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Resumo

Apresentamos, neste artigo, alguns exemplos de conceitos e construcées importantes da
Teoria dos Modelos. Inicialmente, exemplificamos e caracterizamos defini¢des basicas como
imersdes e equivaléncia elementar. Estruturas curiosas sio estudadas para ilustrar a definigao
de satisfagdo e responder negativamente a um problema de exponenciacio devido a Tarski.
Raciocinios fundamentais da teoria sao explicitados no estudo de corpos reais fechados, ultra-
produtos, unides de cadeias e jogos. Como conseqiiéncia dos Teoremas de Lowenheim—Skolem,

apresentamos o Paradoxo de Skolem e a Aritmética Nao-Standard. Sugerimos, ainda, uma

aplicagao da teoria a caracterizagao da imersao de um buraco negro no espago-tempo.
Abstract

In this paper, we present some examples of important concepts and constructions in Model
Theory. To begin with, we state examples and caracterizations of basic definitions like em-
beddings and elementary equivalence. Curious structures are studied in order to enlighten the
definition of satisfaction and to answer negatively an exponentiation problem due to Tarski.
Fundamental reasonings in the theory are made explicit in the study of real closed fields, ultra-
products, unions of chains and games. As consequences of Lowenheim-Skolem Theorems, we
present Skolem’s Paradox and Non-Standard Arithmetic. Further, we suggest an application to

the caracterization of the embedding of a black hole in spacetime.
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Primeiras nocées

A Teoria dos Modelos, em sua forma algébrica tradicional, estuda a generalizacao de conceitos

Como imersao, isomorfismo e satisfagdo de propriedades para estabelecer relacoes entre estruturas do

cotidiano matemdtico e os axiomas que as descrevem, fazendo uso da Légica (cldssica) de primeira
ordem.
O leitor encontrard no capitulo 3 de [Bell, Slomson|

Predicados necessirio para o estudo da Teoria dos Model
Esse texto contém uma teoria da prova formal, que nio consta

a; ambos trazem demonstracoes, distintas, dos teoremas da

um desenvolvimento adequado do Célculo de
0s € em seu capitulo 4 os conceitos bisicos

de que trataremos nesta secao.
em [Chang, Keisler], a referéncia cldssic
Completude e Compacidade.
Exporemos alguns resultados de [Bell, Slomson] antepondo BS & sua numeracao; seguimos sua
notagao, com excegao do simbolo ~ para negacao.
O elemento central da Teoria dos Modelos é a estrutura relacional, conjunto (

com relagoes: exemplos sdo conjuntos parcialmente ordenados, grupos, corpos, espacos vetori
As estruturas relacionais, ou modelos, sio

dominio) nao-vazio

ais,

planos geométricos e autématos nao-determinfsticos.
interpretagoes ou realizagées de linguagens! de primeira ordem de predicados
tal linguagem L ¢ univocamente determinada por seu tipo i € IN®, onde a é o cardinal dos predica-
dos {P: | € < a} de L, sendo 1(€) o grau do predicado F¢. Como sio consideradas apenas férmulas
p = max{a, o} do conjunto de simbolos de I, é o mesmo que o do conjunto de
estrutura, ou realizacio de L, é uma

com igualdade. Uma

finitas, o cardinal
férmulas de L e é chamado cardinal da linguagem L. Uma [-

estrutura R = (A, { R C A#©) & < a}), A+, para a qual L é apropriada.
operadores. Nao sdo realmente necessarios, po-

Freqiientemente, fazemos uso de constantes e
a teoria — mas alterando o célculo

dendo ser substituidos por novos “axiomas” sem prejuizo para
de predicados pertinente? e a linguagem adequada (nio seu cardinal).

Por exemplo, uma constante ¢ pode ser eliminada adicionando-se um novo predicado undrio

incluindo-se na teoria a sentenca
Ju (C(z) AVY (Cy) = y = a))
e substituindo-se sentencas o (¢) por sentencas Vo (C'(z) — o(z)). (Isso deve ser feito ind utivamente,
uma constante por vez.)
Podemos substituir /() por uma férmula v(z)

na Teoria dos Conjuntos, Vv ~(v € z) define a constante 0.

Analogamente se tratam operadores: um operador n-drio f pode se
yeF(zy,...,2,,y) tenham 2 mesma

em todas essas sentencas, se conveniente. Assim,

r substituido por um novo

predicado F' (n + I)-drio, de modo que #0000, 0]

interpretacao.

"Com mimero infinito enumeravel de varidveis e (niimero finito de) conectivos Iégicos usuais
isto ¢, a existéncia de um algoritmo que determine se uma sentenga dessa

*Quanto a, por exemplo, decidibilidade,

linguagem ¢é universalmente valida ou nao: conforme [Bell, Slomson], pp. 72-3



Geralmente, indicam-se as relagoes (e operadores e constantes) de uma estrutura 2 com indice
superior — como RZ, correspondendo ao predicado FP¢ — ou adota-se o modo de [Bell, Slomson]
de seguir a ordem alfabética: a relagio R de 2 corresponde S¢ de B. Também se abandonam
os fndices das relacoes e das varidveis, usando-se letras diversas. O dominio de uma estrutura
(em letra gética) é indicado pela letra romana correspondente ou, em alguns textos, pelo préprio
simbolo entre barras verticais.

Indicaremos o fecho Yv; ...Vv, ¢(vy,...,v,) de uma férmula ¢ por ¢. (As varidveis livres de b,
aqui, s80 vy, . . ., Up; €m geral, suporemos apenas que estao dentre vy, . . ., v, indicadas.) Adotaremos
a precedéncia usual entre conectivos l6gicos e omitiremos os parénteses correspondentes.

Entre estruturas 2,8 de mesmo tipo u, definem-se algumas relacdes que generalizam as da
Matemética cotidiana. Inicialmente, 2 é subestrutura de B ou B é extensdo de 2, em simbolos
2l C B, se A C B e as relagdes de 2 sio simplesmente as restri¢goes das correspondentes de 9B:

Re =1{8:)|a = 5 n APE)
Uma imersao h : % — B é uma injecdo h : A — B que preserva as relacdes das estruturas:
(al, o g a“(g)) & RE = (h((tl), =% 'vh’(au({))) = SE :

(A igualdade também é preservada, pois h é injetora.) Temos, nesse caso, 2 ~ h[A] C B, em
que o simbolo ~ refere-se a uma imersao sobrejetora, chamada isomorfismo.

Considerando-se a linguagem L apropriada para o tipo u, notamos que % preserva a validade?
de férmulas atomicas de L com pardmetros em A. Se preservar a validade de todas as férmulas, é
uma imersao elementar.

Se % C B e a identidade for (imersdo) elementar, escreve-se % < B, pospondo-se o adjetivo
“elementar” aos termos “subestrutura” e “extensao”.

Observamos que um isomorfismo ¢ uma imersao elementar, o que pode ser verificado por indugéo
na complexidade das férmulas, e entdo uma imersao h é elementar se e somente se QA ~ hiA] < B,
onde se entende o isomorfismo como aquele dado por h.

Define-se que 2 é elementarmente equivalente a B e indica-se A = B quando, para toda sentenga

o de L,
Ao 3Bl=0.
Lema 1. Suponha 2 C B: 2 < B se e somente se para toda férmula ¢(v,, .. Sup) de Loe
Ay ..., ap € A, A = @lay,...,an] & B = ¢lay,...,a,]. Em geral, A = B se e somente se, para

toda sentenca o de L, A |=0 < B |=o.
Basta tomar as negagoes das férmulas e observar a definicio de satisfacio de uma férmula em

uma estrutura. QED

'Sobre satisfagao e o simbolo |=, o leitor é remetido a nossa proxima segao, pag. 6
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['inalmente, notamos que um isomorfismo, como toda imersio elementar, implica equivaléncia
elementar. Reciprocas, contudo, nao sio vélidas: (@, <) < (IR, <) com < usuais (Exemplo 4), mas

tais estruturas nio sio isomorfas, e

Exemplo 2. Considerando-se IN com a ordem < usual, (IN*, <) C (IN, <) e (IN*, <) ~ (N, <),

embora a primeira nio seja subestrutura elementar da segunda.
De fato, a restrigio de < a IN* é a ordem usual neste conjunto. Considere a férmula ¢(v) :

~Ju (u < v), em que usamos a notacao infixa e o mesmo simbolo da relagdo para o predicado.

Temos que (IN*, <) |= ¢[1], ja que 1 é 0 menor elemento de IN*, mas nao (IN, <) = ¢[1], pois 0 < 1.
Vemos também que % : IN* — IN, h(n) =n — 1, é um isomorfismo de ordem.

Pela definigao de satisfacio de uma férmula, se 2 C B entdo toda férmula aberta (isto é, sem

quantificadores) com parametros em A vilida em 2l permanece vilida em 8. Que a identidade

nao seja imersdo elementar deve ser conseqliéncia, portanto, dos quantificadores: de fato, todos os

elementos de 2 terem uma dada proprie
ou, inversamente, que exista um elemento em 95 com uma d
um tal elemento em 2A. A situacio é caracterizada pelo

dade nao implica que tal propriedade se estenda a toda B,
ada propriedade nao implica que haja

Lema 3 (BS 4.1.8). Se 2l C B, entio: A < B se e somente se, dados quaisquer ¢(v, vy, . . .y Un)
férmula de L e a;,...,a, € A de modo que B |= Fvp(v)[ay,. .., a,], existe a € A tal que B |-
dla,ay, ... ay,).

Suponha que 2 < 9B: pelo Lema L, 2k Jvp(v)[ay, ..., a,)
A= ¢la,ay, ..., a,) e assim B = éla,ay, ..., a,).

Por indugao na estrutura das férmulas, provamos a reciproca. A caracterizagao do Lema 1 é
2 C B) e também por conjungoes e negacoes de

, donde existe « € A tal que

satisfeita, evidentemente, por férmulas abertas (
férmulas para as quais seja vilida tal condicdo.
Suponha que valha para $(v,v1,...,v,). Se A F Jvé(v)ay, ..., an|, entdo existe a € A CB
tal que 2 |= fla,ay,...,a,] = B F ¢la,ar,...,a,) = B = v d(v)[ay,...,a,]. Por outro
lado, se B |= Jvg(v)[ay, ..., a,], por hipétese existe a € A tal que B F dla,ar,... a0 = 2 =

Playay, ..., a,) = A =T d(v)[ay, ..., a,). QED

Exemplo 4 (BS 4.1.3). (Q, <) < (IR, <) com < usuais, mas tais estruturas nao sao isomorfas.

Sejam ¢(v, vy, ..., v,) férmula da linguagem adequada ¢ ay, . . . »an € Q, b € IR tais que (IR, <)
-

= ¢[b,a1,...,a,]. Permutando os indices das varidveis se necessdrio, podemos assumir que a; <

. < a,. Aplicaremos agora o ultimo lema.

Se b € @, ndo hi o que provar. Suponha entio que b é irracional, aj. < b < q, i I REm~1,

(Os casos b < ay e a, < b sdo andlogos.) FEscolha, entdo, ¢ € Q, ap < ¢ < (jy1, € considere

h IR = IR dado por

5 Se T < apouapy; <
cC—Qy T2 o 7 <&

)= =y (2 —ap) tar seap <z <b
(0 —b)+e seb<a < Ay

Ufg1 - RS
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Vemos que h é uma fungao crescente bijetora, ou seja, é um isomorfismo, que fixa cada a; e h(b) =
c. Assim, h é uma imersao elementar de (IR, <) a (IR, <), donde (IR, <) |= ¢[h(b), h(ay), .. h(ay)],
isto 6, (R, <) |= ¢[c, a1, ..., a,], com ¢ € Q. Entdo, pelo lema, (@, <) < (R, <).

Nio existe isomorfismo entre essas estruturas pois uma é enumerével e a outra nio.

Outro resultado invoca a descri¢ao de estruturas por um conjunto de constantes correspondendo

ao préprio dominio:

Teorema 5. h : 2l — B ¢é imersao elementar se e somente se (2, (a),c4) = (B, (h(a))aca).

