, mas não do 

espaço-tempo. (Conforme pp. 820-3.) 
A fim de tranformar a geometria de Schwarzschild em estruturas relacionais, suporemos ( como 

tacitamente na discussão acima) que a massa M está fixa na origem do sistema de coordenadas e 
sempre foi e sempre será um buraco negro de raio r = 2M. 

Consideraremos os domínios U = (IR3)lr>O X IR e B = (IR3)lo<r<2M X IR Ç U, em que IR3 é o 
espaço tri-dimensional (x, y, z), com r dado pelo referencial esférico, e IR a dimensão temporal t. 
Elementos de U e B serão escritos p = (sp, tp) E IR3 x IR e são chamados eventos. 

É natural tomar o predicado binário P de modo que P(p, q) seja interpretado como "p pode 
influenciar q". O modo usual de escrever-se é p ( q ou q E J+ (p) (pp. 922-3), onde p ( q ç=:, p = q 
ou, no caso p < q, há uma trajetória de partícula material ou fóton de p a q para o futuro. 

Sejam R e S as interpretações de ( em U e B respectivamente: R e S devem, portanto, ser 

relações binárias reflexivas. 
Como vimos, o fato de que 9rr < O em B tem esta conseqüência: se p E U - B e q E B, (p, q) 

pode ou não pertencer a R, mas (q, p) i R. Já que R e S são relações correspondendo ao mesmo 

fenômeno em B, ternos que Ris= S. 
Então, escrevemos il = (U, R) e 2' = (B, 5), obtendo 

Resultado 45. 12, Ç il, mas não 12, -< il, na linguagem do predicado (. 
Vimos que 12, Ç il. Sejam agora </>( v1, v2) : ::lv ( v ( v1 /\ v ( v2) fórmula dessa linguagem e 

b
1
, b

2 
E B de modo que seus passados causais J- (b1) = {p IP~ b1} e J-(h) não se intersectem em 

B, mas sim em U - B. Então il I= c/>[b1, h], mas 2' I= '"'"'c/>[b1, b2]. QED 
Notamos que, embora tais b1, b2 E B existam, as escalas envolvidas podem não permitir uma 

experiência física que distingua 2' de illu-B- Lembramos que nada há em especial ao cruzar-se o 

horizonte de eventos r = 2M. 
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Está aberta a possibilidade de 23 = iL Conjecturamos que o Corolário 39 leve a uma resposta 
afirmativa. 

Adicionamos à linguagem um novo predicado, não tão natural, em que isso não ocorre. Con­ 
sidere o predicado binário Q, que indicaremos / infixo, com p/v tendo a interpretação de sP = sv, 
ou s~ja, "p e v têm a mesma posição espacial". Sejam Qu e Q B as interpretações de Q em U e B: 
evidentemente, Qs = (Qu )Is- Com 5.1' = (U, R, Qu) e 23' = (B, S, Q

8
), temos 

Resultado 46. 23' Ç 5.1', mas 23' 1c 5.1', na linguagem dos predicados =s; e /. 

De fato, considere a sentença O" : 3p3q3v ( rv(p = q) /\ p =s; q /\ q =s; v /\ p/ v). Torne agora p com sP 
muito distante der = O, em comparação com 2M. Nesse local, o espaço-tempo é aproximadamente 
Minkowskiano: considere q > p e muito próximo nessa escala. O próprio J+ ( q) intersecta a reta 
(sp, t), t E IR, em um evento v. Com esses p, q e v, vemos que 5.1' /= O". 

Por outro lado, 23' /= 'vp'vq'vv (rv(p = q) /\ p =s; q /\ p/v -r rv(q =s; v)), pois s-. < O em B, donde 
23' /= "'0". QED 
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"Para surpresa de todos que nos ajudaram, dedicamos nosso livro a. todos os modelo-teóricos 
que nunca dedicaram um livro a si próprios." - de [Chang, Keisler] 

Idealizamos esta representação da definição de satisfação de Tarski para a exposição em painel 
~) no 119- Simpósio de Iniciação Científica da USP: 

F "chove" <=> 
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