(A, (a)aca) € (B, (h(a))aca) sdo estruturas de uma nova linguagem L4, obtida de L apropriada,
a 2 e B adicionado-se mais constantes, uma para cada elemento de A, e as interpretacoes de uma,
mesma constante sdo correspondentes, por exemplo a e h(a). Referimo-nos & equivaléncia elementar
em Ly.

Para a implicagdo direta, suponha o(cy,...,c,) sentenga de Ly, onde ¢y, ..., ¢, sio as novas
constantes que ocorrem em o. Note que, substituindo-se essas constantes por varidveis distintas
que nao ocorram em o, obtemos uma férmula de L: podemos, permutando varidveis se necessario,
supor que seja o(vy,...,v,). Se a; corresponde & constante c;, temos (%, (@aca) Eo = A =
olay,...,a,] = B=oh(ar),...,han)] = (B, (h(a))eca) = 0.

Reciprocamente, % |= d[a1,...,ax] = (%, (a)eca) E od(c1,...,c0) = (B, (h(a))aca) =
ey s00) = B = dlble1), 0, Mlon)) QED

Os teoremas BS 4.1.10, 11 e 12 prosseguem nessa direcao e sao freqiientemente lembrados em
argumentos da teoria.

Um objeto sintdtico da Teoria dos Modelos ¢ a teoria, conjunto consistente de sentencas de uma
linguagem. Por exemplo, dada uma familia 7 de estruturas relacionais de mesmo tipo, o conjunto
Th(T) de sentengas validas em todas as estruturas de 7 é uma teoria. Define-se também M (%), a
classe dos modelos da teoria .

Dada uma teoria X, definimos o conjunto ¥* de todas as sentengas o conseqiiéncias de 3 por

prova formal (X F o). Podemos enunciar, entao, o importante Teorema da Completude deste modo:
Teorema 6 (BS 7.1.1: Completude). ¥* = Th(M (%)). (Toda teoria tem modelo.)

Na determinacao de propriedades de modelos de 33, pressupomos suas particularidades e também
dispomos de todos os métodos mateméticos, tanto de primeira como de segunda ordem, e conceitos
como convergéncia, fecho algébrico e cardinalidade. Uma vez que se prove, assim, que uma sentenca
o da linguagem apropriada (de primeira ordem) ¢ vélida nesses modelos (ou seja, como veremos
depois, as estruturas de M (¥) tém a propriedade de primeira ordem dada por o), conclui-se que
¥ F o: existe uma prova de primeira ordem de o a partir de 35, como o Lema 16 exemplifica.

Uma teoria ¥ é completa se, para toda sentenca o da linguagem de 3, ¥ F ¢ ou & + ~o.
Deixamos para o leitor demonstrar esta caracterizagao semantica, em oposicao A definicao sintdtica,

das teorias completas:

Tt

85




Fato 7. Uma teoria ¥ é completa se e somente se, dadas quaisquer A, B € M (), A =B,

a Y simplesmente se estudando um modelo

- A se¢ao 9.1 de [Bell,

Desse modo, pode-se estudar uma teoria complet
) I
seu, o mais simples ou conhecido possivel, A e concluindo-se que T* = Th(2A)

Slomson] traz diversos exemplos de teorias completas (a partir da pag. 179).
acilitado. Por exemplo, se 3} for modelo-

Ha outras situagées em que o estudo de uma teoria ¢é f
completa, isto é, A CTB = Y < B para todas A, B € M(Y), entio toda imersao entre modelos de

¥ é elementar e, portanto, preserva a validade de férmulas. Virios exemplos sao apresentados na

secao 9.5 de [Bell, Slomson].

Algumas teorias tém modelos primos: A € M(%) é modelo primo de ¥ se todo modelo de ¥

tem subestrutura isomérfica a 9. Novamente, o leitor pode mostrar o

Fato 8. Uma teoria modelo-completa com modelo primo é completa.

Uma das conseqiiéncias do Teorema da Completude é a Compacidade: um conjunto de sen-

tencas tem modelo se e somente se é finitamente satisfazivel, isto é, se todos os seus subconjuntos

finitos tém modelo. J4 que a Compacidade pode ser usada em uma, demonstracao da Completude,

apresentamos uma prova independente no Teorema 30).

Observamos, finalmente, que um modelo para uma teoria faz parte em geral, da Teoria dos
bJ ] b b

Conjuntos. Por exemplo, com as interpretagoes usuais, R? ¢ um modelo para a Geometria Euclide-

ana Plana supondo-se corretas as propriedades de R sobre as
construido na Teoria dos Conjuntos, cuja

quais se fundamentam as verificacoes

dos axiomas geométricos: IR com essas propriedades é

consisténcia € indecidivel. Entretanto, é relevante a consideragao de estruturas cujos dominios nao

sao conjuntos (mas sio clusses on colegoes de dtornos), possivelmente concretas, embora nao facam

parte, formalmente, da Teoria dos Modelos. Veja Observacao em [Bell, Slomson], pag. 65.

Digressao: a defini¢io de satisfacado — Teoremas de Lowenheim—Skolem

Nao apresentamos, na primeira se¢ao, uma definicao de satisfacdo ou validade de uma formula

em uma estrutiura de tipo adequado, porque se trata de um conceito bastante divulgado nos cursos

basicos de Matemética, como Algebra Linear ou Geometria Nao-Euclideana
ados pontos e retas com uma

verificar se uma

dada estrutura é espaco vetorial ou se uma cole¢ao de elementos rotul

relagio bindria “pertence a” satisfaz os axiomas de geometria de incidéncia plana.
Aqui, explicitaremos a definicao formal de satisfacao de uma férnmla, devida a A. Tarski e cuja

. SN,
e . - B s . » ’
idéia central ¢ (:“\J E “chove” & C\\*\\\__)\\\ , ou seja, o valor de wina férmula ¢ o mesmo de
sua expressao metamatematica, Observaremos, em um exemplo da Teoria dos Conjuntos, que a
*O ponto de partida de [Tarski], pag. 155, é exemplificado na pdgina seguinte como “ ‘it g snowing’ is a trye
Precisamente, corresponde 4s Defs. 22 e 23, pp. 193-5, em relacio a um

sentence if and only il it is snowing”.
“universo” completo (no caso especifico, o universo de todas as classes), o que difere totalmente do conceito de

validade universal. Por outro lado, as Defs. 24 e 25, pag. 200, tratam da satisfacao em dominio, (Nossa

6
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tnica diferenca real ¢, efetivamente, a generalidade e passaremos entao a resultados de Lowenheim
e Skolem sobre cardinalidade de modelos.

Fixada uma realizacao 2l da linguagem em consideracdo, associamos a cada varigvel v, um
pardametro a, € A. Tal associagdo x, chamada valoragdo, é considerada somente quanto a varidveis
livres e indicada como ¢[a;,, ..., a;, ], se ¢ é uma férmula com varidveis livres Viyy - - +y Vir, OU COMO
indice no simbolo |=,. A valoragao obtida de z substituindo-se a,, por a € A é indicada r(")

a

Procedemos, entdo, por inducdo na formagao de férmulas:® (Ao predicado k-drio P corresponde

a relagdo k-dria R.)

A o=y & @y =@,
AEe P(Ungye-v¥n) © (@nyye-o080,) ER;
Az (dAD) & A peAlr
Al ~p & nioAE; ¢;
A=, v, ¢ & existea € A tal que A |:$(:) 0.

Assim, dados &, ay, ...,a, € A e uma férmula ¢(vy, ..., v,) da linguagem apropriada, dizemos
que ¢ é vdlida em %A e 2 satisfaz ou realiza ou é modelo de ¢ com tais pardmetros, se 2A S
para uma valoragao @ com tais parametros, e escrevemos simplesmente % |= ¢[ay, .. ., ap]. Se ¥ é
conjunto de sentengas, %A = ¥ se, para toda o € &, U |= 0.

Como exemplo, consideraremos esta estrutura de [Zimbarg|: (IN, F), em que E C iN? e (a, b) €
E & b=2"4...42",0<a <...<amea=a; paraalgum 1 < ¢ < m. (Chamamos a atencao
para as desigualdades estritas, que deixaremos implicitas a seguir. Assim, todas as somatérias
nesta se¢ao sao consideradas sem repetigao.)

Veremos que tal estrutura verifica todos os axiomas usuais de Teoria dos Conjuntos, com excegiio
do Axioma da Infinidade. Ao enuncid-los, faremos uso das abreviagoes usuais.

O Axioma de Existéncia é imediatamente verificado. Na forma Jz (¢ = z), basta tomar para x
qualquer elemento de IN # ; na forma JzVz ~(z € z) (Axioma do Vazio), tomamos z = 0.

A validade do Axioma da Extensionalidade VzVy (z =y ¢ Vz(z € = & z € y)) é imediata se
lembrarmos as propriedades de representagao binaria dos naturais.

Este é o Axioma do Par: VaVy3wVz (2 € w & (z =2V 2z =y)). Se = # y, tome w = 2° 4 2v;
se ¢ =y, tome w = 2%.

Axioma das Partes: VzdwVz (z € w & Vy(y € 2 = y € z)). Dado & = 2% + ... 4 2% tome
w = Y. 2% onde « percorre sem repeti¢do todos os ) 2% dados pelos arranjos de 1 < i < m sem

repeticao.
Axioma da Unido: VedwVz(z € w < Jy(y € Az € y)). Dado z = 2% .  29m
a; = 2% 4 ...+ 2%, tome w = ) 2%, somatéria (sem repeti¢do) sobre todos 1 < j < my,

I € 4 & M

representagao pictorica coloca-se entre as duas possibilidades.) Finalmente, a pdg. 221 conclui: “The method of
construction sketched there can be applied as a whole to other languages of the 1** order.”

X It Sabil e . W .
*Usaremos essa definicao explicitamente na se¢ao “Ultraprodutos e infinitésimos”, pag. 17, na demonstragao do

Teorema de Los

=~
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O Axioma da Separacio é, na verdade, um esquema (cole¢ao) de axiomas. Se #(v) é uma férmula,
qualquer de uma varigvel livre da linguagem em consideracio, devemos verificar VadyVe (t € y
teaAPt)). Coma =29 4 .. 4 2% temos y — > 2%, onde a soma é feita sobre os 7 tais que
(IN, E) |= ¢[a;]. Analogamente, podem-se verificar formulagoes mais complexas desse axioma.

Axioma da Regularidade: Vz (& # ) — Wy eaneny =p). Coma =29 4 } 20m
tome y = a; (de fato existe pois = # 0). Por definicdo, (y,z) € E; suponha z € IN tal que
(z,2),(z,y) € E: entdo z = a; para algum i e, como (z,a1) € E, 2% < a, < a; = z, absurdo.

O Axioma da Infinidade usa também a abreviacio ¢’ : zU{z} e escreve-se Iz D eanVy(yeax —
y" € x)). Suponha agora que b € IN satisfaga essa propriedade de z. Como (0,0) € F, existe de fato
am O maior elemento de b com respeito & ordem usual em IN. Mas (am,a,) € E = a/, > 2%m > -
donde (az,,b) ¢ F, contra a hipétese (falsa) original.

Os Axiomas da Escolha e da Substituicao exigern mais abreviagoes, de modo que nio escreve-
remos as sentencas correspondentes.

O Axioma da Substituicio é também um esquema de axiomas. Suponha que #(u,v) é uma
férmula de modo que para todo « € IN existe um tnico b € IN tal que (IN, E) |= ¢[a,b]. Dado
¢ € IN, devemos mostrar que existe y € IN obtido substituindo-se cada elemento de z por sua
“imagem” por ¢: se x = 2% + ...} 2°m tome y — > 2% onde b; € IN é tal que (IN, £2) |= ¢la;, b
e a soma é sem repeticao sobre todos 1 < i < m.

O Axioma da Escolha, em uma de suas formas, enuncia-se deste modo: para todo z # ) tal que
Vy €z (y #0), existe f: 2 — (Jz tal que Vy € z (f(y) € y). Lembrando que, em (IN, £), f deve

ser um elemento de IN, dado z = 21 .. 2%m  tome
22ai +22u" +2b"
f - E 2 )

onde b; é o menor elemento de a;. (Assumimos a definicao {{a;}, {a;, b;}} de par ordenado.)
Concluimos que o Axioma da Infinidade nio é conseqiiéncia dos demais e que estes sio consis-

tentes entre si. Exibindo-se também um modelo de todos os axiomas, concluirfamos que o Axioma

da Infinitude é independente dos demais.

E um bom momento para apresentarmos o Teorema de Léwenheim-Skolem,
apenas o conceito de

fundamental em
diversos argumentos da Teoria dos Modelos e que, em seu enunciado, requer

satisfacao:

Teorema 9 (BS 4.3.5: Lowenheim-Skolem). Se ¥ é uma teoria com modelo infinito, ¥

term modelos de todos os cardinais > Ny, card X.

Frisamos
contexto em que for utilizado: a teoria ¥ define a linguagem L dos predicados que contém (que

que nao se faz qualquer alusdo & linguagem nem no enunciado do teorema nem no

serd sublinguagem de todas as linguagens que possam ter 3 como teoria).
ista ¢ uma aplicagio simples do teorema, enunciada para a Teoria dos Conjuntos de Zermelo.

Fraenkel, Z I, mas viélida para outras teorias semelhantes ou mais fracas:
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Exemplo 10 (Paradoxo de Skolem). Se ZF' for consistente, terd modelo enumeravel, em
que existem elementos nao-enumerdveis.

Pela Completude (Teorema 6), uma teoria consistente tem modelo. No caso de ZF, como
0, {0}, {{0}},...sdo todos distintos, tal modelo ¢ infinito.

Observe que ZF' é enumerdvel: como a linguagem apropriada tem um nimero finito de predi-
cados, suas férmulas (finitas) sdo em quantidade enumerdvel; portanto, os axiomas (incluindo os
de esquemas) sdo em quantidade enumerdvel. Assim, existe um modelo enumeravel 2 de ZF'.

Pelos axiomas usuais, 2 contém (uma “cépia” de) IN e portanto P(IN), que é ndo-enumersvel.
Contudo, os conjuntos pertencentes a P(IN) sdo elementos de A enumerdvel.

Nao ha nada paradoxal — mostra-se somente que o conceito “enumerdvel” ndo é absoluto ou
independente da interpretagao 2.

De fato, suponha que 2 é um modelo transitivo standard de ZF,isto é, s € y€ A = z € A e
sua relacdo de pertinéncia £ é dada por (z,y) € £ < z € y. Seja o um ordinal nfo-enumersvel
com uma interpretacio a® € A. J4 que a® C A, o® é enumerdvel: existe uma bijecio f : IN — 2.
Concluimos que f ¢ A, pois a® é ndo-enumerdvel em 2.

Entretanto, o conceito “ter n elementos”, para cada n € IN, é absoluto (para modelos transitivos

standard). Assim, embora cardinais infinitos possam colapsar em Rp, 0 mesmo ndo ocorre com

cardinais finitos.

O Teorema de Lowenheim—Skolem que enunciamos é, na prética, apenas um coroldrio de dois
outros, que carregam o mesmo nome, distinguidos pelos rétulos de “para cima” e “para baixo”.
Estes podem ser encontrados na segao 4.3 de [Bell, Slomson], juntamente com os dois teoremas que
0s provam e que nos provéem de extensoes elementares para vdrias cardinalidades: considerando-se

estruturas de um mesmo tipo cuja linguagem tenha cardinal p,

Teorema 11 (BS 4.3.1). Sejam 2 estrutura infinita e C' C A. Para todo cardinal 8 que
satisfaca card C', p < B < card A, existe uma estrutura B de cardinal 3 tal que A|c C B < .6

Teorema 12 (BS 4.3.3). Uma estrutura infinita 2l tem extensao elementar de qualquer cardi-

nal > p, card A.

Nesta se¢do, vimos um modelo para quase todos os axiomas da Teoria dos Conjuntos. Do
mesmo modo, estudam-se modelos das teorias de espagos vetoriais, planos de incidéncia, corpos
algebricamente fechados, etc. FEm tais casos, contudo, as estruturas consideradas sao elas préprias
espacos, planos e corpos. IS um caso vazio caracterizar estruturas que sejam conjuntos, pois todo
dominio é, por defini¢io, um conjunto: a linguagem adequada para tratar conjuntos nao tem
predicados (nem mesmo €), mas apenas o simbolo de igualdade; a teoria satisfeita por conjuntos
nao-vazios é vazia (nao tem sentengas); isomorfismo caracteriza mesma cardinalidade. Finalmente,

observamos que nem todas as propriedades que sio formuladas em Teoria dos Conjuntos podem

%A ¢ = (C,{Re N e | € < a}), na notagao de nossa primeira segao
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ser formuladas nesta linguagem: veremos na pr()xima SCQé‘O que, por exempl() “ser finito” nio é
- y 00 ao e

axiomatizavel.

Algumas sentencas e teorias importantes

Para cada n > 2, a sentenca
327 . Ju, ... Jv, /\ mefmn =)
INNAVA
¢ satisfeita apenas por dominios com n ou mais elementos. Consideremos também sentenca,
i 327 A ~F27 L satisfeita por dominios com exatamente n elementos. Para n — 1, escrevemos
2 ~322) j4 que todo dominio é, por defini¢io, nido-vazio (ndo é necessério definir Fay,

A importancia dessas sentencas ¢ que, para n > 1 finito fixado, & propriedade “ter n elementos”
corresponde uma sentenca (em linguagem de primeira ordem) que é satisfeita por uma estrutura
relacional se e somente se essa estrutura tem tal propriedade, dita entéo de primeira ordem,

Esse conceito é o mesmo de propriedade finitamente axiomatizdvel, ou caracterizada por um
nimero finito de sentengas: basta considerar sua conjungao.

Generalizando-se, a propriedade “ser infinito” é chamada de primeira ordem geral, porque hg
uma teoria cujos modelos sdo precisamente aqueles que tém dominios infinitos: oo — {F>n In > 2).

A propriedade “ser finito”, entretanto, nao é de primeira ordem geral, isto é, nio h4 teoria (em

particular, sentenga) que a caracterize. Isso porque

Teorema 13 (BS 5.3.4). Se uma teoria tem modelos finitos arbitrariamente grandes, entio
essa teoria tem um modelo infinito.

Suponha que ¥ ¢ uma teoria com modelos finitos arbitrariamente grandes: entdo o conjunto

de sentengas > U oo ¢ finitamente satisfazivel. Pela Compacidade (Teorema 30), X U oo tem um

modelo, obrigatoriamente infinito. QED

Quando aplicamos esse resultado a uma teoria ¥ que pretensamente significasse “ser finito”
)
concluimos que ¥ admitiria um modelo infinito finito, um absurdo. P raca o G
’ e - . ; € or negacao de sentencas,
temos também que “ser infinito” nao é uma propriedade finitamente axiomatizgvel.
e lo . i o ¥ 8.
Chang, Keisler| (Coroldrio 2.1.5): adicionamos

Esse teorema é demonstrado de outro modo em
constantes ¢,, n € IN, a linguagem da teoria em questdo e tomamos oo — {~(cp, = cm) | n,m
,m
distintos em IN}. O modelo infinito para a teoria ¢ a redugdo (simplesmente desprezamos as novas
constantes) daquele obtido pela Compacidade.
Outros exemplos e contra-exemplos de propriedades de primeira ordem sio dados na seciio 5 3
de [Bell, Slomson|.
No estudo de corpos, a linguagem apropriada tem duas constantes, 0 e 1, e dois operadores
bindrios (infixos), + e . — omitiremos parénteses correspondentes & precedéncia usual e também
o simbolo da segunda operacao, indicando-a pelo modo usual de justaposicao. A propriedade “sor

corpo” & caracterizada pela teoria cujas sentencas sao os fechos destas férmulas:
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w W W v w v v

cHy=y+z, Ty =y, T+ (y+2)=(z+y)+2 z(yz) = (zy)z, lz ==z,
0+z =0, z(y+2) =2y -tz y(z+y=0), ~(z= 0) = Jy(zy =1), ~(0=1).

(Os numeros naturais podem ser introduzidos na linguagem dos corpos pelo modo natural e
comum: n abrevia (O+1+ ...+ 1).” Para cada p natural primo, a sentenga C) : p = 0 é satisfeita
N’

n Vezes

por corpos somente de caracteristica p. Os corpos de caracteristica 0 sao aqueles que satisfazem

Co=1{~Cp|P natural primo}.
Podemos também introduzir a abreviatura z : (1.z...z). Assim, a teoria ACF dos corpos

n vezes

algebricamente fechados é obtida adicionando-se aos axiomas de corpo as sentencas
£ i Vag .. Vo (~(@a = 0) = Jy (@oy° + ...+ 2y =0))
para n > 2. Por exemplo,

Teorema 14. ACF ¢é modelo-completa.
Uma prova, através do Teste de Robinson (BS 9.4.6), é dada no item j), secdo 5 do Capitulo 9

de [Bell, Slomson].

Corolario 15. As teorias dos corpos algebricamente fechados de caracteristica especificada sao

completas.
Basta observar que, para cada p primo, todo modelo de ACF'U {C}} contém o corpo Z/pZ e

todo modelo de ACF U Co contém o corpo @, contendo entao seus fechos algébricos, que sao os

modelos primos das teorias correspondentes. QED

Observamos que € é um modelo de AC'F U Co mais bem conhecido que @Q; portanto, em varios
casos, é mais interessante escrever (ACFUCo)" = Th(C).
A linguagem apropriada para falarmos de ordens contém um predicado bindrio <, que escreve-

remos infixo. Uma ordem linear 6 caracterizada pelos fechos das féormulas
e e SYNY <z—zT=y tSYNY Lz—=z<Lz,TLYVYy <

Clomo usual, z < y abrevia (z < y A ~(z =Y))

Na linguagem de corpos ordenados, As sentencas vistas para corpos € ordens adicionam-se 0s

fechos de

r<y—>ct+z<y+tz 0<azAO<y—>0<2y

"Formalmente, 0 como a propria constante e o sucessor de n como (n+ 1), por exemplo, 3 : ((04+1)+1)+1). Tal
rigor nao ¢ necessario devido a associatividade do operador +. Poderfamos também definir precedéncia (interna) de
operadores da esquerda para a direita, como em algnmas linguagens de Programagao. Consideragoes analogas devem

b A -
ser feitas para T, a segull

'_‘_——_




para caracterizar-se os corpos ordenados, sendo que <, logo <, como relacio nio tem precedéncia

sobre operadores. Essa teoria acrescida das sentencas 7,, n impar, e Vo (0 < © — Jy (z = y?))

constitui a teoria RC'F dos corpos reais fechados. Por exemplo, com as interpretacoes usuais de

ordem e operagoes, IR é modelo de RC'E.
As convencoes mencionadas quanto a -+, . e <, < a respeito de infixagdo, justaposicio e pre-

cedéncia serdo adotadas em todo o texto.
Veremos, nas préximas seces, duas aplicacdes da Teoria dos Modelos que fazem uso do que ja

desenvolvemos.

Principio da transferéncia de Tarski

Na linguagem L da teoria RC'F, termos sdo polinémios e férmulas atomicas sdo comparacoes
< ou = entre esses termos; podemos substituir os axiomas de modo que sejam comparac¢oes < ou
=. (Na teoria AC'F, observamos que se fazem somente comparagoes do tipo =.)

Lema 16. RCF I ((p1 =0)A...A(p; =0) ++ (3i=1 pf =0)), em que py, ..., p, sio termos da
linguagem em consideracio.

O fecho da férmula em questdo é vélido em todos os corpos reais fechados: como observamos,

RC'F prova sintaticamente essa férmula. (A importancia desse lema reside em que simplificamos

P1,- .-, Ps & um Unico polinémio nulo.) QED

Demonstraremos o principio da transferéncia de Tarski: os corpos reais fechados sdo aqueles
elementarmente equivalentes a IR (nessa linguagem), isto é, RC'F'* — Th(IR). (Adaptamos material
de [Prestel], a cuja numeracio referimos os resultados desta secao.)

Primeiramente, estabelecemos uma importante caracterizacao topolégica da Compacidade, para
mostrarmos o Lema da Separacdo. Como conjuncio de sentencgas é sentenca e Va (z = z) é uma
sentenca universalmente vélida, a colegao {M (o) | o sentenca da linguagem de tipo x} é base para

uma topologia na classe de todas as estruturas de tipo p.

Lema 17. Se ¥ é um conjunto de sentencas, M (X) é compacto na topologia gerada pelas classes
M (o), o sentenca da linguagem de 3.

Suponha K um conjunto de sentencas de modo que M (%) C Usen M(0). Entdo U {~o|oe

K} ndo tem modelo: pelo Teorema 30, YU {~c|o € Ko} ndo tem modelo para algum subconjunto

finito Ko de K. Assim, M () C U, er, M(0). QED

Lema 18 (2.8: Separagao). Sejam ¥y, Y, teorias e I' um conjunto de sentencas, que definem
uma linguagem comum. Assuma que para todos %1 € M(3)) e B € M (3,) exista v € I" tal que

A= veB = ~v. Entdo existem iy ELN1Si<mel<jig<n, mnelN de modo que parg
J ) ] r ra

Y" Vit Aj=1 i temos M(5,) C M(~*) e M(%3) C M (~v*).

=

Fixe % € M (X)) e escolha para cada B ¢ M (32) uma sentenca voy € I separando Q ¢ 9B

como no enunciado. Entio U%; M(5,) M (~79) é uma cobertura por abertos de M (%,) compacto:

b2
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existem Y, , - - -, 8, € I' de modo que M (3;) C M (~y,)U.. .UM (~ym,). Seja vy a conjuncgo
dessas sentencas: 2 € M (yy) e M (2;) C M (~7yq).

Novamente, (Jy¢ M(3) M (vg) é uma cobertura por abertos de M (X1) compacto: podemos
escrever M (31) € M (va,) U ... U M(vg,,). Tomando v* a disjuncao de Y941y - - - Y91, Obtemos a
separacao desejada. Note que y* € a disjuncdo de conjungoes de sentencas de T', como enunciado.

QED

[Prestel] adota esta notagdo: para I' conjunto de sentencas da linguagem apropriada, 2 - %8
se,paratoday e, A =y = B 7.

Coroldrio 19 (2.9). Sejam ¥ e I' conjuntos de sentengas e assuma que existem 7o, v1 € T tais
que 7o ¢é falsa e v; é vélida em todo modelo de 3. Se existe uma sentenga o de modo que, para
todos 2, B modelos de 3, A Ls implica 2 <5 9B, entdo existem Yi; €L, 1<i<mel<j<n,
m,n € IN, tais que (¢ ¢ /(2 Ai—; 7i;) € Th(M ().

Tome ¥; = YU {c} e Xy = YU {~0c}. Se ¥; ou ¥ é inconsistente, temos respectivamente
(0 ¢ 70) € TH(M (X)) ou (¢ > 71) € Th(M(X)). Se ¥4, %, forem consistentes, podemos aplicar
o lema anterior: se A € M(3;) e B € M(%;), entdo A, B € M(X)e A = 0 e B | ~o, donde
niio 2 < B. Obtendo 7", note que M (X U{c}) C M(y*) e M(X U {~0c}) C M(~v*) implicam
(¢ =+ v*) € Th(M (X)) e (~o — ~v*) € Th(M(X)). QED

Agora, podemos provar o teorema proposto:

Teorema 20 (3.2: Eliminacdo de quantificadores). Para toda ¢(v, ..., v,) férmula de L,
existe y formula (da mesma linguagem) sem quantificadores e sem varidveis livres exceto vy, . . U,
tal que RCF FYv; ... Vo, (¢ & 7).

O que de fato mostraremos é como eliminar um quantificador, sendo um passo da indugdo que
tem como base as férmulas abertas da linguagem. Assim, consideramos ¢ : Jvip(v,vy,...,v,), ¥

sem quantificadores.
Adicionamos a L as constantes ¢y, ..., ¢,, obtendo uma linguagem /. Uma estrutura dessa lin-

guagem é da forma (%, ay, ..., a,), em que % é uma estruturade L e ay, ..., a, € A. Evidentemente,
as sentencas de L sdo sentengas de L.

Seja I'(vy,...,v,) 0 conjunto de todas as férmulas sem quantificadores de L. com varidveis
livres entre vy, ...,v,: I'(er,...,¢,) é um conjunto de sentengas de L. Provaremos que, dados
(A, apy...,an), (B,01,...,b,) € M(RCF), temos

Iy (‘ lv ‘n) ‘/"(‘H»»--ﬂ'n)
;I TR, (B, by onbn) = (8190 e8] = (B, ..., b,),
Feito isso, como I'(ey, ..., ¢,) é fechada sob conjuncoes e disjungoes, o coroldrio acima afirma
que existe v € I'(ey, ..., ¢,) (a sentenga v* de sua demonstragao) tal que
(R Yy v i = L ey B LB w0 .
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para todo modelo (%, ay,...,a,) de RC'F. Como as constantes ¢y, ..., c, podem ser quaisquer

(RC'F é uma teoria de L), vem o que nos propusemos a mostrar (bastando recordar a Completude,

Teorema 6):
A=Y ... Yo, ($(v1,...,00) & 7(v1,...,0,)) .

Entao, suponha (%, ay,...,a,), (B, b1,...,b,) € M(RCF) tais que (2, ay,...,a,) yend)
(B, b1, ...,b,). Pelas sentencas atomicas de I/, p(a;) = b; para 1 < i < n define um isomorfismo
(que preserva ordem) p : R — S do subanel R de 2 gerado por ay,...,a, ao subanel S de B
gerado por by, ..., b,. p pode ser estendido aos corpos de fragoes de R e de S, respectivamente, e,
mais ainda, aos fechos reais £/, I desses corpos. Desse modo, temos p : /' — F' isomorfismo entre
subcorpos reais fechados de 2 e B, p(a;) = b; para 1 < i < n.

Assumindo agora que (%, ay,...,a,) = ¢(c1,-..,¢), isto é, A |= ¢lay, ..., a,], basta mostrar
que (B, by,...,b,) = ¢(c1,...,¢p), isto é, B |= P[by, ..., b,]. Lembramos que ¢ : Jvp, 9 aberta:
assim, podemos assumir que v estd na forma disjuntiva normal 1y V ...V 1,,, onde cada 1; é
uma conjuncao de férmulas atomicas® (as negagoes de férmulas atémicas, nessa linguagem L, sio
equivalentes a disjuncoes de outras atémicas, usando-se as propriedades de ordem). Entdo, como
Jv b equivale a Jv 1y V...V Jv 1, podemos assumir ainda que ¢ : Jv 1;, 1; conjuncio de atomicas
(omitiremos o indice 7).

Como observamos antes sobre L e a teoria RC'F, vemos que 1 é da forma (0 = p(v, vy, ..., v,))A
/\Jr.:l(() < gj(v,v1,...,v4)), p,¢; polindmios. Com a interpretagio dada as constantes ¢y, ..., c,,
por hipétese existe a € A tal que p(a,ay,...,a,) = 0 e gj(a,ay,...,a,) > 0 (1 < j < r). Resta
mostrar que existe b € B tal que p(b,by,...,b,) =0e q;(b,by,...,0,) >0 (1 <5 <r).

Note que, de fato, p, ¢; sdo polindmios em v com coeficientes vy, ..., v, e “naturais” (I+...41).

Se p nao é o polindmio identicamente nulo, entdo a € F, jd que F constitui-se dos reais algébricos
sobre A e p tem coeficientes em F: tome b = p(a).

Se p ¢ o polinomio identicamente nulo (ou se nao existe p, caso em que ¥ ndo tem subférmula
0 = p), sejam r; < ... < r; as raizes dos ¢; em ™A: ry,...,r; € E; como e ndo é raiz desses
polindmios, ¢ < ry our; < a < riyy (1 <7 < t)oury <a. Tomeb € F como p(ry) — 1 ou
p(ri +rip1)/2 ou p(ry) + 1, correspondentemente.
by queema,ay, ... a,, pois p é um isomorfismo.

Assim, cada ¢; tem o mesmo sinal em b, by, ..
QED

Corolario 21. RC'F' ¢ modelo-completa.
Dada ¢, tome v resultado da eliminacao de quantificadores. Suponha que A C B modelos de
., ay) €, como v é aberta, B = v]ay, .. ).

RCF e que 2 |= ¢lay,...,a,]. Entdo A = vla, ..
QBED

Asslin, B = @lgqy ... als

8A prova da Proposicao 1.4 de [Mendelson], pag. 24, mostra cque toda férmula aberta é semanticamente equivalente

a outra (também aberta) na forma disjuntiva normal
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Corolario 22 (3.3). 2,8 corpos reais fechados com € subcorpo ordenado comum: para toda

férmula ¢(vy, .- .,v,) de L e quaisquer cy, ..., cn € C, 8 =dlen,...e] & Bl=dley, . 4]

Corolério 23 (3.1: Principio da transferéncia). 2 é um corpo real fechado < 2 = IR.
Todo corpo real fechado, por ser ordenado, tem caracteristica 0; portanto, podemos concluir
que, como IR, contém ® (por isomorfismo). Aplica-se, entao, o coroldrio anterior a sentencas.
Alternativamente, RC'F' é modelo-completa e tem um modelo primo: o fecho real de Q. Assim,

RC'F é completa e sabemos que R |= RC'F. QED

Fsta é uma conseqiiéncia do que trabalhamos:
Sejam R um corpo real fechado e n € IN: os subconjuntos semi-algébricos de R™ sao aqueles

gerados por unido finita, intersecao finita e complementagido a partir de {a € R" |0 < f(a)},
f € R[z1,...,an]; 0s definiveis sobre R sdo {a € R*|R = ¢la,b]},b € R™ e d(T1,.--,Tny Y1y -1 Ym)

férmula de L. Temos o

Teorema 24 (4.1). Os conceitos de conjuntos semi-algébricos e definiveis coincidem.

Pela eliminacdo de quantificadores, podemos assumir que ¢ é uma férmula sem quantificadores,
ou seja, uma combinagdo booleana de férmulas atomicas que sao comparagoes de polindémios re-
duziveis (pelas relagoes de ordem) & forma 0 < p. Esses polinomios tém coeficientes em R: b € R™
e(l+...+1)€R.

Do mesmo modo, um conjunto semi-algébrico é definido por uma combinacao booleana de

comparagoes 0 < p de polinbmios com coeficientes em R. QED

Corolério 25. Os semi-algébricos sdo fechados sob operagoes booleanas, fecho, interior e fron-
teira (na topologia de intervalo), projegGes e imagens sob fungoes definiveis.
Uma projecdo é obtida sobre uma férmula quantificando-se existencialmente uma das varidveis

livres; fungoes definiveis sdo aquelas determinadas por férmulas da linguagem.

O problema colegial de Tarski

bara discutirmos exponenciacio de nimeros naturais, precisamos de uma linguagem [ com
uma constante 1 e as operagoes bindrias infixas +, . e A, esta indicada pelo usual “elevamento”.
Também adotaremos a precedéncia usual A, ., +.

A teoria em consideraciao I X P contém os fechos destas formulas:

i) z4+y=y+e, zy=yz, c+{y F2y=(z+y)+ 2,
z(yz) = (zy)z, e(y +2) =y tzz, lz =2, v =z,

i) 1 =1,

iy [Ey)* = 2%,
v} =¥ = o¥®,
v (2¥) =a¥




Evidentemente, o conjunto dos niimeros naturais IN com as interpretacoes usuais de 1, +, . e A
(indicaremos tal estrutura também como IN) é modelo de EX P, adotando-se 0° = 1.
O problema colegial de Tarski simplesmente pergunta se IN = f =g = EXPF f=g4 para

todos os termos f, ¢ da linguagem L.
Responderemos negativamente a essa questao, seguindo a construcio de [Wilkie|. Consideremos

0S termos
fo(z,y): ((+ 1)+ (2 + 2+ 1)%)¥ ((a3 + 1)¥ + (z* + 2% + 1)¥)®
e
go(z,y) : ((z + )Y + (2 + = + 1)) ((2° + 1)* + (z* + 2* + 1)7)7 .

Primeiro, mostramos que IN |= VaVy (fo(z,y) = go(z,y)). De fato, fo(z,y) = ((z + 1) + (2? +
z+1)7)Y (((z+1)(z* —z+1))Y +((#* +2+1)(2® —z +1))¥)* = ((z+1)"+ (22 +2+1)%)? (((z=+1)¥ +
(22 +z+1)¥)(z? —z+1))° = (z + 1)° +(2® +2+1)°) (2 + 1) + (22 + 2+ 1)) (2% -2 +1)™¥ =
(z?2—24+1)% ((z+1)"+ (2?2 +2+1)%)Y ((z+1)V+ (2% +z+1)¥)® = ((z® -2z +1)*((z +1)* +(22 4z +
D2)) (@ + L)Y+ (22 F 2+ 1)) = ((2°+ 1) + (@ + 22+ 1)) (@ + 1)+ (@2 +a+ 1)) = go(a, y)-

Observamos que, apresentado um modelo de £ X P em que ndo valha fy = g, conclui-se que nio
EXPF fo = go. Construir tal modelo, entretanto, é extremamente complicado, sendo interessante
considerar a teoria mais fraca X P~ obtida removendo-se de F'X P a tltima sentenca, isto &,

BEXP = EXP— {(z¥)? = 2%}
O Lema 6.9 de [Wilkie] é coroagdo de um argumento sobre provas sintdticas e afirma que

Lema 26. FPX P f() = go = EFXP | fo = go-

Agora, construimos um modelo 2l de £2.X P~ em que seja satisfeita a sentenca Iz 3y ~( fo(z,y) =
go(z,v)), equivalente & negacao de fo = go.

Como dominio, consideramos A = IN[z| o conjunto dos polindmios de coeficientes naturais na
varidvel z. Interpretamos 1, + e . como o polinomio constante 1 e as operagoes usuais de soma e

produto de polinémios.
Resta interpretar apenas A, o que faremos por indugio na complexidade do expoente: se m € IN,

pleyon = pfz).. - . - p(z). Bm particular, p(2)A0 = 1.
N, s’

m. vezZes
p(2)Az = zF ) com k; € IN o maior tal que (2% — z + 1)¥|p(z) na teoria usual de polinémios

(existe, pois k; =0 = (22 — 2+ 1)" =1).
p(2)rz% = (2 + 1)*2, com ky € IN 0 maior tal que z¥2|p(z) (novamente, existe).

Se m > 2, definimos p(z)Az™ = 1, e fazemos, de modo natural,

n n

p(z)A Z a;z H(p(i;)/\:i)/\u,,'

1=0 1=0

quando ag, ...,a, € IN, ou seja, p(z)r(ap + arz + ...+ a,z") = ([)(;‘))"“(‘/)(.?)/\.‘:)"'(/)(3)/\33)":

(p(=))0z41% (= + 1)hae2,
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2 6 modelo de EX P~: verificar que % satisfaz os fechos das férmulas do grupo i) é imediato
pelas interpretacoes dessa estrutura. A férmula ii) também é trivialmente verificada: as defini¢oes
de exponenciacdo aplicadas a base 1 levam, respectivamente, a 1Am = 1, 1Az = 20 = 1, 1422 =
(z+1)° =1e1Az™ =1param > 2.

Para o fecho da férmula iii), observemos que, para a base produto de polinémios pq, ki =
kip + kg € k2 = kap + kzg. Entdo (pq)N(ao + a1z + ...+ anz") = (pg)z*11 (2 4 1)k2*
7)“0(1“0;}“1P“1+k‘qa1(z o4 1)k2p(lg+k2q11.2 — puozklpal(z o l)kgpugqaozquul(z i 1)!:2(,(12 = pA(ao +arz +
oot anz®)gMao+arz+ ...+ a,2"), usando-se apenas as regras usuais de polinomios.

Do mesmo modo, vemos que quaisquer polinémios satisfazem a férmula iv). Com a notagdo
original, pA(ag + a1z + ...+ apz" +bg+biz+ ...+ b2") = pa0+bozk1(a1+b1)(z 4 1)k2(a2+52) iy
pﬂozk‘l“l (z + 1)k2“2pb0 Zkib1 (z+ 1)"21’2 =pAag+ayz+...+an2")pA(bo +byz + ...+ b.z").

(Embora seja desnecessério, verifica-se que a férmula v) ndo é vélida em geral em £1.)

Voltando agora & notagao “elevada”, temos em 2 folz, 22 = (z+ 1)* + (2% + z+ 1)2)?* (23 +
)2 4 (A+ 2+ D)7 =Q+D)7(Q+1)7 = 2792 = 1.1 =1 e go[z,2% = (z+ 1)" + (2 + z +
1)) (2 + 1) + (2 + 22+ 1)) = (1 +1)*(z + 2 =2°(22)" =1(z+1)=2+1#1.

Entdo A = EXP~ e A |=3Jady~(fo = go), donde, pelo lema acima, ndao EX P+ fo = go-

[Wilkie| apresenta uma teoria mais forte que EX P com resposta positiva para o problema de
Tarski: no que se segue, sua notagao original * foi substituida por .

Um polinémio p de n varidveis com coeficientes inteiros é dito positivo se p(ay,...,a,) > 0
.,a, € IN*. Sejam {, um novo operador n-ério e I/ a linguagem obtida de L

para todos ay, ..
adicionando-se todos os t,, qualquer n € IN™. Assim, a interpretagao natural de t, em IN* é p.
Define-se EX P’ adicionado-se a £ X P os fechos em Th(IN") de todas as formulas f = g em que

f, g sdo termos de L sem A. Entéo o Teorema 1.9 de [Wilkie] enuncia-se

Teorema 27. Para todos os termos f, g da linguagem L. W f=f=9g = EXP'l f=g.

Ultraprodutos e infinitésimos

O principal tema de (Bell, Slomson| é a construcio de estruturas por ultraprodutos. Assim,

resumiremos aqui as segoes 1, 2 e 4 de seu capitulo 5.

Dado um conjunto indice I # 0, um ultrafiltro Fsobre [ 6 F C P(I)tal quei) X,Y € F =
XNYeF i) XeFeXCYCI=Ye¢ F;ii) XeFeI-X¢gF(XCI).

['ixamos agora um tipo g e estruturas A;, i € I, desse tipo. Sejam A = Hiel A; e ~p esta

relacao em A:
frrg e {iellf()=g@)}eF.

Nio é dificil mostrar que ~p é, de fato, uma relagao de equivaléncia em A. De ur
) , mm modo

intuitivo, podemos pensar em [ como o conjunto dos subconjuntos “grandes” de I e em ~p como

uma relacao de igualdade “quase sempre”, ou em “quase todas” as coordenadas.

i




Para simplificar a exposicdo, a partir de agora assumiremos que o tipo fixado contém um tnico

predicado P bindrio. Sejam R; C A7, i € [, as relacoes correspondentes: defina sobre A a relacao

R dada por
(fg)e B & {iel|(f(i),9()€Ri}e F.

Novamente, mostra-se que ~p é uma relagdo de congruéncia quanto a R, isto é, f ~p f

g~rg'e(fg)eR = (f,g') €R.
Denote f/F a classe de f € A quanto a ~p e Hiel A,L-/l" = A/I' o conjunto dessas classes.

Nesse dominio, portanto, a relagdo Ry dada por

(f/F,9/F)€ Rp < (f,9) € R

estd bem definida.
O ultraproduto das estruturas dadas quanto ao par ultrafiltro I, F'

HQ[Z-/F: (HAi/F, .Rp) .
el el

(Essa notacao é reduzida a [1; %, em [Chang, Keisler|, j4 que I = [J ', apesar de ser ambigua,

¢ a estrutura (de tipo )

conforme sua pédg. 215.)
A nogdo de “quase sempre” se estende a todas as férmulas:
G 1

Teorema 28 (BS 5.2.1: Lo$). Para todos vy, ..., v,) férmula da linguagem adequada e
fI/Fv--'yfn/FE H-[GIAL'/F:

Hgi/}r#(p[fl/F,...,fn/F} S el = ¢fi(0),..., ()]} € F.

el

Como definimos a satisfacio de uma férmula por indugéo em sua complexidade, a demonstracao

natural desse resultado ¢ também por indugao na formacao de férmulas.
IS mais conveniente, no argumento, indexar a valoragao no simbolo |=. Sendo 2 — (P Fnem

seqiiéncia arbitrdria de elementos de [Licr A,-/F e z; = (fa(%))nen a seqiiéncia correspondente em

Ai, 1 € I, devemos mostrar que HZ-C,Q[Z-/F Fed < (i€l |, ¢} € F.
O caso das férmulas atéomicas Um = Uy € P(uv,,,v,) é imediato a partir da definigao das classes

fm/F, fo/F e da relacio Rp. Por ilustracao, eis a primeira situagao:

[, 2 / Flwom=v, & fufF=/f/F

& farre b

& {iel|fm@)=f,(d))eF
{ie | | 7; Uy = U} € F

1
g



Para férmulas da forma 1 A x, usamos as propriedades i) e ii) dos ultrafiltros, considerando que
(il vAXx={iel |, vIn{iel|Y% =, x}

Para ~, usamos a propriedade iii), em {i € [ |2 |z, ~p} =T — {i € T |U; }=, 1}.9

Finalmente, consideramos a forma Jv, 1. Denote D = {i € I | 2; E, v, b}

Suponha que [];c; Ql,-/F = Jv, . Entdo existe a € A tal que HieIQI,-/F }:l_( ") . Por
hipétese de indugdo para .z*(a;‘F), E={iel|% hxi(aﬁ)) ¥} € F, i que POderfamos“égmar e
valoragdo em que o n-ésimo termo fosse a/F'. Mas E£ C D, donde D € F, o que deviamos mostrar.

Suponha agora que D € F. Se ¢ € D, entdo X; |=;, Jv, 1, donde existe b; € A; tal que
A; l:l(bn') . Pelo Axioma da Escolha, existe b € A tal que i € D = b(i) = b;, sendo b(i) um
elemento qualquer de A; @ sei ¢ D. Entao D CC ={i € I |; #::m_(b&)) ¥}, donde C € F. Pela

hipétese de indugdo para (, /), [Tier Qii/F i:I(b7F) ¥, donde [[;¢; Qli/F [z 3vn Y. QED
Corolario 29 (BS 5.2.2). Se o é uma sentenca da linguagem apropriada, [Licr Q[l-/F o &
{iel|U=0c}eF.

Dado I # 0, diz-se que uma familia 7 C P(I) tem a propriedade da intersec¢io finita se
qualquer subconjunto seu finito tem interseccao ndo vazia. Em suas primeiras se¢des, o capitulo
1 de [Bell, Slomson] ocupa-se de mostrar, por meio do Lema de Zorn, que toda familia com tal
propriedade pode ser estendida a um ultrafiltro sobre 1.

Podemos agora demonstrar o

Teorema 30 (BS 5.4.1: Compacidade). Um conjunto 3 de sentencas é satisfazivel se e

somente se é finitamente satisfazivel.

A implicagao direta ¢ imediata. Para a reciproca, tome I como o conjunto dos subconjuntos
finitos de . Assim, todo A € I tem modelo An.

Considere A* = {A" € T| A C A’}. A colegio {A* € P(I)| A € I} pode ser estendida a um
ultrafiltro ' sobre 7, pois tem a propriedade da intersecgéo finita: Ay U...UA, € ATN...N Az,

Mostremos que HAQQ{A/F = X. Fixe o € X: denote Ag = {0} € I. Assim, se Ag C A’ € [
entdo Ans |= o, donde Ay C {A' € I'|™Uar =0} Jaque A € F, {A" € I|Ua |= 0} € F; pelo

corolério acima, [[a¢; QlA/F =, QED

Quando todas as estruturas 2(; sio uma mesma 2, indicamos o ultraproduto por 2/ / )
ultrapoténcia de 2l quanto ao par [, I,
Defina, para a € A, a fungao constante a* € A a*(1) = a, e a imersao canonicad : A — Al / F

d(a) = a*/F.

?Este é o tinico ponto em que se usa a propriedade iii); o restante da demonstragio indica para quais férmulas vale

o enunciado em caso de um produto reduzido por um filtro. A Definigao 6.3.1 e as Proposicoes 6.3.2 e 3 de [Chang,

Keisler] apresentam uma caracterizagao completa
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Lema 31 (BS 5.2.3). d: 9 — Q[’/F ¢ uma imersdo elementar.
Pois ?21’/1" = Hat/ B /F) & {i € T = glai(i),..., a2} € F o (ierl|ol
Play, ..., a,]} € F = 9 = dlay, ..., a,], j& que @ ¢ I'.1% Note que esta prova ja demonstra que d

é injetora e preserva relagoes, isto é, que d é uma imersio. QED
Corolario 32. Por isomorfismo, podemos considerar 9 < Q[]/F.

E fécil mostrar que, se um ultrafiltro contém um conjunto finito, contém um conjunto unitdrio,
donde se pode concluir que o ultraproduto construido sers isomorfo a um dos fatores.

Portanto, devemos procurar por ultrafiltros sem conjuntos finitos, ditos ndo-principais. J4 que
0s subconjuntos co-finitos (complementos de finitos) do conjunto indice formam uma familia com
a propriedade da intersec¢do finita, existe um ultrafiltro nao-principal sobre todo conjunto infinito.

Aqui, nao desenvolveremos a classificagao de ultrafiltros, disponivel na secio 6.1 de [Bell, Slom-
son|, restringindo-nos a identificar a nogao “quase sempre” como conseqiiéncia de “exceto em um

nimero finito de coordenadas”.
Por exemplo, tome IN como conjunto indice e {7 ultrafiltro ndo-principal sobre IN. Vimos,

nos ultimos lema e coroldrio, que podemos considerar IR < RN / U, identificando ¢ € IR com
a® /Ul = [g,a,.. Jsu- Pela definicio do ultraproduto, as relacdes sio consideradas coordenada a

coordenada: 1 = (1,1,.. Jsu € a unidade e
(1,3,2,19,-56,7,2,2,2,...) ,y = (2,2,2,27, —-e*5,2,2,2, .. )

pois essas seqiiéncias diferem apenas em um conjunto finito de coordenadas, que nao pertence a /.

Do mesmo modo, considerando-se +, ., < usuais em IR, temos que IRN / U é um corpo ordenado,
mas ndo arquimediano: o médulo de (1, - }1, .+.)ju € menor que 1/m para todo m € IN nio-
nulo'!, ou seja, (1, %, 5oy —71;, -+ )yu é um infinitésimo.

Se z,y € IR'N/U, definimos que = ~ y se » — y € um infinitésimo. ~ é uma relacio de
equivaléncia e permite-nos dar outra caracterizagao do conceito de continuidade.

Como observamos na primeira seciio, a J/ IR = IR corresponde uma relagio ' C IR? ta]
que f(z) =y < (2,y) € F. Em IR'N/U, a relagao correspondente [, origina outra funcdo

Jor; IR'N/U — IR'N/U extensao da primeira.

Teorema 33. f é continua em Ty € IR se e somente se Jolz) = Ju(zp) para todo 2 ~ Ty,

T € IR'N/U.

Considere a férmula ¢(c, §) : Va (o =2l < 6 = [ f(z) = f(x0o)

< £), extraida da definicio usyal

& = 9
de continuidade.!?

Pois ) € ' = [ Z F', mas também 0 Cvel = el
""Tal m é da forma (rm,m,m, .. o e nao é qualquer m € INW/// & "\’W///

ica de primeira ordem, apenas abreviada, com as variaveis livres ¢ § o £o: esta

244 3 ) ,
'?E, de fato, uma férmula de 16g

ultima nao serd indicada. Fm IRKN//J', a interpretacao de f é fy
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Fixe £ > 0 real e suponha que f é continua em zo € IR. Entdo existe § > 0 real tal que
IR |= ¢, d]; pelo fato da extensdo ser elementar, IR'N/U = ¢le, ). Considere @ ~ zo: como & — z
é infinitesimal, seu médulo é menor que & real, donde |fu(z) — fu(zo)| < . Como & é qualquer
real positivo, fu(z) = fu(zo).

Por outro lado, suponha que fu(z) = fu(zo) para todo z & z e fixe um infinitésimo positivo
g € IR'N/U. Entéo, para qualquer € > 0 real, IR'N/U = ¢le, 0], donde IR'N/U =36 > 0 ¢[](5).
Logo, para todo £ > 0 real, R |= 3§ > 0 ¢[](8), ou seja, f é continua em zg. QED

Considerando-se 0 um infinitésimo, o conjunto de infinitésimos é um anel M;. Sendo My o
conjunto dos ndmeros finitos de IR'N/U, My é um ideal em My e My/M; (anel quociente, ou
também Mo/ =) é isomorfo a IR, como indicam as pp. 56-7 de [Robinson].

O Célculo Infinitesimal recebeu tratamento rigoroso em [Robinson], fazendo uso da Légica
de ordens mais altas, e a nova drea, Andlise Nao-Standard, ndo sé fornece demonstracées mais
elegantes como também ja decidiu problemas de diversas dreas.

Uma apresentacao sem recurso a Teoria dos Modelos e construgdes logicas é feita em [Keisler],
um curso bésico de Célculo (incluindo limites) baseado em infinitésimos. Assume, além dos axiomas
usuais para IR, outros para um conjunto de “hiperreais” para os quais a ultrapoténcia IRN / U
(apresentada apenas em seu Epilogo) é um modelo.

Mais Teoria dos Modelos

A Teoria dos Modelos caracteriza-se por sua generalidade e pela amplitude de suas ferramentas.
Apresentamos nesta se¢do mais alguns exemplos.

ARITMETICA NAO-STANDARD
Na Teoria dos Nimeros, usam-se os operadores + e . usuais, a constante 0 e o operador unério
s (sucessor). Reescrevemos de [Mendelson|, pdg. 103, os axiomas da Teoria da Aritmética Formal,

Teoria dos Nimeros ou Aritmética de Peano: sido os fechos de

~(0 =s(z)), s(z) =s(y) 2z =y, z+0=2, z+s(y) = s(z +y),
2.0 =0, z.5(y) = (z.y) + z, $(0) = (Vv (¢(v) = ¢(5(v))) = Vv $(v)),

em que ¢ é férmula da linguagem em consideracio.'®

Resumimos agora a discussao na se¢io 12.2 de [Bell, Slomson].

Pela Incompletude de Godel-Rosser (veja [Mendelson|, pdg. 145), a Aritmética Formal nao é
completa se for consistente; existiriam entao dois modelos nao elementarmente equivalentes da

Aritmética Formal (pelo Teorema de Lowenheim-Skolem, podemos considerd-los enumeraveis).

05 axiomas (S1) e (S2) do sistema S de [Mendelson] sao, no Céalculo de Predicados com igualdade, substituidos

pelo Exercicio BS 3.3.5 e pelo axioma PC11 de (Bell, Slomson]. (Adotamos S tendo em vista uma referéncia a uma

prova da Incompletude de Gédel.) No Exemplo 1.4.11 de [Chang, Keisler], a férmula ¢ pode ter parametros




O modelo standard da Aritmética Formal é IN com as interpretacoes usuais de +, .es. O fatode
IN ser modelo dessa teoria e, portanto, ela ser consistente, é uma hipétese explicitamente assumida;
o ultimo pardgrafo de nossa primeira se¢ao aplica-se nesse caso.

As sentencas dessa linguagem vélidas no modelo standard formam a Teoria da Aritmética Com.-
pleta ou Teoria dos Ntimeros Completa Th(IN).

Se F' ¢ ultrafiltro nao-principal sobre IN, IN'N / I’ é modelo da Aritmética Completa, mas nio
isomorfo a IN, pois tem cardinalidade 280 (BS 6.1.10 e BS 6.3.13).

Mostraremos ainda que Th(IN) nao é nem mesmo No-categdrica, isto é, ndo tem a propriedade

de todos os seus modelos infinitos enumeraveis serem isomorfos.
Consideramos a imersdo canénica d : IN —» IN'N/F e a formula x(z,y) : 32 (~(z = OyA (= +
z=y)). NE x[m,n] & m < n, donde y induz em A € M (Th(IN)) uma ordem total dada

por a < b & %A |= x[a,b]. Considere m* — (0,1,2,3,..)/p: m* ¢ d[IN] e, para todo n € IN,
IN'N/F = x[d(n), m*].1* Tome X = d[IN] U {m*}: pelo Teorema 11, existe 2 enumersvel tal que

(lN'N/F)lX C A< IN'N/F ¢, assim, A |= Th(IN). Como m* € A, 2 % IN: se h : A — IN 6 um
isomorfismo, h(m*) é finito, mas d(n) < m* para todo n € IN, donde m* & infinito. (Assim, a
propriedade “ser niimero finito” nio pode ser expressa nessa linguagem: se v(z) representasse tal
propriedade, IN |=Vz 1p(z) = 4 € Th(IN), mas 2 |- ~1p[m*].)

IN — %( é ainda imersdo elementar: podemos considerar IN < 9l e < estendida a A.

Note que d :
edidos por todos os elementos de IN. De fato,

Todos os elementos de A—IN sdo Jinais, ou seja, sio prec
note que IN |= Vv (v = 0V x(0, v)) e, para cada n ¢ IN, IN |= ~3v (x(s...s (0),v)Ax(v, s...s (0)));

n vezes n-+1 vezes

logo, essas sentengas sio vélidas em 2. Os elementos de A — IN sdo também chamados “infinitos”

ou “ndo-standard”.

UNIOES DE CADEIAS
Ao lado dos Teoremas de [ sOwenheim—Skolem e dog ultraprodutos, outros métodos para a cons-

trucao de estruturas relacionais com propriedades especificas foram desenvolvidos; a uniao de cadeia
elementar é um dos mais utilizados em argumentacao por inducao transfinita.

Uma seqiiéncia de estruturas e = (A, {Rep| B < a}), ¢ < €, de mesmo tipo i€ INY é uma
cadeia se ™A¢ C A, para quaisquer ¢ < 7 < £. Sua unido é a estrutura (de tipo p)

HQQ (UAC,{U Res| B < a}).

(<€ (<€

Uma interessante propriedade das unioes de cadeias é dada pelo Lema 3.1.8 de Chang, Keisler|:
I 2, L

Lema 34. A unifio da cadeia é a inica estrutura com dominio UC<¢‘ A¢ da qual cada elemento

da cadeia é subestrutura.

Desta vez, suporemos que g contém um tinico predicado P ungrio. Comparemos a uniao

(U(.«. AeyUp o Be) e a estrutura (U¢ce A¢y S). Para que esta seja extensio de cada estrutura da

'Com z = (o0,..., 0,1,2,3

1

o) r # 0, temos z 4+ d(n) = m*

[\

L




cadeia, devemos ter SN A¢ = K¢, donde UC<£ B¢ =5:sea €S, entdo a € A; para algum ¢ < e,
portanto, a € R¢ =5 N A¢, sendo a reciproca imediata. (Vemos que 2, C Uece ¥c)  QED

Exemplo 35. |J,cn GF(p?") é um corpo infinito de caracteristica p.

A secdo 8.5 de [Dean] trata dos corpos finitos, ou de Galois, de caracteristica p prima e de p™
elementos, denotados GI'(p™), mostrando que GF(p™) C GF(p") < m | n. Entdo, m < n <
GF(p*") C GF(»™").

Assim, GF(p?"), n € IN, formam uma cadeia enumerdvel cuja unido é extensio de cada desses
corpos e, portanto, é um corpo de caracteristica p infinito enumerdvel.

Em comparagao, o Teorema 13 afirma nao-construtivamente a existéncia de um corpo infinito

de caracteristica p.!®

A cadeia ®¢, ¢ < &, é elementar se, para todos ¢ < 7 < &, ¢ < A,. (A cadeia desse exemplo
nio é elementar, pois GF(p™) }= 3™.) O teorema em questdo é:

Teorema 36 (BS 4.2.1). A unido de uma cadeia elementar é extensdo elementar de todo
elemento da cadeia.

Seja % a unido da cadeia elementar ¢, ¢ < . Dados uma férmula ¢(vy,...,v,) da lingua-
gem adequada e pardmetros ay,...,a, € A¢, devemos mostrar que & = ¢lay,...,a,] < A =
[T .

Procedendo por indugdo na complexidade de ¢, vemos novamente que os casos de negacio e
conjuncao sao imediatos. Para as férmulas atomicas, lembramos que 2( é extensao de Ae.

Resta-nos considerar o caso em que ¢ é da forma Jv (v, vy,...,v,). A = Blay, .. ., @] implica
existir @ € A tal que A |= 1[a, ay,...,a,]. Mas, por se tratar de uma cadeia, a € A, para algum
¢ < m <&, donde (por hipétese de indugdo) 2, |= Pla, ay,...,a,] = A, |= Jvp(v){ay,...,a,] =
Ae = Iy (v)|ay, ..., an], j& que A < Ay

A reciproca é mais fdcil: se A¢ | $lay, ..., an], entdo existe a € A de modo que e =
Yla,ay,. .., as]; por hipdtese, A |= Yla, ay, ..., an] = A= ¢lay, ..., a,] (pois a € A unido).

QED

JoGos

Exemplificaremos uma conexao entre as teorias dos Modelos e dos Jogos com um teorema de
[Ehrenfeucht]: em suas palavras, “a new formulation of the condition given by Fraissé¢”. Adaptamos,
na argumentagio, a exposigao de [Ebbinghaus, Flum], pp. 18-9. Aplicaremos tal resultado em um
jogo nao muito artificial.

[Em um jogo em que dois jogadores se revezam, ao primeiro jogador geralmente cabe iniciativa
e, ao segundo, acoes defensivas. Assim, convém rotular o primeiro jogador como V e o segundo

como 7. Veremos que essa convengio adapta-se ao conceito de “estratégia” para o segundo jogador.

15 A existéncia do ultrafiltro usado na Compacidade (Teorema 30) depende do Axioma da Escolha




Assuma agora que I, é6 uma linguagem com nimero finito de predicados e constantes, mas sem

operadores, de modo que ¢ finito o niimero de férmulas atomicas de I, em cada combinacao de

varidveis. Suponha 2, 98 realizagoes de L.

O nimero de quantificadores aninhados q de uma férmula atomica é 0 e, em geral, q[¢ A 9] =
max{g[d], alp]}, sf~] = glé], q[Fv &) = qlg] + 1.

Definimos o jogo ¢/, (4, B) de n > 1 jogadas, em que cada uma consiste em V escolher 9 ou ‘B
ez em seu dominio, e 3 escolher y no outro dominio, pondo-o em correspondéncia com z. (O jogo
¢ de informagdo perfeita, isto é, cada jogador conhece as escolhas efetuadas anteriormente por seu
adversério e por si mesmo.) Quando o Jogo acaba, temos n pares (a1, b1), ..., (an, bn), a; € A e
b; € B: V¥ pode escolher elementos em ambas as estruturas, por exemplo ay, by, a3 ete. Diz-se que

J wvence se a correspondéncia a; = by, 1 <1< n, é um isomorfismo de Ql[{ah_,_,a”} a %l{bl,..i,bn}-m

Caso contrério, Y vence — ndo hd empates.

Uma estratégia de 3 para vencer G'n (2, B), segundo [Ehrenfeucht], sio fungdes g; : (Ax B)*-1x
({A}x AU (B} xB)) » AUB, 1 < ¢ < n, de modo que g¢; descreve a resposta de 3 em seu
Cada g; é extensdo das 9j» J < i.) O argumento de

i-¢simo lance, culminando com sua vitéria. (
oy (@i—y,b;_1) formam um vetor

cada g; divide-se em trés partes: as Jogadas ja efetuadas (aq, by), ..
de (A x B)'=!; a estrutura 2 ou B escolhida por V em seu i-ésimo lance; o elemento # do dominio
correspondente, também indicado por V. O valor de g; é, entao, a resposta adequada de 3. (Para
tanto, ¢;(§, 2, z) € B e g;(¢, B, )€ A) Intuitivamente, sdo as func¢ées da tranformada de Skolem
de Yz ,3y; ... V2,3y, “I vence respondendo y, az;e...ey, a g8 2

Podemos caracterizar 2 quanto a Jogos nas férmulas dadas por este lema:

Lema 37. Estas conjuncoes e disjungoes sio finitas e, portanto, estas férmulas estio bem

definidas: para k > 1 e q,.. Lap € A,

2/ R | O /\{¢(1;1, -+, Ug) | ¢ é atdémica ou negagio de atdmica o Ak dlay, ..., a]}

e,parak > 0eay,...,a; € A,

(/5’/L;n] joresOike (Uly ceey U/c) . /\ Eh)/c—f—l @n—l;al,...,ak,a(vh sy Uk, U/c-H) A
aEA
N v1}[;+] \/ (r/)'n,-—l;r”,...,a,;_.,a(Ul7 sy Uy Uk-%l) .

acA

As férmulas ¢y estdo bem definidas, pois o niimero de férmulas atomicas em vy, ..., vy é finito

e nao-nulo, ji que £ > 1 (se k =0 e L nio tem constantes, esse niimero é nulo).

Por inducao em n, para cada k o conjunto {Pna,,...ax | @1,..., a5 € A} é finito. De fato, para

n=0ek > 1, como o niimero de férmulas atomicas em vy, ... v, é finito, também o é o nimero

i
as em 2l com parametros ay, . . k. Sen > 0ek > 0,
QD

de combinagoes possiveis de atomicas valid

supondo-se {(,/5/1.~-1;«11,4..,«Lk,,} finito, vemos que {#niay,...ar} € finito.

6 . 3 ’ e . < -
"“Note que, nesse caso, para todo predicado P, de [, e quaisquer 1 < ky, ..., Kutay <n, A = Palak,,.. . a, R
e

B =P, (B35 e 4 /U;“,(_)J; condigoes andlogas escrevem-se para constantes e a rel

acao de igualdade. Fsia ¢ a caracte

rizacao usada por ﬂ‘l!n'(-nl'wu'l'lf]




Para demonstrar o proximo teorema, observamos que cada ¢, tem n quantificadores aninhados:

wxy

A= (/)n;al,.,.,ak[aly-")(1'1&‘]; B = dojay,...ax b1y - bk] © @i b, 1 < i < k, é um isomorfismo de
Q[I{al,...,ak} a %l{bl,...,bk}'

Teorema 38 (Ehrenfeucht). Equivalem, para cadan > 1e k > 0:

i) 3 tem uma estratégia para vencer G, ((2, ay,...,ar), (B, by,...,bx));

1) 598 = s e [01 45 5o Bl

iii) Se #(v1,...,vk) tem até n quantificadores aninhados, entdo A |= #lay,...,ar] < B =
é[b1, ..., bk

Pelo que observamos, iii) = ii). Por indugdo em 7, mostramos que i) = iii). Esse é o
Teorema 5 de [Ehrenfeucht| e independe do nimero de predicados e constantes de L. Como usual,
é de importancia apenas ¢ da forma Jv t(vy, ..., vk, v), mas entdo 1 tem até n — 1 quantificadores
aninhados. Para n =1, & |= ¢[ai, ..., ax] = existe a € A de modo que A |= Y[ay, ..., ax, al; pela
estratégia de 3 para (71, existe b € B tal que as relagGes correspondentes sio validas em 9B: 1 é
aberta = B = Y[b1,...,b, 0] = B |= P[by, ..., b]; do mesmo modo, com 3 escolhendo a € A
obtém-se a implicacao inversa. ,

Para n > 1, assuma que A |= Play,...,ar]: seja axy1 € A tal que A = Ylay, ..., ak, agqq).
Jé que 3 tem uma estratégia para vencer G, ((%, ay,...,ax), (%B,b1,...,0x)), existe byyy € B de
modo que I tem uma para G,—1((%4, ay, ..., ¢k, axy1), (B, b1, ..., bk, bry1)): basta, antes das n — 1

jogadas, supor que V escolheu a1, e, pela estratégia para Gy, escolher by 1; entdo jogar este G,,_,
reduz-se a jogar aquele (7. Por hipétese de indugdo, B |= 9[by, ..., bk, bry1] porque ¥ tem até
n — 1 quantificadores aninhados; entao B |= ¢[by, . . ., bgl.

Também por indugdo em n, i) < ii). (Teorema 8 de [Ehrenfeucht].) Se n = 1, 3 tem uma
estratégia para vencer G ((%, ay, ..., ax), (B,b1,...,br)) © Va € A3b € B a b é um isomor-
fismo e Vb € B Ja € A a — b é um isomorfismo & B = A c s kst Dosar,.apalbi, - - - bi] (Vkg1)
e B | Yort1 Vaea Poiar,.an,all1y - -5 bk (vkt1) (de modo que as relagdes entre a e as constantes
ay,...,a s4o as mesmas correspondentes entre b e by,...,bk) < Bdra, 0, [01,. .., b

Se n > 1, notamos que 3 tem uma estratégia para vencer G, ((, ay, ..., ax), (B, by, .. ., b1)) se

e somente se, como vimos,
Vae A3be BeVbe BJac€ A ele tem uma para Gr_1 (%, ay,...,ax,a), (B, by, ..., b, b))

& Vac A€ BB = dn-1;0,,.ap,8[011- -, by b) eV EBJa € AB = bn_yia,,..0.lb1s- . ., bk, b]
& B E NeaFvbn-1501,.005.0l01, .- -, Bk)(v) € B |= Vv Waca Patiy,pa Pls s = s (0} & B =
=T | " QED
Corolario 39. 3 tem, para cada n > 1, uma estratégia para vencer G/, (2, B) se e somente se
A=1B.
Com k = 0 em i) ¢ iii). (Teorema 10 de [Ehrenfeucht].)
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Exemplo 40. V¥ sempre pode vencer em G5((Z, <), (@, <)).
De fato, basta que jogue a; — 0, az = 1 e, sendo by, by as respostas de 3, jogue entio by — butby
para a qual 3 ndo terd uma resposta as. Isso corresponde ao fato de que (Z,<) # (@, <). (Note

que I sempre pode vencer em (/y.)
Vemos também, com esse exemplo, que o teorema nio continua vilido se fixarmos que Y escolhe

apenas em %[ ¢ 4 em B.
Como aplicacio, descrevemos o Jogo “21”, disputado em um percurso de 21 casas.!” Dois

Jogadores posicionam seus marcadores na casa 1 e, alternadamente, cada um pode avancar seu
marcador uma, duas ou trés casas & frente do marcador de seu adversdrio. Ganha aquele que

chegar & casa 21.

L<1>l2!3l4!6l71ﬂ’;10
[[21]] 20 [ 19 [as Tz [ 16 [ 15 14 [13] | 12

J tem uma dnica estratégia vencedora: independentemente de como Joga seu oponente, ele deve
»9, 13, 17 e 21. (Se errar, ¥ passa a ter uma estratégia vencedora.)

ocupar sucessivamente as casas 5
Notamos também que esse jogo nio tem um numero fixo de jogadas e que nao ha empates.

De modo a trabalhar com os conceitos definidos, observamos que, se Jd ndo chegar A casa 21 em
exatamente cinco jogadas, ele cometen algum erro, que d4 a vitéria a v (se este ndo errar). Assim,
podemos redefinir o jogo de modo que 3 ganha se e somente se chega & casa 21 na 52 Jogada; de
outro modo, V ganha.

Agora, o jogo “21” corresponde ao Jjogo G5(2A,B), em que A = B — {1,2,3} (os elementos dos
dominios corresponderdo ao nimero de casas avangadas) e A = (4,1, 2, 3), B =(B,3,2, 1), com
constantes ci, ¢z, 3. (Note que h : A — 9B, h(a) =4 —a, é um isomorfismo, donde U = B.) De
fato, 3 vence G5 & [A |=¢; = @ < Blc=b])paral i< 3el Li€6 &

a; =1 b; =3
a4j =2 < by =2 5 paral <j<5
a; =3 & b; =1

. - ﬁr 3 - - L4 ‘
& [bj=4—-ajlparal <j <5 = 1+ Lj’:l (a; +b;) =21 = 3 vence o Jogo “21” e vemos que a
estratégia é, quando Y avancar z casas, J avanca 4 — = casas. Por outro lado, 3 vence o jogo “21”
(nesta forma) = 1 4 > i=i(a; +0;) =21 = 2 i=1(a; +b;) = 20. Mas podermios supor que 3 nio
erra (caso contrario, ¥ pode ganhar), donde [b; = 4 — a;] para 1 < J € 5. (Nessas implicagoes,

usamos repetidamente a defini cao dos dominios e das interpretacoes das constantes em 2%,%.)

ALGUNS TEOREMAS
A Teoria dos Modelos tomou forma e emancipou-se do corpo de conhecimentos da Légica

moderna pelos esforcos de Alfred Tarski nas décadas de 40 e 50. Muito do desenvolvimento (g

Gabriela: O Computador que “Aprende”, da Série Jogos e Descobertas da Fundacio

FUNBEC (criacio de [saac [ipstein)

"Este jogo foi extraido do It

Brasileira para o Desenvolvimento do Fnsino de Ciéncias
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teoria deveu-se a problemas por ele colocados, como uma caracterizacao algébrica da equivaléncia
elementar. Uma resposta a este, em particular, foi apresentada por Keisler em 1961: duas estruturas
sdo elementarmente equivalentes se e somente se tém ultrapoténcias isomérficas. O Teorema da
Ultrapoténcia de Keisler é demonstrado, assumindo-se a Hipétese Generalizada do Continuo, na
secio 7.2 de [Bell, Slomson|; na secao 8.1, sdo apresentados os “lemas basicos” de Frayne e Scott,
sobre imersoes elementares. O Lema de Frayne tem como conseqiiéncia

Fato 41 (BS 8.1.2). Quaisquer duas estruturas finitas elementarmente equivalentes sio iso-

morfas.

Atualmente, tem grande desenvolvimento a Teoria dos Modelos na forma geométrica, que se
dedica a estudar a definibilidade de subconjuntos de estruturas. Sdo importantes, nessa srea, os
conceitos de saturagio e estabilidade. A saturacio é uma caracteristica de estruturas homégeneas
e universais sobre a qual se encontram definicoes no Capitulo 11 de [Bell, Slomson|. Assim como
a estabilidade, a saturacdo emergiu como subproduto da demonstragio original do Teorema de
Morley (1962), cujo enunciado passamos a descrever.

Uma teoria é categdrica no cardinal o se todos os seus modelos de cardinalidade « sdo isomorfos.
(Os Teoremas de Lowenheim—Skolem tornam invidvel a categoricidade usual de estruturas infinitas,
em primeira ordem.) Michael Morley respondeu afirmativamente a uma questio colocada por Los:
uma teoria enumerdvel categérica em um cardinal nao-enumerdvel é categérica em todo cardinal
nao-enumeravel.

Um exercicio envolvendo categoricidade é o

Fato 42 (BS 9.1.9: Teste de Vaught). Uma teoria enumerdvel, sem modelos finitos, cate-

goérica em um cardinal infinito é completa.
Corolério 43. A teoria co = {32" | n > 2} é completa.

Concluimos esta secao estabelecendo o importante conceito de diagrama, devido a A. Robinson.
Dada uma L-estrutura 2, seja (a),c4 uma enumeracao sem repeticoes de seu dominio. Adicione
novas constantes a L, uma para cada a € A, obtendo a linguagem L. O diagrama de U é o
conjunto D(%) das sentengas atomicas e negagoes de atomicas de Ly satisfeitas por (2, (a)aca).
(Trata-se de uma “descrigao” de 21.) Note que % ¢é imersivel em B se e somente se, com alguma
interpretacao para as novas constantes, B satisfaz D(%l). Temos, entdo, esta explica ;A0 para o

termo “modelo-completude”:

Fato 44 (BS 9.2.1). Uma teoria 3 é modelo-completa se e somente se, para cada A modelo

de 3, a teoria XU D(RL) é completa em Ly.
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Buracos negros

Nesta secdo, discutiremos a imersio de um buraco negro no espago-tempo.  Referéncias de

paginas sao feitas a [Misner, Thorne, Wheeler]; também [O'Neill] contém o necessério a N0SSO

desenvolvimento.
Na Mecanica de Newton, define-se assim velocidade de escape de uma distancia r da atracao de
um corpo de massa M: é a velocidade v necessaria para se chegar ao infinito ( energia potencial nula)

. . 5 ~ . 2w 2 /1
com velocidade zero (energia cinética nula). Pela conservacao da energia mecanica, 5~ Q%Lﬂ =

0 = v* =26M /r ou, como sera melhor escrever, r = 2GM/v?. Qualquer corpo com velocidade

estritamente menor que v = /2GM /7 pode inclusive afastar-se, mas voltard em 6rbita fechada, o

que nao ocorre com uma velocidade maior ou igual. Ja que a luz tem a maior velocidade possivel

(esta nao é uma afirmacao newtoniana), nada escapa de uma distancia a M menor que r = 2GM/c?.

E usual, em Fisica, escrever-se G = ¢ = 1: nesse caso, r = 2M.

Um buraco negro é formado por uma estrela de massa M que se tenha contraido a um raio

menor que r = 2M. Considerando que de um buraco negro nada escapa, pergunta-se se podemos

considera-lo uma subestrutura do Universo, pois de um subcorpo ou subespaco nao conhecemos,

ou “escapamos” para, unm corpo ou espaco maior. Naturalmente, coloca-se também o problema de

caracterizar tal inclusao.
. . D ¥ 4‘)
Na Relatividade, temos ds? = da? + dy? + d2? — dt.

em uma estrela de raio R, com r e t medidos por um observador muito

Em um referencial esférico centrado

distante, obtemos ds? =

dr® + r?(d6? + sin? 0 dp?) — dt?. Os efeitos causados pela gravidade sao a dilatacao (ou contragao)

de tempo e distancia, ou seja, estes sao multiplicados por e® et > 0, onde ¢, A sao funcoes de r
apenas: ds? = —e?® dt? 4 ¢2A 42 ¢ r2(df? + sin? @ dgp?). A figura abaixo, adaptada da pag. 614,

apresenta qualitativamente esses efeitos, com dt =0, § = x /2.

Assumimos, agora, estarmos fora da estrela (r > R): seja M a massa-cnergia total da estrela
dada pela terceira lei de Kepler para planetas distantes (massa-energia em repouso -+ energia
3 ) . L 5 i3 e = B
mterna -+ energia potencial gravitacional). Das paginas 602 a 607, temos A = — In(1 - *j‘l)/l o

2M \ /o
¢ o] —_— p
b = In(1 =2,

Entao a Geometria de Schwarzschild ¢ dada por
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2 (1 _ 2My 1,2 1 2200 B TA2 L et 2
ds® = —(1 - ) dt” + o dr® + r°(df” + sin” 0 d¢”) .
T
Uma nota de cuidado: essa geometria é exterior a estrela; em seu interior, A e ® sujeitam-se
a fatores como pressdo estelar e massa da estrela compreendida na esfera interior a r. Assim
i ]

as estrelas brilhantes ndo tém singularidades em seu centro, por exemplo. Veja discussdo nas

pp. 600-6.
A singularidade r = 2M é o chamado raio de Schwarzschild. Veremos que esse raio corresponde

a0 horizonte de eventos relativistico e sua coincidéncia com o newtoniano vem do fato de r ser
medido por um observador muito distante, que nao sofre os efeitos relativisticos da estrela.

Temos gy = —(1 — —Q—Ir‘l) e grr = 1/(1 - Zrﬂ) Parar > 2M, gy < 0 e g.r > 0; para r < 2M,
os sinais sio trocados. Este fendmeno tem a seguinte interpretagao: t e r trocam entre si as
caracteristicas de coordenadas de tempo e espago. Assim, tal qual a passagem do tempo é inexoravel
(g1t < 0) em r > 2M, r sempre diminui até » = 0 em r < 2M pois g, < 0, ou seja, nada escapa da
atracdo de M (em contraste com a teoria newtoniana). Notamos que a prépria geometria também
colapsa em r = 0. Contudo, r = 2M é uma singularidade do sistema de coordenadas, mas nao do
espaco-tempo. (Conforme pp. 820-3.)

A fim de tranformar a geometria de Schwarzschild em estruturas relacionais, suporemos (como
tacitamente na discussdo acima) que a massa M estd fixa na origem do sistema de coordenadas e
sempre foi e sempre serd um buraco negro de raio r = 2M.

Consideraremos os dominios U = (IR®)|;>0 x R e B = (R)|o<r<2m X IR C U, em que IR? é o
espaco tri-dimensional (z, y, z), com r dado pelo referencial esférico, e IR a dimensao temporal t.
Elementos de U e B serdo escritos p = (8p, tp) € IR? x IR e sdo chamados eventos.

[2 natural tomar o predicado bindrio P de modo que P(p, q) seja interpretado como
influenciar ¢”. O modo usual de escrever-se ¢ p < gou g € Jt(p) (pp. 922-3),ondep < ¢ & p=g¢q
caso p < ¢, héd uma trajetéria de particula material ou f6ton de p a ¢ para o futuro.

¢

‘» pode

ou, no
Sejam R e S as interpretacoes de < em U e B respectivamente: R e S devem, portanto, ser
relacdes bindrias reflexivas.
Como vimos, o fato de que g, < 0 em B tem esta conseqiiéncia: se p € U — B e q e B, (p,q)

pode ou ndo pertencer a R, mas (¢, p) ¢ R. Ja que R e S sio relagoes correspondendo ao mesmo

fenémeno em B, temos que R|p = 5.
Entdo, escrevemos i = (U, R) e B = (B, 5), obtendo

Resultado 45. 9B C {, mas ndo B < i, na linguagem do predicado <.

Vimos que B C &. Sejam agora $(vy,v2) : (v < N AV K v9) formula dessa linguagem e
by, by € B de modo que seus passados causais J~ (b)) = {p|p < b1} e J7(b2) ndo se intersectem em
B, mas sim em U — B. Entao U k= $[by, ba], mas B |- ~ by, bal. QED

Notamos que, embora tais by, b, € B existam, as escalas envolvidas podem nao permitir uma
sxperiéncia fisic » distingua B de U Lembramos que nada hd em especial ao cr
experiéncia fisica que distingua °b de Uy —p. Lem hramos que nada ha em especial ao cruzar-se o

horizonte de eventos r = 2M.




Estd aberta a possibilidade de B =4, Conj

ecturamos que o Cooroldrio 39 leve
afirmativa.

a uma resposta

Adicionamos 3 linguagem um novo predicado, nio tio natural, em que

1850 ndo ocorre. Con-
sidere o predicado bindrio (2, que indic

aremos | infixo, com plv tendo a interpretacio de 8y = 8y,
ou seja, “p e v tém a mesma posicao espacial”. Sejam Qu e Qp as interpretacées de () em [/ e B-
evidentemente, (g — (Qu)|s. Com Y = (U,R,Qu) e B = (B,S,Qp), temos

Resultado 46. B’ C §, mas B # U, na linguagem dos predicados < e |.
De fato, considere a sentenca o : IpIgJv (~(p = DAP<gAg <

muito distante de r = 0, em comparagao com 2M. Nesse local, o esp
Minkowskiano: conside

v Aplv). Tome agora p com s,
aco-tempo é aproximadamente
e ¢ > p e muito préximo nessa escala. O préprio J*(q) intersecta a reta
(sp,t), t € IR, em um evento v. Com esses p, q e v, vemos que Y |=o.

Por outro lado, 8’ = VpVgYo (~p=q)Ap< gAplv = ~(q < v)), Pois g, < 0 em B, donde
B’ = ~o.

QED
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“Para surpresa de todos que nos ajudaram, dedicamos nosso livro a todos os modelo-teéricos

que nunca dedicaram um livro a si proprios.” — de [Chang, Keisler]

Idealizamos esta representacao da definicao de satisfacao de Tarski para a exposicac ai
posi¢ao em paine

no 112 Simpdésio de Iniciagao Cientifica da USP:

T ,,\}/L/
\ \\\\\\\\
= “chove” < > \\\\\\\\

L et
) AN
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